OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * jquant2.c |
| 3 * |
| 4 * Copyright (C) 1991-1996, Thomas G. Lane. |
| 5 * Copyright (C) 2009, D. R. Commander. |
| 6 * This file is part of the Independent JPEG Group's software. |
| 7 * For conditions of distribution and use, see the accompanying README file. |
| 8 * |
| 9 * This file contains 2-pass color quantization (color mapping) routines. |
| 10 * These routines provide selection of a custom color map for an image, |
| 11 * followed by mapping of the image to that color map, with optional |
| 12 * Floyd-Steinberg dithering. |
| 13 * It is also possible to use just the second pass to map to an arbitrary |
| 14 * externally-given color map. |
| 15 * |
| 16 * Note: ordered dithering is not supported, since there isn't any fast |
| 17 * way to compute intercolor distances; it's unclear that ordered dither's |
| 18 * fundamental assumptions even hold with an irregularly spaced color map. |
| 19 */ |
| 20 |
| 21 #define JPEG_INTERNALS |
| 22 #include "jinclude.h" |
| 23 #include "jpeglib.h" |
| 24 |
| 25 #ifdef QUANT_2PASS_SUPPORTED |
| 26 |
| 27 |
| 28 /* |
| 29 * This module implements the well-known Heckbert paradigm for color |
| 30 * quantization. Most of the ideas used here can be traced back to |
| 31 * Heckbert's seminal paper |
| 32 * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display", |
| 33 * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304. |
| 34 * |
| 35 * In the first pass over the image, we accumulate a histogram showing the |
| 36 * usage count of each possible color. To keep the histogram to a reasonable |
| 37 * size, we reduce the precision of the input; typical practice is to retain |
| 38 * 5 or 6 bits per color, so that 8 or 4 different input values are counted |
| 39 * in the same histogram cell. |
| 40 * |
| 41 * Next, the color-selection step begins with a box representing the whole |
| 42 * color space, and repeatedly splits the "largest" remaining box until we |
| 43 * have as many boxes as desired colors. Then the mean color in each |
| 44 * remaining box becomes one of the possible output colors. |
| 45 * |
| 46 * The second pass over the image maps each input pixel to the closest output |
| 47 * color (optionally after applying a Floyd-Steinberg dithering correction). |
| 48 * This mapping is logically trivial, but making it go fast enough requires |
| 49 * considerable care. |
| 50 * |
| 51 * Heckbert-style quantizers vary a good deal in their policies for choosing |
| 52 * the "largest" box and deciding where to cut it. The particular policies |
| 53 * used here have proved out well in experimental comparisons, but better ones |
| 54 * may yet be found. |
| 55 * |
| 56 * In earlier versions of the IJG code, this module quantized in YCbCr color |
| 57 * space, processing the raw upsampled data without a color conversion step. |
| 58 * This allowed the color conversion math to be done only once per colormap |
| 59 * entry, not once per pixel. However, that optimization precluded other |
| 60 * useful optimizations (such as merging color conversion with upsampling) |
| 61 * and it also interfered with desired capabilities such as quantizing to an |
| 62 * externally-supplied colormap. We have therefore abandoned that approach. |
| 63 * The present code works in the post-conversion color space, typically RGB. |
| 64 * |
| 65 * To improve the visual quality of the results, we actually work in scaled |
| 66 * RGB space, giving G distances more weight than R, and R in turn more than |
| 67 * B. To do everything in integer math, we must use integer scale factors. |
| 68 * The 2/3/1 scale factors used here correspond loosely to the relative |
| 69 * weights of the colors in the NTSC grayscale equation. |
| 70 * If you want to use this code to quantize a non-RGB color space, you'll |
| 71 * probably need to change these scale factors. |
| 72 */ |
| 73 |
| 74 #define R_SCALE 2 /* scale R distances by this much */ |
| 75 #define G_SCALE 3 /* scale G distances by this much */ |
| 76 #define B_SCALE 1 /* and B by this much */ |
| 77 |
| 78 static const int c_scales[3]={R_SCALE, G_SCALE, B_SCALE}; |
| 79 #define C0_SCALE c_scales[rgb_red[cinfo->out_color_space]] |
| 80 #define C1_SCALE c_scales[rgb_green[cinfo->out_color_space]] |
| 81 #define C2_SCALE c_scales[rgb_blue[cinfo->out_color_space]] |
| 82 |
| 83 /* |
| 84 * First we have the histogram data structure and routines for creating it. |
| 85 * |
| 86 * The number of bits of precision can be adjusted by changing these symbols. |
| 87 * We recommend keeping 6 bits for G and 5 each for R and B. |
| 88 * If you have plenty of memory and cycles, 6 bits all around gives marginally |
| 89 * better results; if you are short of memory, 5 bits all around will save |
| 90 * some space but degrade the results. |
| 91 * To maintain a fully accurate histogram, we'd need to allocate a "long" |
| 92 * (preferably unsigned long) for each cell. In practice this is overkill; |
| 93 * we can get by with 16 bits per cell. Few of the cell counts will overflow, |
| 94 * and clamping those that do overflow to the maximum value will give close- |
| 95 * enough results. This reduces the recommended histogram size from 256Kb |
| 96 * to 128Kb, which is a useful savings on PC-class machines. |
| 97 * (In the second pass the histogram space is re-used for pixel mapping data; |
| 98 * in that capacity, each cell must be able to store zero to the number of |
| 99 * desired colors. 16 bits/cell is plenty for that too.) |
| 100 * Since the JPEG code is intended to run in small memory model on 80x86 |
| 101 * machines, we can't just allocate the histogram in one chunk. Instead |
| 102 * of a true 3-D array, we use a row of pointers to 2-D arrays. Each |
| 103 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and |
| 104 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that |
| 105 * on 80x86 machines, the pointer row is in near memory but the actual |
| 106 * arrays are in far memory (same arrangement as we use for image arrays). |
| 107 */ |
| 108 |
| 109 #define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */ |
| 110 |
| 111 /* These will do the right thing for either R,G,B or B,G,R color order, |
| 112 * but you may not like the results for other color orders. |
| 113 */ |
| 114 #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */ |
| 115 #define HIST_C1_BITS 6 /* bits of precision in G histogram */ |
| 116 #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */ |
| 117 |
| 118 /* Number of elements along histogram axes. */ |
| 119 #define HIST_C0_ELEMS (1<<HIST_C0_BITS) |
| 120 #define HIST_C1_ELEMS (1<<HIST_C1_BITS) |
| 121 #define HIST_C2_ELEMS (1<<HIST_C2_BITS) |
| 122 |
| 123 /* These are the amounts to shift an input value to get a histogram index. */ |
| 124 #define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS) |
| 125 #define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS) |
| 126 #define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS) |
| 127 |
| 128 |
| 129 typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */ |
| 130 |
| 131 typedef histcell FAR * histptr; /* for pointers to histogram cells */ |
| 132 |
| 133 typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */ |
| 134 typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */ |
| 135 typedef hist2d * hist3d; /* type for top-level pointer */ |
| 136 |
| 137 |
| 138 /* Declarations for Floyd-Steinberg dithering. |
| 139 * |
| 140 * Errors are accumulated into the array fserrors[], at a resolution of |
| 141 * 1/16th of a pixel count. The error at a given pixel is propagated |
| 142 * to its not-yet-processed neighbors using the standard F-S fractions, |
| 143 * ... (here) 7/16 |
| 144 * 3/16 5/16 1/16 |
| 145 * We work left-to-right on even rows, right-to-left on odd rows. |
| 146 * |
| 147 * We can get away with a single array (holding one row's worth of errors) |
| 148 * by using it to store the current row's errors at pixel columns not yet |
| 149 * processed, but the next row's errors at columns already processed. We |
| 150 * need only a few extra variables to hold the errors immediately around the |
| 151 * current column. (If we are lucky, those variables are in registers, but |
| 152 * even if not, they're probably cheaper to access than array elements are.) |
| 153 * |
| 154 * The fserrors[] array has (#columns + 2) entries; the extra entry at |
| 155 * each end saves us from special-casing the first and last pixels. |
| 156 * Each entry is three values long, one value for each color component. |
| 157 * |
| 158 * Note: on a wide image, we might not have enough room in a PC's near data |
| 159 * segment to hold the error array; so it is allocated with alloc_large. |
| 160 */ |
| 161 |
| 162 #if BITS_IN_JSAMPLE == 8 |
| 163 typedef INT16 FSERROR; /* 16 bits should be enough */ |
| 164 typedef int LOCFSERROR; /* use 'int' for calculation temps */ |
| 165 #else |
| 166 typedef INT32 FSERROR; /* may need more than 16 bits */ |
| 167 typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ |
| 168 #endif |
| 169 |
| 170 typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ |
| 171 |
| 172 |
| 173 /* Private subobject */ |
| 174 |
| 175 typedef struct { |
| 176 struct jpeg_color_quantizer pub; /* public fields */ |
| 177 |
| 178 /* Space for the eventually created colormap is stashed here */ |
| 179 JSAMPARRAY sv_colormap; /* colormap allocated at init time */ |
| 180 int desired; /* desired # of colors = size of colormap */ |
| 181 |
| 182 /* Variables for accumulating image statistics */ |
| 183 hist3d histogram; /* pointer to the histogram */ |
| 184 |
| 185 boolean needs_zeroed; /* TRUE if next pass must zero histogram */ |
| 186 |
| 187 /* Variables for Floyd-Steinberg dithering */ |
| 188 FSERRPTR fserrors; /* accumulated errors */ |
| 189 boolean on_odd_row; /* flag to remember which row we are on */ |
| 190 int * error_limiter; /* table for clamping the applied error */ |
| 191 } my_cquantizer; |
| 192 |
| 193 typedef my_cquantizer * my_cquantize_ptr; |
| 194 |
| 195 |
| 196 /* |
| 197 * Prescan some rows of pixels. |
| 198 * In this module the prescan simply updates the histogram, which has been |
| 199 * initialized to zeroes by start_pass. |
| 200 * An output_buf parameter is required by the method signature, but no data |
| 201 * is actually output (in fact the buffer controller is probably passing a |
| 202 * NULL pointer). |
| 203 */ |
| 204 |
| 205 METHODDEF(void) |
| 206 prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
| 207 JSAMPARRAY output_buf, int num_rows) |
| 208 { |
| 209 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
| 210 register JSAMPROW ptr; |
| 211 register histptr histp; |
| 212 register hist3d histogram = cquantize->histogram; |
| 213 int row; |
| 214 JDIMENSION col; |
| 215 JDIMENSION width = cinfo->output_width; |
| 216 |
| 217 for (row = 0; row < num_rows; row++) { |
| 218 ptr = input_buf[row]; |
| 219 for (col = width; col > 0; col--) { |
| 220 /* get pixel value and index into the histogram */ |
| 221 histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT] |
| 222 [GETJSAMPLE(ptr[1]) >> C1_SHIFT] |
| 223 [GETJSAMPLE(ptr[2]) >> C2_SHIFT]; |
| 224 /* increment, check for overflow and undo increment if so. */ |
| 225 if (++(*histp) <= 0) |
| 226 (*histp)--; |
| 227 ptr += 3; |
| 228 } |
| 229 } |
| 230 } |
| 231 |
| 232 |
| 233 /* |
| 234 * Next we have the really interesting routines: selection of a colormap |
| 235 * given the completed histogram. |
| 236 * These routines work with a list of "boxes", each representing a rectangular |
| 237 * subset of the input color space (to histogram precision). |
| 238 */ |
| 239 |
| 240 typedef struct { |
| 241 /* The bounds of the box (inclusive); expressed as histogram indexes */ |
| 242 int c0min, c0max; |
| 243 int c1min, c1max; |
| 244 int c2min, c2max; |
| 245 /* The volume (actually 2-norm) of the box */ |
| 246 INT32 volume; |
| 247 /* The number of nonzero histogram cells within this box */ |
| 248 long colorcount; |
| 249 } box; |
| 250 |
| 251 typedef box * boxptr; |
| 252 |
| 253 |
| 254 LOCAL(boxptr) |
| 255 find_biggest_color_pop (boxptr boxlist, int numboxes) |
| 256 /* Find the splittable box with the largest color population */ |
| 257 /* Returns NULL if no splittable boxes remain */ |
| 258 { |
| 259 register boxptr boxp; |
| 260 register int i; |
| 261 register long maxc = 0; |
| 262 boxptr which = NULL; |
| 263 |
| 264 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { |
| 265 if (boxp->colorcount > maxc && boxp->volume > 0) { |
| 266 which = boxp; |
| 267 maxc = boxp->colorcount; |
| 268 } |
| 269 } |
| 270 return which; |
| 271 } |
| 272 |
| 273 |
| 274 LOCAL(boxptr) |
| 275 find_biggest_volume (boxptr boxlist, int numboxes) |
| 276 /* Find the splittable box with the largest (scaled) volume */ |
| 277 /* Returns NULL if no splittable boxes remain */ |
| 278 { |
| 279 register boxptr boxp; |
| 280 register int i; |
| 281 register INT32 maxv = 0; |
| 282 boxptr which = NULL; |
| 283 |
| 284 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { |
| 285 if (boxp->volume > maxv) { |
| 286 which = boxp; |
| 287 maxv = boxp->volume; |
| 288 } |
| 289 } |
| 290 return which; |
| 291 } |
| 292 |
| 293 |
| 294 LOCAL(void) |
| 295 update_box (j_decompress_ptr cinfo, boxptr boxp) |
| 296 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */ |
| 297 /* and recompute its volume and population */ |
| 298 { |
| 299 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
| 300 hist3d histogram = cquantize->histogram; |
| 301 histptr histp; |
| 302 int c0,c1,c2; |
| 303 int c0min,c0max,c1min,c1max,c2min,c2max; |
| 304 INT32 dist0,dist1,dist2; |
| 305 long ccount; |
| 306 |
| 307 c0min = boxp->c0min; c0max = boxp->c0max; |
| 308 c1min = boxp->c1min; c1max = boxp->c1max; |
| 309 c2min = boxp->c2min; c2max = boxp->c2max; |
| 310 |
| 311 if (c0max > c0min) |
| 312 for (c0 = c0min; c0 <= c0max; c0++) |
| 313 for (c1 = c1min; c1 <= c1max; c1++) { |
| 314 histp = & histogram[c0][c1][c2min]; |
| 315 for (c2 = c2min; c2 <= c2max; c2++) |
| 316 if (*histp++ != 0) { |
| 317 boxp->c0min = c0min = c0; |
| 318 goto have_c0min; |
| 319 } |
| 320 } |
| 321 have_c0min: |
| 322 if (c0max > c0min) |
| 323 for (c0 = c0max; c0 >= c0min; c0--) |
| 324 for (c1 = c1min; c1 <= c1max; c1++) { |
| 325 histp = & histogram[c0][c1][c2min]; |
| 326 for (c2 = c2min; c2 <= c2max; c2++) |
| 327 if (*histp++ != 0) { |
| 328 boxp->c0max = c0max = c0; |
| 329 goto have_c0max; |
| 330 } |
| 331 } |
| 332 have_c0max: |
| 333 if (c1max > c1min) |
| 334 for (c1 = c1min; c1 <= c1max; c1++) |
| 335 for (c0 = c0min; c0 <= c0max; c0++) { |
| 336 histp = & histogram[c0][c1][c2min]; |
| 337 for (c2 = c2min; c2 <= c2max; c2++) |
| 338 if (*histp++ != 0) { |
| 339 boxp->c1min = c1min = c1; |
| 340 goto have_c1min; |
| 341 } |
| 342 } |
| 343 have_c1min: |
| 344 if (c1max > c1min) |
| 345 for (c1 = c1max; c1 >= c1min; c1--) |
| 346 for (c0 = c0min; c0 <= c0max; c0++) { |
| 347 histp = & histogram[c0][c1][c2min]; |
| 348 for (c2 = c2min; c2 <= c2max; c2++) |
| 349 if (*histp++ != 0) { |
| 350 boxp->c1max = c1max = c1; |
| 351 goto have_c1max; |
| 352 } |
| 353 } |
| 354 have_c1max: |
| 355 if (c2max > c2min) |
| 356 for (c2 = c2min; c2 <= c2max; c2++) |
| 357 for (c0 = c0min; c0 <= c0max; c0++) { |
| 358 histp = & histogram[c0][c1min][c2]; |
| 359 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) |
| 360 if (*histp != 0) { |
| 361 boxp->c2min = c2min = c2; |
| 362 goto have_c2min; |
| 363 } |
| 364 } |
| 365 have_c2min: |
| 366 if (c2max > c2min) |
| 367 for (c2 = c2max; c2 >= c2min; c2--) |
| 368 for (c0 = c0min; c0 <= c0max; c0++) { |
| 369 histp = & histogram[c0][c1min][c2]; |
| 370 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) |
| 371 if (*histp != 0) { |
| 372 boxp->c2max = c2max = c2; |
| 373 goto have_c2max; |
| 374 } |
| 375 } |
| 376 have_c2max: |
| 377 |
| 378 /* Update box volume. |
| 379 * We use 2-norm rather than real volume here; this biases the method |
| 380 * against making long narrow boxes, and it has the side benefit that |
| 381 * a box is splittable iff norm > 0. |
| 382 * Since the differences are expressed in histogram-cell units, |
| 383 * we have to shift back to JSAMPLE units to get consistent distances; |
| 384 * after which, we scale according to the selected distance scale factors. |
| 385 */ |
| 386 dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE; |
| 387 dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE; |
| 388 dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE; |
| 389 boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2; |
| 390 |
| 391 /* Now scan remaining volume of box and compute population */ |
| 392 ccount = 0; |
| 393 for (c0 = c0min; c0 <= c0max; c0++) |
| 394 for (c1 = c1min; c1 <= c1max; c1++) { |
| 395 histp = & histogram[c0][c1][c2min]; |
| 396 for (c2 = c2min; c2 <= c2max; c2++, histp++) |
| 397 if (*histp != 0) { |
| 398 ccount++; |
| 399 } |
| 400 } |
| 401 boxp->colorcount = ccount; |
| 402 } |
| 403 |
| 404 |
| 405 LOCAL(int) |
| 406 median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes, |
| 407 int desired_colors) |
| 408 /* Repeatedly select and split the largest box until we have enough boxes */ |
| 409 { |
| 410 int n,lb; |
| 411 int c0,c1,c2,cmax; |
| 412 register boxptr b1,b2; |
| 413 |
| 414 while (numboxes < desired_colors) { |
| 415 /* Select box to split. |
| 416 * Current algorithm: by population for first half, then by volume. |
| 417 */ |
| 418 if (numboxes*2 <= desired_colors) { |
| 419 b1 = find_biggest_color_pop(boxlist, numboxes); |
| 420 } else { |
| 421 b1 = find_biggest_volume(boxlist, numboxes); |
| 422 } |
| 423 if (b1 == NULL) /* no splittable boxes left! */ |
| 424 break; |
| 425 b2 = &boxlist[numboxes]; /* where new box will go */ |
| 426 /* Copy the color bounds to the new box. */ |
| 427 b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max; |
| 428 b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min; |
| 429 /* Choose which axis to split the box on. |
| 430 * Current algorithm: longest scaled axis. |
| 431 * See notes in update_box about scaling distances. |
| 432 */ |
| 433 c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE; |
| 434 c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE; |
| 435 c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE; |
| 436 /* We want to break any ties in favor of green, then red, blue last. |
| 437 * This code does the right thing for R,G,B or B,G,R color orders only. |
| 438 */ |
| 439 if (rgb_red[cinfo->out_color_space] == 0) { |
| 440 cmax = c1; n = 1; |
| 441 if (c0 > cmax) { cmax = c0; n = 0; } |
| 442 if (c2 > cmax) { n = 2; } |
| 443 } |
| 444 else { |
| 445 cmax = c1; n = 1; |
| 446 if (c2 > cmax) { cmax = c2; n = 2; } |
| 447 if (c0 > cmax) { n = 0; } |
| 448 } |
| 449 /* Choose split point along selected axis, and update box bounds. |
| 450 * Current algorithm: split at halfway point. |
| 451 * (Since the box has been shrunk to minimum volume, |
| 452 * any split will produce two nonempty subboxes.) |
| 453 * Note that lb value is max for lower box, so must be < old max. |
| 454 */ |
| 455 switch (n) { |
| 456 case 0: |
| 457 lb = (b1->c0max + b1->c0min) / 2; |
| 458 b1->c0max = lb; |
| 459 b2->c0min = lb+1; |
| 460 break; |
| 461 case 1: |
| 462 lb = (b1->c1max + b1->c1min) / 2; |
| 463 b1->c1max = lb; |
| 464 b2->c1min = lb+1; |
| 465 break; |
| 466 case 2: |
| 467 lb = (b1->c2max + b1->c2min) / 2; |
| 468 b1->c2max = lb; |
| 469 b2->c2min = lb+1; |
| 470 break; |
| 471 } |
| 472 /* Update stats for boxes */ |
| 473 update_box(cinfo, b1); |
| 474 update_box(cinfo, b2); |
| 475 numboxes++; |
| 476 } |
| 477 return numboxes; |
| 478 } |
| 479 |
| 480 |
| 481 LOCAL(void) |
| 482 compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor) |
| 483 /* Compute representative color for a box, put it in colormap[icolor] */ |
| 484 { |
| 485 /* Current algorithm: mean weighted by pixels (not colors) */ |
| 486 /* Note it is important to get the rounding correct! */ |
| 487 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
| 488 hist3d histogram = cquantize->histogram; |
| 489 histptr histp; |
| 490 int c0,c1,c2; |
| 491 int c0min,c0max,c1min,c1max,c2min,c2max; |
| 492 long count; |
| 493 long total = 0; |
| 494 long c0total = 0; |
| 495 long c1total = 0; |
| 496 long c2total = 0; |
| 497 |
| 498 c0min = boxp->c0min; c0max = boxp->c0max; |
| 499 c1min = boxp->c1min; c1max = boxp->c1max; |
| 500 c2min = boxp->c2min; c2max = boxp->c2max; |
| 501 |
| 502 for (c0 = c0min; c0 <= c0max; c0++) |
| 503 for (c1 = c1min; c1 <= c1max; c1++) { |
| 504 histp = & histogram[c0][c1][c2min]; |
| 505 for (c2 = c2min; c2 <= c2max; c2++) { |
| 506 if ((count = *histp++) != 0) { |
| 507 total += count; |
| 508 c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count; |
| 509 c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count; |
| 510 c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count; |
| 511 } |
| 512 } |
| 513 } |
| 514 |
| 515 cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total); |
| 516 cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total); |
| 517 cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total); |
| 518 } |
| 519 |
| 520 |
| 521 LOCAL(void) |
| 522 select_colors (j_decompress_ptr cinfo, int desired_colors) |
| 523 /* Master routine for color selection */ |
| 524 { |
| 525 boxptr boxlist; |
| 526 int numboxes; |
| 527 int i; |
| 528 |
| 529 /* Allocate workspace for box list */ |
| 530 boxlist = (boxptr) (*cinfo->mem->alloc_small) |
| 531 ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box)); |
| 532 /* Initialize one box containing whole space */ |
| 533 numboxes = 1; |
| 534 boxlist[0].c0min = 0; |
| 535 boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT; |
| 536 boxlist[0].c1min = 0; |
| 537 boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT; |
| 538 boxlist[0].c2min = 0; |
| 539 boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT; |
| 540 /* Shrink it to actually-used volume and set its statistics */ |
| 541 update_box(cinfo, & boxlist[0]); |
| 542 /* Perform median-cut to produce final box list */ |
| 543 numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors); |
| 544 /* Compute the representative color for each box, fill colormap */ |
| 545 for (i = 0; i < numboxes; i++) |
| 546 compute_color(cinfo, & boxlist[i], i); |
| 547 cinfo->actual_number_of_colors = numboxes; |
| 548 TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes); |
| 549 } |
| 550 |
| 551 |
| 552 /* |
| 553 * These routines are concerned with the time-critical task of mapping input |
| 554 * colors to the nearest color in the selected colormap. |
| 555 * |
| 556 * We re-use the histogram space as an "inverse color map", essentially a |
| 557 * cache for the results of nearest-color searches. All colors within a |
| 558 * histogram cell will be mapped to the same colormap entry, namely the one |
| 559 * closest to the cell's center. This may not be quite the closest entry to |
| 560 * the actual input color, but it's almost as good. A zero in the cache |
| 561 * indicates we haven't found the nearest color for that cell yet; the array |
| 562 * is cleared to zeroes before starting the mapping pass. When we find the |
| 563 * nearest color for a cell, its colormap index plus one is recorded in the |
| 564 * cache for future use. The pass2 scanning routines call fill_inverse_cmap |
| 565 * when they need to use an unfilled entry in the cache. |
| 566 * |
| 567 * Our method of efficiently finding nearest colors is based on the "locally |
| 568 * sorted search" idea described by Heckbert and on the incremental distance |
| 569 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics |
| 570 * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that |
| 571 * the distances from a given colormap entry to each cell of the histogram can |
| 572 * be computed quickly using an incremental method: the differences between |
| 573 * distances to adjacent cells themselves differ by a constant. This allows a |
| 574 * fairly fast implementation of the "brute force" approach of computing the |
| 575 * distance from every colormap entry to every histogram cell. Unfortunately, |
| 576 * it needs a work array to hold the best-distance-so-far for each histogram |
| 577 * cell (because the inner loop has to be over cells, not colormap entries). |
| 578 * The work array elements have to be INT32s, so the work array would need |
| 579 * 256Kb at our recommended precision. This is not feasible in DOS machines. |
| 580 * |
| 581 * To get around these problems, we apply Thomas' method to compute the |
| 582 * nearest colors for only the cells within a small subbox of the histogram. |
| 583 * The work array need be only as big as the subbox, so the memory usage |
| 584 * problem is solved. Furthermore, we need not fill subboxes that are never |
| 585 * referenced in pass2; many images use only part of the color gamut, so a |
| 586 * fair amount of work is saved. An additional advantage of this |
| 587 * approach is that we can apply Heckbert's locality criterion to quickly |
| 588 * eliminate colormap entries that are far away from the subbox; typically |
| 589 * three-fourths of the colormap entries are rejected by Heckbert's criterion, |
| 590 * and we need not compute their distances to individual cells in the subbox. |
| 591 * The speed of this approach is heavily influenced by the subbox size: too |
| 592 * small means too much overhead, too big loses because Heckbert's criterion |
| 593 * can't eliminate as many colormap entries. Empirically the best subbox |
| 594 * size seems to be about 1/512th of the histogram (1/8th in each direction). |
| 595 * |
| 596 * Thomas' article also describes a refined method which is asymptotically |
| 597 * faster than the brute-force method, but it is also far more complex and |
| 598 * cannot efficiently be applied to small subboxes. It is therefore not |
| 599 * useful for programs intended to be portable to DOS machines. On machines |
| 600 * with plenty of memory, filling the whole histogram in one shot with Thomas' |
| 601 * refined method might be faster than the present code --- but then again, |
| 602 * it might not be any faster, and it's certainly more complicated. |
| 603 */ |
| 604 |
| 605 |
| 606 /* log2(histogram cells in update box) for each axis; this can be adjusted */ |
| 607 #define BOX_C0_LOG (HIST_C0_BITS-3) |
| 608 #define BOX_C1_LOG (HIST_C1_BITS-3) |
| 609 #define BOX_C2_LOG (HIST_C2_BITS-3) |
| 610 |
| 611 #define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */ |
| 612 #define BOX_C1_ELEMS (1<<BOX_C1_LOG) |
| 613 #define BOX_C2_ELEMS (1<<BOX_C2_LOG) |
| 614 |
| 615 #define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG) |
| 616 #define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG) |
| 617 #define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG) |
| 618 |
| 619 |
| 620 /* |
| 621 * The next three routines implement inverse colormap filling. They could |
| 622 * all be folded into one big routine, but splitting them up this way saves |
| 623 * some stack space (the mindist[] and bestdist[] arrays need not coexist) |
| 624 * and may allow some compilers to produce better code by registerizing more |
| 625 * inner-loop variables. |
| 626 */ |
| 627 |
| 628 LOCAL(int) |
| 629 find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, |
| 630 JSAMPLE colorlist[]) |
| 631 /* Locate the colormap entries close enough to an update box to be candidates |
| 632 * for the nearest entry to some cell(s) in the update box. The update box |
| 633 * is specified by the center coordinates of its first cell. The number of |
| 634 * candidate colormap entries is returned, and their colormap indexes are |
| 635 * placed in colorlist[]. |
| 636 * This routine uses Heckbert's "locally sorted search" criterion to select |
| 637 * the colors that need further consideration. |
| 638 */ |
| 639 { |
| 640 int numcolors = cinfo->actual_number_of_colors; |
| 641 int maxc0, maxc1, maxc2; |
| 642 int centerc0, centerc1, centerc2; |
| 643 int i, x, ncolors; |
| 644 INT32 minmaxdist, min_dist, max_dist, tdist; |
| 645 INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */ |
| 646 |
| 647 /* Compute true coordinates of update box's upper corner and center. |
| 648 * Actually we compute the coordinates of the center of the upper-corner |
| 649 * histogram cell, which are the upper bounds of the volume we care about. |
| 650 * Note that since ">>" rounds down, the "center" values may be closer to |
| 651 * min than to max; hence comparisons to them must be "<=", not "<". |
| 652 */ |
| 653 maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT)); |
| 654 centerc0 = (minc0 + maxc0) >> 1; |
| 655 maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT)); |
| 656 centerc1 = (minc1 + maxc1) >> 1; |
| 657 maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT)); |
| 658 centerc2 = (minc2 + maxc2) >> 1; |
| 659 |
| 660 /* For each color in colormap, find: |
| 661 * 1. its minimum squared-distance to any point in the update box |
| 662 * (zero if color is within update box); |
| 663 * 2. its maximum squared-distance to any point in the update box. |
| 664 * Both of these can be found by considering only the corners of the box. |
| 665 * We save the minimum distance for each color in mindist[]; |
| 666 * only the smallest maximum distance is of interest. |
| 667 */ |
| 668 minmaxdist = 0x7FFFFFFFL; |
| 669 |
| 670 for (i = 0; i < numcolors; i++) { |
| 671 /* We compute the squared-c0-distance term, then add in the other two. */ |
| 672 x = GETJSAMPLE(cinfo->colormap[0][i]); |
| 673 if (x < minc0) { |
| 674 tdist = (x - minc0) * C0_SCALE; |
| 675 min_dist = tdist*tdist; |
| 676 tdist = (x - maxc0) * C0_SCALE; |
| 677 max_dist = tdist*tdist; |
| 678 } else if (x > maxc0) { |
| 679 tdist = (x - maxc0) * C0_SCALE; |
| 680 min_dist = tdist*tdist; |
| 681 tdist = (x - minc0) * C0_SCALE; |
| 682 max_dist = tdist*tdist; |
| 683 } else { |
| 684 /* within cell range so no contribution to min_dist */ |
| 685 min_dist = 0; |
| 686 if (x <= centerc0) { |
| 687 tdist = (x - maxc0) * C0_SCALE; |
| 688 max_dist = tdist*tdist; |
| 689 } else { |
| 690 tdist = (x - minc0) * C0_SCALE; |
| 691 max_dist = tdist*tdist; |
| 692 } |
| 693 } |
| 694 |
| 695 x = GETJSAMPLE(cinfo->colormap[1][i]); |
| 696 if (x < minc1) { |
| 697 tdist = (x - minc1) * C1_SCALE; |
| 698 min_dist += tdist*tdist; |
| 699 tdist = (x - maxc1) * C1_SCALE; |
| 700 max_dist += tdist*tdist; |
| 701 } else if (x > maxc1) { |
| 702 tdist = (x - maxc1) * C1_SCALE; |
| 703 min_dist += tdist*tdist; |
| 704 tdist = (x - minc1) * C1_SCALE; |
| 705 max_dist += tdist*tdist; |
| 706 } else { |
| 707 /* within cell range so no contribution to min_dist */ |
| 708 if (x <= centerc1) { |
| 709 tdist = (x - maxc1) * C1_SCALE; |
| 710 max_dist += tdist*tdist; |
| 711 } else { |
| 712 tdist = (x - minc1) * C1_SCALE; |
| 713 max_dist += tdist*tdist; |
| 714 } |
| 715 } |
| 716 |
| 717 x = GETJSAMPLE(cinfo->colormap[2][i]); |
| 718 if (x < minc2) { |
| 719 tdist = (x - minc2) * C2_SCALE; |
| 720 min_dist += tdist*tdist; |
| 721 tdist = (x - maxc2) * C2_SCALE; |
| 722 max_dist += tdist*tdist; |
| 723 } else if (x > maxc2) { |
| 724 tdist = (x - maxc2) * C2_SCALE; |
| 725 min_dist += tdist*tdist; |
| 726 tdist = (x - minc2) * C2_SCALE; |
| 727 max_dist += tdist*tdist; |
| 728 } else { |
| 729 /* within cell range so no contribution to min_dist */ |
| 730 if (x <= centerc2) { |
| 731 tdist = (x - maxc2) * C2_SCALE; |
| 732 max_dist += tdist*tdist; |
| 733 } else { |
| 734 tdist = (x - minc2) * C2_SCALE; |
| 735 max_dist += tdist*tdist; |
| 736 } |
| 737 } |
| 738 |
| 739 mindist[i] = min_dist; /* save away the results */ |
| 740 if (max_dist < minmaxdist) |
| 741 minmaxdist = max_dist; |
| 742 } |
| 743 |
| 744 /* Now we know that no cell in the update box is more than minmaxdist |
| 745 * away from some colormap entry. Therefore, only colors that are |
| 746 * within minmaxdist of some part of the box need be considered. |
| 747 */ |
| 748 ncolors = 0; |
| 749 for (i = 0; i < numcolors; i++) { |
| 750 if (mindist[i] <= minmaxdist) |
| 751 colorlist[ncolors++] = (JSAMPLE) i; |
| 752 } |
| 753 return ncolors; |
| 754 } |
| 755 |
| 756 |
| 757 LOCAL(void) |
| 758 find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, |
| 759 int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[]) |
| 760 /* Find the closest colormap entry for each cell in the update box, |
| 761 * given the list of candidate colors prepared by find_nearby_colors. |
| 762 * Return the indexes of the closest entries in the bestcolor[] array. |
| 763 * This routine uses Thomas' incremental distance calculation method to |
| 764 * find the distance from a colormap entry to successive cells in the box. |
| 765 */ |
| 766 { |
| 767 int ic0, ic1, ic2; |
| 768 int i, icolor; |
| 769 register INT32 * bptr; /* pointer into bestdist[] array */ |
| 770 JSAMPLE * cptr; /* pointer into bestcolor[] array */ |
| 771 INT32 dist0, dist1; /* initial distance values */ |
| 772 register INT32 dist2; /* current distance in inner loop */ |
| 773 INT32 xx0, xx1; /* distance increments */ |
| 774 register INT32 xx2; |
| 775 INT32 inc0, inc1, inc2; /* initial values for increments */ |
| 776 /* This array holds the distance to the nearest-so-far color for each cell */ |
| 777 INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; |
| 778 |
| 779 /* Initialize best-distance for each cell of the update box */ |
| 780 bptr = bestdist; |
| 781 for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--) |
| 782 *bptr++ = 0x7FFFFFFFL; |
| 783 |
| 784 /* For each color selected by find_nearby_colors, |
| 785 * compute its distance to the center of each cell in the box. |
| 786 * If that's less than best-so-far, update best distance and color number. |
| 787 */ |
| 788 |
| 789 /* Nominal steps between cell centers ("x" in Thomas article) */ |
| 790 #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE) |
| 791 #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE) |
| 792 #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE) |
| 793 |
| 794 for (i = 0; i < numcolors; i++) { |
| 795 icolor = GETJSAMPLE(colorlist[i]); |
| 796 /* Compute (square of) distance from minc0/c1/c2 to this color */ |
| 797 inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE; |
| 798 dist0 = inc0*inc0; |
| 799 inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE; |
| 800 dist0 += inc1*inc1; |
| 801 inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE; |
| 802 dist0 += inc2*inc2; |
| 803 /* Form the initial difference increments */ |
| 804 inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0; |
| 805 inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1; |
| 806 inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2; |
| 807 /* Now loop over all cells in box, updating distance per Thomas method */ |
| 808 bptr = bestdist; |
| 809 cptr = bestcolor; |
| 810 xx0 = inc0; |
| 811 for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) { |
| 812 dist1 = dist0; |
| 813 xx1 = inc1; |
| 814 for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) { |
| 815 dist2 = dist1; |
| 816 xx2 = inc2; |
| 817 for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) { |
| 818 if (dist2 < *bptr) { |
| 819 *bptr = dist2; |
| 820 *cptr = (JSAMPLE) icolor; |
| 821 } |
| 822 dist2 += xx2; |
| 823 xx2 += 2 * STEP_C2 * STEP_C2; |
| 824 bptr++; |
| 825 cptr++; |
| 826 } |
| 827 dist1 += xx1; |
| 828 xx1 += 2 * STEP_C1 * STEP_C1; |
| 829 } |
| 830 dist0 += xx0; |
| 831 xx0 += 2 * STEP_C0 * STEP_C0; |
| 832 } |
| 833 } |
| 834 } |
| 835 |
| 836 |
| 837 LOCAL(void) |
| 838 fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) |
| 839 /* Fill the inverse-colormap entries in the update box that contains */ |
| 840 /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */ |
| 841 /* we can fill as many others as we wish.) */ |
| 842 { |
| 843 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
| 844 hist3d histogram = cquantize->histogram; |
| 845 int minc0, minc1, minc2; /* lower left corner of update box */ |
| 846 int ic0, ic1, ic2; |
| 847 register JSAMPLE * cptr; /* pointer into bestcolor[] array */ |
| 848 register histptr cachep; /* pointer into main cache array */ |
| 849 /* This array lists the candidate colormap indexes. */ |
| 850 JSAMPLE colorlist[MAXNUMCOLORS]; |
| 851 int numcolors; /* number of candidate colors */ |
| 852 /* This array holds the actually closest colormap index for each cell. */ |
| 853 JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; |
| 854 |
| 855 /* Convert cell coordinates to update box ID */ |
| 856 c0 >>= BOX_C0_LOG; |
| 857 c1 >>= BOX_C1_LOG; |
| 858 c2 >>= BOX_C2_LOG; |
| 859 |
| 860 /* Compute true coordinates of update box's origin corner. |
| 861 * Actually we compute the coordinates of the center of the corner |
| 862 * histogram cell, which are the lower bounds of the volume we care about. |
| 863 */ |
| 864 minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1); |
| 865 minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1); |
| 866 minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1); |
| 867 |
| 868 /* Determine which colormap entries are close enough to be candidates |
| 869 * for the nearest entry to some cell in the update box. |
| 870 */ |
| 871 numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist); |
| 872 |
| 873 /* Determine the actually nearest colors. */ |
| 874 find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist, |
| 875 bestcolor); |
| 876 |
| 877 /* Save the best color numbers (plus 1) in the main cache array */ |
| 878 c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */ |
| 879 c1 <<= BOX_C1_LOG; |
| 880 c2 <<= BOX_C2_LOG; |
| 881 cptr = bestcolor; |
| 882 for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) { |
| 883 for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) { |
| 884 cachep = & histogram[c0+ic0][c1+ic1][c2]; |
| 885 for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) { |
| 886 *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1); |
| 887 } |
| 888 } |
| 889 } |
| 890 } |
| 891 |
| 892 |
| 893 /* |
| 894 * Map some rows of pixels to the output colormapped representation. |
| 895 */ |
| 896 |
| 897 METHODDEF(void) |
| 898 pass2_no_dither (j_decompress_ptr cinfo, |
| 899 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) |
| 900 /* This version performs no dithering */ |
| 901 { |
| 902 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
| 903 hist3d histogram = cquantize->histogram; |
| 904 register JSAMPROW inptr, outptr; |
| 905 register histptr cachep; |
| 906 register int c0, c1, c2; |
| 907 int row; |
| 908 JDIMENSION col; |
| 909 JDIMENSION width = cinfo->output_width; |
| 910 |
| 911 for (row = 0; row < num_rows; row++) { |
| 912 inptr = input_buf[row]; |
| 913 outptr = output_buf[row]; |
| 914 for (col = width; col > 0; col--) { |
| 915 /* get pixel value and index into the cache */ |
| 916 c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT; |
| 917 c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT; |
| 918 c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT; |
| 919 cachep = & histogram[c0][c1][c2]; |
| 920 /* If we have not seen this color before, find nearest colormap entry */ |
| 921 /* and update the cache */ |
| 922 if (*cachep == 0) |
| 923 fill_inverse_cmap(cinfo, c0,c1,c2); |
| 924 /* Now emit the colormap index for this cell */ |
| 925 *outptr++ = (JSAMPLE) (*cachep - 1); |
| 926 } |
| 927 } |
| 928 } |
| 929 |
| 930 |
| 931 METHODDEF(void) |
| 932 pass2_fs_dither (j_decompress_ptr cinfo, |
| 933 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) |
| 934 /* This version performs Floyd-Steinberg dithering */ |
| 935 { |
| 936 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
| 937 hist3d histogram = cquantize->histogram; |
| 938 register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */ |
| 939 LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */ |
| 940 LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */ |
| 941 register FSERRPTR errorptr; /* => fserrors[] at column before current */ |
| 942 JSAMPROW inptr; /* => current input pixel */ |
| 943 JSAMPROW outptr; /* => current output pixel */ |
| 944 histptr cachep; |
| 945 int dir; /* +1 or -1 depending on direction */ |
| 946 int dir3; /* 3*dir, for advancing inptr & errorptr */ |
| 947 int row; |
| 948 JDIMENSION col; |
| 949 JDIMENSION width = cinfo->output_width; |
| 950 JSAMPLE *range_limit = cinfo->sample_range_limit; |
| 951 int *error_limit = cquantize->error_limiter; |
| 952 JSAMPROW colormap0 = cinfo->colormap[0]; |
| 953 JSAMPROW colormap1 = cinfo->colormap[1]; |
| 954 JSAMPROW colormap2 = cinfo->colormap[2]; |
| 955 SHIFT_TEMPS |
| 956 |
| 957 for (row = 0; row < num_rows; row++) { |
| 958 inptr = input_buf[row]; |
| 959 outptr = output_buf[row]; |
| 960 if (cquantize->on_odd_row) { |
| 961 /* work right to left in this row */ |
| 962 inptr += (width-1) * 3; /* so point to rightmost pixel */ |
| 963 outptr += width-1; |
| 964 dir = -1; |
| 965 dir3 = -3; |
| 966 errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last colum
n */ |
| 967 cquantize->on_odd_row = FALSE; /* flip for next time */ |
| 968 } else { |
| 969 /* work left to right in this row */ |
| 970 dir = 1; |
| 971 dir3 = 3; |
| 972 errorptr = cquantize->fserrors; /* => entry before first real column */ |
| 973 cquantize->on_odd_row = TRUE; /* flip for next time */ |
| 974 } |
| 975 /* Preset error values: no error propagated to first pixel from left */ |
| 976 cur0 = cur1 = cur2 = 0; |
| 977 /* and no error propagated to row below yet */ |
| 978 belowerr0 = belowerr1 = belowerr2 = 0; |
| 979 bpreverr0 = bpreverr1 = bpreverr2 = 0; |
| 980 |
| 981 for (col = width; col > 0; col--) { |
| 982 /* curN holds the error propagated from the previous pixel on the |
| 983 * current line. Add the error propagated from the previous line |
| 984 * to form the complete error correction term for this pixel, and |
| 985 * round the error term (which is expressed * 16) to an integer. |
| 986 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct |
| 987 * for either sign of the error value. |
| 988 * Note: errorptr points to *previous* column's array entry. |
| 989 */ |
| 990 cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4); |
| 991 cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4); |
| 992 cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4); |
| 993 /* Limit the error using transfer function set by init_error_limit. |
| 994 * See comments with init_error_limit for rationale. |
| 995 */ |
| 996 cur0 = error_limit[cur0]; |
| 997 cur1 = error_limit[cur1]; |
| 998 cur2 = error_limit[cur2]; |
| 999 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. |
| 1000 * The maximum error is +- MAXJSAMPLE (or less with error limiting); |
| 1001 * this sets the required size of the range_limit array. |
| 1002 */ |
| 1003 cur0 += GETJSAMPLE(inptr[0]); |
| 1004 cur1 += GETJSAMPLE(inptr[1]); |
| 1005 cur2 += GETJSAMPLE(inptr[2]); |
| 1006 cur0 = GETJSAMPLE(range_limit[cur0]); |
| 1007 cur1 = GETJSAMPLE(range_limit[cur1]); |
| 1008 cur2 = GETJSAMPLE(range_limit[cur2]); |
| 1009 /* Index into the cache with adjusted pixel value */ |
| 1010 cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT]; |
| 1011 /* If we have not seen this color before, find nearest colormap */ |
| 1012 /* entry and update the cache */ |
| 1013 if (*cachep == 0) |
| 1014 fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT); |
| 1015 /* Now emit the colormap index for this cell */ |
| 1016 { register int pixcode = *cachep - 1; |
| 1017 *outptr = (JSAMPLE) pixcode; |
| 1018 /* Compute representation error for this pixel */ |
| 1019 cur0 -= GETJSAMPLE(colormap0[pixcode]); |
| 1020 cur1 -= GETJSAMPLE(colormap1[pixcode]); |
| 1021 cur2 -= GETJSAMPLE(colormap2[pixcode]); |
| 1022 } |
| 1023 /* Compute error fractions to be propagated to adjacent pixels. |
| 1024 * Add these into the running sums, and simultaneously shift the |
| 1025 * next-line error sums left by 1 column. |
| 1026 */ |
| 1027 { register LOCFSERROR bnexterr, delta; |
| 1028 |
| 1029 bnexterr = cur0; /* Process component 0 */ |
| 1030 delta = cur0 * 2; |
| 1031 cur0 += delta; /* form error * 3 */ |
| 1032 errorptr[0] = (FSERROR) (bpreverr0 + cur0); |
| 1033 cur0 += delta; /* form error * 5 */ |
| 1034 bpreverr0 = belowerr0 + cur0; |
| 1035 belowerr0 = bnexterr; |
| 1036 cur0 += delta; /* form error * 7 */ |
| 1037 bnexterr = cur1; /* Process component 1 */ |
| 1038 delta = cur1 * 2; |
| 1039 cur1 += delta; /* form error * 3 */ |
| 1040 errorptr[1] = (FSERROR) (bpreverr1 + cur1); |
| 1041 cur1 += delta; /* form error * 5 */ |
| 1042 bpreverr1 = belowerr1 + cur1; |
| 1043 belowerr1 = bnexterr; |
| 1044 cur1 += delta; /* form error * 7 */ |
| 1045 bnexterr = cur2; /* Process component 2 */ |
| 1046 delta = cur2 * 2; |
| 1047 cur2 += delta; /* form error * 3 */ |
| 1048 errorptr[2] = (FSERROR) (bpreverr2 + cur2); |
| 1049 cur2 += delta; /* form error * 5 */ |
| 1050 bpreverr2 = belowerr2 + cur2; |
| 1051 belowerr2 = bnexterr; |
| 1052 cur2 += delta; /* form error * 7 */ |
| 1053 } |
| 1054 /* At this point curN contains the 7/16 error value to be propagated |
| 1055 * to the next pixel on the current line, and all the errors for the |
| 1056 * next line have been shifted over. We are therefore ready to move on. |
| 1057 */ |
| 1058 inptr += dir3; /* Advance pixel pointers to next column */ |
| 1059 outptr += dir; |
| 1060 errorptr += dir3; /* advance errorptr to current column */ |
| 1061 } |
| 1062 /* Post-loop cleanup: we must unload the final error values into the |
| 1063 * final fserrors[] entry. Note we need not unload belowerrN because |
| 1064 * it is for the dummy column before or after the actual array. |
| 1065 */ |
| 1066 errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */ |
| 1067 errorptr[1] = (FSERROR) bpreverr1; |
| 1068 errorptr[2] = (FSERROR) bpreverr2; |
| 1069 } |
| 1070 } |
| 1071 |
| 1072 |
| 1073 /* |
| 1074 * Initialize the error-limiting transfer function (lookup table). |
| 1075 * The raw F-S error computation can potentially compute error values of up to |
| 1076 * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be |
| 1077 * much less, otherwise obviously wrong pixels will be created. (Typical |
| 1078 * effects include weird fringes at color-area boundaries, isolated bright |
| 1079 * pixels in a dark area, etc.) The standard advice for avoiding this problem |
| 1080 * is to ensure that the "corners" of the color cube are allocated as output |
| 1081 * colors; then repeated errors in the same direction cannot cause cascading |
| 1082 * error buildup. However, that only prevents the error from getting |
| 1083 * completely out of hand; Aaron Giles reports that error limiting improves |
| 1084 * the results even with corner colors allocated. |
| 1085 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty |
| 1086 * well, but the smoother transfer function used below is even better. Thanks |
| 1087 * to Aaron Giles for this idea. |
| 1088 */ |
| 1089 |
| 1090 LOCAL(void) |
| 1091 init_error_limit (j_decompress_ptr cinfo) |
| 1092 /* Allocate and fill in the error_limiter table */ |
| 1093 { |
| 1094 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
| 1095 int * table; |
| 1096 int in, out; |
| 1097 |
| 1098 table = (int *) (*cinfo->mem->alloc_small) |
| 1099 ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int)); |
| 1100 table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ |
| 1101 cquantize->error_limiter = table; |
| 1102 |
| 1103 #define STEPSIZE ((MAXJSAMPLE+1)/16) |
| 1104 /* Map errors 1:1 up to +- MAXJSAMPLE/16 */ |
| 1105 out = 0; |
| 1106 for (in = 0; in < STEPSIZE; in++, out++) { |
| 1107 table[in] = out; table[-in] = -out; |
| 1108 } |
| 1109 /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */ |
| 1110 for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) { |
| 1111 table[in] = out; table[-in] = -out; |
| 1112 } |
| 1113 /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */ |
| 1114 for (; in <= MAXJSAMPLE; in++) { |
| 1115 table[in] = out; table[-in] = -out; |
| 1116 } |
| 1117 #undef STEPSIZE |
| 1118 } |
| 1119 |
| 1120 |
| 1121 /* |
| 1122 * Finish up at the end of each pass. |
| 1123 */ |
| 1124 |
| 1125 METHODDEF(void) |
| 1126 finish_pass1 (j_decompress_ptr cinfo) |
| 1127 { |
| 1128 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
| 1129 |
| 1130 /* Select the representative colors and fill in cinfo->colormap */ |
| 1131 cinfo->colormap = cquantize->sv_colormap; |
| 1132 select_colors(cinfo, cquantize->desired); |
| 1133 /* Force next pass to zero the color index table */ |
| 1134 cquantize->needs_zeroed = TRUE; |
| 1135 } |
| 1136 |
| 1137 |
| 1138 METHODDEF(void) |
| 1139 finish_pass2 (j_decompress_ptr cinfo) |
| 1140 { |
| 1141 /* no work */ |
| 1142 } |
| 1143 |
| 1144 |
| 1145 /* |
| 1146 * Initialize for each processing pass. |
| 1147 */ |
| 1148 |
| 1149 METHODDEF(void) |
| 1150 start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan) |
| 1151 { |
| 1152 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
| 1153 hist3d histogram = cquantize->histogram; |
| 1154 int i; |
| 1155 |
| 1156 /* Only F-S dithering or no dithering is supported. */ |
| 1157 /* If user asks for ordered dither, give him F-S. */ |
| 1158 if (cinfo->dither_mode != JDITHER_NONE) |
| 1159 cinfo->dither_mode = JDITHER_FS; |
| 1160 |
| 1161 if (is_pre_scan) { |
| 1162 /* Set up method pointers */ |
| 1163 cquantize->pub.color_quantize = prescan_quantize; |
| 1164 cquantize->pub.finish_pass = finish_pass1; |
| 1165 cquantize->needs_zeroed = TRUE; /* Always zero histogram */ |
| 1166 } else { |
| 1167 /* Set up method pointers */ |
| 1168 if (cinfo->dither_mode == JDITHER_FS) |
| 1169 cquantize->pub.color_quantize = pass2_fs_dither; |
| 1170 else |
| 1171 cquantize->pub.color_quantize = pass2_no_dither; |
| 1172 cquantize->pub.finish_pass = finish_pass2; |
| 1173 |
| 1174 /* Make sure color count is acceptable */ |
| 1175 i = cinfo->actual_number_of_colors; |
| 1176 if (i < 1) |
| 1177 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1); |
| 1178 if (i > MAXNUMCOLORS) |
| 1179 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); |
| 1180 |
| 1181 if (cinfo->dither_mode == JDITHER_FS) { |
| 1182 size_t arraysize = (size_t) ((cinfo->output_width + 2) * |
| 1183 (3 * SIZEOF(FSERROR))); |
| 1184 /* Allocate Floyd-Steinberg workspace if we didn't already. */ |
| 1185 if (cquantize->fserrors == NULL) |
| 1186 cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) |
| 1187 ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); |
| 1188 /* Initialize the propagated errors to zero. */ |
| 1189 jzero_far((void FAR *) cquantize->fserrors, arraysize); |
| 1190 /* Make the error-limit table if we didn't already. */ |
| 1191 if (cquantize->error_limiter == NULL) |
| 1192 init_error_limit(cinfo); |
| 1193 cquantize->on_odd_row = FALSE; |
| 1194 } |
| 1195 |
| 1196 } |
| 1197 /* Zero the histogram or inverse color map, if necessary */ |
| 1198 if (cquantize->needs_zeroed) { |
| 1199 for (i = 0; i < HIST_C0_ELEMS; i++) { |
| 1200 jzero_far((void FAR *) histogram[i], |
| 1201 HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); |
| 1202 } |
| 1203 cquantize->needs_zeroed = FALSE; |
| 1204 } |
| 1205 } |
| 1206 |
| 1207 |
| 1208 /* |
| 1209 * Switch to a new external colormap between output passes. |
| 1210 */ |
| 1211 |
| 1212 METHODDEF(void) |
| 1213 new_color_map_2_quant (j_decompress_ptr cinfo) |
| 1214 { |
| 1215 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
| 1216 |
| 1217 /* Reset the inverse color map */ |
| 1218 cquantize->needs_zeroed = TRUE; |
| 1219 } |
| 1220 |
| 1221 |
| 1222 /* |
| 1223 * Module initialization routine for 2-pass color quantization. |
| 1224 */ |
| 1225 |
| 1226 GLOBAL(void) |
| 1227 jinit_2pass_quantizer (j_decompress_ptr cinfo) |
| 1228 { |
| 1229 my_cquantize_ptr cquantize; |
| 1230 int i; |
| 1231 |
| 1232 cquantize = (my_cquantize_ptr) |
| 1233 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 1234 SIZEOF(my_cquantizer)); |
| 1235 cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; |
| 1236 cquantize->pub.start_pass = start_pass_2_quant; |
| 1237 cquantize->pub.new_color_map = new_color_map_2_quant; |
| 1238 cquantize->fserrors = NULL; /* flag optional arrays not allocated */ |
| 1239 cquantize->error_limiter = NULL; |
| 1240 |
| 1241 /* Make sure jdmaster didn't give me a case I can't handle */ |
| 1242 if (cinfo->out_color_components != 3) |
| 1243 ERREXIT(cinfo, JERR_NOTIMPL); |
| 1244 |
| 1245 /* Allocate the histogram/inverse colormap storage */ |
| 1246 cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small) |
| 1247 ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d)); |
| 1248 for (i = 0; i < HIST_C0_ELEMS; i++) { |
| 1249 cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large) |
| 1250 ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 1251 HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); |
| 1252 } |
| 1253 cquantize->needs_zeroed = TRUE; /* histogram is garbage now */ |
| 1254 |
| 1255 /* Allocate storage for the completed colormap, if required. |
| 1256 * We do this now since it is FAR storage and may affect |
| 1257 * the memory manager's space calculations. |
| 1258 */ |
| 1259 if (cinfo->enable_2pass_quant) { |
| 1260 /* Make sure color count is acceptable */ |
| 1261 int desired = cinfo->desired_number_of_colors; |
| 1262 /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */ |
| 1263 if (desired < 8) |
| 1264 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8); |
| 1265 /* Make sure colormap indexes can be represented by JSAMPLEs */ |
| 1266 if (desired > MAXNUMCOLORS) |
| 1267 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); |
| 1268 cquantize->sv_colormap = (*cinfo->mem->alloc_sarray) |
| 1269 ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3); |
| 1270 cquantize->desired = desired; |
| 1271 } else |
| 1272 cquantize->sv_colormap = NULL; |
| 1273 |
| 1274 /* Only F-S dithering or no dithering is supported. */ |
| 1275 /* If user asks for ordered dither, give him F-S. */ |
| 1276 if (cinfo->dither_mode != JDITHER_NONE) |
| 1277 cinfo->dither_mode = JDITHER_FS; |
| 1278 |
| 1279 /* Allocate Floyd-Steinberg workspace if necessary. |
| 1280 * This isn't really needed until pass 2, but again it is FAR storage. |
| 1281 * Although we will cope with a later change in dither_mode, |
| 1282 * we do not promise to honor max_memory_to_use if dither_mode changes. |
| 1283 */ |
| 1284 if (cinfo->dither_mode == JDITHER_FS) { |
| 1285 cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) |
| 1286 ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 1287 (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR)))); |
| 1288 /* Might as well create the error-limiting table too. */ |
| 1289 init_error_limit(cinfo); |
| 1290 } |
| 1291 } |
| 1292 |
| 1293 #endif /* QUANT_2PASS_SUPPORTED */ |
OLD | NEW |