| Index: third_party/libjpeg_turbo/jquant2.c
|
| ===================================================================
|
| --- third_party/libjpeg_turbo/jquant2.c (revision 0)
|
| +++ third_party/libjpeg_turbo/jquant2.c (revision 0)
|
| @@ -0,0 +1,1293 @@
|
| +/*
|
| + * jquant2.c
|
| + *
|
| + * Copyright (C) 1991-1996, Thomas G. Lane.
|
| + * Copyright (C) 2009, D. R. Commander.
|
| + * This file is part of the Independent JPEG Group's software.
|
| + * For conditions of distribution and use, see the accompanying README file.
|
| + *
|
| + * This file contains 2-pass color quantization (color mapping) routines.
|
| + * These routines provide selection of a custom color map for an image,
|
| + * followed by mapping of the image to that color map, with optional
|
| + * Floyd-Steinberg dithering.
|
| + * It is also possible to use just the second pass to map to an arbitrary
|
| + * externally-given color map.
|
| + *
|
| + * Note: ordered dithering is not supported, since there isn't any fast
|
| + * way to compute intercolor distances; it's unclear that ordered dither's
|
| + * fundamental assumptions even hold with an irregularly spaced color map.
|
| + */
|
| +
|
| +#define JPEG_INTERNALS
|
| +#include "jinclude.h"
|
| +#include "jpeglib.h"
|
| +
|
| +#ifdef QUANT_2PASS_SUPPORTED
|
| +
|
| +
|
| +/*
|
| + * This module implements the well-known Heckbert paradigm for color
|
| + * quantization. Most of the ideas used here can be traced back to
|
| + * Heckbert's seminal paper
|
| + * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
|
| + * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
|
| + *
|
| + * In the first pass over the image, we accumulate a histogram showing the
|
| + * usage count of each possible color. To keep the histogram to a reasonable
|
| + * size, we reduce the precision of the input; typical practice is to retain
|
| + * 5 or 6 bits per color, so that 8 or 4 different input values are counted
|
| + * in the same histogram cell.
|
| + *
|
| + * Next, the color-selection step begins with a box representing the whole
|
| + * color space, and repeatedly splits the "largest" remaining box until we
|
| + * have as many boxes as desired colors. Then the mean color in each
|
| + * remaining box becomes one of the possible output colors.
|
| + *
|
| + * The second pass over the image maps each input pixel to the closest output
|
| + * color (optionally after applying a Floyd-Steinberg dithering correction).
|
| + * This mapping is logically trivial, but making it go fast enough requires
|
| + * considerable care.
|
| + *
|
| + * Heckbert-style quantizers vary a good deal in their policies for choosing
|
| + * the "largest" box and deciding where to cut it. The particular policies
|
| + * used here have proved out well in experimental comparisons, but better ones
|
| + * may yet be found.
|
| + *
|
| + * In earlier versions of the IJG code, this module quantized in YCbCr color
|
| + * space, processing the raw upsampled data without a color conversion step.
|
| + * This allowed the color conversion math to be done only once per colormap
|
| + * entry, not once per pixel. However, that optimization precluded other
|
| + * useful optimizations (such as merging color conversion with upsampling)
|
| + * and it also interfered with desired capabilities such as quantizing to an
|
| + * externally-supplied colormap. We have therefore abandoned that approach.
|
| + * The present code works in the post-conversion color space, typically RGB.
|
| + *
|
| + * To improve the visual quality of the results, we actually work in scaled
|
| + * RGB space, giving G distances more weight than R, and R in turn more than
|
| + * B. To do everything in integer math, we must use integer scale factors.
|
| + * The 2/3/1 scale factors used here correspond loosely to the relative
|
| + * weights of the colors in the NTSC grayscale equation.
|
| + * If you want to use this code to quantize a non-RGB color space, you'll
|
| + * probably need to change these scale factors.
|
| + */
|
| +
|
| +#define R_SCALE 2 /* scale R distances by this much */
|
| +#define G_SCALE 3 /* scale G distances by this much */
|
| +#define B_SCALE 1 /* and B by this much */
|
| +
|
| +static const int c_scales[3]={R_SCALE, G_SCALE, B_SCALE};
|
| +#define C0_SCALE c_scales[rgb_red[cinfo->out_color_space]]
|
| +#define C1_SCALE c_scales[rgb_green[cinfo->out_color_space]]
|
| +#define C2_SCALE c_scales[rgb_blue[cinfo->out_color_space]]
|
| +
|
| +/*
|
| + * First we have the histogram data structure and routines for creating it.
|
| + *
|
| + * The number of bits of precision can be adjusted by changing these symbols.
|
| + * We recommend keeping 6 bits for G and 5 each for R and B.
|
| + * If you have plenty of memory and cycles, 6 bits all around gives marginally
|
| + * better results; if you are short of memory, 5 bits all around will save
|
| + * some space but degrade the results.
|
| + * To maintain a fully accurate histogram, we'd need to allocate a "long"
|
| + * (preferably unsigned long) for each cell. In practice this is overkill;
|
| + * we can get by with 16 bits per cell. Few of the cell counts will overflow,
|
| + * and clamping those that do overflow to the maximum value will give close-
|
| + * enough results. This reduces the recommended histogram size from 256Kb
|
| + * to 128Kb, which is a useful savings on PC-class machines.
|
| + * (In the second pass the histogram space is re-used for pixel mapping data;
|
| + * in that capacity, each cell must be able to store zero to the number of
|
| + * desired colors. 16 bits/cell is plenty for that too.)
|
| + * Since the JPEG code is intended to run in small memory model on 80x86
|
| + * machines, we can't just allocate the histogram in one chunk. Instead
|
| + * of a true 3-D array, we use a row of pointers to 2-D arrays. Each
|
| + * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
|
| + * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that
|
| + * on 80x86 machines, the pointer row is in near memory but the actual
|
| + * arrays are in far memory (same arrangement as we use for image arrays).
|
| + */
|
| +
|
| +#define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
|
| +
|
| +/* These will do the right thing for either R,G,B or B,G,R color order,
|
| + * but you may not like the results for other color orders.
|
| + */
|
| +#define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
|
| +#define HIST_C1_BITS 6 /* bits of precision in G histogram */
|
| +#define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
|
| +
|
| +/* Number of elements along histogram axes. */
|
| +#define HIST_C0_ELEMS (1<<HIST_C0_BITS)
|
| +#define HIST_C1_ELEMS (1<<HIST_C1_BITS)
|
| +#define HIST_C2_ELEMS (1<<HIST_C2_BITS)
|
| +
|
| +/* These are the amounts to shift an input value to get a histogram index. */
|
| +#define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS)
|
| +#define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS)
|
| +#define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS)
|
| +
|
| +
|
| +typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */
|
| +
|
| +typedef histcell FAR * histptr; /* for pointers to histogram cells */
|
| +
|
| +typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
|
| +typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */
|
| +typedef hist2d * hist3d; /* type for top-level pointer */
|
| +
|
| +
|
| +/* Declarations for Floyd-Steinberg dithering.
|
| + *
|
| + * Errors are accumulated into the array fserrors[], at a resolution of
|
| + * 1/16th of a pixel count. The error at a given pixel is propagated
|
| + * to its not-yet-processed neighbors using the standard F-S fractions,
|
| + * ... (here) 7/16
|
| + * 3/16 5/16 1/16
|
| + * We work left-to-right on even rows, right-to-left on odd rows.
|
| + *
|
| + * We can get away with a single array (holding one row's worth of errors)
|
| + * by using it to store the current row's errors at pixel columns not yet
|
| + * processed, but the next row's errors at columns already processed. We
|
| + * need only a few extra variables to hold the errors immediately around the
|
| + * current column. (If we are lucky, those variables are in registers, but
|
| + * even if not, they're probably cheaper to access than array elements are.)
|
| + *
|
| + * The fserrors[] array has (#columns + 2) entries; the extra entry at
|
| + * each end saves us from special-casing the first and last pixels.
|
| + * Each entry is three values long, one value for each color component.
|
| + *
|
| + * Note: on a wide image, we might not have enough room in a PC's near data
|
| + * segment to hold the error array; so it is allocated with alloc_large.
|
| + */
|
| +
|
| +#if BITS_IN_JSAMPLE == 8
|
| +typedef INT16 FSERROR; /* 16 bits should be enough */
|
| +typedef int LOCFSERROR; /* use 'int' for calculation temps */
|
| +#else
|
| +typedef INT32 FSERROR; /* may need more than 16 bits */
|
| +typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
|
| +#endif
|
| +
|
| +typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
|
| +
|
| +
|
| +/* Private subobject */
|
| +
|
| +typedef struct {
|
| + struct jpeg_color_quantizer pub; /* public fields */
|
| +
|
| + /* Space for the eventually created colormap is stashed here */
|
| + JSAMPARRAY sv_colormap; /* colormap allocated at init time */
|
| + int desired; /* desired # of colors = size of colormap */
|
| +
|
| + /* Variables for accumulating image statistics */
|
| + hist3d histogram; /* pointer to the histogram */
|
| +
|
| + boolean needs_zeroed; /* TRUE if next pass must zero histogram */
|
| +
|
| + /* Variables for Floyd-Steinberg dithering */
|
| + FSERRPTR fserrors; /* accumulated errors */
|
| + boolean on_odd_row; /* flag to remember which row we are on */
|
| + int * error_limiter; /* table for clamping the applied error */
|
| +} my_cquantizer;
|
| +
|
| +typedef my_cquantizer * my_cquantize_ptr;
|
| +
|
| +
|
| +/*
|
| + * Prescan some rows of pixels.
|
| + * In this module the prescan simply updates the histogram, which has been
|
| + * initialized to zeroes by start_pass.
|
| + * An output_buf parameter is required by the method signature, but no data
|
| + * is actually output (in fact the buffer controller is probably passing a
|
| + * NULL pointer).
|
| + */
|
| +
|
| +METHODDEF(void)
|
| +prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
| + JSAMPARRAY output_buf, int num_rows)
|
| +{
|
| + my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
| + register JSAMPROW ptr;
|
| + register histptr histp;
|
| + register hist3d histogram = cquantize->histogram;
|
| + int row;
|
| + JDIMENSION col;
|
| + JDIMENSION width = cinfo->output_width;
|
| +
|
| + for (row = 0; row < num_rows; row++) {
|
| + ptr = input_buf[row];
|
| + for (col = width; col > 0; col--) {
|
| + /* get pixel value and index into the histogram */
|
| + histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
|
| + [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
|
| + [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
|
| + /* increment, check for overflow and undo increment if so. */
|
| + if (++(*histp) <= 0)
|
| + (*histp)--;
|
| + ptr += 3;
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +/*
|
| + * Next we have the really interesting routines: selection of a colormap
|
| + * given the completed histogram.
|
| + * These routines work with a list of "boxes", each representing a rectangular
|
| + * subset of the input color space (to histogram precision).
|
| + */
|
| +
|
| +typedef struct {
|
| + /* The bounds of the box (inclusive); expressed as histogram indexes */
|
| + int c0min, c0max;
|
| + int c1min, c1max;
|
| + int c2min, c2max;
|
| + /* The volume (actually 2-norm) of the box */
|
| + INT32 volume;
|
| + /* The number of nonzero histogram cells within this box */
|
| + long colorcount;
|
| +} box;
|
| +
|
| +typedef box * boxptr;
|
| +
|
| +
|
| +LOCAL(boxptr)
|
| +find_biggest_color_pop (boxptr boxlist, int numboxes)
|
| +/* Find the splittable box with the largest color population */
|
| +/* Returns NULL if no splittable boxes remain */
|
| +{
|
| + register boxptr boxp;
|
| + register int i;
|
| + register long maxc = 0;
|
| + boxptr which = NULL;
|
| +
|
| + for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
|
| + if (boxp->colorcount > maxc && boxp->volume > 0) {
|
| + which = boxp;
|
| + maxc = boxp->colorcount;
|
| + }
|
| + }
|
| + return which;
|
| +}
|
| +
|
| +
|
| +LOCAL(boxptr)
|
| +find_biggest_volume (boxptr boxlist, int numboxes)
|
| +/* Find the splittable box with the largest (scaled) volume */
|
| +/* Returns NULL if no splittable boxes remain */
|
| +{
|
| + register boxptr boxp;
|
| + register int i;
|
| + register INT32 maxv = 0;
|
| + boxptr which = NULL;
|
| +
|
| + for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
|
| + if (boxp->volume > maxv) {
|
| + which = boxp;
|
| + maxv = boxp->volume;
|
| + }
|
| + }
|
| + return which;
|
| +}
|
| +
|
| +
|
| +LOCAL(void)
|
| +update_box (j_decompress_ptr cinfo, boxptr boxp)
|
| +/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
|
| +/* and recompute its volume and population */
|
| +{
|
| + my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
| + hist3d histogram = cquantize->histogram;
|
| + histptr histp;
|
| + int c0,c1,c2;
|
| + int c0min,c0max,c1min,c1max,c2min,c2max;
|
| + INT32 dist0,dist1,dist2;
|
| + long ccount;
|
| +
|
| + c0min = boxp->c0min; c0max = boxp->c0max;
|
| + c1min = boxp->c1min; c1max = boxp->c1max;
|
| + c2min = boxp->c2min; c2max = boxp->c2max;
|
| +
|
| + if (c0max > c0min)
|
| + for (c0 = c0min; c0 <= c0max; c0++)
|
| + for (c1 = c1min; c1 <= c1max; c1++) {
|
| + histp = & histogram[c0][c1][c2min];
|
| + for (c2 = c2min; c2 <= c2max; c2++)
|
| + if (*histp++ != 0) {
|
| + boxp->c0min = c0min = c0;
|
| + goto have_c0min;
|
| + }
|
| + }
|
| + have_c0min:
|
| + if (c0max > c0min)
|
| + for (c0 = c0max; c0 >= c0min; c0--)
|
| + for (c1 = c1min; c1 <= c1max; c1++) {
|
| + histp = & histogram[c0][c1][c2min];
|
| + for (c2 = c2min; c2 <= c2max; c2++)
|
| + if (*histp++ != 0) {
|
| + boxp->c0max = c0max = c0;
|
| + goto have_c0max;
|
| + }
|
| + }
|
| + have_c0max:
|
| + if (c1max > c1min)
|
| + for (c1 = c1min; c1 <= c1max; c1++)
|
| + for (c0 = c0min; c0 <= c0max; c0++) {
|
| + histp = & histogram[c0][c1][c2min];
|
| + for (c2 = c2min; c2 <= c2max; c2++)
|
| + if (*histp++ != 0) {
|
| + boxp->c1min = c1min = c1;
|
| + goto have_c1min;
|
| + }
|
| + }
|
| + have_c1min:
|
| + if (c1max > c1min)
|
| + for (c1 = c1max; c1 >= c1min; c1--)
|
| + for (c0 = c0min; c0 <= c0max; c0++) {
|
| + histp = & histogram[c0][c1][c2min];
|
| + for (c2 = c2min; c2 <= c2max; c2++)
|
| + if (*histp++ != 0) {
|
| + boxp->c1max = c1max = c1;
|
| + goto have_c1max;
|
| + }
|
| + }
|
| + have_c1max:
|
| + if (c2max > c2min)
|
| + for (c2 = c2min; c2 <= c2max; c2++)
|
| + for (c0 = c0min; c0 <= c0max; c0++) {
|
| + histp = & histogram[c0][c1min][c2];
|
| + for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
|
| + if (*histp != 0) {
|
| + boxp->c2min = c2min = c2;
|
| + goto have_c2min;
|
| + }
|
| + }
|
| + have_c2min:
|
| + if (c2max > c2min)
|
| + for (c2 = c2max; c2 >= c2min; c2--)
|
| + for (c0 = c0min; c0 <= c0max; c0++) {
|
| + histp = & histogram[c0][c1min][c2];
|
| + for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
|
| + if (*histp != 0) {
|
| + boxp->c2max = c2max = c2;
|
| + goto have_c2max;
|
| + }
|
| + }
|
| + have_c2max:
|
| +
|
| + /* Update box volume.
|
| + * We use 2-norm rather than real volume here; this biases the method
|
| + * against making long narrow boxes, and it has the side benefit that
|
| + * a box is splittable iff norm > 0.
|
| + * Since the differences are expressed in histogram-cell units,
|
| + * we have to shift back to JSAMPLE units to get consistent distances;
|
| + * after which, we scale according to the selected distance scale factors.
|
| + */
|
| + dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
|
| + dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
|
| + dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
|
| + boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
|
| +
|
| + /* Now scan remaining volume of box and compute population */
|
| + ccount = 0;
|
| + for (c0 = c0min; c0 <= c0max; c0++)
|
| + for (c1 = c1min; c1 <= c1max; c1++) {
|
| + histp = & histogram[c0][c1][c2min];
|
| + for (c2 = c2min; c2 <= c2max; c2++, histp++)
|
| + if (*histp != 0) {
|
| + ccount++;
|
| + }
|
| + }
|
| + boxp->colorcount = ccount;
|
| +}
|
| +
|
| +
|
| +LOCAL(int)
|
| +median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
|
| + int desired_colors)
|
| +/* Repeatedly select and split the largest box until we have enough boxes */
|
| +{
|
| + int n,lb;
|
| + int c0,c1,c2,cmax;
|
| + register boxptr b1,b2;
|
| +
|
| + while (numboxes < desired_colors) {
|
| + /* Select box to split.
|
| + * Current algorithm: by population for first half, then by volume.
|
| + */
|
| + if (numboxes*2 <= desired_colors) {
|
| + b1 = find_biggest_color_pop(boxlist, numboxes);
|
| + } else {
|
| + b1 = find_biggest_volume(boxlist, numboxes);
|
| + }
|
| + if (b1 == NULL) /* no splittable boxes left! */
|
| + break;
|
| + b2 = &boxlist[numboxes]; /* where new box will go */
|
| + /* Copy the color bounds to the new box. */
|
| + b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
|
| + b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
|
| + /* Choose which axis to split the box on.
|
| + * Current algorithm: longest scaled axis.
|
| + * See notes in update_box about scaling distances.
|
| + */
|
| + c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
|
| + c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
|
| + c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
|
| + /* We want to break any ties in favor of green, then red, blue last.
|
| + * This code does the right thing for R,G,B or B,G,R color orders only.
|
| + */
|
| + if (rgb_red[cinfo->out_color_space] == 0) {
|
| + cmax = c1; n = 1;
|
| + if (c0 > cmax) { cmax = c0; n = 0; }
|
| + if (c2 > cmax) { n = 2; }
|
| + }
|
| + else {
|
| + cmax = c1; n = 1;
|
| + if (c2 > cmax) { cmax = c2; n = 2; }
|
| + if (c0 > cmax) { n = 0; }
|
| + }
|
| + /* Choose split point along selected axis, and update box bounds.
|
| + * Current algorithm: split at halfway point.
|
| + * (Since the box has been shrunk to minimum volume,
|
| + * any split will produce two nonempty subboxes.)
|
| + * Note that lb value is max for lower box, so must be < old max.
|
| + */
|
| + switch (n) {
|
| + case 0:
|
| + lb = (b1->c0max + b1->c0min) / 2;
|
| + b1->c0max = lb;
|
| + b2->c0min = lb+1;
|
| + break;
|
| + case 1:
|
| + lb = (b1->c1max + b1->c1min) / 2;
|
| + b1->c1max = lb;
|
| + b2->c1min = lb+1;
|
| + break;
|
| + case 2:
|
| + lb = (b1->c2max + b1->c2min) / 2;
|
| + b1->c2max = lb;
|
| + b2->c2min = lb+1;
|
| + break;
|
| + }
|
| + /* Update stats for boxes */
|
| + update_box(cinfo, b1);
|
| + update_box(cinfo, b2);
|
| + numboxes++;
|
| + }
|
| + return numboxes;
|
| +}
|
| +
|
| +
|
| +LOCAL(void)
|
| +compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
|
| +/* Compute representative color for a box, put it in colormap[icolor] */
|
| +{
|
| + /* Current algorithm: mean weighted by pixels (not colors) */
|
| + /* Note it is important to get the rounding correct! */
|
| + my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
| + hist3d histogram = cquantize->histogram;
|
| + histptr histp;
|
| + int c0,c1,c2;
|
| + int c0min,c0max,c1min,c1max,c2min,c2max;
|
| + long count;
|
| + long total = 0;
|
| + long c0total = 0;
|
| + long c1total = 0;
|
| + long c2total = 0;
|
| +
|
| + c0min = boxp->c0min; c0max = boxp->c0max;
|
| + c1min = boxp->c1min; c1max = boxp->c1max;
|
| + c2min = boxp->c2min; c2max = boxp->c2max;
|
| +
|
| + for (c0 = c0min; c0 <= c0max; c0++)
|
| + for (c1 = c1min; c1 <= c1max; c1++) {
|
| + histp = & histogram[c0][c1][c2min];
|
| + for (c2 = c2min; c2 <= c2max; c2++) {
|
| + if ((count = *histp++) != 0) {
|
| + total += count;
|
| + c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
|
| + c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
|
| + c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
|
| + }
|
| + }
|
| + }
|
| +
|
| + cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
|
| + cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
|
| + cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
|
| +}
|
| +
|
| +
|
| +LOCAL(void)
|
| +select_colors (j_decompress_ptr cinfo, int desired_colors)
|
| +/* Master routine for color selection */
|
| +{
|
| + boxptr boxlist;
|
| + int numboxes;
|
| + int i;
|
| +
|
| + /* Allocate workspace for box list */
|
| + boxlist = (boxptr) (*cinfo->mem->alloc_small)
|
| + ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
|
| + /* Initialize one box containing whole space */
|
| + numboxes = 1;
|
| + boxlist[0].c0min = 0;
|
| + boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
|
| + boxlist[0].c1min = 0;
|
| + boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
|
| + boxlist[0].c2min = 0;
|
| + boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
|
| + /* Shrink it to actually-used volume and set its statistics */
|
| + update_box(cinfo, & boxlist[0]);
|
| + /* Perform median-cut to produce final box list */
|
| + numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
|
| + /* Compute the representative color for each box, fill colormap */
|
| + for (i = 0; i < numboxes; i++)
|
| + compute_color(cinfo, & boxlist[i], i);
|
| + cinfo->actual_number_of_colors = numboxes;
|
| + TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
|
| +}
|
| +
|
| +
|
| +/*
|
| + * These routines are concerned with the time-critical task of mapping input
|
| + * colors to the nearest color in the selected colormap.
|
| + *
|
| + * We re-use the histogram space as an "inverse color map", essentially a
|
| + * cache for the results of nearest-color searches. All colors within a
|
| + * histogram cell will be mapped to the same colormap entry, namely the one
|
| + * closest to the cell's center. This may not be quite the closest entry to
|
| + * the actual input color, but it's almost as good. A zero in the cache
|
| + * indicates we haven't found the nearest color for that cell yet; the array
|
| + * is cleared to zeroes before starting the mapping pass. When we find the
|
| + * nearest color for a cell, its colormap index plus one is recorded in the
|
| + * cache for future use. The pass2 scanning routines call fill_inverse_cmap
|
| + * when they need to use an unfilled entry in the cache.
|
| + *
|
| + * Our method of efficiently finding nearest colors is based on the "locally
|
| + * sorted search" idea described by Heckbert and on the incremental distance
|
| + * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
|
| + * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
|
| + * the distances from a given colormap entry to each cell of the histogram can
|
| + * be computed quickly using an incremental method: the differences between
|
| + * distances to adjacent cells themselves differ by a constant. This allows a
|
| + * fairly fast implementation of the "brute force" approach of computing the
|
| + * distance from every colormap entry to every histogram cell. Unfortunately,
|
| + * it needs a work array to hold the best-distance-so-far for each histogram
|
| + * cell (because the inner loop has to be over cells, not colormap entries).
|
| + * The work array elements have to be INT32s, so the work array would need
|
| + * 256Kb at our recommended precision. This is not feasible in DOS machines.
|
| + *
|
| + * To get around these problems, we apply Thomas' method to compute the
|
| + * nearest colors for only the cells within a small subbox of the histogram.
|
| + * The work array need be only as big as the subbox, so the memory usage
|
| + * problem is solved. Furthermore, we need not fill subboxes that are never
|
| + * referenced in pass2; many images use only part of the color gamut, so a
|
| + * fair amount of work is saved. An additional advantage of this
|
| + * approach is that we can apply Heckbert's locality criterion to quickly
|
| + * eliminate colormap entries that are far away from the subbox; typically
|
| + * three-fourths of the colormap entries are rejected by Heckbert's criterion,
|
| + * and we need not compute their distances to individual cells in the subbox.
|
| + * The speed of this approach is heavily influenced by the subbox size: too
|
| + * small means too much overhead, too big loses because Heckbert's criterion
|
| + * can't eliminate as many colormap entries. Empirically the best subbox
|
| + * size seems to be about 1/512th of the histogram (1/8th in each direction).
|
| + *
|
| + * Thomas' article also describes a refined method which is asymptotically
|
| + * faster than the brute-force method, but it is also far more complex and
|
| + * cannot efficiently be applied to small subboxes. It is therefore not
|
| + * useful for programs intended to be portable to DOS machines. On machines
|
| + * with plenty of memory, filling the whole histogram in one shot with Thomas'
|
| + * refined method might be faster than the present code --- but then again,
|
| + * it might not be any faster, and it's certainly more complicated.
|
| + */
|
| +
|
| +
|
| +/* log2(histogram cells in update box) for each axis; this can be adjusted */
|
| +#define BOX_C0_LOG (HIST_C0_BITS-3)
|
| +#define BOX_C1_LOG (HIST_C1_BITS-3)
|
| +#define BOX_C2_LOG (HIST_C2_BITS-3)
|
| +
|
| +#define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */
|
| +#define BOX_C1_ELEMS (1<<BOX_C1_LOG)
|
| +#define BOX_C2_ELEMS (1<<BOX_C2_LOG)
|
| +
|
| +#define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG)
|
| +#define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG)
|
| +#define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG)
|
| +
|
| +
|
| +/*
|
| + * The next three routines implement inverse colormap filling. They could
|
| + * all be folded into one big routine, but splitting them up this way saves
|
| + * some stack space (the mindist[] and bestdist[] arrays need not coexist)
|
| + * and may allow some compilers to produce better code by registerizing more
|
| + * inner-loop variables.
|
| + */
|
| +
|
| +LOCAL(int)
|
| +find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
|
| + JSAMPLE colorlist[])
|
| +/* Locate the colormap entries close enough to an update box to be candidates
|
| + * for the nearest entry to some cell(s) in the update box. The update box
|
| + * is specified by the center coordinates of its first cell. The number of
|
| + * candidate colormap entries is returned, and their colormap indexes are
|
| + * placed in colorlist[].
|
| + * This routine uses Heckbert's "locally sorted search" criterion to select
|
| + * the colors that need further consideration.
|
| + */
|
| +{
|
| + int numcolors = cinfo->actual_number_of_colors;
|
| + int maxc0, maxc1, maxc2;
|
| + int centerc0, centerc1, centerc2;
|
| + int i, x, ncolors;
|
| + INT32 minmaxdist, min_dist, max_dist, tdist;
|
| + INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
|
| +
|
| + /* Compute true coordinates of update box's upper corner and center.
|
| + * Actually we compute the coordinates of the center of the upper-corner
|
| + * histogram cell, which are the upper bounds of the volume we care about.
|
| + * Note that since ">>" rounds down, the "center" values may be closer to
|
| + * min than to max; hence comparisons to them must be "<=", not "<".
|
| + */
|
| + maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
|
| + centerc0 = (minc0 + maxc0) >> 1;
|
| + maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
|
| + centerc1 = (minc1 + maxc1) >> 1;
|
| + maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
|
| + centerc2 = (minc2 + maxc2) >> 1;
|
| +
|
| + /* For each color in colormap, find:
|
| + * 1. its minimum squared-distance to any point in the update box
|
| + * (zero if color is within update box);
|
| + * 2. its maximum squared-distance to any point in the update box.
|
| + * Both of these can be found by considering only the corners of the box.
|
| + * We save the minimum distance for each color in mindist[];
|
| + * only the smallest maximum distance is of interest.
|
| + */
|
| + minmaxdist = 0x7FFFFFFFL;
|
| +
|
| + for (i = 0; i < numcolors; i++) {
|
| + /* We compute the squared-c0-distance term, then add in the other two. */
|
| + x = GETJSAMPLE(cinfo->colormap[0][i]);
|
| + if (x < minc0) {
|
| + tdist = (x - minc0) * C0_SCALE;
|
| + min_dist = tdist*tdist;
|
| + tdist = (x - maxc0) * C0_SCALE;
|
| + max_dist = tdist*tdist;
|
| + } else if (x > maxc0) {
|
| + tdist = (x - maxc0) * C0_SCALE;
|
| + min_dist = tdist*tdist;
|
| + tdist = (x - minc0) * C0_SCALE;
|
| + max_dist = tdist*tdist;
|
| + } else {
|
| + /* within cell range so no contribution to min_dist */
|
| + min_dist = 0;
|
| + if (x <= centerc0) {
|
| + tdist = (x - maxc0) * C0_SCALE;
|
| + max_dist = tdist*tdist;
|
| + } else {
|
| + tdist = (x - minc0) * C0_SCALE;
|
| + max_dist = tdist*tdist;
|
| + }
|
| + }
|
| +
|
| + x = GETJSAMPLE(cinfo->colormap[1][i]);
|
| + if (x < minc1) {
|
| + tdist = (x - minc1) * C1_SCALE;
|
| + min_dist += tdist*tdist;
|
| + tdist = (x - maxc1) * C1_SCALE;
|
| + max_dist += tdist*tdist;
|
| + } else if (x > maxc1) {
|
| + tdist = (x - maxc1) * C1_SCALE;
|
| + min_dist += tdist*tdist;
|
| + tdist = (x - minc1) * C1_SCALE;
|
| + max_dist += tdist*tdist;
|
| + } else {
|
| + /* within cell range so no contribution to min_dist */
|
| + if (x <= centerc1) {
|
| + tdist = (x - maxc1) * C1_SCALE;
|
| + max_dist += tdist*tdist;
|
| + } else {
|
| + tdist = (x - minc1) * C1_SCALE;
|
| + max_dist += tdist*tdist;
|
| + }
|
| + }
|
| +
|
| + x = GETJSAMPLE(cinfo->colormap[2][i]);
|
| + if (x < minc2) {
|
| + tdist = (x - minc2) * C2_SCALE;
|
| + min_dist += tdist*tdist;
|
| + tdist = (x - maxc2) * C2_SCALE;
|
| + max_dist += tdist*tdist;
|
| + } else if (x > maxc2) {
|
| + tdist = (x - maxc2) * C2_SCALE;
|
| + min_dist += tdist*tdist;
|
| + tdist = (x - minc2) * C2_SCALE;
|
| + max_dist += tdist*tdist;
|
| + } else {
|
| + /* within cell range so no contribution to min_dist */
|
| + if (x <= centerc2) {
|
| + tdist = (x - maxc2) * C2_SCALE;
|
| + max_dist += tdist*tdist;
|
| + } else {
|
| + tdist = (x - minc2) * C2_SCALE;
|
| + max_dist += tdist*tdist;
|
| + }
|
| + }
|
| +
|
| + mindist[i] = min_dist; /* save away the results */
|
| + if (max_dist < minmaxdist)
|
| + minmaxdist = max_dist;
|
| + }
|
| +
|
| + /* Now we know that no cell in the update box is more than minmaxdist
|
| + * away from some colormap entry. Therefore, only colors that are
|
| + * within minmaxdist of some part of the box need be considered.
|
| + */
|
| + ncolors = 0;
|
| + for (i = 0; i < numcolors; i++) {
|
| + if (mindist[i] <= minmaxdist)
|
| + colorlist[ncolors++] = (JSAMPLE) i;
|
| + }
|
| + return ncolors;
|
| +}
|
| +
|
| +
|
| +LOCAL(void)
|
| +find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
|
| + int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
|
| +/* Find the closest colormap entry for each cell in the update box,
|
| + * given the list of candidate colors prepared by find_nearby_colors.
|
| + * Return the indexes of the closest entries in the bestcolor[] array.
|
| + * This routine uses Thomas' incremental distance calculation method to
|
| + * find the distance from a colormap entry to successive cells in the box.
|
| + */
|
| +{
|
| + int ic0, ic1, ic2;
|
| + int i, icolor;
|
| + register INT32 * bptr; /* pointer into bestdist[] array */
|
| + JSAMPLE * cptr; /* pointer into bestcolor[] array */
|
| + INT32 dist0, dist1; /* initial distance values */
|
| + register INT32 dist2; /* current distance in inner loop */
|
| + INT32 xx0, xx1; /* distance increments */
|
| + register INT32 xx2;
|
| + INT32 inc0, inc1, inc2; /* initial values for increments */
|
| + /* This array holds the distance to the nearest-so-far color for each cell */
|
| + INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
|
| +
|
| + /* Initialize best-distance for each cell of the update box */
|
| + bptr = bestdist;
|
| + for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
|
| + *bptr++ = 0x7FFFFFFFL;
|
| +
|
| + /* For each color selected by find_nearby_colors,
|
| + * compute its distance to the center of each cell in the box.
|
| + * If that's less than best-so-far, update best distance and color number.
|
| + */
|
| +
|
| + /* Nominal steps between cell centers ("x" in Thomas article) */
|
| +#define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
|
| +#define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
|
| +#define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
|
| +
|
| + for (i = 0; i < numcolors; i++) {
|
| + icolor = GETJSAMPLE(colorlist[i]);
|
| + /* Compute (square of) distance from minc0/c1/c2 to this color */
|
| + inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
|
| + dist0 = inc0*inc0;
|
| + inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
|
| + dist0 += inc1*inc1;
|
| + inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
|
| + dist0 += inc2*inc2;
|
| + /* Form the initial difference increments */
|
| + inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
|
| + inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
|
| + inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
|
| + /* Now loop over all cells in box, updating distance per Thomas method */
|
| + bptr = bestdist;
|
| + cptr = bestcolor;
|
| + xx0 = inc0;
|
| + for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
|
| + dist1 = dist0;
|
| + xx1 = inc1;
|
| + for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
|
| + dist2 = dist1;
|
| + xx2 = inc2;
|
| + for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
|
| + if (dist2 < *bptr) {
|
| + *bptr = dist2;
|
| + *cptr = (JSAMPLE) icolor;
|
| + }
|
| + dist2 += xx2;
|
| + xx2 += 2 * STEP_C2 * STEP_C2;
|
| + bptr++;
|
| + cptr++;
|
| + }
|
| + dist1 += xx1;
|
| + xx1 += 2 * STEP_C1 * STEP_C1;
|
| + }
|
| + dist0 += xx0;
|
| + xx0 += 2 * STEP_C0 * STEP_C0;
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +LOCAL(void)
|
| +fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
|
| +/* Fill the inverse-colormap entries in the update box that contains */
|
| +/* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
|
| +/* we can fill as many others as we wish.) */
|
| +{
|
| + my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
| + hist3d histogram = cquantize->histogram;
|
| + int minc0, minc1, minc2; /* lower left corner of update box */
|
| + int ic0, ic1, ic2;
|
| + register JSAMPLE * cptr; /* pointer into bestcolor[] array */
|
| + register histptr cachep; /* pointer into main cache array */
|
| + /* This array lists the candidate colormap indexes. */
|
| + JSAMPLE colorlist[MAXNUMCOLORS];
|
| + int numcolors; /* number of candidate colors */
|
| + /* This array holds the actually closest colormap index for each cell. */
|
| + JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
|
| +
|
| + /* Convert cell coordinates to update box ID */
|
| + c0 >>= BOX_C0_LOG;
|
| + c1 >>= BOX_C1_LOG;
|
| + c2 >>= BOX_C2_LOG;
|
| +
|
| + /* Compute true coordinates of update box's origin corner.
|
| + * Actually we compute the coordinates of the center of the corner
|
| + * histogram cell, which are the lower bounds of the volume we care about.
|
| + */
|
| + minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
|
| + minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
|
| + minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
|
| +
|
| + /* Determine which colormap entries are close enough to be candidates
|
| + * for the nearest entry to some cell in the update box.
|
| + */
|
| + numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
|
| +
|
| + /* Determine the actually nearest colors. */
|
| + find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
|
| + bestcolor);
|
| +
|
| + /* Save the best color numbers (plus 1) in the main cache array */
|
| + c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */
|
| + c1 <<= BOX_C1_LOG;
|
| + c2 <<= BOX_C2_LOG;
|
| + cptr = bestcolor;
|
| + for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
|
| + for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
|
| + cachep = & histogram[c0+ic0][c1+ic1][c2];
|
| + for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
|
| + *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +/*
|
| + * Map some rows of pixels to the output colormapped representation.
|
| + */
|
| +
|
| +METHODDEF(void)
|
| +pass2_no_dither (j_decompress_ptr cinfo,
|
| + JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
|
| +/* This version performs no dithering */
|
| +{
|
| + my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
| + hist3d histogram = cquantize->histogram;
|
| + register JSAMPROW inptr, outptr;
|
| + register histptr cachep;
|
| + register int c0, c1, c2;
|
| + int row;
|
| + JDIMENSION col;
|
| + JDIMENSION width = cinfo->output_width;
|
| +
|
| + for (row = 0; row < num_rows; row++) {
|
| + inptr = input_buf[row];
|
| + outptr = output_buf[row];
|
| + for (col = width; col > 0; col--) {
|
| + /* get pixel value and index into the cache */
|
| + c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
|
| + c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
|
| + c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
|
| + cachep = & histogram[c0][c1][c2];
|
| + /* If we have not seen this color before, find nearest colormap entry */
|
| + /* and update the cache */
|
| + if (*cachep == 0)
|
| + fill_inverse_cmap(cinfo, c0,c1,c2);
|
| + /* Now emit the colormap index for this cell */
|
| + *outptr++ = (JSAMPLE) (*cachep - 1);
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +METHODDEF(void)
|
| +pass2_fs_dither (j_decompress_ptr cinfo,
|
| + JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
|
| +/* This version performs Floyd-Steinberg dithering */
|
| +{
|
| + my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
| + hist3d histogram = cquantize->histogram;
|
| + register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
|
| + LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
|
| + LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
|
| + register FSERRPTR errorptr; /* => fserrors[] at column before current */
|
| + JSAMPROW inptr; /* => current input pixel */
|
| + JSAMPROW outptr; /* => current output pixel */
|
| + histptr cachep;
|
| + int dir; /* +1 or -1 depending on direction */
|
| + int dir3; /* 3*dir, for advancing inptr & errorptr */
|
| + int row;
|
| + JDIMENSION col;
|
| + JDIMENSION width = cinfo->output_width;
|
| + JSAMPLE *range_limit = cinfo->sample_range_limit;
|
| + int *error_limit = cquantize->error_limiter;
|
| + JSAMPROW colormap0 = cinfo->colormap[0];
|
| + JSAMPROW colormap1 = cinfo->colormap[1];
|
| + JSAMPROW colormap2 = cinfo->colormap[2];
|
| + SHIFT_TEMPS
|
| +
|
| + for (row = 0; row < num_rows; row++) {
|
| + inptr = input_buf[row];
|
| + outptr = output_buf[row];
|
| + if (cquantize->on_odd_row) {
|
| + /* work right to left in this row */
|
| + inptr += (width-1) * 3; /* so point to rightmost pixel */
|
| + outptr += width-1;
|
| + dir = -1;
|
| + dir3 = -3;
|
| + errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
|
| + cquantize->on_odd_row = FALSE; /* flip for next time */
|
| + } else {
|
| + /* work left to right in this row */
|
| + dir = 1;
|
| + dir3 = 3;
|
| + errorptr = cquantize->fserrors; /* => entry before first real column */
|
| + cquantize->on_odd_row = TRUE; /* flip for next time */
|
| + }
|
| + /* Preset error values: no error propagated to first pixel from left */
|
| + cur0 = cur1 = cur2 = 0;
|
| + /* and no error propagated to row below yet */
|
| + belowerr0 = belowerr1 = belowerr2 = 0;
|
| + bpreverr0 = bpreverr1 = bpreverr2 = 0;
|
| +
|
| + for (col = width; col > 0; col--) {
|
| + /* curN holds the error propagated from the previous pixel on the
|
| + * current line. Add the error propagated from the previous line
|
| + * to form the complete error correction term for this pixel, and
|
| + * round the error term (which is expressed * 16) to an integer.
|
| + * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
|
| + * for either sign of the error value.
|
| + * Note: errorptr points to *previous* column's array entry.
|
| + */
|
| + cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
|
| + cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
|
| + cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
|
| + /* Limit the error using transfer function set by init_error_limit.
|
| + * See comments with init_error_limit for rationale.
|
| + */
|
| + cur0 = error_limit[cur0];
|
| + cur1 = error_limit[cur1];
|
| + cur2 = error_limit[cur2];
|
| + /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
|
| + * The maximum error is +- MAXJSAMPLE (or less with error limiting);
|
| + * this sets the required size of the range_limit array.
|
| + */
|
| + cur0 += GETJSAMPLE(inptr[0]);
|
| + cur1 += GETJSAMPLE(inptr[1]);
|
| + cur2 += GETJSAMPLE(inptr[2]);
|
| + cur0 = GETJSAMPLE(range_limit[cur0]);
|
| + cur1 = GETJSAMPLE(range_limit[cur1]);
|
| + cur2 = GETJSAMPLE(range_limit[cur2]);
|
| + /* Index into the cache with adjusted pixel value */
|
| + cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
|
| + /* If we have not seen this color before, find nearest colormap */
|
| + /* entry and update the cache */
|
| + if (*cachep == 0)
|
| + fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
|
| + /* Now emit the colormap index for this cell */
|
| + { register int pixcode = *cachep - 1;
|
| + *outptr = (JSAMPLE) pixcode;
|
| + /* Compute representation error for this pixel */
|
| + cur0 -= GETJSAMPLE(colormap0[pixcode]);
|
| + cur1 -= GETJSAMPLE(colormap1[pixcode]);
|
| + cur2 -= GETJSAMPLE(colormap2[pixcode]);
|
| + }
|
| + /* Compute error fractions to be propagated to adjacent pixels.
|
| + * Add these into the running sums, and simultaneously shift the
|
| + * next-line error sums left by 1 column.
|
| + */
|
| + { register LOCFSERROR bnexterr, delta;
|
| +
|
| + bnexterr = cur0; /* Process component 0 */
|
| + delta = cur0 * 2;
|
| + cur0 += delta; /* form error * 3 */
|
| + errorptr[0] = (FSERROR) (bpreverr0 + cur0);
|
| + cur0 += delta; /* form error * 5 */
|
| + bpreverr0 = belowerr0 + cur0;
|
| + belowerr0 = bnexterr;
|
| + cur0 += delta; /* form error * 7 */
|
| + bnexterr = cur1; /* Process component 1 */
|
| + delta = cur1 * 2;
|
| + cur1 += delta; /* form error * 3 */
|
| + errorptr[1] = (FSERROR) (bpreverr1 + cur1);
|
| + cur1 += delta; /* form error * 5 */
|
| + bpreverr1 = belowerr1 + cur1;
|
| + belowerr1 = bnexterr;
|
| + cur1 += delta; /* form error * 7 */
|
| + bnexterr = cur2; /* Process component 2 */
|
| + delta = cur2 * 2;
|
| + cur2 += delta; /* form error * 3 */
|
| + errorptr[2] = (FSERROR) (bpreverr2 + cur2);
|
| + cur2 += delta; /* form error * 5 */
|
| + bpreverr2 = belowerr2 + cur2;
|
| + belowerr2 = bnexterr;
|
| + cur2 += delta; /* form error * 7 */
|
| + }
|
| + /* At this point curN contains the 7/16 error value to be propagated
|
| + * to the next pixel on the current line, and all the errors for the
|
| + * next line have been shifted over. We are therefore ready to move on.
|
| + */
|
| + inptr += dir3; /* Advance pixel pointers to next column */
|
| + outptr += dir;
|
| + errorptr += dir3; /* advance errorptr to current column */
|
| + }
|
| + /* Post-loop cleanup: we must unload the final error values into the
|
| + * final fserrors[] entry. Note we need not unload belowerrN because
|
| + * it is for the dummy column before or after the actual array.
|
| + */
|
| + errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
|
| + errorptr[1] = (FSERROR) bpreverr1;
|
| + errorptr[2] = (FSERROR) bpreverr2;
|
| + }
|
| +}
|
| +
|
| +
|
| +/*
|
| + * Initialize the error-limiting transfer function (lookup table).
|
| + * The raw F-S error computation can potentially compute error values of up to
|
| + * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
|
| + * much less, otherwise obviously wrong pixels will be created. (Typical
|
| + * effects include weird fringes at color-area boundaries, isolated bright
|
| + * pixels in a dark area, etc.) The standard advice for avoiding this problem
|
| + * is to ensure that the "corners" of the color cube are allocated as output
|
| + * colors; then repeated errors in the same direction cannot cause cascading
|
| + * error buildup. However, that only prevents the error from getting
|
| + * completely out of hand; Aaron Giles reports that error limiting improves
|
| + * the results even with corner colors allocated.
|
| + * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
|
| + * well, but the smoother transfer function used below is even better. Thanks
|
| + * to Aaron Giles for this idea.
|
| + */
|
| +
|
| +LOCAL(void)
|
| +init_error_limit (j_decompress_ptr cinfo)
|
| +/* Allocate and fill in the error_limiter table */
|
| +{
|
| + my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
| + int * table;
|
| + int in, out;
|
| +
|
| + table = (int *) (*cinfo->mem->alloc_small)
|
| + ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
|
| + table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
|
| + cquantize->error_limiter = table;
|
| +
|
| +#define STEPSIZE ((MAXJSAMPLE+1)/16)
|
| + /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
|
| + out = 0;
|
| + for (in = 0; in < STEPSIZE; in++, out++) {
|
| + table[in] = out; table[-in] = -out;
|
| + }
|
| + /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
|
| + for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
|
| + table[in] = out; table[-in] = -out;
|
| + }
|
| + /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
|
| + for (; in <= MAXJSAMPLE; in++) {
|
| + table[in] = out; table[-in] = -out;
|
| + }
|
| +#undef STEPSIZE
|
| +}
|
| +
|
| +
|
| +/*
|
| + * Finish up at the end of each pass.
|
| + */
|
| +
|
| +METHODDEF(void)
|
| +finish_pass1 (j_decompress_ptr cinfo)
|
| +{
|
| + my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
| +
|
| + /* Select the representative colors and fill in cinfo->colormap */
|
| + cinfo->colormap = cquantize->sv_colormap;
|
| + select_colors(cinfo, cquantize->desired);
|
| + /* Force next pass to zero the color index table */
|
| + cquantize->needs_zeroed = TRUE;
|
| +}
|
| +
|
| +
|
| +METHODDEF(void)
|
| +finish_pass2 (j_decompress_ptr cinfo)
|
| +{
|
| + /* no work */
|
| +}
|
| +
|
| +
|
| +/*
|
| + * Initialize for each processing pass.
|
| + */
|
| +
|
| +METHODDEF(void)
|
| +start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
|
| +{
|
| + my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
| + hist3d histogram = cquantize->histogram;
|
| + int i;
|
| +
|
| + /* Only F-S dithering or no dithering is supported. */
|
| + /* If user asks for ordered dither, give him F-S. */
|
| + if (cinfo->dither_mode != JDITHER_NONE)
|
| + cinfo->dither_mode = JDITHER_FS;
|
| +
|
| + if (is_pre_scan) {
|
| + /* Set up method pointers */
|
| + cquantize->pub.color_quantize = prescan_quantize;
|
| + cquantize->pub.finish_pass = finish_pass1;
|
| + cquantize->needs_zeroed = TRUE; /* Always zero histogram */
|
| + } else {
|
| + /* Set up method pointers */
|
| + if (cinfo->dither_mode == JDITHER_FS)
|
| + cquantize->pub.color_quantize = pass2_fs_dither;
|
| + else
|
| + cquantize->pub.color_quantize = pass2_no_dither;
|
| + cquantize->pub.finish_pass = finish_pass2;
|
| +
|
| + /* Make sure color count is acceptable */
|
| + i = cinfo->actual_number_of_colors;
|
| + if (i < 1)
|
| + ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
|
| + if (i > MAXNUMCOLORS)
|
| + ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
|
| +
|
| + if (cinfo->dither_mode == JDITHER_FS) {
|
| + size_t arraysize = (size_t) ((cinfo->output_width + 2) *
|
| + (3 * SIZEOF(FSERROR)));
|
| + /* Allocate Floyd-Steinberg workspace if we didn't already. */
|
| + if (cquantize->fserrors == NULL)
|
| + cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
|
| + ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
|
| + /* Initialize the propagated errors to zero. */
|
| + jzero_far((void FAR *) cquantize->fserrors, arraysize);
|
| + /* Make the error-limit table if we didn't already. */
|
| + if (cquantize->error_limiter == NULL)
|
| + init_error_limit(cinfo);
|
| + cquantize->on_odd_row = FALSE;
|
| + }
|
| +
|
| + }
|
| + /* Zero the histogram or inverse color map, if necessary */
|
| + if (cquantize->needs_zeroed) {
|
| + for (i = 0; i < HIST_C0_ELEMS; i++) {
|
| + jzero_far((void FAR *) histogram[i],
|
| + HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
|
| + }
|
| + cquantize->needs_zeroed = FALSE;
|
| + }
|
| +}
|
| +
|
| +
|
| +/*
|
| + * Switch to a new external colormap between output passes.
|
| + */
|
| +
|
| +METHODDEF(void)
|
| +new_color_map_2_quant (j_decompress_ptr cinfo)
|
| +{
|
| + my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
| +
|
| + /* Reset the inverse color map */
|
| + cquantize->needs_zeroed = TRUE;
|
| +}
|
| +
|
| +
|
| +/*
|
| + * Module initialization routine for 2-pass color quantization.
|
| + */
|
| +
|
| +GLOBAL(void)
|
| +jinit_2pass_quantizer (j_decompress_ptr cinfo)
|
| +{
|
| + my_cquantize_ptr cquantize;
|
| + int i;
|
| +
|
| + cquantize = (my_cquantize_ptr)
|
| + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
| + SIZEOF(my_cquantizer));
|
| + cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
|
| + cquantize->pub.start_pass = start_pass_2_quant;
|
| + cquantize->pub.new_color_map = new_color_map_2_quant;
|
| + cquantize->fserrors = NULL; /* flag optional arrays not allocated */
|
| + cquantize->error_limiter = NULL;
|
| +
|
| + /* Make sure jdmaster didn't give me a case I can't handle */
|
| + if (cinfo->out_color_components != 3)
|
| + ERREXIT(cinfo, JERR_NOTIMPL);
|
| +
|
| + /* Allocate the histogram/inverse colormap storage */
|
| + cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
|
| + ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
|
| + for (i = 0; i < HIST_C0_ELEMS; i++) {
|
| + cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
|
| + ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
| + HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
|
| + }
|
| + cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
|
| +
|
| + /* Allocate storage for the completed colormap, if required.
|
| + * We do this now since it is FAR storage and may affect
|
| + * the memory manager's space calculations.
|
| + */
|
| + if (cinfo->enable_2pass_quant) {
|
| + /* Make sure color count is acceptable */
|
| + int desired = cinfo->desired_number_of_colors;
|
| + /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
|
| + if (desired < 8)
|
| + ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
|
| + /* Make sure colormap indexes can be represented by JSAMPLEs */
|
| + if (desired > MAXNUMCOLORS)
|
| + ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
|
| + cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
|
| + ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
|
| + cquantize->desired = desired;
|
| + } else
|
| + cquantize->sv_colormap = NULL;
|
| +
|
| + /* Only F-S dithering or no dithering is supported. */
|
| + /* If user asks for ordered dither, give him F-S. */
|
| + if (cinfo->dither_mode != JDITHER_NONE)
|
| + cinfo->dither_mode = JDITHER_FS;
|
| +
|
| + /* Allocate Floyd-Steinberg workspace if necessary.
|
| + * This isn't really needed until pass 2, but again it is FAR storage.
|
| + * Although we will cope with a later change in dither_mode,
|
| + * we do not promise to honor max_memory_to_use if dither_mode changes.
|
| + */
|
| + if (cinfo->dither_mode == JDITHER_FS) {
|
| + cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
|
| + ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
| + (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
|
| + /* Might as well create the error-limiting table too. */
|
| + init_error_limit(cinfo);
|
| + }
|
| +}
|
| +
|
| +#endif /* QUANT_2PASS_SUPPORTED */
|
|
|