Index: third_party/libjpeg_turbo/jdsample.c |
=================================================================== |
--- third_party/libjpeg_turbo/jdsample.c (revision 0) |
+++ third_party/libjpeg_turbo/jdsample.c (revision 0) |
@@ -0,0 +1,494 @@ |
+/* |
+ * jdsample.c |
+ * |
+ * Copyright (C) 1991-1996, Thomas G. Lane. |
+ * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
+ * This file is part of the Independent JPEG Group's software. |
+ * For conditions of distribution and use, see the accompanying README file. |
+ * |
+ * This file contains upsampling routines. |
+ * |
+ * Upsampling input data is counted in "row groups". A row group |
+ * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size) |
+ * sample rows of each component. Upsampling will normally produce |
+ * max_v_samp_factor pixel rows from each row group (but this could vary |
+ * if the upsampler is applying a scale factor of its own). |
+ * |
+ * An excellent reference for image resampling is |
+ * Digital Image Warping, George Wolberg, 1990. |
+ * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. |
+ */ |
+ |
+#define JPEG_INTERNALS |
+#include "jinclude.h" |
+#include "jpeglib.h" |
+#include "jsimd.h" |
+ |
+ |
+/* Pointer to routine to upsample a single component */ |
+typedef JMETHOD(void, upsample1_ptr, |
+ (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)); |
+ |
+/* Private subobject */ |
+ |
+typedef struct { |
+ struct jpeg_upsampler pub; /* public fields */ |
+ |
+ /* Color conversion buffer. When using separate upsampling and color |
+ * conversion steps, this buffer holds one upsampled row group until it |
+ * has been color converted and output. |
+ * Note: we do not allocate any storage for component(s) which are full-size, |
+ * ie do not need rescaling. The corresponding entry of color_buf[] is |
+ * simply set to point to the input data array, thereby avoiding copying. |
+ */ |
+ JSAMPARRAY color_buf[MAX_COMPONENTS]; |
+ |
+ /* Per-component upsampling method pointers */ |
+ upsample1_ptr methods[MAX_COMPONENTS]; |
+ |
+ int next_row_out; /* counts rows emitted from color_buf */ |
+ JDIMENSION rows_to_go; /* counts rows remaining in image */ |
+ |
+ /* Height of an input row group for each component. */ |
+ int rowgroup_height[MAX_COMPONENTS]; |
+ |
+ /* These arrays save pixel expansion factors so that int_expand need not |
+ * recompute them each time. They are unused for other upsampling methods. |
+ */ |
+ UINT8 h_expand[MAX_COMPONENTS]; |
+ UINT8 v_expand[MAX_COMPONENTS]; |
+} my_upsampler; |
+ |
+typedef my_upsampler * my_upsample_ptr; |
+ |
+ |
+/* |
+ * Initialize for an upsampling pass. |
+ */ |
+ |
+METHODDEF(void) |
+start_pass_upsample (j_decompress_ptr cinfo) |
+{ |
+ my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
+ |
+ /* Mark the conversion buffer empty */ |
+ upsample->next_row_out = cinfo->max_v_samp_factor; |
+ /* Initialize total-height counter for detecting bottom of image */ |
+ upsample->rows_to_go = cinfo->output_height; |
+} |
+ |
+ |
+/* |
+ * Control routine to do upsampling (and color conversion). |
+ * |
+ * In this version we upsample each component independently. |
+ * We upsample one row group into the conversion buffer, then apply |
+ * color conversion a row at a time. |
+ */ |
+ |
+METHODDEF(void) |
+sep_upsample (j_decompress_ptr cinfo, |
+ JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, |
+ JDIMENSION in_row_groups_avail, |
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
+ JDIMENSION out_rows_avail) |
+{ |
+ my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
+ int ci; |
+ jpeg_component_info * compptr; |
+ JDIMENSION num_rows; |
+ |
+ /* Fill the conversion buffer, if it's empty */ |
+ if (upsample->next_row_out >= cinfo->max_v_samp_factor) { |
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
+ ci++, compptr++) { |
+ /* Invoke per-component upsample method. Notice we pass a POINTER |
+ * to color_buf[ci], so that fullsize_upsample can change it. |
+ */ |
+ (*upsample->methods[ci]) (cinfo, compptr, |
+ input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]), |
+ upsample->color_buf + ci); |
+ } |
+ upsample->next_row_out = 0; |
+ } |
+ |
+ /* Color-convert and emit rows */ |
+ |
+ /* How many we have in the buffer: */ |
+ num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out); |
+ /* Not more than the distance to the end of the image. Need this test |
+ * in case the image height is not a multiple of max_v_samp_factor: |
+ */ |
+ if (num_rows > upsample->rows_to_go) |
+ num_rows = upsample->rows_to_go; |
+ /* And not more than what the client can accept: */ |
+ out_rows_avail -= *out_row_ctr; |
+ if (num_rows > out_rows_avail) |
+ num_rows = out_rows_avail; |
+ |
+ (*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf, |
+ (JDIMENSION) upsample->next_row_out, |
+ output_buf + *out_row_ctr, |
+ (int) num_rows); |
+ |
+ /* Adjust counts */ |
+ *out_row_ctr += num_rows; |
+ upsample->rows_to_go -= num_rows; |
+ upsample->next_row_out += num_rows; |
+ /* When the buffer is emptied, declare this input row group consumed */ |
+ if (upsample->next_row_out >= cinfo->max_v_samp_factor) |
+ (*in_row_group_ctr)++; |
+} |
+ |
+ |
+/* |
+ * These are the routines invoked by sep_upsample to upsample pixel values |
+ * of a single component. One row group is processed per call. |
+ */ |
+ |
+ |
+/* |
+ * For full-size components, we just make color_buf[ci] point at the |
+ * input buffer, and thus avoid copying any data. Note that this is |
+ * safe only because sep_upsample doesn't declare the input row group |
+ * "consumed" until we are done color converting and emitting it. |
+ */ |
+ |
+METHODDEF(void) |
+fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) |
+{ |
+ *output_data_ptr = input_data; |
+} |
+ |
+ |
+/* |
+ * This is a no-op version used for "uninteresting" components. |
+ * These components will not be referenced by color conversion. |
+ */ |
+ |
+METHODDEF(void) |
+noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) |
+{ |
+ *output_data_ptr = NULL; /* safety check */ |
+} |
+ |
+ |
+/* |
+ * This version handles any integral sampling ratios. |
+ * This is not used for typical JPEG files, so it need not be fast. |
+ * Nor, for that matter, is it particularly accurate: the algorithm is |
+ * simple replication of the input pixel onto the corresponding output |
+ * pixels. The hi-falutin sampling literature refers to this as a |
+ * "box filter". A box filter tends to introduce visible artifacts, |
+ * so if you are actually going to use 3:1 or 4:1 sampling ratios |
+ * you would be well advised to improve this code. |
+ */ |
+ |
+METHODDEF(void) |
+int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) |
+{ |
+ my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
+ JSAMPARRAY output_data = *output_data_ptr; |
+ register JSAMPROW inptr, outptr; |
+ register JSAMPLE invalue; |
+ register int h; |
+ JSAMPROW outend; |
+ int h_expand, v_expand; |
+ int inrow, outrow; |
+ |
+ h_expand = upsample->h_expand[compptr->component_index]; |
+ v_expand = upsample->v_expand[compptr->component_index]; |
+ |
+ inrow = outrow = 0; |
+ while (outrow < cinfo->max_v_samp_factor) { |
+ /* Generate one output row with proper horizontal expansion */ |
+ inptr = input_data[inrow]; |
+ outptr = output_data[outrow]; |
+ outend = outptr + cinfo->output_width; |
+ while (outptr < outend) { |
+ invalue = *inptr++; /* don't need GETJSAMPLE() here */ |
+ for (h = h_expand; h > 0; h--) { |
+ *outptr++ = invalue; |
+ } |
+ } |
+ /* Generate any additional output rows by duplicating the first one */ |
+ if (v_expand > 1) { |
+ jcopy_sample_rows(output_data, outrow, output_data, outrow+1, |
+ v_expand-1, cinfo->output_width); |
+ } |
+ inrow++; |
+ outrow += v_expand; |
+ } |
+} |
+ |
+ |
+/* |
+ * Fast processing for the common case of 2:1 horizontal and 1:1 vertical. |
+ * It's still a box filter. |
+ */ |
+ |
+METHODDEF(void) |
+h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) |
+{ |
+ JSAMPARRAY output_data = *output_data_ptr; |
+ register JSAMPROW inptr, outptr; |
+ register JSAMPLE invalue; |
+ JSAMPROW outend; |
+ int inrow; |
+ |
+ for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { |
+ inptr = input_data[inrow]; |
+ outptr = output_data[inrow]; |
+ outend = outptr + cinfo->output_width; |
+ while (outptr < outend) { |
+ invalue = *inptr++; /* don't need GETJSAMPLE() here */ |
+ *outptr++ = invalue; |
+ *outptr++ = invalue; |
+ } |
+ } |
+} |
+ |
+ |
+/* |
+ * Fast processing for the common case of 2:1 horizontal and 2:1 vertical. |
+ * It's still a box filter. |
+ */ |
+ |
+METHODDEF(void) |
+h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) |
+{ |
+ JSAMPARRAY output_data = *output_data_ptr; |
+ register JSAMPROW inptr, outptr; |
+ register JSAMPLE invalue; |
+ JSAMPROW outend; |
+ int inrow, outrow; |
+ |
+ inrow = outrow = 0; |
+ while (outrow < cinfo->max_v_samp_factor) { |
+ inptr = input_data[inrow]; |
+ outptr = output_data[outrow]; |
+ outend = outptr + cinfo->output_width; |
+ while (outptr < outend) { |
+ invalue = *inptr++; /* don't need GETJSAMPLE() here */ |
+ *outptr++ = invalue; |
+ *outptr++ = invalue; |
+ } |
+ jcopy_sample_rows(output_data, outrow, output_data, outrow+1, |
+ 1, cinfo->output_width); |
+ inrow++; |
+ outrow += 2; |
+ } |
+} |
+ |
+ |
+/* |
+ * Fancy processing for the common case of 2:1 horizontal and 1:1 vertical. |
+ * |
+ * The upsampling algorithm is linear interpolation between pixel centers, |
+ * also known as a "triangle filter". This is a good compromise between |
+ * speed and visual quality. The centers of the output pixels are 1/4 and 3/4 |
+ * of the way between input pixel centers. |
+ * |
+ * A note about the "bias" calculations: when rounding fractional values to |
+ * integer, we do not want to always round 0.5 up to the next integer. |
+ * If we did that, we'd introduce a noticeable bias towards larger values. |
+ * Instead, this code is arranged so that 0.5 will be rounded up or down at |
+ * alternate pixel locations (a simple ordered dither pattern). |
+ */ |
+ |
+METHODDEF(void) |
+h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) |
+{ |
+ JSAMPARRAY output_data = *output_data_ptr; |
+ register JSAMPROW inptr, outptr; |
+ register int invalue; |
+ register JDIMENSION colctr; |
+ int inrow; |
+ |
+ for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { |
+ inptr = input_data[inrow]; |
+ outptr = output_data[inrow]; |
+ /* Special case for first column */ |
+ invalue = GETJSAMPLE(*inptr++); |
+ *outptr++ = (JSAMPLE) invalue; |
+ *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(*inptr) + 2) >> 2); |
+ |
+ for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) { |
+ /* General case: 3/4 * nearer pixel + 1/4 * further pixel */ |
+ invalue = GETJSAMPLE(*inptr++) * 3; |
+ *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(inptr[-2]) + 1) >> 2); |
+ *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(*inptr) + 2) >> 2); |
+ } |
+ |
+ /* Special case for last column */ |
+ invalue = GETJSAMPLE(*inptr); |
+ *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(inptr[-1]) + 1) >> 2); |
+ *outptr++ = (JSAMPLE) invalue; |
+ } |
+} |
+ |
+ |
+/* |
+ * Fancy processing for the common case of 2:1 horizontal and 2:1 vertical. |
+ * Again a triangle filter; see comments for h2v1 case, above. |
+ * |
+ * It is OK for us to reference the adjacent input rows because we demanded |
+ * context from the main buffer controller (see initialization code). |
+ */ |
+ |
+METHODDEF(void) |
+h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) |
+{ |
+ JSAMPARRAY output_data = *output_data_ptr; |
+ register JSAMPROW inptr0, inptr1, outptr; |
+#if BITS_IN_JSAMPLE == 8 |
+ register int thiscolsum, lastcolsum, nextcolsum; |
+#else |
+ register INT32 thiscolsum, lastcolsum, nextcolsum; |
+#endif |
+ register JDIMENSION colctr; |
+ int inrow, outrow, v; |
+ |
+ inrow = outrow = 0; |
+ while (outrow < cinfo->max_v_samp_factor) { |
+ for (v = 0; v < 2; v++) { |
+ /* inptr0 points to nearest input row, inptr1 points to next nearest */ |
+ inptr0 = input_data[inrow]; |
+ if (v == 0) /* next nearest is row above */ |
+ inptr1 = input_data[inrow-1]; |
+ else /* next nearest is row below */ |
+ inptr1 = input_data[inrow+1]; |
+ outptr = output_data[outrow++]; |
+ |
+ /* Special case for first column */ |
+ thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); |
+ nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); |
+ *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 8) >> 4); |
+ *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4); |
+ lastcolsum = thiscolsum; thiscolsum = nextcolsum; |
+ |
+ for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) { |
+ /* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */ |
+ /* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */ |
+ nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); |
+ *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4); |
+ *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4); |
+ lastcolsum = thiscolsum; thiscolsum = nextcolsum; |
+ } |
+ |
+ /* Special case for last column */ |
+ *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4); |
+ *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 7) >> 4); |
+ } |
+ inrow++; |
+ } |
+} |
+ |
+ |
+/* |
+ * Module initialization routine for upsampling. |
+ */ |
+ |
+GLOBAL(void) |
+jinit_upsampler (j_decompress_ptr cinfo) |
+{ |
+ my_upsample_ptr upsample; |
+ int ci; |
+ jpeg_component_info * compptr; |
+ boolean need_buffer, do_fancy; |
+ int h_in_group, v_in_group, h_out_group, v_out_group; |
+ |
+ upsample = (my_upsample_ptr) |
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
+ SIZEOF(my_upsampler)); |
+ cinfo->upsample = (struct jpeg_upsampler *) upsample; |
+ upsample->pub.start_pass = start_pass_upsample; |
+ upsample->pub.upsample = sep_upsample; |
+ upsample->pub.need_context_rows = FALSE; /* until we find out differently */ |
+ |
+ if (cinfo->CCIR601_sampling) /* this isn't supported */ |
+ ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); |
+ |
+ /* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1, |
+ * so don't ask for it. |
+ */ |
+ do_fancy = cinfo->do_fancy_upsampling && cinfo->min_DCT_scaled_size > 1; |
+ |
+ /* Verify we can handle the sampling factors, select per-component methods, |
+ * and create storage as needed. |
+ */ |
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
+ ci++, compptr++) { |
+ /* Compute size of an "input group" after IDCT scaling. This many samples |
+ * are to be converted to max_h_samp_factor * max_v_samp_factor pixels. |
+ */ |
+ h_in_group = (compptr->h_samp_factor * compptr->DCT_scaled_size) / |
+ cinfo->min_DCT_scaled_size; |
+ v_in_group = (compptr->v_samp_factor * compptr->DCT_scaled_size) / |
+ cinfo->min_DCT_scaled_size; |
+ h_out_group = cinfo->max_h_samp_factor; |
+ v_out_group = cinfo->max_v_samp_factor; |
+ upsample->rowgroup_height[ci] = v_in_group; /* save for use later */ |
+ need_buffer = TRUE; |
+ if (! compptr->component_needed) { |
+ /* Don't bother to upsample an uninteresting component. */ |
+ upsample->methods[ci] = noop_upsample; |
+ need_buffer = FALSE; |
+ } else if (h_in_group == h_out_group && v_in_group == v_out_group) { |
+ /* Fullsize components can be processed without any work. */ |
+ upsample->methods[ci] = fullsize_upsample; |
+ need_buffer = FALSE; |
+ } else if (h_in_group * 2 == h_out_group && |
+ v_in_group == v_out_group) { |
+ /* Special cases for 2h1v upsampling */ |
+ if (do_fancy && compptr->downsampled_width > 2) { |
+ if (jsimd_can_h2v1_fancy_upsample()) |
+ upsample->methods[ci] = jsimd_h2v1_fancy_upsample; |
+ else |
+ upsample->methods[ci] = h2v1_fancy_upsample; |
+ } else { |
+ if (jsimd_can_h2v1_upsample()) |
+ upsample->methods[ci] = jsimd_h2v1_upsample; |
+ else |
+ upsample->methods[ci] = h2v1_upsample; |
+ } |
+ } else if (h_in_group * 2 == h_out_group && |
+ v_in_group * 2 == v_out_group) { |
+ /* Special cases for 2h2v upsampling */ |
+ if (do_fancy && compptr->downsampled_width > 2) { |
+ if (jsimd_can_h2v2_fancy_upsample()) |
+ upsample->methods[ci] = jsimd_h2v2_fancy_upsample; |
+ else |
+ upsample->methods[ci] = h2v2_fancy_upsample; |
+ upsample->pub.need_context_rows = TRUE; |
+ } else { |
+ if (jsimd_can_h2v2_upsample()) |
+ upsample->methods[ci] = jsimd_h2v2_upsample; |
+ else |
+ upsample->methods[ci] = h2v2_upsample; |
+ } |
+ } else if ((h_out_group % h_in_group) == 0 && |
+ (v_out_group % v_in_group) == 0) { |
+ /* Generic integral-factors upsampling method */ |
+ upsample->methods[ci] = int_upsample; |
+ upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group); |
+ upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group); |
+ } else |
+ ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); |
+ if (need_buffer) { |
+ upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray) |
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, |
+ (JDIMENSION) jround_up((long) cinfo->output_width, |
+ (long) cinfo->max_h_samp_factor), |
+ (JDIMENSION) cinfo->max_v_samp_factor); |
+ } |
+ } |
+} |