| Index: third_party/libjpeg_turbo/jcsample.c
|
| ===================================================================
|
| --- third_party/libjpeg_turbo/jcsample.c (revision 0)
|
| +++ third_party/libjpeg_turbo/jcsample.c (revision 0)
|
| @@ -0,0 +1,527 @@
|
| +/*
|
| + * jcsample.c
|
| + *
|
| + * Copyright (C) 1991-1996, Thomas G. Lane.
|
| + * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
|
| + * This file is part of the Independent JPEG Group's software.
|
| + * For conditions of distribution and use, see the accompanying README file.
|
| + *
|
| + * This file contains downsampling routines.
|
| + *
|
| + * Downsampling input data is counted in "row groups". A row group
|
| + * is defined to be max_v_samp_factor pixel rows of each component,
|
| + * from which the downsampler produces v_samp_factor sample rows.
|
| + * A single row group is processed in each call to the downsampler module.
|
| + *
|
| + * The downsampler is responsible for edge-expansion of its output data
|
| + * to fill an integral number of DCT blocks horizontally. The source buffer
|
| + * may be modified if it is helpful for this purpose (the source buffer is
|
| + * allocated wide enough to correspond to the desired output width).
|
| + * The caller (the prep controller) is responsible for vertical padding.
|
| + *
|
| + * The downsampler may request "context rows" by setting need_context_rows
|
| + * during startup. In this case, the input arrays will contain at least
|
| + * one row group's worth of pixels above and below the passed-in data;
|
| + * the caller will create dummy rows at image top and bottom by replicating
|
| + * the first or last real pixel row.
|
| + *
|
| + * An excellent reference for image resampling is
|
| + * Digital Image Warping, George Wolberg, 1990.
|
| + * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
|
| + *
|
| + * The downsampling algorithm used here is a simple average of the source
|
| + * pixels covered by the output pixel. The hi-falutin sampling literature
|
| + * refers to this as a "box filter". In general the characteristics of a box
|
| + * filter are not very good, but for the specific cases we normally use (1:1
|
| + * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
|
| + * nearly so bad. If you intend to use other sampling ratios, you'd be well
|
| + * advised to improve this code.
|
| + *
|
| + * A simple input-smoothing capability is provided. This is mainly intended
|
| + * for cleaning up color-dithered GIF input files (if you find it inadequate,
|
| + * we suggest using an external filtering program such as pnmconvol). When
|
| + * enabled, each input pixel P is replaced by a weighted sum of itself and its
|
| + * eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF,
|
| + * where SF = (smoothing_factor / 1024).
|
| + * Currently, smoothing is only supported for 2h2v sampling factors.
|
| + */
|
| +
|
| +#define JPEG_INTERNALS
|
| +#include "jinclude.h"
|
| +#include "jpeglib.h"
|
| +#include "jsimd.h"
|
| +
|
| +
|
| +/* Pointer to routine to downsample a single component */
|
| +typedef JMETHOD(void, downsample1_ptr,
|
| + (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
| + JSAMPARRAY input_data, JSAMPARRAY output_data));
|
| +
|
| +/* Private subobject */
|
| +
|
| +typedef struct {
|
| + struct jpeg_downsampler pub; /* public fields */
|
| +
|
| + /* Downsampling method pointers, one per component */
|
| + downsample1_ptr methods[MAX_COMPONENTS];
|
| +} my_downsampler;
|
| +
|
| +typedef my_downsampler * my_downsample_ptr;
|
| +
|
| +
|
| +/*
|
| + * Initialize for a downsampling pass.
|
| + */
|
| +
|
| +METHODDEF(void)
|
| +start_pass_downsample (j_compress_ptr cinfo)
|
| +{
|
| + /* no work for now */
|
| +}
|
| +
|
| +
|
| +/*
|
| + * Expand a component horizontally from width input_cols to width output_cols,
|
| + * by duplicating the rightmost samples.
|
| + */
|
| +
|
| +LOCAL(void)
|
| +expand_right_edge (JSAMPARRAY image_data, int num_rows,
|
| + JDIMENSION input_cols, JDIMENSION output_cols)
|
| +{
|
| + register JSAMPROW ptr;
|
| + register JSAMPLE pixval;
|
| + register int count;
|
| + int row;
|
| + int numcols = (int) (output_cols - input_cols);
|
| +
|
| + if (numcols > 0) {
|
| + for (row = 0; row < num_rows; row++) {
|
| + ptr = image_data[row] + input_cols;
|
| + pixval = ptr[-1]; /* don't need GETJSAMPLE() here */
|
| + for (count = numcols; count > 0; count--)
|
| + *ptr++ = pixval;
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +/*
|
| + * Do downsampling for a whole row group (all components).
|
| + *
|
| + * In this version we simply downsample each component independently.
|
| + */
|
| +
|
| +METHODDEF(void)
|
| +sep_downsample (j_compress_ptr cinfo,
|
| + JSAMPIMAGE input_buf, JDIMENSION in_row_index,
|
| + JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
|
| +{
|
| + my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
|
| + int ci;
|
| + jpeg_component_info * compptr;
|
| + JSAMPARRAY in_ptr, out_ptr;
|
| +
|
| + for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
| + ci++, compptr++) {
|
| + in_ptr = input_buf[ci] + in_row_index;
|
| + out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor);
|
| + (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
|
| + }
|
| +}
|
| +
|
| +
|
| +/*
|
| + * Downsample pixel values of a single component.
|
| + * One row group is processed per call.
|
| + * This version handles arbitrary integral sampling ratios, without smoothing.
|
| + * Note that this version is not actually used for customary sampling ratios.
|
| + */
|
| +
|
| +METHODDEF(void)
|
| +int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
| + JSAMPARRAY input_data, JSAMPARRAY output_data)
|
| +{
|
| + int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
|
| + JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */
|
| + JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
|
| + JSAMPROW inptr, outptr;
|
| + INT32 outvalue;
|
| +
|
| + h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;
|
| + v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
|
| + numpix = h_expand * v_expand;
|
| + numpix2 = numpix/2;
|
| +
|
| + /* Expand input data enough to let all the output samples be generated
|
| + * by the standard loop. Special-casing padded output would be more
|
| + * efficient.
|
| + */
|
| + expand_right_edge(input_data, cinfo->max_v_samp_factor,
|
| + cinfo->image_width, output_cols * h_expand);
|
| +
|
| + inrow = 0;
|
| + for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
|
| + outptr = output_data[outrow];
|
| + for (outcol = 0, outcol_h = 0; outcol < output_cols;
|
| + outcol++, outcol_h += h_expand) {
|
| + outvalue = 0;
|
| + for (v = 0; v < v_expand; v++) {
|
| + inptr = input_data[inrow+v] + outcol_h;
|
| + for (h = 0; h < h_expand; h++) {
|
| + outvalue += (INT32) GETJSAMPLE(*inptr++);
|
| + }
|
| + }
|
| + *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
|
| + }
|
| + inrow += v_expand;
|
| + }
|
| +}
|
| +
|
| +
|
| +/*
|
| + * Downsample pixel values of a single component.
|
| + * This version handles the special case of a full-size component,
|
| + * without smoothing.
|
| + */
|
| +
|
| +METHODDEF(void)
|
| +fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
| + JSAMPARRAY input_data, JSAMPARRAY output_data)
|
| +{
|
| + /* Copy the data */
|
| + jcopy_sample_rows(input_data, 0, output_data, 0,
|
| + cinfo->max_v_samp_factor, cinfo->image_width);
|
| + /* Edge-expand */
|
| + expand_right_edge(output_data, cinfo->max_v_samp_factor,
|
| + cinfo->image_width, compptr->width_in_blocks * DCTSIZE);
|
| +}
|
| +
|
| +
|
| +/*
|
| + * Downsample pixel values of a single component.
|
| + * This version handles the common case of 2:1 horizontal and 1:1 vertical,
|
| + * without smoothing.
|
| + *
|
| + * A note about the "bias" calculations: when rounding fractional values to
|
| + * integer, we do not want to always round 0.5 up to the next integer.
|
| + * If we did that, we'd introduce a noticeable bias towards larger values.
|
| + * Instead, this code is arranged so that 0.5 will be rounded up or down at
|
| + * alternate pixel locations (a simple ordered dither pattern).
|
| + */
|
| +
|
| +METHODDEF(void)
|
| +h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
| + JSAMPARRAY input_data, JSAMPARRAY output_data)
|
| +{
|
| + int outrow;
|
| + JDIMENSION outcol;
|
| + JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
|
| + register JSAMPROW inptr, outptr;
|
| + register int bias;
|
| +
|
| + /* Expand input data enough to let all the output samples be generated
|
| + * by the standard loop. Special-casing padded output would be more
|
| + * efficient.
|
| + */
|
| + expand_right_edge(input_data, cinfo->max_v_samp_factor,
|
| + cinfo->image_width, output_cols * 2);
|
| +
|
| + for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
|
| + outptr = output_data[outrow];
|
| + inptr = input_data[outrow];
|
| + bias = 0; /* bias = 0,1,0,1,... for successive samples */
|
| + for (outcol = 0; outcol < output_cols; outcol++) {
|
| + *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
|
| + + bias) >> 1);
|
| + bias ^= 1; /* 0=>1, 1=>0 */
|
| + inptr += 2;
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +/*
|
| + * Downsample pixel values of a single component.
|
| + * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
|
| + * without smoothing.
|
| + */
|
| +
|
| +METHODDEF(void)
|
| +h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
| + JSAMPARRAY input_data, JSAMPARRAY output_data)
|
| +{
|
| + int inrow, outrow;
|
| + JDIMENSION outcol;
|
| + JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
|
| + register JSAMPROW inptr0, inptr1, outptr;
|
| + register int bias;
|
| +
|
| + /* Expand input data enough to let all the output samples be generated
|
| + * by the standard loop. Special-casing padded output would be more
|
| + * efficient.
|
| + */
|
| + expand_right_edge(input_data, cinfo->max_v_samp_factor,
|
| + cinfo->image_width, output_cols * 2);
|
| +
|
| + inrow = 0;
|
| + for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
|
| + outptr = output_data[outrow];
|
| + inptr0 = input_data[inrow];
|
| + inptr1 = input_data[inrow+1];
|
| + bias = 1; /* bias = 1,2,1,2,... for successive samples */
|
| + for (outcol = 0; outcol < output_cols; outcol++) {
|
| + *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
| + GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
|
| + + bias) >> 2);
|
| + bias ^= 3; /* 1=>2, 2=>1 */
|
| + inptr0 += 2; inptr1 += 2;
|
| + }
|
| + inrow += 2;
|
| + }
|
| +}
|
| +
|
| +
|
| +#ifdef INPUT_SMOOTHING_SUPPORTED
|
| +
|
| +/*
|
| + * Downsample pixel values of a single component.
|
| + * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
|
| + * with smoothing. One row of context is required.
|
| + */
|
| +
|
| +METHODDEF(void)
|
| +h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
| + JSAMPARRAY input_data, JSAMPARRAY output_data)
|
| +{
|
| + int inrow, outrow;
|
| + JDIMENSION colctr;
|
| + JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
|
| + register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
|
| + INT32 membersum, neighsum, memberscale, neighscale;
|
| +
|
| + /* Expand input data enough to let all the output samples be generated
|
| + * by the standard loop. Special-casing padded output would be more
|
| + * efficient.
|
| + */
|
| + expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
|
| + cinfo->image_width, output_cols * 2);
|
| +
|
| + /* We don't bother to form the individual "smoothed" input pixel values;
|
| + * we can directly compute the output which is the average of the four
|
| + * smoothed values. Each of the four member pixels contributes a fraction
|
| + * (1-8*SF) to its own smoothed image and a fraction SF to each of the three
|
| + * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
|
| + * output. The four corner-adjacent neighbor pixels contribute a fraction
|
| + * SF to just one smoothed pixel, or SF/4 to the final output; while the
|
| + * eight edge-adjacent neighbors contribute SF to each of two smoothed
|
| + * pixels, or SF/2 overall. In order to use integer arithmetic, these
|
| + * factors are scaled by 2^16 = 65536.
|
| + * Also recall that SF = smoothing_factor / 1024.
|
| + */
|
| +
|
| + memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
|
| + neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
|
| +
|
| + inrow = 0;
|
| + for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
|
| + outptr = output_data[outrow];
|
| + inptr0 = input_data[inrow];
|
| + inptr1 = input_data[inrow+1];
|
| + above_ptr = input_data[inrow-1];
|
| + below_ptr = input_data[inrow+2];
|
| +
|
| + /* Special case for first column: pretend column -1 is same as column 0 */
|
| + membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
| + GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
|
| + neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
|
| + GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
|
| + GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
|
| + GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
|
| + neighsum += neighsum;
|
| + neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
|
| + GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
|
| + membersum = membersum * memberscale + neighsum * neighscale;
|
| + *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
| + inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
|
| +
|
| + for (colctr = output_cols - 2; colctr > 0; colctr--) {
|
| + /* sum of pixels directly mapped to this output element */
|
| + membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
| + GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
|
| + /* sum of edge-neighbor pixels */
|
| + neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
|
| + GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
|
| + GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
|
| + GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
|
| + /* The edge-neighbors count twice as much as corner-neighbors */
|
| + neighsum += neighsum;
|
| + /* Add in the corner-neighbors */
|
| + neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
|
| + GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
|
| + /* form final output scaled up by 2^16 */
|
| + membersum = membersum * memberscale + neighsum * neighscale;
|
| + /* round, descale and output it */
|
| + *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
| + inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
|
| + }
|
| +
|
| + /* Special case for last column */
|
| + membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
| + GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
|
| + neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
|
| + GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
|
| + GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
|
| + GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
|
| + neighsum += neighsum;
|
| + neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
|
| + GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
|
| + membersum = membersum * memberscale + neighsum * neighscale;
|
| + *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
|
| +
|
| + inrow += 2;
|
| + }
|
| +}
|
| +
|
| +
|
| +/*
|
| + * Downsample pixel values of a single component.
|
| + * This version handles the special case of a full-size component,
|
| + * with smoothing. One row of context is required.
|
| + */
|
| +
|
| +METHODDEF(void)
|
| +fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
|
| + JSAMPARRAY input_data, JSAMPARRAY output_data)
|
| +{
|
| + int outrow;
|
| + JDIMENSION colctr;
|
| + JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
|
| + register JSAMPROW inptr, above_ptr, below_ptr, outptr;
|
| + INT32 membersum, neighsum, memberscale, neighscale;
|
| + int colsum, lastcolsum, nextcolsum;
|
| +
|
| + /* Expand input data enough to let all the output samples be generated
|
| + * by the standard loop. Special-casing padded output would be more
|
| + * efficient.
|
| + */
|
| + expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
|
| + cinfo->image_width, output_cols);
|
| +
|
| + /* Each of the eight neighbor pixels contributes a fraction SF to the
|
| + * smoothed pixel, while the main pixel contributes (1-8*SF). In order
|
| + * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
|
| + * Also recall that SF = smoothing_factor / 1024.
|
| + */
|
| +
|
| + memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
|
| + neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
|
| +
|
| + for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
|
| + outptr = output_data[outrow];
|
| + inptr = input_data[outrow];
|
| + above_ptr = input_data[outrow-1];
|
| + below_ptr = input_data[outrow+1];
|
| +
|
| + /* Special case for first column */
|
| + colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
|
| + GETJSAMPLE(*inptr);
|
| + membersum = GETJSAMPLE(*inptr++);
|
| + nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
|
| + GETJSAMPLE(*inptr);
|
| + neighsum = colsum + (colsum - membersum) + nextcolsum;
|
| + membersum = membersum * memberscale + neighsum * neighscale;
|
| + *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
| + lastcolsum = colsum; colsum = nextcolsum;
|
| +
|
| + for (colctr = output_cols - 2; colctr > 0; colctr--) {
|
| + membersum = GETJSAMPLE(*inptr++);
|
| + above_ptr++; below_ptr++;
|
| + nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
|
| + GETJSAMPLE(*inptr);
|
| + neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
|
| + membersum = membersum * memberscale + neighsum * neighscale;
|
| + *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
| + lastcolsum = colsum; colsum = nextcolsum;
|
| + }
|
| +
|
| + /* Special case for last column */
|
| + membersum = GETJSAMPLE(*inptr);
|
| + neighsum = lastcolsum + (colsum - membersum) + colsum;
|
| + membersum = membersum * memberscale + neighsum * neighscale;
|
| + *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
|
| +
|
| + }
|
| +}
|
| +
|
| +#endif /* INPUT_SMOOTHING_SUPPORTED */
|
| +
|
| +
|
| +/*
|
| + * Module initialization routine for downsampling.
|
| + * Note that we must select a routine for each component.
|
| + */
|
| +
|
| +GLOBAL(void)
|
| +jinit_downsampler (j_compress_ptr cinfo)
|
| +{
|
| + my_downsample_ptr downsample;
|
| + int ci;
|
| + jpeg_component_info * compptr;
|
| + boolean smoothok = TRUE;
|
| +
|
| + downsample = (my_downsample_ptr)
|
| + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
| + SIZEOF(my_downsampler));
|
| + cinfo->downsample = (struct jpeg_downsampler *) downsample;
|
| + downsample->pub.start_pass = start_pass_downsample;
|
| + downsample->pub.downsample = sep_downsample;
|
| + downsample->pub.need_context_rows = FALSE;
|
| +
|
| + if (cinfo->CCIR601_sampling)
|
| + ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
|
| +
|
| + /* Verify we can handle the sampling factors, and set up method pointers */
|
| + for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
| + ci++, compptr++) {
|
| + if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&
|
| + compptr->v_samp_factor == cinfo->max_v_samp_factor) {
|
| +#ifdef INPUT_SMOOTHING_SUPPORTED
|
| + if (cinfo->smoothing_factor) {
|
| + downsample->methods[ci] = fullsize_smooth_downsample;
|
| + downsample->pub.need_context_rows = TRUE;
|
| + } else
|
| +#endif
|
| + downsample->methods[ci] = fullsize_downsample;
|
| + } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
|
| + compptr->v_samp_factor == cinfo->max_v_samp_factor) {
|
| + smoothok = FALSE;
|
| + if (jsimd_can_h2v1_downsample())
|
| + downsample->methods[ci] = jsimd_h2v1_downsample;
|
| + else
|
| + downsample->methods[ci] = h2v1_downsample;
|
| + } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
|
| + compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {
|
| +#ifdef INPUT_SMOOTHING_SUPPORTED
|
| + if (cinfo->smoothing_factor) {
|
| + downsample->methods[ci] = h2v2_smooth_downsample;
|
| + downsample->pub.need_context_rows = TRUE;
|
| + } else
|
| +#endif
|
| + if (jsimd_can_h2v2_downsample())
|
| + downsample->methods[ci] = jsimd_h2v2_downsample;
|
| + else
|
| + downsample->methods[ci] = h2v2_downsample;
|
| + } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
|
| + (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {
|
| + smoothok = FALSE;
|
| + downsample->methods[ci] = int_downsample;
|
| + } else
|
| + ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
|
| + }
|
| +
|
| +#ifdef INPUT_SMOOTHING_SUPPORTED
|
| + if (cinfo->smoothing_factor && !smoothok)
|
| + TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
|
| +#endif
|
| +}
|
|
|