Index: third_party/libjpeg_turbo/jdcoefct.c |
=================================================================== |
--- third_party/libjpeg_turbo/jdcoefct.c (revision 0) |
+++ third_party/libjpeg_turbo/jdcoefct.c (revision 0) |
@@ -0,0 +1,747 @@ |
+/* |
+ * jdcoefct.c |
+ * |
+ * Copyright (C) 1994-1997, Thomas G. Lane. |
+ * This file is part of the Independent JPEG Group's software. |
+ * For conditions of distribution and use, see the accompanying README file. |
+ * |
+ * This file contains the coefficient buffer controller for decompression. |
+ * This controller is the top level of the JPEG decompressor proper. |
+ * The coefficient buffer lies between entropy decoding and inverse-DCT steps. |
+ * |
+ * In buffered-image mode, this controller is the interface between |
+ * input-oriented processing and output-oriented processing. |
+ * Also, the input side (only) is used when reading a file for transcoding. |
+ */ |
+ |
+#define JPEG_INTERNALS |
+#include "jinclude.h" |
+#include "jpeglib.h" |
+ |
+/* Block smoothing is only applicable for progressive JPEG, so: */ |
+#ifndef D_PROGRESSIVE_SUPPORTED |
+#undef BLOCK_SMOOTHING_SUPPORTED |
+#endif |
+ |
+/* Private buffer controller object */ |
+ |
+typedef struct { |
+ struct jpeg_d_coef_controller pub; /* public fields */ |
+ |
+ /* These variables keep track of the current location of the input side. */ |
+ /* cinfo->input_iMCU_row is also used for this. */ |
+ JDIMENSION MCU_ctr; /* counts MCUs processed in current row */ |
+ int MCU_vert_offset; /* counts MCU rows within iMCU row */ |
+ int MCU_rows_per_iMCU_row; /* number of such rows needed */ |
+ |
+ /* The output side's location is represented by cinfo->output_iMCU_row. */ |
+ |
+ /* In single-pass modes, it's sufficient to buffer just one MCU. |
+ * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks, |
+ * and let the entropy decoder write into that workspace each time. |
+ * (On 80x86, the workspace is FAR even though it's not really very big; |
+ * this is to keep the module interfaces unchanged when a large coefficient |
+ * buffer is necessary.) |
+ * In multi-pass modes, this array points to the current MCU's blocks |
+ * within the virtual arrays; it is used only by the input side. |
+ */ |
+ JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU]; |
+ |
+ /* Temporary workspace for one MCU */ |
+ JCOEF * workspace; |
+ |
+#ifdef D_MULTISCAN_FILES_SUPPORTED |
+ /* In multi-pass modes, we need a virtual block array for each component. */ |
+ jvirt_barray_ptr whole_image[MAX_COMPONENTS]; |
+#endif |
+ |
+#ifdef BLOCK_SMOOTHING_SUPPORTED |
+ /* When doing block smoothing, we latch coefficient Al values here */ |
+ int * coef_bits_latch; |
+#define SAVED_COEFS 6 /* we save coef_bits[0..5] */ |
+#endif |
+} my_coef_controller; |
+ |
+typedef my_coef_controller * my_coef_ptr; |
+ |
+/* Forward declarations */ |
+METHODDEF(int) decompress_onepass |
+ JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
+#ifdef D_MULTISCAN_FILES_SUPPORTED |
+METHODDEF(int) decompress_data |
+ JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
+#endif |
+#ifdef BLOCK_SMOOTHING_SUPPORTED |
+LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo)); |
+METHODDEF(int) decompress_smooth_data |
+ JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
+#endif |
+ |
+ |
+LOCAL(void) |
+start_iMCU_row (j_decompress_ptr cinfo) |
+/* Reset within-iMCU-row counters for a new row (input side) */ |
+{ |
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
+ |
+ /* In an interleaved scan, an MCU row is the same as an iMCU row. |
+ * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. |
+ * But at the bottom of the image, process only what's left. |
+ */ |
+ if (cinfo->comps_in_scan > 1) { |
+ coef->MCU_rows_per_iMCU_row = 1; |
+ } else { |
+ if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1)) |
+ coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; |
+ else |
+ coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; |
+ } |
+ |
+ coef->MCU_ctr = 0; |
+ coef->MCU_vert_offset = 0; |
+} |
+ |
+ |
+/* |
+ * Initialize for an input processing pass. |
+ */ |
+ |
+METHODDEF(void) |
+start_input_pass (j_decompress_ptr cinfo) |
+{ |
+ cinfo->input_iMCU_row = 0; |
+ start_iMCU_row(cinfo); |
+} |
+ |
+ |
+/* |
+ * Initialize for an output processing pass. |
+ */ |
+ |
+METHODDEF(void) |
+start_output_pass (j_decompress_ptr cinfo) |
+{ |
+#ifdef BLOCK_SMOOTHING_SUPPORTED |
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
+ |
+ /* If multipass, check to see whether to use block smoothing on this pass */ |
+ if (coef->pub.coef_arrays != NULL) { |
+ if (cinfo->do_block_smoothing && smoothing_ok(cinfo)) |
+ coef->pub.decompress_data = decompress_smooth_data; |
+ else |
+ coef->pub.decompress_data = decompress_data; |
+ } |
+#endif |
+ cinfo->output_iMCU_row = 0; |
+} |
+ |
+ |
+/* |
+ * Decompress and return some data in the single-pass case. |
+ * Always attempts to emit one fully interleaved MCU row ("iMCU" row). |
+ * Input and output must run in lockstep since we have only a one-MCU buffer. |
+ * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
+ * |
+ * NB: output_buf contains a plane for each component in image, |
+ * which we index according to the component's SOF position. |
+ */ |
+ |
+METHODDEF(int) |
+decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
+{ |
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
+ JDIMENSION MCU_col_num; /* index of current MCU within row */ |
+ JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; |
+ JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
+ int blkn, ci, xindex, yindex, yoffset, useful_width; |
+ JSAMPARRAY output_ptr; |
+ JDIMENSION start_col, output_col; |
+ jpeg_component_info *compptr; |
+ inverse_DCT_method_ptr inverse_DCT; |
+ |
+ /* Loop to process as much as one whole iMCU row */ |
+ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
+ yoffset++) { |
+ for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; |
+ MCU_col_num++) { |
+ /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */ |
+ jzero_far((void FAR *) coef->MCU_buffer[0], |
+ (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK))); |
+ if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { |
+ /* Suspension forced; update state counters and exit */ |
+ coef->MCU_vert_offset = yoffset; |
+ coef->MCU_ctr = MCU_col_num; |
+ return JPEG_SUSPENDED; |
+ } |
+ /* Determine where data should go in output_buf and do the IDCT thing. |
+ * We skip dummy blocks at the right and bottom edges (but blkn gets |
+ * incremented past them!). Note the inner loop relies on having |
+ * allocated the MCU_buffer[] blocks sequentially. |
+ */ |
+ blkn = 0; /* index of current DCT block within MCU */ |
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
+ compptr = cinfo->cur_comp_info[ci]; |
+ /* Don't bother to IDCT an uninteresting component. */ |
+ if (! compptr->component_needed) { |
+ blkn += compptr->MCU_blocks; |
+ continue; |
+ } |
+ inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index]; |
+ useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width |
+ : compptr->last_col_width; |
+ output_ptr = output_buf[compptr->component_index] + |
+ yoffset * compptr->DCT_scaled_size; |
+ start_col = MCU_col_num * compptr->MCU_sample_width; |
+ for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
+ if (cinfo->input_iMCU_row < last_iMCU_row || |
+ yoffset+yindex < compptr->last_row_height) { |
+ output_col = start_col; |
+ for (xindex = 0; xindex < useful_width; xindex++) { |
+ (*inverse_DCT) (cinfo, compptr, |
+ (JCOEFPTR) coef->MCU_buffer[blkn+xindex], |
+ output_ptr, output_col); |
+ output_col += compptr->DCT_scaled_size; |
+ } |
+ } |
+ blkn += compptr->MCU_width; |
+ output_ptr += compptr->DCT_scaled_size; |
+ } |
+ } |
+ } |
+ /* Completed an MCU row, but perhaps not an iMCU row */ |
+ coef->MCU_ctr = 0; |
+ } |
+ /* Completed the iMCU row, advance counters for next one */ |
+ cinfo->output_iMCU_row++; |
+ if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { |
+ start_iMCU_row(cinfo); |
+ return JPEG_ROW_COMPLETED; |
+ } |
+ /* Completed the scan */ |
+ (*cinfo->inputctl->finish_input_pass) (cinfo); |
+ return JPEG_SCAN_COMPLETED; |
+} |
+ |
+ |
+/* |
+ * Dummy consume-input routine for single-pass operation. |
+ */ |
+ |
+METHODDEF(int) |
+dummy_consume_data (j_decompress_ptr cinfo) |
+{ |
+ return JPEG_SUSPENDED; /* Always indicate nothing was done */ |
+} |
+ |
+ |
+#ifdef D_MULTISCAN_FILES_SUPPORTED |
+ |
+/* |
+ * Consume input data and store it in the full-image coefficient buffer. |
+ * We read as much as one fully interleaved MCU row ("iMCU" row) per call, |
+ * ie, v_samp_factor block rows for each component in the scan. |
+ * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
+ */ |
+ |
+METHODDEF(int) |
+consume_data (j_decompress_ptr cinfo) |
+{ |
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
+ JDIMENSION MCU_col_num; /* index of current MCU within row */ |
+ int blkn, ci, xindex, yindex, yoffset; |
+ JDIMENSION start_col; |
+ JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; |
+ JBLOCKROW buffer_ptr; |
+ jpeg_component_info *compptr; |
+ |
+ /* Align the virtual buffers for the components used in this scan. */ |
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
+ compptr = cinfo->cur_comp_info[ci]; |
+ buffer[ci] = (*cinfo->mem->access_virt_barray) |
+ ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], |
+ cinfo->input_iMCU_row * compptr->v_samp_factor, |
+ (JDIMENSION) compptr->v_samp_factor, TRUE); |
+ /* Note: entropy decoder expects buffer to be zeroed, |
+ * but this is handled automatically by the memory manager |
+ * because we requested a pre-zeroed array. |
+ */ |
+ } |
+ |
+ /* Loop to process one whole iMCU row */ |
+ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
+ yoffset++) { |
+ for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; |
+ MCU_col_num++) { |
+ /* Construct list of pointers to DCT blocks belonging to this MCU */ |
+ blkn = 0; /* index of current DCT block within MCU */ |
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
+ compptr = cinfo->cur_comp_info[ci]; |
+ start_col = MCU_col_num * compptr->MCU_width; |
+ for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
+ buffer_ptr = buffer[ci][yindex+yoffset] + start_col; |
+ for (xindex = 0; xindex < compptr->MCU_width; xindex++) { |
+ coef->MCU_buffer[blkn++] = buffer_ptr++; |
+ } |
+ } |
+ } |
+ /* Try to fetch the MCU. */ |
+ if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { |
+ /* Suspension forced; update state counters and exit */ |
+ coef->MCU_vert_offset = yoffset; |
+ coef->MCU_ctr = MCU_col_num; |
+ return JPEG_SUSPENDED; |
+ } |
+ } |
+ /* Completed an MCU row, but perhaps not an iMCU row */ |
+ coef->MCU_ctr = 0; |
+ } |
+ /* Completed the iMCU row, advance counters for next one */ |
+ if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { |
+ start_iMCU_row(cinfo); |
+ return JPEG_ROW_COMPLETED; |
+ } |
+ /* Completed the scan */ |
+ (*cinfo->inputctl->finish_input_pass) (cinfo); |
+ return JPEG_SCAN_COMPLETED; |
+} |
+ |
+ |
+/* |
+ * Decompress and return some data in the multi-pass case. |
+ * Always attempts to emit one fully interleaved MCU row ("iMCU" row). |
+ * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
+ * |
+ * NB: output_buf contains a plane for each component in image. |
+ */ |
+ |
+METHODDEF(int) |
+decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
+{ |
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
+ JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
+ JDIMENSION block_num; |
+ int ci, block_row, block_rows; |
+ JBLOCKARRAY buffer; |
+ JBLOCKROW buffer_ptr; |
+ JSAMPARRAY output_ptr; |
+ JDIMENSION output_col; |
+ jpeg_component_info *compptr; |
+ inverse_DCT_method_ptr inverse_DCT; |
+ |
+ /* Force some input to be done if we are getting ahead of the input. */ |
+ while (cinfo->input_scan_number < cinfo->output_scan_number || |
+ (cinfo->input_scan_number == cinfo->output_scan_number && |
+ cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) { |
+ if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) |
+ return JPEG_SUSPENDED; |
+ } |
+ |
+ /* OK, output from the virtual arrays. */ |
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
+ ci++, compptr++) { |
+ /* Don't bother to IDCT an uninteresting component. */ |
+ if (! compptr->component_needed) |
+ continue; |
+ /* Align the virtual buffer for this component. */ |
+ buffer = (*cinfo->mem->access_virt_barray) |
+ ((j_common_ptr) cinfo, coef->whole_image[ci], |
+ cinfo->output_iMCU_row * compptr->v_samp_factor, |
+ (JDIMENSION) compptr->v_samp_factor, FALSE); |
+ /* Count non-dummy DCT block rows in this iMCU row. */ |
+ if (cinfo->output_iMCU_row < last_iMCU_row) |
+ block_rows = compptr->v_samp_factor; |
+ else { |
+ /* NB: can't use last_row_height here; it is input-side-dependent! */ |
+ block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
+ if (block_rows == 0) block_rows = compptr->v_samp_factor; |
+ } |
+ inverse_DCT = cinfo->idct->inverse_DCT[ci]; |
+ output_ptr = output_buf[ci]; |
+ /* Loop over all DCT blocks to be processed. */ |
+ for (block_row = 0; block_row < block_rows; block_row++) { |
+ buffer_ptr = buffer[block_row]; |
+ output_col = 0; |
+ for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) { |
+ (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr, |
+ output_ptr, output_col); |
+ buffer_ptr++; |
+ output_col += compptr->DCT_scaled_size; |
+ } |
+ output_ptr += compptr->DCT_scaled_size; |
+ } |
+ } |
+ |
+ if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) |
+ return JPEG_ROW_COMPLETED; |
+ return JPEG_SCAN_COMPLETED; |
+} |
+ |
+#endif /* D_MULTISCAN_FILES_SUPPORTED */ |
+ |
+ |
+#ifdef BLOCK_SMOOTHING_SUPPORTED |
+ |
+/* |
+ * This code applies interblock smoothing as described by section K.8 |
+ * of the JPEG standard: the first 5 AC coefficients are estimated from |
+ * the DC values of a DCT block and its 8 neighboring blocks. |
+ * We apply smoothing only for progressive JPEG decoding, and only if |
+ * the coefficients it can estimate are not yet known to full precision. |
+ */ |
+ |
+/* Natural-order array positions of the first 5 zigzag-order coefficients */ |
+#define Q01_POS 1 |
+#define Q10_POS 8 |
+#define Q20_POS 16 |
+#define Q11_POS 9 |
+#define Q02_POS 2 |
+ |
+/* |
+ * Determine whether block smoothing is applicable and safe. |
+ * We also latch the current states of the coef_bits[] entries for the |
+ * AC coefficients; otherwise, if the input side of the decompressor |
+ * advances into a new scan, we might think the coefficients are known |
+ * more accurately than they really are. |
+ */ |
+ |
+LOCAL(boolean) |
+smoothing_ok (j_decompress_ptr cinfo) |
+{ |
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
+ boolean smoothing_useful = FALSE; |
+ int ci, coefi; |
+ jpeg_component_info *compptr; |
+ JQUANT_TBL * qtable; |
+ int * coef_bits; |
+ int * coef_bits_latch; |
+ |
+ if (! cinfo->progressive_mode || cinfo->coef_bits == NULL) |
+ return FALSE; |
+ |
+ /* Allocate latch area if not already done */ |
+ if (coef->coef_bits_latch == NULL) |
+ coef->coef_bits_latch = (int *) |
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
+ cinfo->num_components * |
+ (SAVED_COEFS * SIZEOF(int))); |
+ coef_bits_latch = coef->coef_bits_latch; |
+ |
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
+ ci++, compptr++) { |
+ /* All components' quantization values must already be latched. */ |
+ if ((qtable = compptr->quant_table) == NULL) |
+ return FALSE; |
+ /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */ |
+ if (qtable->quantval[0] == 0 || |
+ qtable->quantval[Q01_POS] == 0 || |
+ qtable->quantval[Q10_POS] == 0 || |
+ qtable->quantval[Q20_POS] == 0 || |
+ qtable->quantval[Q11_POS] == 0 || |
+ qtable->quantval[Q02_POS] == 0) |
+ return FALSE; |
+ /* DC values must be at least partly known for all components. */ |
+ coef_bits = cinfo->coef_bits[ci]; |
+ if (coef_bits[0] < 0) |
+ return FALSE; |
+ /* Block smoothing is helpful if some AC coefficients remain inaccurate. */ |
+ for (coefi = 1; coefi <= 5; coefi++) { |
+ coef_bits_latch[coefi] = coef_bits[coefi]; |
+ if (coef_bits[coefi] != 0) |
+ smoothing_useful = TRUE; |
+ } |
+ coef_bits_latch += SAVED_COEFS; |
+ } |
+ |
+ return smoothing_useful; |
+} |
+ |
+ |
+/* |
+ * Variant of decompress_data for use when doing block smoothing. |
+ */ |
+ |
+METHODDEF(int) |
+decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
+{ |
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
+ JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
+ JDIMENSION block_num, last_block_column; |
+ int ci, block_row, block_rows, access_rows; |
+ JBLOCKARRAY buffer; |
+ JBLOCKROW buffer_ptr, prev_block_row, next_block_row; |
+ JSAMPARRAY output_ptr; |
+ JDIMENSION output_col; |
+ jpeg_component_info *compptr; |
+ inverse_DCT_method_ptr inverse_DCT; |
+ boolean first_row, last_row; |
+ JCOEF * workspace; |
+ int *coef_bits; |
+ JQUANT_TBL *quanttbl; |
+ INT32 Q00,Q01,Q02,Q10,Q11,Q20, num; |
+ int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9; |
+ int Al, pred; |
+ |
+ /* Keep a local variable to avoid looking it up more than once */ |
+ workspace = coef->workspace; |
+ |
+ /* Force some input to be done if we are getting ahead of the input. */ |
+ while (cinfo->input_scan_number <= cinfo->output_scan_number && |
+ ! cinfo->inputctl->eoi_reached) { |
+ if (cinfo->input_scan_number == cinfo->output_scan_number) { |
+ /* If input is working on current scan, we ordinarily want it to |
+ * have completed the current row. But if input scan is DC, |
+ * we want it to keep one row ahead so that next block row's DC |
+ * values are up to date. |
+ */ |
+ JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0; |
+ if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta) |
+ break; |
+ } |
+ if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) |
+ return JPEG_SUSPENDED; |
+ } |
+ |
+ /* OK, output from the virtual arrays. */ |
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
+ ci++, compptr++) { |
+ /* Don't bother to IDCT an uninteresting component. */ |
+ if (! compptr->component_needed) |
+ continue; |
+ /* Count non-dummy DCT block rows in this iMCU row. */ |
+ if (cinfo->output_iMCU_row < last_iMCU_row) { |
+ block_rows = compptr->v_samp_factor; |
+ access_rows = block_rows * 2; /* this and next iMCU row */ |
+ last_row = FALSE; |
+ } else { |
+ /* NB: can't use last_row_height here; it is input-side-dependent! */ |
+ block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
+ if (block_rows == 0) block_rows = compptr->v_samp_factor; |
+ access_rows = block_rows; /* this iMCU row only */ |
+ last_row = TRUE; |
+ } |
+ /* Align the virtual buffer for this component. */ |
+ if (cinfo->output_iMCU_row > 0) { |
+ access_rows += compptr->v_samp_factor; /* prior iMCU row too */ |
+ buffer = (*cinfo->mem->access_virt_barray) |
+ ((j_common_ptr) cinfo, coef->whole_image[ci], |
+ (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor, |
+ (JDIMENSION) access_rows, FALSE); |
+ buffer += compptr->v_samp_factor; /* point to current iMCU row */ |
+ first_row = FALSE; |
+ } else { |
+ buffer = (*cinfo->mem->access_virt_barray) |
+ ((j_common_ptr) cinfo, coef->whole_image[ci], |
+ (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE); |
+ first_row = TRUE; |
+ } |
+ /* Fetch component-dependent info */ |
+ coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS); |
+ quanttbl = compptr->quant_table; |
+ Q00 = quanttbl->quantval[0]; |
+ Q01 = quanttbl->quantval[Q01_POS]; |
+ Q10 = quanttbl->quantval[Q10_POS]; |
+ Q20 = quanttbl->quantval[Q20_POS]; |
+ Q11 = quanttbl->quantval[Q11_POS]; |
+ Q02 = quanttbl->quantval[Q02_POS]; |
+ inverse_DCT = cinfo->idct->inverse_DCT[ci]; |
+ output_ptr = output_buf[ci]; |
+ /* Loop over all DCT blocks to be processed. */ |
+ for (block_row = 0; block_row < block_rows; block_row++) { |
+ buffer_ptr = buffer[block_row]; |
+ if (first_row && block_row == 0) |
+ prev_block_row = buffer_ptr; |
+ else |
+ prev_block_row = buffer[block_row-1]; |
+ if (last_row && block_row == block_rows-1) |
+ next_block_row = buffer_ptr; |
+ else |
+ next_block_row = buffer[block_row+1]; |
+ /* We fetch the surrounding DC values using a sliding-register approach. |
+ * Initialize all nine here so as to do the right thing on narrow pics. |
+ */ |
+ DC1 = DC2 = DC3 = (int) prev_block_row[0][0]; |
+ DC4 = DC5 = DC6 = (int) buffer_ptr[0][0]; |
+ DC7 = DC8 = DC9 = (int) next_block_row[0][0]; |
+ output_col = 0; |
+ last_block_column = compptr->width_in_blocks - 1; |
+ for (block_num = 0; block_num <= last_block_column; block_num++) { |
+ /* Fetch current DCT block into workspace so we can modify it. */ |
+ jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1); |
+ /* Update DC values */ |
+ if (block_num < last_block_column) { |
+ DC3 = (int) prev_block_row[1][0]; |
+ DC6 = (int) buffer_ptr[1][0]; |
+ DC9 = (int) next_block_row[1][0]; |
+ } |
+ /* Compute coefficient estimates per K.8. |
+ * An estimate is applied only if coefficient is still zero, |
+ * and is not known to be fully accurate. |
+ */ |
+ /* AC01 */ |
+ if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) { |
+ num = 36 * Q00 * (DC4 - DC6); |
+ if (num >= 0) { |
+ pred = (int) (((Q01<<7) + num) / (Q01<<8)); |
+ if (Al > 0 && pred >= (1<<Al)) |
+ pred = (1<<Al)-1; |
+ } else { |
+ pred = (int) (((Q01<<7) - num) / (Q01<<8)); |
+ if (Al > 0 && pred >= (1<<Al)) |
+ pred = (1<<Al)-1; |
+ pred = -pred; |
+ } |
+ workspace[1] = (JCOEF) pred; |
+ } |
+ /* AC10 */ |
+ if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) { |
+ num = 36 * Q00 * (DC2 - DC8); |
+ if (num >= 0) { |
+ pred = (int) (((Q10<<7) + num) / (Q10<<8)); |
+ if (Al > 0 && pred >= (1<<Al)) |
+ pred = (1<<Al)-1; |
+ } else { |
+ pred = (int) (((Q10<<7) - num) / (Q10<<8)); |
+ if (Al > 0 && pred >= (1<<Al)) |
+ pred = (1<<Al)-1; |
+ pred = -pred; |
+ } |
+ workspace[8] = (JCOEF) pred; |
+ } |
+ /* AC20 */ |
+ if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) { |
+ num = 9 * Q00 * (DC2 + DC8 - 2*DC5); |
+ if (num >= 0) { |
+ pred = (int) (((Q20<<7) + num) / (Q20<<8)); |
+ if (Al > 0 && pred >= (1<<Al)) |
+ pred = (1<<Al)-1; |
+ } else { |
+ pred = (int) (((Q20<<7) - num) / (Q20<<8)); |
+ if (Al > 0 && pred >= (1<<Al)) |
+ pred = (1<<Al)-1; |
+ pred = -pred; |
+ } |
+ workspace[16] = (JCOEF) pred; |
+ } |
+ /* AC11 */ |
+ if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) { |
+ num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9); |
+ if (num >= 0) { |
+ pred = (int) (((Q11<<7) + num) / (Q11<<8)); |
+ if (Al > 0 && pred >= (1<<Al)) |
+ pred = (1<<Al)-1; |
+ } else { |
+ pred = (int) (((Q11<<7) - num) / (Q11<<8)); |
+ if (Al > 0 && pred >= (1<<Al)) |
+ pred = (1<<Al)-1; |
+ pred = -pred; |
+ } |
+ workspace[9] = (JCOEF) pred; |
+ } |
+ /* AC02 */ |
+ if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) { |
+ num = 9 * Q00 * (DC4 + DC6 - 2*DC5); |
+ if (num >= 0) { |
+ pred = (int) (((Q02<<7) + num) / (Q02<<8)); |
+ if (Al > 0 && pred >= (1<<Al)) |
+ pred = (1<<Al)-1; |
+ } else { |
+ pred = (int) (((Q02<<7) - num) / (Q02<<8)); |
+ if (Al > 0 && pred >= (1<<Al)) |
+ pred = (1<<Al)-1; |
+ pred = -pred; |
+ } |
+ workspace[2] = (JCOEF) pred; |
+ } |
+ /* OK, do the IDCT */ |
+ (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace, |
+ output_ptr, output_col); |
+ /* Advance for next column */ |
+ DC1 = DC2; DC2 = DC3; |
+ DC4 = DC5; DC5 = DC6; |
+ DC7 = DC8; DC8 = DC9; |
+ buffer_ptr++, prev_block_row++, next_block_row++; |
+ output_col += compptr->DCT_scaled_size; |
+ } |
+ output_ptr += compptr->DCT_scaled_size; |
+ } |
+ } |
+ |
+ if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) |
+ return JPEG_ROW_COMPLETED; |
+ return JPEG_SCAN_COMPLETED; |
+} |
+ |
+#endif /* BLOCK_SMOOTHING_SUPPORTED */ |
+ |
+ |
+/* |
+ * Initialize coefficient buffer controller. |
+ */ |
+ |
+GLOBAL(void) |
+jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer) |
+{ |
+ my_coef_ptr coef; |
+ |
+ coef = (my_coef_ptr) |
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
+ SIZEOF(my_coef_controller)); |
+ cinfo->coef = (struct jpeg_d_coef_controller *) coef; |
+ coef->pub.start_input_pass = start_input_pass; |
+ coef->pub.start_output_pass = start_output_pass; |
+#ifdef BLOCK_SMOOTHING_SUPPORTED |
+ coef->coef_bits_latch = NULL; |
+#endif |
+ |
+ /* Create the coefficient buffer. */ |
+ if (need_full_buffer) { |
+#ifdef D_MULTISCAN_FILES_SUPPORTED |
+ /* Allocate a full-image virtual array for each component, */ |
+ /* padded to a multiple of samp_factor DCT blocks in each direction. */ |
+ /* Note we ask for a pre-zeroed array. */ |
+ int ci, access_rows; |
+ jpeg_component_info *compptr; |
+ |
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
+ ci++, compptr++) { |
+ access_rows = compptr->v_samp_factor; |
+#ifdef BLOCK_SMOOTHING_SUPPORTED |
+ /* If block smoothing could be used, need a bigger window */ |
+ if (cinfo->progressive_mode) |
+ access_rows *= 3; |
+#endif |
+ coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) |
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE, |
+ (JDIMENSION) jround_up((long) compptr->width_in_blocks, |
+ (long) compptr->h_samp_factor), |
+ (JDIMENSION) jround_up((long) compptr->height_in_blocks, |
+ (long) compptr->v_samp_factor), |
+ (JDIMENSION) access_rows); |
+ } |
+ coef->pub.consume_data = consume_data; |
+ coef->pub.decompress_data = decompress_data; |
+ coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ |
+#else |
+ ERREXIT(cinfo, JERR_NOT_COMPILED); |
+#endif |
+ } else { |
+ /* We only need a single-MCU buffer. */ |
+ JBLOCKROW buffer; |
+ int i; |
+ |
+ buffer = (JBLOCKROW) |
+ (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
+ D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); |
+ for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { |
+ coef->MCU_buffer[i] = buffer + i; |
+ } |
+ coef->pub.consume_data = dummy_consume_data; |
+ coef->pub.decompress_data = decompress_onepass; |
+ coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ |
+ } |
+ |
+ /* Allocate the workspace buffer */ |
+ coef->workspace = (JCOEF *) |
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
+ SIZEOF(JCOEF) * DCTSIZE2); |
+} |