| Index: third_party/libjpeg_turbo/jddctmgr.c
|
| ===================================================================
|
| --- third_party/libjpeg_turbo/jddctmgr.c (revision 0)
|
| +++ third_party/libjpeg_turbo/jddctmgr.c (revision 0)
|
| @@ -0,0 +1,286 @@
|
| +/*
|
| + * jddctmgr.c
|
| + *
|
| + * Copyright (C) 1994-1996, Thomas G. Lane.
|
| + * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
|
| + * This file is part of the Independent JPEG Group's software.
|
| + * For conditions of distribution and use, see the accompanying README file.
|
| + *
|
| + * This file contains the inverse-DCT management logic.
|
| + * This code selects a particular IDCT implementation to be used,
|
| + * and it performs related housekeeping chores. No code in this file
|
| + * is executed per IDCT step, only during output pass setup.
|
| + *
|
| + * Note that the IDCT routines are responsible for performing coefficient
|
| + * dequantization as well as the IDCT proper. This module sets up the
|
| + * dequantization multiplier table needed by the IDCT routine.
|
| + */
|
| +
|
| +#define JPEG_INTERNALS
|
| +#include "jinclude.h"
|
| +#include "jpeglib.h"
|
| +#include "jdct.h" /* Private declarations for DCT subsystem */
|
| +#include "jsimddct.h"
|
| +
|
| +
|
| +/*
|
| + * The decompressor input side (jdinput.c) saves away the appropriate
|
| + * quantization table for each component at the start of the first scan
|
| + * involving that component. (This is necessary in order to correctly
|
| + * decode files that reuse Q-table slots.)
|
| + * When we are ready to make an output pass, the saved Q-table is converted
|
| + * to a multiplier table that will actually be used by the IDCT routine.
|
| + * The multiplier table contents are IDCT-method-dependent. To support
|
| + * application changes in IDCT method between scans, we can remake the
|
| + * multiplier tables if necessary.
|
| + * In buffered-image mode, the first output pass may occur before any data
|
| + * has been seen for some components, and thus before their Q-tables have
|
| + * been saved away. To handle this case, multiplier tables are preset
|
| + * to zeroes; the result of the IDCT will be a neutral gray level.
|
| + */
|
| +
|
| +
|
| +/* Private subobject for this module */
|
| +
|
| +typedef struct {
|
| + struct jpeg_inverse_dct pub; /* public fields */
|
| +
|
| + /* This array contains the IDCT method code that each multiplier table
|
| + * is currently set up for, or -1 if it's not yet set up.
|
| + * The actual multiplier tables are pointed to by dct_table in the
|
| + * per-component comp_info structures.
|
| + */
|
| + int cur_method[MAX_COMPONENTS];
|
| +} my_idct_controller;
|
| +
|
| +typedef my_idct_controller * my_idct_ptr;
|
| +
|
| +
|
| +/* Allocated multiplier tables: big enough for any supported variant */
|
| +
|
| +typedef union {
|
| + ISLOW_MULT_TYPE islow_array[DCTSIZE2];
|
| +#ifdef DCT_IFAST_SUPPORTED
|
| + IFAST_MULT_TYPE ifast_array[DCTSIZE2];
|
| +#endif
|
| +#ifdef DCT_FLOAT_SUPPORTED
|
| + FLOAT_MULT_TYPE float_array[DCTSIZE2];
|
| +#endif
|
| +} multiplier_table;
|
| +
|
| +
|
| +/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
|
| + * so be sure to compile that code if either ISLOW or SCALING is requested.
|
| + */
|
| +#ifdef DCT_ISLOW_SUPPORTED
|
| +#define PROVIDE_ISLOW_TABLES
|
| +#else
|
| +#ifdef IDCT_SCALING_SUPPORTED
|
| +#define PROVIDE_ISLOW_TABLES
|
| +#endif
|
| +#endif
|
| +
|
| +
|
| +/*
|
| + * Prepare for an output pass.
|
| + * Here we select the proper IDCT routine for each component and build
|
| + * a matching multiplier table.
|
| + */
|
| +
|
| +METHODDEF(void)
|
| +start_pass (j_decompress_ptr cinfo)
|
| +{
|
| + my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
|
| + int ci, i;
|
| + jpeg_component_info *compptr;
|
| + int method = 0;
|
| + inverse_DCT_method_ptr method_ptr = NULL;
|
| + JQUANT_TBL * qtbl;
|
| +
|
| + for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
| + ci++, compptr++) {
|
| + /* Select the proper IDCT routine for this component's scaling */
|
| + switch (compptr->DCT_scaled_size) {
|
| +#ifdef IDCT_SCALING_SUPPORTED
|
| + case 1:
|
| + method_ptr = jpeg_idct_1x1;
|
| + method = JDCT_ISLOW; /* jidctred uses islow-style table */
|
| + break;
|
| + case 2:
|
| + if (jsimd_can_idct_2x2())
|
| + method_ptr = jsimd_idct_2x2;
|
| + else
|
| + method_ptr = jpeg_idct_2x2;
|
| + method = JDCT_ISLOW; /* jidctred uses islow-style table */
|
| + break;
|
| + case 4:
|
| + if (jsimd_can_idct_4x4())
|
| + method_ptr = jsimd_idct_4x4;
|
| + else
|
| + method_ptr = jpeg_idct_4x4;
|
| + method = JDCT_ISLOW; /* jidctred uses islow-style table */
|
| + break;
|
| +#endif
|
| + case DCTSIZE:
|
| + switch (cinfo->dct_method) {
|
| +#ifdef DCT_ISLOW_SUPPORTED
|
| + case JDCT_ISLOW:
|
| + if (jsimd_can_idct_islow())
|
| + method_ptr = jsimd_idct_islow;
|
| + else
|
| + method_ptr = jpeg_idct_islow;
|
| + method = JDCT_ISLOW;
|
| + break;
|
| +#endif
|
| +#ifdef DCT_IFAST_SUPPORTED
|
| + case JDCT_IFAST:
|
| + if (jsimd_can_idct_ifast())
|
| + method_ptr = jsimd_idct_ifast;
|
| + else
|
| + method_ptr = jpeg_idct_ifast;
|
| + method = JDCT_IFAST;
|
| + break;
|
| +#endif
|
| +#ifdef DCT_FLOAT_SUPPORTED
|
| + case JDCT_FLOAT:
|
| + if (jsimd_can_idct_float())
|
| + method_ptr = jsimd_idct_float;
|
| + else
|
| + method_ptr = jpeg_idct_float;
|
| + method = JDCT_FLOAT;
|
| + break;
|
| +#endif
|
| + default:
|
| + ERREXIT(cinfo, JERR_NOT_COMPILED);
|
| + break;
|
| + }
|
| + break;
|
| + default:
|
| + ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size);
|
| + break;
|
| + }
|
| + idct->pub.inverse_DCT[ci] = method_ptr;
|
| + /* Create multiplier table from quant table.
|
| + * However, we can skip this if the component is uninteresting
|
| + * or if we already built the table. Also, if no quant table
|
| + * has yet been saved for the component, we leave the
|
| + * multiplier table all-zero; we'll be reading zeroes from the
|
| + * coefficient controller's buffer anyway.
|
| + */
|
| + if (! compptr->component_needed || idct->cur_method[ci] == method)
|
| + continue;
|
| + qtbl = compptr->quant_table;
|
| + if (qtbl == NULL) /* happens if no data yet for component */
|
| + continue;
|
| + idct->cur_method[ci] = method;
|
| + switch (method) {
|
| +#ifdef PROVIDE_ISLOW_TABLES
|
| + case JDCT_ISLOW:
|
| + {
|
| + /* For LL&M IDCT method, multipliers are equal to raw quantization
|
| + * coefficients, but are stored as ints to ensure access efficiency.
|
| + */
|
| + ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
| + for (i = 0; i < DCTSIZE2; i++) {
|
| + ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
|
| + }
|
| + }
|
| + break;
|
| +#endif
|
| +#ifdef DCT_IFAST_SUPPORTED
|
| + case JDCT_IFAST:
|
| + {
|
| + /* For AA&N IDCT method, multipliers are equal to quantization
|
| + * coefficients scaled by scalefactor[row]*scalefactor[col], where
|
| + * scalefactor[0] = 1
|
| + * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
| + * For integer operation, the multiplier table is to be scaled by
|
| + * IFAST_SCALE_BITS.
|
| + */
|
| + IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
|
| +#define CONST_BITS 14
|
| + static const INT16 aanscales[DCTSIZE2] = {
|
| + /* precomputed values scaled up by 14 bits */
|
| + 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
| + 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
| + 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
| + 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
| + 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
| + 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
| + 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
| + 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
| + };
|
| + SHIFT_TEMPS
|
| +
|
| + for (i = 0; i < DCTSIZE2; i++) {
|
| + ifmtbl[i] = (IFAST_MULT_TYPE)
|
| + DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
|
| + (INT32) aanscales[i]),
|
| + CONST_BITS-IFAST_SCALE_BITS);
|
| + }
|
| + }
|
| + break;
|
| +#endif
|
| +#ifdef DCT_FLOAT_SUPPORTED
|
| + case JDCT_FLOAT:
|
| + {
|
| + /* For float AA&N IDCT method, multipliers are equal to quantization
|
| + * coefficients scaled by scalefactor[row]*scalefactor[col], where
|
| + * scalefactor[0] = 1
|
| + * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
| + */
|
| + FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
|
| + int row, col;
|
| + static const double aanscalefactor[DCTSIZE] = {
|
| + 1.0, 1.387039845, 1.306562965, 1.175875602,
|
| + 1.0, 0.785694958, 0.541196100, 0.275899379
|
| + };
|
| +
|
| + i = 0;
|
| + for (row = 0; row < DCTSIZE; row++) {
|
| + for (col = 0; col < DCTSIZE; col++) {
|
| + fmtbl[i] = (FLOAT_MULT_TYPE)
|
| + ((double) qtbl->quantval[i] *
|
| + aanscalefactor[row] * aanscalefactor[col]);
|
| + i++;
|
| + }
|
| + }
|
| + }
|
| + break;
|
| +#endif
|
| + default:
|
| + ERREXIT(cinfo, JERR_NOT_COMPILED);
|
| + break;
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +/*
|
| + * Initialize IDCT manager.
|
| + */
|
| +
|
| +GLOBAL(void)
|
| +jinit_inverse_dct (j_decompress_ptr cinfo)
|
| +{
|
| + my_idct_ptr idct;
|
| + int ci;
|
| + jpeg_component_info *compptr;
|
| +
|
| + idct = (my_idct_ptr)
|
| + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
| + SIZEOF(my_idct_controller));
|
| + cinfo->idct = (struct jpeg_inverse_dct *) idct;
|
| + idct->pub.start_pass = start_pass;
|
| +
|
| + for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
| + ci++, compptr++) {
|
| + /* Allocate and pre-zero a multiplier table for each component */
|
| + compptr->dct_table =
|
| + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
| + SIZEOF(multiplier_table));
|
| + MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
|
| + /* Mark multiplier table not yet set up for any method */
|
| + idct->cur_method[ci] = -1;
|
| + }
|
| +}
|
|
|