OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * jdcoefct.c |
| 3 * |
| 4 * Copyright (C) 1994-1997, Thomas G. Lane. |
| 5 * This file is part of the Independent JPEG Group's software. |
| 6 * For conditions of distribution and use, see the accompanying README file. |
| 7 * |
| 8 * This file contains the coefficient buffer controller for decompression. |
| 9 * This controller is the top level of the JPEG decompressor proper. |
| 10 * The coefficient buffer lies between entropy decoding and inverse-DCT steps. |
| 11 * |
| 12 * In buffered-image mode, this controller is the interface between |
| 13 * input-oriented processing and output-oriented processing. |
| 14 * Also, the input side (only) is used when reading a file for transcoding. |
| 15 */ |
| 16 |
| 17 #define JPEG_INTERNALS |
| 18 #include "jinclude.h" |
| 19 #include "jpeglib.h" |
| 20 |
| 21 /* Block smoothing is only applicable for progressive JPEG, so: */ |
| 22 #ifndef D_PROGRESSIVE_SUPPORTED |
| 23 #undef BLOCK_SMOOTHING_SUPPORTED |
| 24 #endif |
| 25 |
| 26 /* Private buffer controller object */ |
| 27 |
| 28 typedef struct { |
| 29 struct jpeg_d_coef_controller pub; /* public fields */ |
| 30 |
| 31 /* These variables keep track of the current location of the input side. */ |
| 32 /* cinfo->input_iMCU_row is also used for this. */ |
| 33 JDIMENSION MCU_ctr; /* counts MCUs processed in current row */ |
| 34 int MCU_vert_offset; /* counts MCU rows within iMCU row */ |
| 35 int MCU_rows_per_iMCU_row; /* number of such rows needed */ |
| 36 |
| 37 /* The output side's location is represented by cinfo->output_iMCU_row. */ |
| 38 |
| 39 /* In single-pass modes, it's sufficient to buffer just one MCU. |
| 40 * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks, |
| 41 * and let the entropy decoder write into that workspace each time. |
| 42 * (On 80x86, the workspace is FAR even though it's not really very big; |
| 43 * this is to keep the module interfaces unchanged when a large coefficient |
| 44 * buffer is necessary.) |
| 45 * In multi-pass modes, this array points to the current MCU's blocks |
| 46 * within the virtual arrays; it is used only by the input side. |
| 47 */ |
| 48 JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU]; |
| 49 |
| 50 /* Temporary workspace for one MCU */ |
| 51 JCOEF * workspace; |
| 52 |
| 53 #ifdef D_MULTISCAN_FILES_SUPPORTED |
| 54 /* In multi-pass modes, we need a virtual block array for each component. */ |
| 55 jvirt_barray_ptr whole_image[MAX_COMPONENTS]; |
| 56 #endif |
| 57 |
| 58 #ifdef BLOCK_SMOOTHING_SUPPORTED |
| 59 /* When doing block smoothing, we latch coefficient Al values here */ |
| 60 int * coef_bits_latch; |
| 61 #define SAVED_COEFS 6 /* we save coef_bits[0..5] */ |
| 62 #endif |
| 63 } my_coef_controller; |
| 64 |
| 65 typedef my_coef_controller * my_coef_ptr; |
| 66 |
| 67 /* Forward declarations */ |
| 68 METHODDEF(int) decompress_onepass |
| 69 JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
| 70 #ifdef D_MULTISCAN_FILES_SUPPORTED |
| 71 METHODDEF(int) decompress_data |
| 72 JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
| 73 #endif |
| 74 #ifdef BLOCK_SMOOTHING_SUPPORTED |
| 75 LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo)); |
| 76 METHODDEF(int) decompress_smooth_data |
| 77 JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
| 78 #endif |
| 79 |
| 80 |
| 81 LOCAL(void) |
| 82 start_iMCU_row (j_decompress_ptr cinfo) |
| 83 /* Reset within-iMCU-row counters for a new row (input side) */ |
| 84 { |
| 85 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
| 86 |
| 87 /* In an interleaved scan, an MCU row is the same as an iMCU row. |
| 88 * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. |
| 89 * But at the bottom of the image, process only what's left. |
| 90 */ |
| 91 if (cinfo->comps_in_scan > 1) { |
| 92 coef->MCU_rows_per_iMCU_row = 1; |
| 93 } else { |
| 94 if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1)) |
| 95 coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; |
| 96 else |
| 97 coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; |
| 98 } |
| 99 |
| 100 coef->MCU_ctr = 0; |
| 101 coef->MCU_vert_offset = 0; |
| 102 } |
| 103 |
| 104 |
| 105 /* |
| 106 * Initialize for an input processing pass. |
| 107 */ |
| 108 |
| 109 METHODDEF(void) |
| 110 start_input_pass (j_decompress_ptr cinfo) |
| 111 { |
| 112 cinfo->input_iMCU_row = 0; |
| 113 start_iMCU_row(cinfo); |
| 114 } |
| 115 |
| 116 |
| 117 /* |
| 118 * Initialize for an output processing pass. |
| 119 */ |
| 120 |
| 121 METHODDEF(void) |
| 122 start_output_pass (j_decompress_ptr cinfo) |
| 123 { |
| 124 #ifdef BLOCK_SMOOTHING_SUPPORTED |
| 125 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
| 126 |
| 127 /* If multipass, check to see whether to use block smoothing on this pass */ |
| 128 if (coef->pub.coef_arrays != NULL) { |
| 129 if (cinfo->do_block_smoothing && smoothing_ok(cinfo)) |
| 130 coef->pub.decompress_data = decompress_smooth_data; |
| 131 else |
| 132 coef->pub.decompress_data = decompress_data; |
| 133 } |
| 134 #endif |
| 135 cinfo->output_iMCU_row = 0; |
| 136 } |
| 137 |
| 138 |
| 139 /* |
| 140 * Decompress and return some data in the single-pass case. |
| 141 * Always attempts to emit one fully interleaved MCU row ("iMCU" row). |
| 142 * Input and output must run in lockstep since we have only a one-MCU buffer. |
| 143 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
| 144 * |
| 145 * NB: output_buf contains a plane for each component in image, |
| 146 * which we index according to the component's SOF position. |
| 147 */ |
| 148 |
| 149 METHODDEF(int) |
| 150 decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
| 151 { |
| 152 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
| 153 JDIMENSION MCU_col_num; /* index of current MCU within row */ |
| 154 JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; |
| 155 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
| 156 int blkn, ci, xindex, yindex, yoffset, useful_width; |
| 157 JSAMPARRAY output_ptr; |
| 158 JDIMENSION start_col, output_col; |
| 159 jpeg_component_info *compptr; |
| 160 inverse_DCT_method_ptr inverse_DCT; |
| 161 |
| 162 /* Loop to process as much as one whole iMCU row */ |
| 163 for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
| 164 yoffset++) { |
| 165 for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; |
| 166 MCU_col_num++) { |
| 167 /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */ |
| 168 jzero_far((void FAR *) coef->MCU_buffer[0], |
| 169 (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK))); |
| 170 if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { |
| 171 /* Suspension forced; update state counters and exit */ |
| 172 coef->MCU_vert_offset = yoffset; |
| 173 coef->MCU_ctr = MCU_col_num; |
| 174 return JPEG_SUSPENDED; |
| 175 } |
| 176 /* Determine where data should go in output_buf and do the IDCT thing. |
| 177 * We skip dummy blocks at the right and bottom edges (but blkn gets |
| 178 * incremented past them!). Note the inner loop relies on having |
| 179 * allocated the MCU_buffer[] blocks sequentially. |
| 180 */ |
| 181 blkn = 0; /* index of current DCT block within MCU */ |
| 182 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| 183 compptr = cinfo->cur_comp_info[ci]; |
| 184 /* Don't bother to IDCT an uninteresting component. */ |
| 185 if (! compptr->component_needed) { |
| 186 blkn += compptr->MCU_blocks; |
| 187 continue; |
| 188 } |
| 189 inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index]; |
| 190 useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width |
| 191 : compptr->last_col_width; |
| 192 output_ptr = output_buf[compptr->component_index] + |
| 193 yoffset * compptr->DCT_scaled_size; |
| 194 start_col = MCU_col_num * compptr->MCU_sample_width; |
| 195 for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
| 196 if (cinfo->input_iMCU_row < last_iMCU_row || |
| 197 yoffset+yindex < compptr->last_row_height) { |
| 198 output_col = start_col; |
| 199 for (xindex = 0; xindex < useful_width; xindex++) { |
| 200 (*inverse_DCT) (cinfo, compptr, |
| 201 (JCOEFPTR) coef->MCU_buffer[blkn+xindex], |
| 202 output_ptr, output_col); |
| 203 output_col += compptr->DCT_scaled_size; |
| 204 } |
| 205 } |
| 206 blkn += compptr->MCU_width; |
| 207 output_ptr += compptr->DCT_scaled_size; |
| 208 } |
| 209 } |
| 210 } |
| 211 /* Completed an MCU row, but perhaps not an iMCU row */ |
| 212 coef->MCU_ctr = 0; |
| 213 } |
| 214 /* Completed the iMCU row, advance counters for next one */ |
| 215 cinfo->output_iMCU_row++; |
| 216 if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { |
| 217 start_iMCU_row(cinfo); |
| 218 return JPEG_ROW_COMPLETED; |
| 219 } |
| 220 /* Completed the scan */ |
| 221 (*cinfo->inputctl->finish_input_pass) (cinfo); |
| 222 return JPEG_SCAN_COMPLETED; |
| 223 } |
| 224 |
| 225 |
| 226 /* |
| 227 * Dummy consume-input routine for single-pass operation. |
| 228 */ |
| 229 |
| 230 METHODDEF(int) |
| 231 dummy_consume_data (j_decompress_ptr cinfo) |
| 232 { |
| 233 return JPEG_SUSPENDED; /* Always indicate nothing was done */ |
| 234 } |
| 235 |
| 236 |
| 237 #ifdef D_MULTISCAN_FILES_SUPPORTED |
| 238 |
| 239 /* |
| 240 * Consume input data and store it in the full-image coefficient buffer. |
| 241 * We read as much as one fully interleaved MCU row ("iMCU" row) per call, |
| 242 * ie, v_samp_factor block rows for each component in the scan. |
| 243 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
| 244 */ |
| 245 |
| 246 METHODDEF(int) |
| 247 consume_data (j_decompress_ptr cinfo) |
| 248 { |
| 249 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
| 250 JDIMENSION MCU_col_num; /* index of current MCU within row */ |
| 251 int blkn, ci, xindex, yindex, yoffset; |
| 252 JDIMENSION start_col; |
| 253 JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; |
| 254 JBLOCKROW buffer_ptr; |
| 255 jpeg_component_info *compptr; |
| 256 |
| 257 /* Align the virtual buffers for the components used in this scan. */ |
| 258 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| 259 compptr = cinfo->cur_comp_info[ci]; |
| 260 buffer[ci] = (*cinfo->mem->access_virt_barray) |
| 261 ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], |
| 262 cinfo->input_iMCU_row * compptr->v_samp_factor, |
| 263 (JDIMENSION) compptr->v_samp_factor, TRUE); |
| 264 /* Note: entropy decoder expects buffer to be zeroed, |
| 265 * but this is handled automatically by the memory manager |
| 266 * because we requested a pre-zeroed array. |
| 267 */ |
| 268 } |
| 269 |
| 270 /* Loop to process one whole iMCU row */ |
| 271 for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
| 272 yoffset++) { |
| 273 for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; |
| 274 MCU_col_num++) { |
| 275 /* Construct list of pointers to DCT blocks belonging to this MCU */ |
| 276 blkn = 0; /* index of current DCT block within MCU */ |
| 277 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| 278 compptr = cinfo->cur_comp_info[ci]; |
| 279 start_col = MCU_col_num * compptr->MCU_width; |
| 280 for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
| 281 buffer_ptr = buffer[ci][yindex+yoffset] + start_col; |
| 282 for (xindex = 0; xindex < compptr->MCU_width; xindex++) { |
| 283 coef->MCU_buffer[blkn++] = buffer_ptr++; |
| 284 } |
| 285 } |
| 286 } |
| 287 /* Try to fetch the MCU. */ |
| 288 if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { |
| 289 /* Suspension forced; update state counters and exit */ |
| 290 coef->MCU_vert_offset = yoffset; |
| 291 coef->MCU_ctr = MCU_col_num; |
| 292 return JPEG_SUSPENDED; |
| 293 } |
| 294 } |
| 295 /* Completed an MCU row, but perhaps not an iMCU row */ |
| 296 coef->MCU_ctr = 0; |
| 297 } |
| 298 /* Completed the iMCU row, advance counters for next one */ |
| 299 if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { |
| 300 start_iMCU_row(cinfo); |
| 301 return JPEG_ROW_COMPLETED; |
| 302 } |
| 303 /* Completed the scan */ |
| 304 (*cinfo->inputctl->finish_input_pass) (cinfo); |
| 305 return JPEG_SCAN_COMPLETED; |
| 306 } |
| 307 |
| 308 |
| 309 /* |
| 310 * Decompress and return some data in the multi-pass case. |
| 311 * Always attempts to emit one fully interleaved MCU row ("iMCU" row). |
| 312 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
| 313 * |
| 314 * NB: output_buf contains a plane for each component in image. |
| 315 */ |
| 316 |
| 317 METHODDEF(int) |
| 318 decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
| 319 { |
| 320 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
| 321 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
| 322 JDIMENSION block_num; |
| 323 int ci, block_row, block_rows; |
| 324 JBLOCKARRAY buffer; |
| 325 JBLOCKROW buffer_ptr; |
| 326 JSAMPARRAY output_ptr; |
| 327 JDIMENSION output_col; |
| 328 jpeg_component_info *compptr; |
| 329 inverse_DCT_method_ptr inverse_DCT; |
| 330 |
| 331 /* Force some input to be done if we are getting ahead of the input. */ |
| 332 while (cinfo->input_scan_number < cinfo->output_scan_number || |
| 333 (cinfo->input_scan_number == cinfo->output_scan_number && |
| 334 cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) { |
| 335 if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) |
| 336 return JPEG_SUSPENDED; |
| 337 } |
| 338 |
| 339 /* OK, output from the virtual arrays. */ |
| 340 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
| 341 ci++, compptr++) { |
| 342 /* Don't bother to IDCT an uninteresting component. */ |
| 343 if (! compptr->component_needed) |
| 344 continue; |
| 345 /* Align the virtual buffer for this component. */ |
| 346 buffer = (*cinfo->mem->access_virt_barray) |
| 347 ((j_common_ptr) cinfo, coef->whole_image[ci], |
| 348 cinfo->output_iMCU_row * compptr->v_samp_factor, |
| 349 (JDIMENSION) compptr->v_samp_factor, FALSE); |
| 350 /* Count non-dummy DCT block rows in this iMCU row. */ |
| 351 if (cinfo->output_iMCU_row < last_iMCU_row) |
| 352 block_rows = compptr->v_samp_factor; |
| 353 else { |
| 354 /* NB: can't use last_row_height here; it is input-side-dependent! */ |
| 355 block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
| 356 if (block_rows == 0) block_rows = compptr->v_samp_factor; |
| 357 } |
| 358 inverse_DCT = cinfo->idct->inverse_DCT[ci]; |
| 359 output_ptr = output_buf[ci]; |
| 360 /* Loop over all DCT blocks to be processed. */ |
| 361 for (block_row = 0; block_row < block_rows; block_row++) { |
| 362 buffer_ptr = buffer[block_row]; |
| 363 output_col = 0; |
| 364 for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) { |
| 365 (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr, |
| 366 output_ptr, output_col); |
| 367 buffer_ptr++; |
| 368 output_col += compptr->DCT_scaled_size; |
| 369 } |
| 370 output_ptr += compptr->DCT_scaled_size; |
| 371 } |
| 372 } |
| 373 |
| 374 if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) |
| 375 return JPEG_ROW_COMPLETED; |
| 376 return JPEG_SCAN_COMPLETED; |
| 377 } |
| 378 |
| 379 #endif /* D_MULTISCAN_FILES_SUPPORTED */ |
| 380 |
| 381 |
| 382 #ifdef BLOCK_SMOOTHING_SUPPORTED |
| 383 |
| 384 /* |
| 385 * This code applies interblock smoothing as described by section K.8 |
| 386 * of the JPEG standard: the first 5 AC coefficients are estimated from |
| 387 * the DC values of a DCT block and its 8 neighboring blocks. |
| 388 * We apply smoothing only for progressive JPEG decoding, and only if |
| 389 * the coefficients it can estimate are not yet known to full precision. |
| 390 */ |
| 391 |
| 392 /* Natural-order array positions of the first 5 zigzag-order coefficients */ |
| 393 #define Q01_POS 1 |
| 394 #define Q10_POS 8 |
| 395 #define Q20_POS 16 |
| 396 #define Q11_POS 9 |
| 397 #define Q02_POS 2 |
| 398 |
| 399 /* |
| 400 * Determine whether block smoothing is applicable and safe. |
| 401 * We also latch the current states of the coef_bits[] entries for the |
| 402 * AC coefficients; otherwise, if the input side of the decompressor |
| 403 * advances into a new scan, we might think the coefficients are known |
| 404 * more accurately than they really are. |
| 405 */ |
| 406 |
| 407 LOCAL(boolean) |
| 408 smoothing_ok (j_decompress_ptr cinfo) |
| 409 { |
| 410 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
| 411 boolean smoothing_useful = FALSE; |
| 412 int ci, coefi; |
| 413 jpeg_component_info *compptr; |
| 414 JQUANT_TBL * qtable; |
| 415 int * coef_bits; |
| 416 int * coef_bits_latch; |
| 417 |
| 418 if (! cinfo->progressive_mode || cinfo->coef_bits == NULL) |
| 419 return FALSE; |
| 420 |
| 421 /* Allocate latch area if not already done */ |
| 422 if (coef->coef_bits_latch == NULL) |
| 423 coef->coef_bits_latch = (int *) |
| 424 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 425 cinfo->num_components * |
| 426 (SAVED_COEFS * SIZEOF(int))); |
| 427 coef_bits_latch = coef->coef_bits_latch; |
| 428 |
| 429 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
| 430 ci++, compptr++) { |
| 431 /* All components' quantization values must already be latched. */ |
| 432 if ((qtable = compptr->quant_table) == NULL) |
| 433 return FALSE; |
| 434 /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */ |
| 435 if (qtable->quantval[0] == 0 || |
| 436 qtable->quantval[Q01_POS] == 0 || |
| 437 qtable->quantval[Q10_POS] == 0 || |
| 438 qtable->quantval[Q20_POS] == 0 || |
| 439 qtable->quantval[Q11_POS] == 0 || |
| 440 qtable->quantval[Q02_POS] == 0) |
| 441 return FALSE; |
| 442 /* DC values must be at least partly known for all components. */ |
| 443 coef_bits = cinfo->coef_bits[ci]; |
| 444 if (coef_bits[0] < 0) |
| 445 return FALSE; |
| 446 /* Block smoothing is helpful if some AC coefficients remain inaccurate. */ |
| 447 for (coefi = 1; coefi <= 5; coefi++) { |
| 448 coef_bits_latch[coefi] = coef_bits[coefi]; |
| 449 if (coef_bits[coefi] != 0) |
| 450 smoothing_useful = TRUE; |
| 451 } |
| 452 coef_bits_latch += SAVED_COEFS; |
| 453 } |
| 454 |
| 455 return smoothing_useful; |
| 456 } |
| 457 |
| 458 |
| 459 /* |
| 460 * Variant of decompress_data for use when doing block smoothing. |
| 461 */ |
| 462 |
| 463 METHODDEF(int) |
| 464 decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
| 465 { |
| 466 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
| 467 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
| 468 JDIMENSION block_num, last_block_column; |
| 469 int ci, block_row, block_rows, access_rows; |
| 470 JBLOCKARRAY buffer; |
| 471 JBLOCKROW buffer_ptr, prev_block_row, next_block_row; |
| 472 JSAMPARRAY output_ptr; |
| 473 JDIMENSION output_col; |
| 474 jpeg_component_info *compptr; |
| 475 inverse_DCT_method_ptr inverse_DCT; |
| 476 boolean first_row, last_row; |
| 477 JCOEF * workspace; |
| 478 int *coef_bits; |
| 479 JQUANT_TBL *quanttbl; |
| 480 INT32 Q00,Q01,Q02,Q10,Q11,Q20, num; |
| 481 int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9; |
| 482 int Al, pred; |
| 483 |
| 484 /* Keep a local variable to avoid looking it up more than once */ |
| 485 workspace = coef->workspace; |
| 486 |
| 487 /* Force some input to be done if we are getting ahead of the input. */ |
| 488 while (cinfo->input_scan_number <= cinfo->output_scan_number && |
| 489 ! cinfo->inputctl->eoi_reached) { |
| 490 if (cinfo->input_scan_number == cinfo->output_scan_number) { |
| 491 /* If input is working on current scan, we ordinarily want it to |
| 492 * have completed the current row. But if input scan is DC, |
| 493 * we want it to keep one row ahead so that next block row's DC |
| 494 * values are up to date. |
| 495 */ |
| 496 JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0; |
| 497 if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta) |
| 498 break; |
| 499 } |
| 500 if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) |
| 501 return JPEG_SUSPENDED; |
| 502 } |
| 503 |
| 504 /* OK, output from the virtual arrays. */ |
| 505 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
| 506 ci++, compptr++) { |
| 507 /* Don't bother to IDCT an uninteresting component. */ |
| 508 if (! compptr->component_needed) |
| 509 continue; |
| 510 /* Count non-dummy DCT block rows in this iMCU row. */ |
| 511 if (cinfo->output_iMCU_row < last_iMCU_row) { |
| 512 block_rows = compptr->v_samp_factor; |
| 513 access_rows = block_rows * 2; /* this and next iMCU row */ |
| 514 last_row = FALSE; |
| 515 } else { |
| 516 /* NB: can't use last_row_height here; it is input-side-dependent! */ |
| 517 block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
| 518 if (block_rows == 0) block_rows = compptr->v_samp_factor; |
| 519 access_rows = block_rows; /* this iMCU row only */ |
| 520 last_row = TRUE; |
| 521 } |
| 522 /* Align the virtual buffer for this component. */ |
| 523 if (cinfo->output_iMCU_row > 0) { |
| 524 access_rows += compptr->v_samp_factor; /* prior iMCU row too */ |
| 525 buffer = (*cinfo->mem->access_virt_barray) |
| 526 ((j_common_ptr) cinfo, coef->whole_image[ci], |
| 527 (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor, |
| 528 (JDIMENSION) access_rows, FALSE); |
| 529 buffer += compptr->v_samp_factor; /* point to current iMCU row */ |
| 530 first_row = FALSE; |
| 531 } else { |
| 532 buffer = (*cinfo->mem->access_virt_barray) |
| 533 ((j_common_ptr) cinfo, coef->whole_image[ci], |
| 534 (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE); |
| 535 first_row = TRUE; |
| 536 } |
| 537 /* Fetch component-dependent info */ |
| 538 coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS); |
| 539 quanttbl = compptr->quant_table; |
| 540 Q00 = quanttbl->quantval[0]; |
| 541 Q01 = quanttbl->quantval[Q01_POS]; |
| 542 Q10 = quanttbl->quantval[Q10_POS]; |
| 543 Q20 = quanttbl->quantval[Q20_POS]; |
| 544 Q11 = quanttbl->quantval[Q11_POS]; |
| 545 Q02 = quanttbl->quantval[Q02_POS]; |
| 546 inverse_DCT = cinfo->idct->inverse_DCT[ci]; |
| 547 output_ptr = output_buf[ci]; |
| 548 /* Loop over all DCT blocks to be processed. */ |
| 549 for (block_row = 0; block_row < block_rows; block_row++) { |
| 550 buffer_ptr = buffer[block_row]; |
| 551 if (first_row && block_row == 0) |
| 552 prev_block_row = buffer_ptr; |
| 553 else |
| 554 prev_block_row = buffer[block_row-1]; |
| 555 if (last_row && block_row == block_rows-1) |
| 556 next_block_row = buffer_ptr; |
| 557 else |
| 558 next_block_row = buffer[block_row+1]; |
| 559 /* We fetch the surrounding DC values using a sliding-register approach. |
| 560 * Initialize all nine here so as to do the right thing on narrow pics. |
| 561 */ |
| 562 DC1 = DC2 = DC3 = (int) prev_block_row[0][0]; |
| 563 DC4 = DC5 = DC6 = (int) buffer_ptr[0][0]; |
| 564 DC7 = DC8 = DC9 = (int) next_block_row[0][0]; |
| 565 output_col = 0; |
| 566 last_block_column = compptr->width_in_blocks - 1; |
| 567 for (block_num = 0; block_num <= last_block_column; block_num++) { |
| 568 /* Fetch current DCT block into workspace so we can modify it. */ |
| 569 jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1); |
| 570 /* Update DC values */ |
| 571 if (block_num < last_block_column) { |
| 572 DC3 = (int) prev_block_row[1][0]; |
| 573 DC6 = (int) buffer_ptr[1][0]; |
| 574 DC9 = (int) next_block_row[1][0]; |
| 575 } |
| 576 /* Compute coefficient estimates per K.8. |
| 577 * An estimate is applied only if coefficient is still zero, |
| 578 * and is not known to be fully accurate. |
| 579 */ |
| 580 /* AC01 */ |
| 581 if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) { |
| 582 num = 36 * Q00 * (DC4 - DC6); |
| 583 if (num >= 0) { |
| 584 pred = (int) (((Q01<<7) + num) / (Q01<<8)); |
| 585 if (Al > 0 && pred >= (1<<Al)) |
| 586 pred = (1<<Al)-1; |
| 587 } else { |
| 588 pred = (int) (((Q01<<7) - num) / (Q01<<8)); |
| 589 if (Al > 0 && pred >= (1<<Al)) |
| 590 pred = (1<<Al)-1; |
| 591 pred = -pred; |
| 592 } |
| 593 workspace[1] = (JCOEF) pred; |
| 594 } |
| 595 /* AC10 */ |
| 596 if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) { |
| 597 num = 36 * Q00 * (DC2 - DC8); |
| 598 if (num >= 0) { |
| 599 pred = (int) (((Q10<<7) + num) / (Q10<<8)); |
| 600 if (Al > 0 && pred >= (1<<Al)) |
| 601 pred = (1<<Al)-1; |
| 602 } else { |
| 603 pred = (int) (((Q10<<7) - num) / (Q10<<8)); |
| 604 if (Al > 0 && pred >= (1<<Al)) |
| 605 pred = (1<<Al)-1; |
| 606 pred = -pred; |
| 607 } |
| 608 workspace[8] = (JCOEF) pred; |
| 609 } |
| 610 /* AC20 */ |
| 611 if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) { |
| 612 num = 9 * Q00 * (DC2 + DC8 - 2*DC5); |
| 613 if (num >= 0) { |
| 614 pred = (int) (((Q20<<7) + num) / (Q20<<8)); |
| 615 if (Al > 0 && pred >= (1<<Al)) |
| 616 pred = (1<<Al)-1; |
| 617 } else { |
| 618 pred = (int) (((Q20<<7) - num) / (Q20<<8)); |
| 619 if (Al > 0 && pred >= (1<<Al)) |
| 620 pred = (1<<Al)-1; |
| 621 pred = -pred; |
| 622 } |
| 623 workspace[16] = (JCOEF) pred; |
| 624 } |
| 625 /* AC11 */ |
| 626 if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) { |
| 627 num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9); |
| 628 if (num >= 0) { |
| 629 pred = (int) (((Q11<<7) + num) / (Q11<<8)); |
| 630 if (Al > 0 && pred >= (1<<Al)) |
| 631 pred = (1<<Al)-1; |
| 632 } else { |
| 633 pred = (int) (((Q11<<7) - num) / (Q11<<8)); |
| 634 if (Al > 0 && pred >= (1<<Al)) |
| 635 pred = (1<<Al)-1; |
| 636 pred = -pred; |
| 637 } |
| 638 workspace[9] = (JCOEF) pred; |
| 639 } |
| 640 /* AC02 */ |
| 641 if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) { |
| 642 num = 9 * Q00 * (DC4 + DC6 - 2*DC5); |
| 643 if (num >= 0) { |
| 644 pred = (int) (((Q02<<7) + num) / (Q02<<8)); |
| 645 if (Al > 0 && pred >= (1<<Al)) |
| 646 pred = (1<<Al)-1; |
| 647 } else { |
| 648 pred = (int) (((Q02<<7) - num) / (Q02<<8)); |
| 649 if (Al > 0 && pred >= (1<<Al)) |
| 650 pred = (1<<Al)-1; |
| 651 pred = -pred; |
| 652 } |
| 653 workspace[2] = (JCOEF) pred; |
| 654 } |
| 655 /* OK, do the IDCT */ |
| 656 (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace, |
| 657 output_ptr, output_col); |
| 658 /* Advance for next column */ |
| 659 DC1 = DC2; DC2 = DC3; |
| 660 DC4 = DC5; DC5 = DC6; |
| 661 DC7 = DC8; DC8 = DC9; |
| 662 buffer_ptr++, prev_block_row++, next_block_row++; |
| 663 output_col += compptr->DCT_scaled_size; |
| 664 } |
| 665 output_ptr += compptr->DCT_scaled_size; |
| 666 } |
| 667 } |
| 668 |
| 669 if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) |
| 670 return JPEG_ROW_COMPLETED; |
| 671 return JPEG_SCAN_COMPLETED; |
| 672 } |
| 673 |
| 674 #endif /* BLOCK_SMOOTHING_SUPPORTED */ |
| 675 |
| 676 |
| 677 /* |
| 678 * Initialize coefficient buffer controller. |
| 679 */ |
| 680 |
| 681 GLOBAL(void) |
| 682 jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer) |
| 683 { |
| 684 my_coef_ptr coef; |
| 685 |
| 686 coef = (my_coef_ptr) |
| 687 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 688 SIZEOF(my_coef_controller)); |
| 689 cinfo->coef = (struct jpeg_d_coef_controller *) coef; |
| 690 coef->pub.start_input_pass = start_input_pass; |
| 691 coef->pub.start_output_pass = start_output_pass; |
| 692 #ifdef BLOCK_SMOOTHING_SUPPORTED |
| 693 coef->coef_bits_latch = NULL; |
| 694 #endif |
| 695 |
| 696 /* Create the coefficient buffer. */ |
| 697 if (need_full_buffer) { |
| 698 #ifdef D_MULTISCAN_FILES_SUPPORTED |
| 699 /* Allocate a full-image virtual array for each component, */ |
| 700 /* padded to a multiple of samp_factor DCT blocks in each direction. */ |
| 701 /* Note we ask for a pre-zeroed array. */ |
| 702 int ci, access_rows; |
| 703 jpeg_component_info *compptr; |
| 704 |
| 705 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
| 706 ci++, compptr++) { |
| 707 access_rows = compptr->v_samp_factor; |
| 708 #ifdef BLOCK_SMOOTHING_SUPPORTED |
| 709 /* If block smoothing could be used, need a bigger window */ |
| 710 if (cinfo->progressive_mode) |
| 711 access_rows *= 3; |
| 712 #endif |
| 713 coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) |
| 714 ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE, |
| 715 (JDIMENSION) jround_up((long) compptr->width_in_blocks, |
| 716 (long) compptr->h_samp_factor), |
| 717 (JDIMENSION) jround_up((long) compptr->height_in_blocks, |
| 718 (long) compptr->v_samp_factor), |
| 719 (JDIMENSION) access_rows); |
| 720 } |
| 721 coef->pub.consume_data = consume_data; |
| 722 coef->pub.decompress_data = decompress_data; |
| 723 coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ |
| 724 #else |
| 725 ERREXIT(cinfo, JERR_NOT_COMPILED); |
| 726 #endif |
| 727 } else { |
| 728 /* We only need a single-MCU buffer. */ |
| 729 JBLOCKROW buffer; |
| 730 int i; |
| 731 |
| 732 buffer = (JBLOCKROW) |
| 733 (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 734 D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); |
| 735 for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { |
| 736 coef->MCU_buffer[i] = buffer + i; |
| 737 } |
| 738 coef->pub.consume_data = dummy_consume_data; |
| 739 coef->pub.decompress_data = decompress_onepass; |
| 740 coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ |
| 741 } |
| 742 |
| 743 /* Allocate the workspace buffer */ |
| 744 coef->workspace = (JCOEF *) |
| 745 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 746 SIZEOF(JCOEF) * DCTSIZE2); |
| 747 } |
OLD | NEW |