OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * jddctmgr.c |
| 3 * |
| 4 * Copyright (C) 1994-1996, Thomas G. Lane. |
| 5 * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
| 6 * This file is part of the Independent JPEG Group's software. |
| 7 * For conditions of distribution and use, see the accompanying README file. |
| 8 * |
| 9 * This file contains the inverse-DCT management logic. |
| 10 * This code selects a particular IDCT implementation to be used, |
| 11 * and it performs related housekeeping chores. No code in this file |
| 12 * is executed per IDCT step, only during output pass setup. |
| 13 * |
| 14 * Note that the IDCT routines are responsible for performing coefficient |
| 15 * dequantization as well as the IDCT proper. This module sets up the |
| 16 * dequantization multiplier table needed by the IDCT routine. |
| 17 */ |
| 18 |
| 19 #define JPEG_INTERNALS |
| 20 #include "jinclude.h" |
| 21 #include "jpeglib.h" |
| 22 #include "jdct.h" /* Private declarations for DCT subsystem */ |
| 23 #include "jsimddct.h" |
| 24 |
| 25 |
| 26 /* |
| 27 * The decompressor input side (jdinput.c) saves away the appropriate |
| 28 * quantization table for each component at the start of the first scan |
| 29 * involving that component. (This is necessary in order to correctly |
| 30 * decode files that reuse Q-table slots.) |
| 31 * When we are ready to make an output pass, the saved Q-table is converted |
| 32 * to a multiplier table that will actually be used by the IDCT routine. |
| 33 * The multiplier table contents are IDCT-method-dependent. To support |
| 34 * application changes in IDCT method between scans, we can remake the |
| 35 * multiplier tables if necessary. |
| 36 * In buffered-image mode, the first output pass may occur before any data |
| 37 * has been seen for some components, and thus before their Q-tables have |
| 38 * been saved away. To handle this case, multiplier tables are preset |
| 39 * to zeroes; the result of the IDCT will be a neutral gray level. |
| 40 */ |
| 41 |
| 42 |
| 43 /* Private subobject for this module */ |
| 44 |
| 45 typedef struct { |
| 46 struct jpeg_inverse_dct pub; /* public fields */ |
| 47 |
| 48 /* This array contains the IDCT method code that each multiplier table |
| 49 * is currently set up for, or -1 if it's not yet set up. |
| 50 * The actual multiplier tables are pointed to by dct_table in the |
| 51 * per-component comp_info structures. |
| 52 */ |
| 53 int cur_method[MAX_COMPONENTS]; |
| 54 } my_idct_controller; |
| 55 |
| 56 typedef my_idct_controller * my_idct_ptr; |
| 57 |
| 58 |
| 59 /* Allocated multiplier tables: big enough for any supported variant */ |
| 60 |
| 61 typedef union { |
| 62 ISLOW_MULT_TYPE islow_array[DCTSIZE2]; |
| 63 #ifdef DCT_IFAST_SUPPORTED |
| 64 IFAST_MULT_TYPE ifast_array[DCTSIZE2]; |
| 65 #endif |
| 66 #ifdef DCT_FLOAT_SUPPORTED |
| 67 FLOAT_MULT_TYPE float_array[DCTSIZE2]; |
| 68 #endif |
| 69 } multiplier_table; |
| 70 |
| 71 |
| 72 /* The current scaled-IDCT routines require ISLOW-style multiplier tables, |
| 73 * so be sure to compile that code if either ISLOW or SCALING is requested. |
| 74 */ |
| 75 #ifdef DCT_ISLOW_SUPPORTED |
| 76 #define PROVIDE_ISLOW_TABLES |
| 77 #else |
| 78 #ifdef IDCT_SCALING_SUPPORTED |
| 79 #define PROVIDE_ISLOW_TABLES |
| 80 #endif |
| 81 #endif |
| 82 |
| 83 |
| 84 /* |
| 85 * Prepare for an output pass. |
| 86 * Here we select the proper IDCT routine for each component and build |
| 87 * a matching multiplier table. |
| 88 */ |
| 89 |
| 90 METHODDEF(void) |
| 91 start_pass (j_decompress_ptr cinfo) |
| 92 { |
| 93 my_idct_ptr idct = (my_idct_ptr) cinfo->idct; |
| 94 int ci, i; |
| 95 jpeg_component_info *compptr; |
| 96 int method = 0; |
| 97 inverse_DCT_method_ptr method_ptr = NULL; |
| 98 JQUANT_TBL * qtbl; |
| 99 |
| 100 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
| 101 ci++, compptr++) { |
| 102 /* Select the proper IDCT routine for this component's scaling */ |
| 103 switch (compptr->DCT_scaled_size) { |
| 104 #ifdef IDCT_SCALING_SUPPORTED |
| 105 case 1: |
| 106 method_ptr = jpeg_idct_1x1; |
| 107 method = JDCT_ISLOW; /* jidctred uses islow-style table */ |
| 108 break; |
| 109 case 2: |
| 110 if (jsimd_can_idct_2x2()) |
| 111 method_ptr = jsimd_idct_2x2; |
| 112 else |
| 113 method_ptr = jpeg_idct_2x2; |
| 114 method = JDCT_ISLOW; /* jidctred uses islow-style table */ |
| 115 break; |
| 116 case 4: |
| 117 if (jsimd_can_idct_4x4()) |
| 118 method_ptr = jsimd_idct_4x4; |
| 119 else |
| 120 method_ptr = jpeg_idct_4x4; |
| 121 method = JDCT_ISLOW; /* jidctred uses islow-style table */ |
| 122 break; |
| 123 #endif |
| 124 case DCTSIZE: |
| 125 switch (cinfo->dct_method) { |
| 126 #ifdef DCT_ISLOW_SUPPORTED |
| 127 case JDCT_ISLOW: |
| 128 if (jsimd_can_idct_islow()) |
| 129 method_ptr = jsimd_idct_islow; |
| 130 else |
| 131 method_ptr = jpeg_idct_islow; |
| 132 method = JDCT_ISLOW; |
| 133 break; |
| 134 #endif |
| 135 #ifdef DCT_IFAST_SUPPORTED |
| 136 case JDCT_IFAST: |
| 137 if (jsimd_can_idct_ifast()) |
| 138 method_ptr = jsimd_idct_ifast; |
| 139 else |
| 140 method_ptr = jpeg_idct_ifast; |
| 141 method = JDCT_IFAST; |
| 142 break; |
| 143 #endif |
| 144 #ifdef DCT_FLOAT_SUPPORTED |
| 145 case JDCT_FLOAT: |
| 146 if (jsimd_can_idct_float()) |
| 147 method_ptr = jsimd_idct_float; |
| 148 else |
| 149 method_ptr = jpeg_idct_float; |
| 150 method = JDCT_FLOAT; |
| 151 break; |
| 152 #endif |
| 153 default: |
| 154 ERREXIT(cinfo, JERR_NOT_COMPILED); |
| 155 break; |
| 156 } |
| 157 break; |
| 158 default: |
| 159 ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size); |
| 160 break; |
| 161 } |
| 162 idct->pub.inverse_DCT[ci] = method_ptr; |
| 163 /* Create multiplier table from quant table. |
| 164 * However, we can skip this if the component is uninteresting |
| 165 * or if we already built the table. Also, if no quant table |
| 166 * has yet been saved for the component, we leave the |
| 167 * multiplier table all-zero; we'll be reading zeroes from the |
| 168 * coefficient controller's buffer anyway. |
| 169 */ |
| 170 if (! compptr->component_needed || idct->cur_method[ci] == method) |
| 171 continue; |
| 172 qtbl = compptr->quant_table; |
| 173 if (qtbl == NULL) /* happens if no data yet for component */ |
| 174 continue; |
| 175 idct->cur_method[ci] = method; |
| 176 switch (method) { |
| 177 #ifdef PROVIDE_ISLOW_TABLES |
| 178 case JDCT_ISLOW: |
| 179 { |
| 180 /* For LL&M IDCT method, multipliers are equal to raw quantization |
| 181 * coefficients, but are stored as ints to ensure access efficiency. |
| 182 */ |
| 183 ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table; |
| 184 for (i = 0; i < DCTSIZE2; i++) { |
| 185 ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i]; |
| 186 } |
| 187 } |
| 188 break; |
| 189 #endif |
| 190 #ifdef DCT_IFAST_SUPPORTED |
| 191 case JDCT_IFAST: |
| 192 { |
| 193 /* For AA&N IDCT method, multipliers are equal to quantization |
| 194 * coefficients scaled by scalefactor[row]*scalefactor[col], where |
| 195 * scalefactor[0] = 1 |
| 196 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
| 197 * For integer operation, the multiplier table is to be scaled by |
| 198 * IFAST_SCALE_BITS. |
| 199 */ |
| 200 IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table; |
| 201 #define CONST_BITS 14 |
| 202 static const INT16 aanscales[DCTSIZE2] = { |
| 203 /* precomputed values scaled up by 14 bits */ |
| 204 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
| 205 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, |
| 206 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, |
| 207 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, |
| 208 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
| 209 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, |
| 210 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, |
| 211 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 |
| 212 }; |
| 213 SHIFT_TEMPS |
| 214 |
| 215 for (i = 0; i < DCTSIZE2; i++) { |
| 216 ifmtbl[i] = (IFAST_MULT_TYPE) |
| 217 DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], |
| 218 (INT32) aanscales[i]), |
| 219 CONST_BITS-IFAST_SCALE_BITS); |
| 220 } |
| 221 } |
| 222 break; |
| 223 #endif |
| 224 #ifdef DCT_FLOAT_SUPPORTED |
| 225 case JDCT_FLOAT: |
| 226 { |
| 227 /* For float AA&N IDCT method, multipliers are equal to quantization |
| 228 * coefficients scaled by scalefactor[row]*scalefactor[col], where |
| 229 * scalefactor[0] = 1 |
| 230 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
| 231 */ |
| 232 FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table; |
| 233 int row, col; |
| 234 static const double aanscalefactor[DCTSIZE] = { |
| 235 1.0, 1.387039845, 1.306562965, 1.175875602, |
| 236 1.0, 0.785694958, 0.541196100, 0.275899379 |
| 237 }; |
| 238 |
| 239 i = 0; |
| 240 for (row = 0; row < DCTSIZE; row++) { |
| 241 for (col = 0; col < DCTSIZE; col++) { |
| 242 fmtbl[i] = (FLOAT_MULT_TYPE) |
| 243 ((double) qtbl->quantval[i] * |
| 244 aanscalefactor[row] * aanscalefactor[col]); |
| 245 i++; |
| 246 } |
| 247 } |
| 248 } |
| 249 break; |
| 250 #endif |
| 251 default: |
| 252 ERREXIT(cinfo, JERR_NOT_COMPILED); |
| 253 break; |
| 254 } |
| 255 } |
| 256 } |
| 257 |
| 258 |
| 259 /* |
| 260 * Initialize IDCT manager. |
| 261 */ |
| 262 |
| 263 GLOBAL(void) |
| 264 jinit_inverse_dct (j_decompress_ptr cinfo) |
| 265 { |
| 266 my_idct_ptr idct; |
| 267 int ci; |
| 268 jpeg_component_info *compptr; |
| 269 |
| 270 idct = (my_idct_ptr) |
| 271 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 272 SIZEOF(my_idct_controller)); |
| 273 cinfo->idct = (struct jpeg_inverse_dct *) idct; |
| 274 idct->pub.start_pass = start_pass; |
| 275 |
| 276 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
| 277 ci++, compptr++) { |
| 278 /* Allocate and pre-zero a multiplier table for each component */ |
| 279 compptr->dct_table = |
| 280 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 281 SIZEOF(multiplier_table)); |
| 282 MEMZERO(compptr->dct_table, SIZEOF(multiplier_table)); |
| 283 /* Mark multiplier table not yet set up for any method */ |
| 284 idct->cur_method[ci] = -1; |
| 285 } |
| 286 } |
OLD | NEW |