OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * jdsample.c |
| 3 * |
| 4 * Copyright (C) 1991-1996, Thomas G. Lane. |
| 5 * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
| 6 * This file is part of the Independent JPEG Group's software. |
| 7 * For conditions of distribution and use, see the accompanying README file. |
| 8 * |
| 9 * This file contains upsampling routines. |
| 10 * |
| 11 * Upsampling input data is counted in "row groups". A row group |
| 12 * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size) |
| 13 * sample rows of each component. Upsampling will normally produce |
| 14 * max_v_samp_factor pixel rows from each row group (but this could vary |
| 15 * if the upsampler is applying a scale factor of its own). |
| 16 * |
| 17 * An excellent reference for image resampling is |
| 18 * Digital Image Warping, George Wolberg, 1990. |
| 19 * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. |
| 20 */ |
| 21 |
| 22 #define JPEG_INTERNALS |
| 23 #include "jinclude.h" |
| 24 #include "jpeglib.h" |
| 25 #include "jsimd.h" |
| 26 |
| 27 |
| 28 /* Pointer to routine to upsample a single component */ |
| 29 typedef JMETHOD(void, upsample1_ptr, |
| 30 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 31 JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)); |
| 32 |
| 33 /* Private subobject */ |
| 34 |
| 35 typedef struct { |
| 36 struct jpeg_upsampler pub; /* public fields */ |
| 37 |
| 38 /* Color conversion buffer. When using separate upsampling and color |
| 39 * conversion steps, this buffer holds one upsampled row group until it |
| 40 * has been color converted and output. |
| 41 * Note: we do not allocate any storage for component(s) which are full-size, |
| 42 * ie do not need rescaling. The corresponding entry of color_buf[] is |
| 43 * simply set to point to the input data array, thereby avoiding copying. |
| 44 */ |
| 45 JSAMPARRAY color_buf[MAX_COMPONENTS]; |
| 46 |
| 47 /* Per-component upsampling method pointers */ |
| 48 upsample1_ptr methods[MAX_COMPONENTS]; |
| 49 |
| 50 int next_row_out; /* counts rows emitted from color_buf */ |
| 51 JDIMENSION rows_to_go; /* counts rows remaining in image */ |
| 52 |
| 53 /* Height of an input row group for each component. */ |
| 54 int rowgroup_height[MAX_COMPONENTS]; |
| 55 |
| 56 /* These arrays save pixel expansion factors so that int_expand need not |
| 57 * recompute them each time. They are unused for other upsampling methods. |
| 58 */ |
| 59 UINT8 h_expand[MAX_COMPONENTS]; |
| 60 UINT8 v_expand[MAX_COMPONENTS]; |
| 61 } my_upsampler; |
| 62 |
| 63 typedef my_upsampler * my_upsample_ptr; |
| 64 |
| 65 |
| 66 /* |
| 67 * Initialize for an upsampling pass. |
| 68 */ |
| 69 |
| 70 METHODDEF(void) |
| 71 start_pass_upsample (j_decompress_ptr cinfo) |
| 72 { |
| 73 my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
| 74 |
| 75 /* Mark the conversion buffer empty */ |
| 76 upsample->next_row_out = cinfo->max_v_samp_factor; |
| 77 /* Initialize total-height counter for detecting bottom of image */ |
| 78 upsample->rows_to_go = cinfo->output_height; |
| 79 } |
| 80 |
| 81 |
| 82 /* |
| 83 * Control routine to do upsampling (and color conversion). |
| 84 * |
| 85 * In this version we upsample each component independently. |
| 86 * We upsample one row group into the conversion buffer, then apply |
| 87 * color conversion a row at a time. |
| 88 */ |
| 89 |
| 90 METHODDEF(void) |
| 91 sep_upsample (j_decompress_ptr cinfo, |
| 92 JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, |
| 93 JDIMENSION in_row_groups_avail, |
| 94 JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
| 95 JDIMENSION out_rows_avail) |
| 96 { |
| 97 my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
| 98 int ci; |
| 99 jpeg_component_info * compptr; |
| 100 JDIMENSION num_rows; |
| 101 |
| 102 /* Fill the conversion buffer, if it's empty */ |
| 103 if (upsample->next_row_out >= cinfo->max_v_samp_factor) { |
| 104 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
| 105 ci++, compptr++) { |
| 106 /* Invoke per-component upsample method. Notice we pass a POINTER |
| 107 * to color_buf[ci], so that fullsize_upsample can change it. |
| 108 */ |
| 109 (*upsample->methods[ci]) (cinfo, compptr, |
| 110 input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]), |
| 111 upsample->color_buf + ci); |
| 112 } |
| 113 upsample->next_row_out = 0; |
| 114 } |
| 115 |
| 116 /* Color-convert and emit rows */ |
| 117 |
| 118 /* How many we have in the buffer: */ |
| 119 num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out); |
| 120 /* Not more than the distance to the end of the image. Need this test |
| 121 * in case the image height is not a multiple of max_v_samp_factor: |
| 122 */ |
| 123 if (num_rows > upsample->rows_to_go) |
| 124 num_rows = upsample->rows_to_go; |
| 125 /* And not more than what the client can accept: */ |
| 126 out_rows_avail -= *out_row_ctr; |
| 127 if (num_rows > out_rows_avail) |
| 128 num_rows = out_rows_avail; |
| 129 |
| 130 (*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf, |
| 131 (JDIMENSION) upsample->next_row_out, |
| 132 output_buf + *out_row_ctr, |
| 133 (int) num_rows); |
| 134 |
| 135 /* Adjust counts */ |
| 136 *out_row_ctr += num_rows; |
| 137 upsample->rows_to_go -= num_rows; |
| 138 upsample->next_row_out += num_rows; |
| 139 /* When the buffer is emptied, declare this input row group consumed */ |
| 140 if (upsample->next_row_out >= cinfo->max_v_samp_factor) |
| 141 (*in_row_group_ctr)++; |
| 142 } |
| 143 |
| 144 |
| 145 /* |
| 146 * These are the routines invoked by sep_upsample to upsample pixel values |
| 147 * of a single component. One row group is processed per call. |
| 148 */ |
| 149 |
| 150 |
| 151 /* |
| 152 * For full-size components, we just make color_buf[ci] point at the |
| 153 * input buffer, and thus avoid copying any data. Note that this is |
| 154 * safe only because sep_upsample doesn't declare the input row group |
| 155 * "consumed" until we are done color converting and emitting it. |
| 156 */ |
| 157 |
| 158 METHODDEF(void) |
| 159 fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 160 JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) |
| 161 { |
| 162 *output_data_ptr = input_data; |
| 163 } |
| 164 |
| 165 |
| 166 /* |
| 167 * This is a no-op version used for "uninteresting" components. |
| 168 * These components will not be referenced by color conversion. |
| 169 */ |
| 170 |
| 171 METHODDEF(void) |
| 172 noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 173 JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) |
| 174 { |
| 175 *output_data_ptr = NULL; /* safety check */ |
| 176 } |
| 177 |
| 178 |
| 179 /* |
| 180 * This version handles any integral sampling ratios. |
| 181 * This is not used for typical JPEG files, so it need not be fast. |
| 182 * Nor, for that matter, is it particularly accurate: the algorithm is |
| 183 * simple replication of the input pixel onto the corresponding output |
| 184 * pixels. The hi-falutin sampling literature refers to this as a |
| 185 * "box filter". A box filter tends to introduce visible artifacts, |
| 186 * so if you are actually going to use 3:1 or 4:1 sampling ratios |
| 187 * you would be well advised to improve this code. |
| 188 */ |
| 189 |
| 190 METHODDEF(void) |
| 191 int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 192 JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) |
| 193 { |
| 194 my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
| 195 JSAMPARRAY output_data = *output_data_ptr; |
| 196 register JSAMPROW inptr, outptr; |
| 197 register JSAMPLE invalue; |
| 198 register int h; |
| 199 JSAMPROW outend; |
| 200 int h_expand, v_expand; |
| 201 int inrow, outrow; |
| 202 |
| 203 h_expand = upsample->h_expand[compptr->component_index]; |
| 204 v_expand = upsample->v_expand[compptr->component_index]; |
| 205 |
| 206 inrow = outrow = 0; |
| 207 while (outrow < cinfo->max_v_samp_factor) { |
| 208 /* Generate one output row with proper horizontal expansion */ |
| 209 inptr = input_data[inrow]; |
| 210 outptr = output_data[outrow]; |
| 211 outend = outptr + cinfo->output_width; |
| 212 while (outptr < outend) { |
| 213 invalue = *inptr++; /* don't need GETJSAMPLE() here */ |
| 214 for (h = h_expand; h > 0; h--) { |
| 215 *outptr++ = invalue; |
| 216 } |
| 217 } |
| 218 /* Generate any additional output rows by duplicating the first one */ |
| 219 if (v_expand > 1) { |
| 220 jcopy_sample_rows(output_data, outrow, output_data, outrow+1, |
| 221 v_expand-1, cinfo->output_width); |
| 222 } |
| 223 inrow++; |
| 224 outrow += v_expand; |
| 225 } |
| 226 } |
| 227 |
| 228 |
| 229 /* |
| 230 * Fast processing for the common case of 2:1 horizontal and 1:1 vertical. |
| 231 * It's still a box filter. |
| 232 */ |
| 233 |
| 234 METHODDEF(void) |
| 235 h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 236 JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) |
| 237 { |
| 238 JSAMPARRAY output_data = *output_data_ptr; |
| 239 register JSAMPROW inptr, outptr; |
| 240 register JSAMPLE invalue; |
| 241 JSAMPROW outend; |
| 242 int inrow; |
| 243 |
| 244 for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { |
| 245 inptr = input_data[inrow]; |
| 246 outptr = output_data[inrow]; |
| 247 outend = outptr + cinfo->output_width; |
| 248 while (outptr < outend) { |
| 249 invalue = *inptr++; /* don't need GETJSAMPLE() here */ |
| 250 *outptr++ = invalue; |
| 251 *outptr++ = invalue; |
| 252 } |
| 253 } |
| 254 } |
| 255 |
| 256 |
| 257 /* |
| 258 * Fast processing for the common case of 2:1 horizontal and 2:1 vertical. |
| 259 * It's still a box filter. |
| 260 */ |
| 261 |
| 262 METHODDEF(void) |
| 263 h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 264 JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) |
| 265 { |
| 266 JSAMPARRAY output_data = *output_data_ptr; |
| 267 register JSAMPROW inptr, outptr; |
| 268 register JSAMPLE invalue; |
| 269 JSAMPROW outend; |
| 270 int inrow, outrow; |
| 271 |
| 272 inrow = outrow = 0; |
| 273 while (outrow < cinfo->max_v_samp_factor) { |
| 274 inptr = input_data[inrow]; |
| 275 outptr = output_data[outrow]; |
| 276 outend = outptr + cinfo->output_width; |
| 277 while (outptr < outend) { |
| 278 invalue = *inptr++; /* don't need GETJSAMPLE() here */ |
| 279 *outptr++ = invalue; |
| 280 *outptr++ = invalue; |
| 281 } |
| 282 jcopy_sample_rows(output_data, outrow, output_data, outrow+1, |
| 283 1, cinfo->output_width); |
| 284 inrow++; |
| 285 outrow += 2; |
| 286 } |
| 287 } |
| 288 |
| 289 |
| 290 /* |
| 291 * Fancy processing for the common case of 2:1 horizontal and 1:1 vertical. |
| 292 * |
| 293 * The upsampling algorithm is linear interpolation between pixel centers, |
| 294 * also known as a "triangle filter". This is a good compromise between |
| 295 * speed and visual quality. The centers of the output pixels are 1/4 and 3/4 |
| 296 * of the way between input pixel centers. |
| 297 * |
| 298 * A note about the "bias" calculations: when rounding fractional values to |
| 299 * integer, we do not want to always round 0.5 up to the next integer. |
| 300 * If we did that, we'd introduce a noticeable bias towards larger values. |
| 301 * Instead, this code is arranged so that 0.5 will be rounded up or down at |
| 302 * alternate pixel locations (a simple ordered dither pattern). |
| 303 */ |
| 304 |
| 305 METHODDEF(void) |
| 306 h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 307 JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) |
| 308 { |
| 309 JSAMPARRAY output_data = *output_data_ptr; |
| 310 register JSAMPROW inptr, outptr; |
| 311 register int invalue; |
| 312 register JDIMENSION colctr; |
| 313 int inrow; |
| 314 |
| 315 for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { |
| 316 inptr = input_data[inrow]; |
| 317 outptr = output_data[inrow]; |
| 318 /* Special case for first column */ |
| 319 invalue = GETJSAMPLE(*inptr++); |
| 320 *outptr++ = (JSAMPLE) invalue; |
| 321 *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(*inptr) + 2) >> 2); |
| 322 |
| 323 for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) { |
| 324 /* General case: 3/4 * nearer pixel + 1/4 * further pixel */ |
| 325 invalue = GETJSAMPLE(*inptr++) * 3; |
| 326 *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(inptr[-2]) + 1) >> 2); |
| 327 *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(*inptr) + 2) >> 2); |
| 328 } |
| 329 |
| 330 /* Special case for last column */ |
| 331 invalue = GETJSAMPLE(*inptr); |
| 332 *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(inptr[-1]) + 1) >> 2); |
| 333 *outptr++ = (JSAMPLE) invalue; |
| 334 } |
| 335 } |
| 336 |
| 337 |
| 338 /* |
| 339 * Fancy processing for the common case of 2:1 horizontal and 2:1 vertical. |
| 340 * Again a triangle filter; see comments for h2v1 case, above. |
| 341 * |
| 342 * It is OK for us to reference the adjacent input rows because we demanded |
| 343 * context from the main buffer controller (see initialization code). |
| 344 */ |
| 345 |
| 346 METHODDEF(void) |
| 347 h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 348 JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) |
| 349 { |
| 350 JSAMPARRAY output_data = *output_data_ptr; |
| 351 register JSAMPROW inptr0, inptr1, outptr; |
| 352 #if BITS_IN_JSAMPLE == 8 |
| 353 register int thiscolsum, lastcolsum, nextcolsum; |
| 354 #else |
| 355 register INT32 thiscolsum, lastcolsum, nextcolsum; |
| 356 #endif |
| 357 register JDIMENSION colctr; |
| 358 int inrow, outrow, v; |
| 359 |
| 360 inrow = outrow = 0; |
| 361 while (outrow < cinfo->max_v_samp_factor) { |
| 362 for (v = 0; v < 2; v++) { |
| 363 /* inptr0 points to nearest input row, inptr1 points to next nearest */ |
| 364 inptr0 = input_data[inrow]; |
| 365 if (v == 0) /* next nearest is row above */ |
| 366 inptr1 = input_data[inrow-1]; |
| 367 else /* next nearest is row below */ |
| 368 inptr1 = input_data[inrow+1]; |
| 369 outptr = output_data[outrow++]; |
| 370 |
| 371 /* Special case for first column */ |
| 372 thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); |
| 373 nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); |
| 374 *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 8) >> 4); |
| 375 *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4); |
| 376 lastcolsum = thiscolsum; thiscolsum = nextcolsum; |
| 377 |
| 378 for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) { |
| 379 /* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */ |
| 380 /* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */ |
| 381 nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); |
| 382 *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4); |
| 383 *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4); |
| 384 lastcolsum = thiscolsum; thiscolsum = nextcolsum; |
| 385 } |
| 386 |
| 387 /* Special case for last column */ |
| 388 *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4); |
| 389 *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 7) >> 4); |
| 390 } |
| 391 inrow++; |
| 392 } |
| 393 } |
| 394 |
| 395 |
| 396 /* |
| 397 * Module initialization routine for upsampling. |
| 398 */ |
| 399 |
| 400 GLOBAL(void) |
| 401 jinit_upsampler (j_decompress_ptr cinfo) |
| 402 { |
| 403 my_upsample_ptr upsample; |
| 404 int ci; |
| 405 jpeg_component_info * compptr; |
| 406 boolean need_buffer, do_fancy; |
| 407 int h_in_group, v_in_group, h_out_group, v_out_group; |
| 408 |
| 409 upsample = (my_upsample_ptr) |
| 410 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 411 SIZEOF(my_upsampler)); |
| 412 cinfo->upsample = (struct jpeg_upsampler *) upsample; |
| 413 upsample->pub.start_pass = start_pass_upsample; |
| 414 upsample->pub.upsample = sep_upsample; |
| 415 upsample->pub.need_context_rows = FALSE; /* until we find out differently */ |
| 416 |
| 417 if (cinfo->CCIR601_sampling) /* this isn't supported */ |
| 418 ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); |
| 419 |
| 420 /* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1, |
| 421 * so don't ask for it. |
| 422 */ |
| 423 do_fancy = cinfo->do_fancy_upsampling && cinfo->min_DCT_scaled_size > 1; |
| 424 |
| 425 /* Verify we can handle the sampling factors, select per-component methods, |
| 426 * and create storage as needed. |
| 427 */ |
| 428 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
| 429 ci++, compptr++) { |
| 430 /* Compute size of an "input group" after IDCT scaling. This many samples |
| 431 * are to be converted to max_h_samp_factor * max_v_samp_factor pixels. |
| 432 */ |
| 433 h_in_group = (compptr->h_samp_factor * compptr->DCT_scaled_size) / |
| 434 cinfo->min_DCT_scaled_size; |
| 435 v_in_group = (compptr->v_samp_factor * compptr->DCT_scaled_size) / |
| 436 cinfo->min_DCT_scaled_size; |
| 437 h_out_group = cinfo->max_h_samp_factor; |
| 438 v_out_group = cinfo->max_v_samp_factor; |
| 439 upsample->rowgroup_height[ci] = v_in_group; /* save for use later */ |
| 440 need_buffer = TRUE; |
| 441 if (! compptr->component_needed) { |
| 442 /* Don't bother to upsample an uninteresting component. */ |
| 443 upsample->methods[ci] = noop_upsample; |
| 444 need_buffer = FALSE; |
| 445 } else if (h_in_group == h_out_group && v_in_group == v_out_group) { |
| 446 /* Fullsize components can be processed without any work. */ |
| 447 upsample->methods[ci] = fullsize_upsample; |
| 448 need_buffer = FALSE; |
| 449 } else if (h_in_group * 2 == h_out_group && |
| 450 v_in_group == v_out_group) { |
| 451 /* Special cases for 2h1v upsampling */ |
| 452 if (do_fancy && compptr->downsampled_width > 2) { |
| 453 if (jsimd_can_h2v1_fancy_upsample()) |
| 454 upsample->methods[ci] = jsimd_h2v1_fancy_upsample; |
| 455 else |
| 456 upsample->methods[ci] = h2v1_fancy_upsample; |
| 457 } else { |
| 458 if (jsimd_can_h2v1_upsample()) |
| 459 upsample->methods[ci] = jsimd_h2v1_upsample; |
| 460 else |
| 461 upsample->methods[ci] = h2v1_upsample; |
| 462 } |
| 463 } else if (h_in_group * 2 == h_out_group && |
| 464 v_in_group * 2 == v_out_group) { |
| 465 /* Special cases for 2h2v upsampling */ |
| 466 if (do_fancy && compptr->downsampled_width > 2) { |
| 467 if (jsimd_can_h2v2_fancy_upsample()) |
| 468 upsample->methods[ci] = jsimd_h2v2_fancy_upsample; |
| 469 else |
| 470 upsample->methods[ci] = h2v2_fancy_upsample; |
| 471 upsample->pub.need_context_rows = TRUE; |
| 472 } else { |
| 473 if (jsimd_can_h2v2_upsample()) |
| 474 upsample->methods[ci] = jsimd_h2v2_upsample; |
| 475 else |
| 476 upsample->methods[ci] = h2v2_upsample; |
| 477 } |
| 478 } else if ((h_out_group % h_in_group) == 0 && |
| 479 (v_out_group % v_in_group) == 0) { |
| 480 /* Generic integral-factors upsampling method */ |
| 481 upsample->methods[ci] = int_upsample; |
| 482 upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group); |
| 483 upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group); |
| 484 } else |
| 485 ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); |
| 486 if (need_buffer) { |
| 487 upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray) |
| 488 ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 489 (JDIMENSION) jround_up((long) cinfo->output_width, |
| 490 (long) cinfo->max_h_samp_factor), |
| 491 (JDIMENSION) cinfo->max_v_samp_factor); |
| 492 } |
| 493 } |
| 494 } |
OLD | NEW |