Index: third_party/libjpeg_turbo/jddctmgr.c |
=================================================================== |
--- third_party/libjpeg_turbo/jddctmgr.c (revision 0) |
+++ third_party/libjpeg_turbo/jddctmgr.c (revision 0) |
@@ -0,0 +1,286 @@ |
+/* |
+ * jddctmgr.c |
+ * |
+ * Copyright (C) 1994-1996, Thomas G. Lane. |
+ * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
+ * This file is part of the Independent JPEG Group's software. |
+ * For conditions of distribution and use, see the accompanying README file. |
+ * |
+ * This file contains the inverse-DCT management logic. |
+ * This code selects a particular IDCT implementation to be used, |
+ * and it performs related housekeeping chores. No code in this file |
+ * is executed per IDCT step, only during output pass setup. |
+ * |
+ * Note that the IDCT routines are responsible for performing coefficient |
+ * dequantization as well as the IDCT proper. This module sets up the |
+ * dequantization multiplier table needed by the IDCT routine. |
+ */ |
+ |
+#define JPEG_INTERNALS |
+#include "jinclude.h" |
+#include "jpeglib.h" |
+#include "jdct.h" /* Private declarations for DCT subsystem */ |
+#include "jsimddct.h" |
+ |
+ |
+/* |
+ * The decompressor input side (jdinput.c) saves away the appropriate |
+ * quantization table for each component at the start of the first scan |
+ * involving that component. (This is necessary in order to correctly |
+ * decode files that reuse Q-table slots.) |
+ * When we are ready to make an output pass, the saved Q-table is converted |
+ * to a multiplier table that will actually be used by the IDCT routine. |
+ * The multiplier table contents are IDCT-method-dependent. To support |
+ * application changes in IDCT method between scans, we can remake the |
+ * multiplier tables if necessary. |
+ * In buffered-image mode, the first output pass may occur before any data |
+ * has been seen for some components, and thus before their Q-tables have |
+ * been saved away. To handle this case, multiplier tables are preset |
+ * to zeroes; the result of the IDCT will be a neutral gray level. |
+ */ |
+ |
+ |
+/* Private subobject for this module */ |
+ |
+typedef struct { |
+ struct jpeg_inverse_dct pub; /* public fields */ |
+ |
+ /* This array contains the IDCT method code that each multiplier table |
+ * is currently set up for, or -1 if it's not yet set up. |
+ * The actual multiplier tables are pointed to by dct_table in the |
+ * per-component comp_info structures. |
+ */ |
+ int cur_method[MAX_COMPONENTS]; |
+} my_idct_controller; |
+ |
+typedef my_idct_controller * my_idct_ptr; |
+ |
+ |
+/* Allocated multiplier tables: big enough for any supported variant */ |
+ |
+typedef union { |
+ ISLOW_MULT_TYPE islow_array[DCTSIZE2]; |
+#ifdef DCT_IFAST_SUPPORTED |
+ IFAST_MULT_TYPE ifast_array[DCTSIZE2]; |
+#endif |
+#ifdef DCT_FLOAT_SUPPORTED |
+ FLOAT_MULT_TYPE float_array[DCTSIZE2]; |
+#endif |
+} multiplier_table; |
+ |
+ |
+/* The current scaled-IDCT routines require ISLOW-style multiplier tables, |
+ * so be sure to compile that code if either ISLOW or SCALING is requested. |
+ */ |
+#ifdef DCT_ISLOW_SUPPORTED |
+#define PROVIDE_ISLOW_TABLES |
+#else |
+#ifdef IDCT_SCALING_SUPPORTED |
+#define PROVIDE_ISLOW_TABLES |
+#endif |
+#endif |
+ |
+ |
+/* |
+ * Prepare for an output pass. |
+ * Here we select the proper IDCT routine for each component and build |
+ * a matching multiplier table. |
+ */ |
+ |
+METHODDEF(void) |
+start_pass (j_decompress_ptr cinfo) |
+{ |
+ my_idct_ptr idct = (my_idct_ptr) cinfo->idct; |
+ int ci, i; |
+ jpeg_component_info *compptr; |
+ int method = 0; |
+ inverse_DCT_method_ptr method_ptr = NULL; |
+ JQUANT_TBL * qtbl; |
+ |
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
+ ci++, compptr++) { |
+ /* Select the proper IDCT routine for this component's scaling */ |
+ switch (compptr->DCT_scaled_size) { |
+#ifdef IDCT_SCALING_SUPPORTED |
+ case 1: |
+ method_ptr = jpeg_idct_1x1; |
+ method = JDCT_ISLOW; /* jidctred uses islow-style table */ |
+ break; |
+ case 2: |
+ if (jsimd_can_idct_2x2()) |
+ method_ptr = jsimd_idct_2x2; |
+ else |
+ method_ptr = jpeg_idct_2x2; |
+ method = JDCT_ISLOW; /* jidctred uses islow-style table */ |
+ break; |
+ case 4: |
+ if (jsimd_can_idct_4x4()) |
+ method_ptr = jsimd_idct_4x4; |
+ else |
+ method_ptr = jpeg_idct_4x4; |
+ method = JDCT_ISLOW; /* jidctred uses islow-style table */ |
+ break; |
+#endif |
+ case DCTSIZE: |
+ switch (cinfo->dct_method) { |
+#ifdef DCT_ISLOW_SUPPORTED |
+ case JDCT_ISLOW: |
+ if (jsimd_can_idct_islow()) |
+ method_ptr = jsimd_idct_islow; |
+ else |
+ method_ptr = jpeg_idct_islow; |
+ method = JDCT_ISLOW; |
+ break; |
+#endif |
+#ifdef DCT_IFAST_SUPPORTED |
+ case JDCT_IFAST: |
+ if (jsimd_can_idct_ifast()) |
+ method_ptr = jsimd_idct_ifast; |
+ else |
+ method_ptr = jpeg_idct_ifast; |
+ method = JDCT_IFAST; |
+ break; |
+#endif |
+#ifdef DCT_FLOAT_SUPPORTED |
+ case JDCT_FLOAT: |
+ if (jsimd_can_idct_float()) |
+ method_ptr = jsimd_idct_float; |
+ else |
+ method_ptr = jpeg_idct_float; |
+ method = JDCT_FLOAT; |
+ break; |
+#endif |
+ default: |
+ ERREXIT(cinfo, JERR_NOT_COMPILED); |
+ break; |
+ } |
+ break; |
+ default: |
+ ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size); |
+ break; |
+ } |
+ idct->pub.inverse_DCT[ci] = method_ptr; |
+ /* Create multiplier table from quant table. |
+ * However, we can skip this if the component is uninteresting |
+ * or if we already built the table. Also, if no quant table |
+ * has yet been saved for the component, we leave the |
+ * multiplier table all-zero; we'll be reading zeroes from the |
+ * coefficient controller's buffer anyway. |
+ */ |
+ if (! compptr->component_needed || idct->cur_method[ci] == method) |
+ continue; |
+ qtbl = compptr->quant_table; |
+ if (qtbl == NULL) /* happens if no data yet for component */ |
+ continue; |
+ idct->cur_method[ci] = method; |
+ switch (method) { |
+#ifdef PROVIDE_ISLOW_TABLES |
+ case JDCT_ISLOW: |
+ { |
+ /* For LL&M IDCT method, multipliers are equal to raw quantization |
+ * coefficients, but are stored as ints to ensure access efficiency. |
+ */ |
+ ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table; |
+ for (i = 0; i < DCTSIZE2; i++) { |
+ ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i]; |
+ } |
+ } |
+ break; |
+#endif |
+#ifdef DCT_IFAST_SUPPORTED |
+ case JDCT_IFAST: |
+ { |
+ /* For AA&N IDCT method, multipliers are equal to quantization |
+ * coefficients scaled by scalefactor[row]*scalefactor[col], where |
+ * scalefactor[0] = 1 |
+ * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
+ * For integer operation, the multiplier table is to be scaled by |
+ * IFAST_SCALE_BITS. |
+ */ |
+ IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table; |
+#define CONST_BITS 14 |
+ static const INT16 aanscales[DCTSIZE2] = { |
+ /* precomputed values scaled up by 14 bits */ |
+ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
+ 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, |
+ 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, |
+ 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, |
+ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
+ 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, |
+ 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, |
+ 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 |
+ }; |
+ SHIFT_TEMPS |
+ |
+ for (i = 0; i < DCTSIZE2; i++) { |
+ ifmtbl[i] = (IFAST_MULT_TYPE) |
+ DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], |
+ (INT32) aanscales[i]), |
+ CONST_BITS-IFAST_SCALE_BITS); |
+ } |
+ } |
+ break; |
+#endif |
+#ifdef DCT_FLOAT_SUPPORTED |
+ case JDCT_FLOAT: |
+ { |
+ /* For float AA&N IDCT method, multipliers are equal to quantization |
+ * coefficients scaled by scalefactor[row]*scalefactor[col], where |
+ * scalefactor[0] = 1 |
+ * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
+ */ |
+ FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table; |
+ int row, col; |
+ static const double aanscalefactor[DCTSIZE] = { |
+ 1.0, 1.387039845, 1.306562965, 1.175875602, |
+ 1.0, 0.785694958, 0.541196100, 0.275899379 |
+ }; |
+ |
+ i = 0; |
+ for (row = 0; row < DCTSIZE; row++) { |
+ for (col = 0; col < DCTSIZE; col++) { |
+ fmtbl[i] = (FLOAT_MULT_TYPE) |
+ ((double) qtbl->quantval[i] * |
+ aanscalefactor[row] * aanscalefactor[col]); |
+ i++; |
+ } |
+ } |
+ } |
+ break; |
+#endif |
+ default: |
+ ERREXIT(cinfo, JERR_NOT_COMPILED); |
+ break; |
+ } |
+ } |
+} |
+ |
+ |
+/* |
+ * Initialize IDCT manager. |
+ */ |
+ |
+GLOBAL(void) |
+jinit_inverse_dct (j_decompress_ptr cinfo) |
+{ |
+ my_idct_ptr idct; |
+ int ci; |
+ jpeg_component_info *compptr; |
+ |
+ idct = (my_idct_ptr) |
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
+ SIZEOF(my_idct_controller)); |
+ cinfo->idct = (struct jpeg_inverse_dct *) idct; |
+ idct->pub.start_pass = start_pass; |
+ |
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
+ ci++, compptr++) { |
+ /* Allocate and pre-zero a multiplier table for each component */ |
+ compptr->dct_table = |
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
+ SIZEOF(multiplier_table)); |
+ MEMZERO(compptr->dct_table, SIZEOF(multiplier_table)); |
+ /* Mark multiplier table not yet set up for any method */ |
+ idct->cur_method[ci] = -1; |
+ } |
+} |