Index: third_party/libjpeg_turbo/jcsample.c |
=================================================================== |
--- third_party/libjpeg_turbo/jcsample.c (revision 0) |
+++ third_party/libjpeg_turbo/jcsample.c (revision 0) |
@@ -0,0 +1,527 @@ |
+/* |
+ * jcsample.c |
+ * |
+ * Copyright (C) 1991-1996, Thomas G. Lane. |
+ * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
+ * This file is part of the Independent JPEG Group's software. |
+ * For conditions of distribution and use, see the accompanying README file. |
+ * |
+ * This file contains downsampling routines. |
+ * |
+ * Downsampling input data is counted in "row groups". A row group |
+ * is defined to be max_v_samp_factor pixel rows of each component, |
+ * from which the downsampler produces v_samp_factor sample rows. |
+ * A single row group is processed in each call to the downsampler module. |
+ * |
+ * The downsampler is responsible for edge-expansion of its output data |
+ * to fill an integral number of DCT blocks horizontally. The source buffer |
+ * may be modified if it is helpful for this purpose (the source buffer is |
+ * allocated wide enough to correspond to the desired output width). |
+ * The caller (the prep controller) is responsible for vertical padding. |
+ * |
+ * The downsampler may request "context rows" by setting need_context_rows |
+ * during startup. In this case, the input arrays will contain at least |
+ * one row group's worth of pixels above and below the passed-in data; |
+ * the caller will create dummy rows at image top and bottom by replicating |
+ * the first or last real pixel row. |
+ * |
+ * An excellent reference for image resampling is |
+ * Digital Image Warping, George Wolberg, 1990. |
+ * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. |
+ * |
+ * The downsampling algorithm used here is a simple average of the source |
+ * pixels covered by the output pixel. The hi-falutin sampling literature |
+ * refers to this as a "box filter". In general the characteristics of a box |
+ * filter are not very good, but for the specific cases we normally use (1:1 |
+ * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not |
+ * nearly so bad. If you intend to use other sampling ratios, you'd be well |
+ * advised to improve this code. |
+ * |
+ * A simple input-smoothing capability is provided. This is mainly intended |
+ * for cleaning up color-dithered GIF input files (if you find it inadequate, |
+ * we suggest using an external filtering program such as pnmconvol). When |
+ * enabled, each input pixel P is replaced by a weighted sum of itself and its |
+ * eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF, |
+ * where SF = (smoothing_factor / 1024). |
+ * Currently, smoothing is only supported for 2h2v sampling factors. |
+ */ |
+ |
+#define JPEG_INTERNALS |
+#include "jinclude.h" |
+#include "jpeglib.h" |
+#include "jsimd.h" |
+ |
+ |
+/* Pointer to routine to downsample a single component */ |
+typedef JMETHOD(void, downsample1_ptr, |
+ (j_compress_ptr cinfo, jpeg_component_info * compptr, |
+ JSAMPARRAY input_data, JSAMPARRAY output_data)); |
+ |
+/* Private subobject */ |
+ |
+typedef struct { |
+ struct jpeg_downsampler pub; /* public fields */ |
+ |
+ /* Downsampling method pointers, one per component */ |
+ downsample1_ptr methods[MAX_COMPONENTS]; |
+} my_downsampler; |
+ |
+typedef my_downsampler * my_downsample_ptr; |
+ |
+ |
+/* |
+ * Initialize for a downsampling pass. |
+ */ |
+ |
+METHODDEF(void) |
+start_pass_downsample (j_compress_ptr cinfo) |
+{ |
+ /* no work for now */ |
+} |
+ |
+ |
+/* |
+ * Expand a component horizontally from width input_cols to width output_cols, |
+ * by duplicating the rightmost samples. |
+ */ |
+ |
+LOCAL(void) |
+expand_right_edge (JSAMPARRAY image_data, int num_rows, |
+ JDIMENSION input_cols, JDIMENSION output_cols) |
+{ |
+ register JSAMPROW ptr; |
+ register JSAMPLE pixval; |
+ register int count; |
+ int row; |
+ int numcols = (int) (output_cols - input_cols); |
+ |
+ if (numcols > 0) { |
+ for (row = 0; row < num_rows; row++) { |
+ ptr = image_data[row] + input_cols; |
+ pixval = ptr[-1]; /* don't need GETJSAMPLE() here */ |
+ for (count = numcols; count > 0; count--) |
+ *ptr++ = pixval; |
+ } |
+ } |
+} |
+ |
+ |
+/* |
+ * Do downsampling for a whole row group (all components). |
+ * |
+ * In this version we simply downsample each component independently. |
+ */ |
+ |
+METHODDEF(void) |
+sep_downsample (j_compress_ptr cinfo, |
+ JSAMPIMAGE input_buf, JDIMENSION in_row_index, |
+ JSAMPIMAGE output_buf, JDIMENSION out_row_group_index) |
+{ |
+ my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; |
+ int ci; |
+ jpeg_component_info * compptr; |
+ JSAMPARRAY in_ptr, out_ptr; |
+ |
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
+ ci++, compptr++) { |
+ in_ptr = input_buf[ci] + in_row_index; |
+ out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor); |
+ (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr); |
+ } |
+} |
+ |
+ |
+/* |
+ * Downsample pixel values of a single component. |
+ * One row group is processed per call. |
+ * This version handles arbitrary integral sampling ratios, without smoothing. |
+ * Note that this version is not actually used for customary sampling ratios. |
+ */ |
+ |
+METHODDEF(void) |
+int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
+ JSAMPARRAY input_data, JSAMPARRAY output_data) |
+{ |
+ int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v; |
+ JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */ |
+ JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
+ JSAMPROW inptr, outptr; |
+ INT32 outvalue; |
+ |
+ h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor; |
+ v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor; |
+ numpix = h_expand * v_expand; |
+ numpix2 = numpix/2; |
+ |
+ /* Expand input data enough to let all the output samples be generated |
+ * by the standard loop. Special-casing padded output would be more |
+ * efficient. |
+ */ |
+ expand_right_edge(input_data, cinfo->max_v_samp_factor, |
+ cinfo->image_width, output_cols * h_expand); |
+ |
+ inrow = 0; |
+ for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
+ outptr = output_data[outrow]; |
+ for (outcol = 0, outcol_h = 0; outcol < output_cols; |
+ outcol++, outcol_h += h_expand) { |
+ outvalue = 0; |
+ for (v = 0; v < v_expand; v++) { |
+ inptr = input_data[inrow+v] + outcol_h; |
+ for (h = 0; h < h_expand; h++) { |
+ outvalue += (INT32) GETJSAMPLE(*inptr++); |
+ } |
+ } |
+ *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix); |
+ } |
+ inrow += v_expand; |
+ } |
+} |
+ |
+ |
+/* |
+ * Downsample pixel values of a single component. |
+ * This version handles the special case of a full-size component, |
+ * without smoothing. |
+ */ |
+ |
+METHODDEF(void) |
+fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
+ JSAMPARRAY input_data, JSAMPARRAY output_data) |
+{ |
+ /* Copy the data */ |
+ jcopy_sample_rows(input_data, 0, output_data, 0, |
+ cinfo->max_v_samp_factor, cinfo->image_width); |
+ /* Edge-expand */ |
+ expand_right_edge(output_data, cinfo->max_v_samp_factor, |
+ cinfo->image_width, compptr->width_in_blocks * DCTSIZE); |
+} |
+ |
+ |
+/* |
+ * Downsample pixel values of a single component. |
+ * This version handles the common case of 2:1 horizontal and 1:1 vertical, |
+ * without smoothing. |
+ * |
+ * A note about the "bias" calculations: when rounding fractional values to |
+ * integer, we do not want to always round 0.5 up to the next integer. |
+ * If we did that, we'd introduce a noticeable bias towards larger values. |
+ * Instead, this code is arranged so that 0.5 will be rounded up or down at |
+ * alternate pixel locations (a simple ordered dither pattern). |
+ */ |
+ |
+METHODDEF(void) |
+h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
+ JSAMPARRAY input_data, JSAMPARRAY output_data) |
+{ |
+ int outrow; |
+ JDIMENSION outcol; |
+ JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
+ register JSAMPROW inptr, outptr; |
+ register int bias; |
+ |
+ /* Expand input data enough to let all the output samples be generated |
+ * by the standard loop. Special-casing padded output would be more |
+ * efficient. |
+ */ |
+ expand_right_edge(input_data, cinfo->max_v_samp_factor, |
+ cinfo->image_width, output_cols * 2); |
+ |
+ for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
+ outptr = output_data[outrow]; |
+ inptr = input_data[outrow]; |
+ bias = 0; /* bias = 0,1,0,1,... for successive samples */ |
+ for (outcol = 0; outcol < output_cols; outcol++) { |
+ *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1]) |
+ + bias) >> 1); |
+ bias ^= 1; /* 0=>1, 1=>0 */ |
+ inptr += 2; |
+ } |
+ } |
+} |
+ |
+ |
+/* |
+ * Downsample pixel values of a single component. |
+ * This version handles the standard case of 2:1 horizontal and 2:1 vertical, |
+ * without smoothing. |
+ */ |
+ |
+METHODDEF(void) |
+h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
+ JSAMPARRAY input_data, JSAMPARRAY output_data) |
+{ |
+ int inrow, outrow; |
+ JDIMENSION outcol; |
+ JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
+ register JSAMPROW inptr0, inptr1, outptr; |
+ register int bias; |
+ |
+ /* Expand input data enough to let all the output samples be generated |
+ * by the standard loop. Special-casing padded output would be more |
+ * efficient. |
+ */ |
+ expand_right_edge(input_data, cinfo->max_v_samp_factor, |
+ cinfo->image_width, output_cols * 2); |
+ |
+ inrow = 0; |
+ for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
+ outptr = output_data[outrow]; |
+ inptr0 = input_data[inrow]; |
+ inptr1 = input_data[inrow+1]; |
+ bias = 1; /* bias = 1,2,1,2,... for successive samples */ |
+ for (outcol = 0; outcol < output_cols; outcol++) { |
+ *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
+ GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]) |
+ + bias) >> 2); |
+ bias ^= 3; /* 1=>2, 2=>1 */ |
+ inptr0 += 2; inptr1 += 2; |
+ } |
+ inrow += 2; |
+ } |
+} |
+ |
+ |
+#ifdef INPUT_SMOOTHING_SUPPORTED |
+ |
+/* |
+ * Downsample pixel values of a single component. |
+ * This version handles the standard case of 2:1 horizontal and 2:1 vertical, |
+ * with smoothing. One row of context is required. |
+ */ |
+ |
+METHODDEF(void) |
+h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
+ JSAMPARRAY input_data, JSAMPARRAY output_data) |
+{ |
+ int inrow, outrow; |
+ JDIMENSION colctr; |
+ JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
+ register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr; |
+ INT32 membersum, neighsum, memberscale, neighscale; |
+ |
+ /* Expand input data enough to let all the output samples be generated |
+ * by the standard loop. Special-casing padded output would be more |
+ * efficient. |
+ */ |
+ expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, |
+ cinfo->image_width, output_cols * 2); |
+ |
+ /* We don't bother to form the individual "smoothed" input pixel values; |
+ * we can directly compute the output which is the average of the four |
+ * smoothed values. Each of the four member pixels contributes a fraction |
+ * (1-8*SF) to its own smoothed image and a fraction SF to each of the three |
+ * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final |
+ * output. The four corner-adjacent neighbor pixels contribute a fraction |
+ * SF to just one smoothed pixel, or SF/4 to the final output; while the |
+ * eight edge-adjacent neighbors contribute SF to each of two smoothed |
+ * pixels, or SF/2 overall. In order to use integer arithmetic, these |
+ * factors are scaled by 2^16 = 65536. |
+ * Also recall that SF = smoothing_factor / 1024. |
+ */ |
+ |
+ memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */ |
+ neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */ |
+ |
+ inrow = 0; |
+ for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
+ outptr = output_data[outrow]; |
+ inptr0 = input_data[inrow]; |
+ inptr1 = input_data[inrow+1]; |
+ above_ptr = input_data[inrow-1]; |
+ below_ptr = input_data[inrow+2]; |
+ |
+ /* Special case for first column: pretend column -1 is same as column 0 */ |
+ membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
+ GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
+ neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
+ GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
+ GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) + |
+ GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]); |
+ neighsum += neighsum; |
+ neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) + |
+ GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]); |
+ membersum = membersum * memberscale + neighsum * neighscale; |
+ *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
+ inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; |
+ |
+ for (colctr = output_cols - 2; colctr > 0; colctr--) { |
+ /* sum of pixels directly mapped to this output element */ |
+ membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
+ GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
+ /* sum of edge-neighbor pixels */ |
+ neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
+ GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
+ GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) + |
+ GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]); |
+ /* The edge-neighbors count twice as much as corner-neighbors */ |
+ neighsum += neighsum; |
+ /* Add in the corner-neighbors */ |
+ neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) + |
+ GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]); |
+ /* form final output scaled up by 2^16 */ |
+ membersum = membersum * memberscale + neighsum * neighscale; |
+ /* round, descale and output it */ |
+ *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
+ inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; |
+ } |
+ |
+ /* Special case for last column */ |
+ membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
+ GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
+ neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
+ GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
+ GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) + |
+ GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]); |
+ neighsum += neighsum; |
+ neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) + |
+ GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]); |
+ membersum = membersum * memberscale + neighsum * neighscale; |
+ *outptr = (JSAMPLE) ((membersum + 32768) >> 16); |
+ |
+ inrow += 2; |
+ } |
+} |
+ |
+ |
+/* |
+ * Downsample pixel values of a single component. |
+ * This version handles the special case of a full-size component, |
+ * with smoothing. One row of context is required. |
+ */ |
+ |
+METHODDEF(void) |
+fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, |
+ JSAMPARRAY input_data, JSAMPARRAY output_data) |
+{ |
+ int outrow; |
+ JDIMENSION colctr; |
+ JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
+ register JSAMPROW inptr, above_ptr, below_ptr, outptr; |
+ INT32 membersum, neighsum, memberscale, neighscale; |
+ int colsum, lastcolsum, nextcolsum; |
+ |
+ /* Expand input data enough to let all the output samples be generated |
+ * by the standard loop. Special-casing padded output would be more |
+ * efficient. |
+ */ |
+ expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, |
+ cinfo->image_width, output_cols); |
+ |
+ /* Each of the eight neighbor pixels contributes a fraction SF to the |
+ * smoothed pixel, while the main pixel contributes (1-8*SF). In order |
+ * to use integer arithmetic, these factors are multiplied by 2^16 = 65536. |
+ * Also recall that SF = smoothing_factor / 1024. |
+ */ |
+ |
+ memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */ |
+ neighscale = cinfo->smoothing_factor * 64; /* scaled SF */ |
+ |
+ for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
+ outptr = output_data[outrow]; |
+ inptr = input_data[outrow]; |
+ above_ptr = input_data[outrow-1]; |
+ below_ptr = input_data[outrow+1]; |
+ |
+ /* Special case for first column */ |
+ colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) + |
+ GETJSAMPLE(*inptr); |
+ membersum = GETJSAMPLE(*inptr++); |
+ nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + |
+ GETJSAMPLE(*inptr); |
+ neighsum = colsum + (colsum - membersum) + nextcolsum; |
+ membersum = membersum * memberscale + neighsum * neighscale; |
+ *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
+ lastcolsum = colsum; colsum = nextcolsum; |
+ |
+ for (colctr = output_cols - 2; colctr > 0; colctr--) { |
+ membersum = GETJSAMPLE(*inptr++); |
+ above_ptr++; below_ptr++; |
+ nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + |
+ GETJSAMPLE(*inptr); |
+ neighsum = lastcolsum + (colsum - membersum) + nextcolsum; |
+ membersum = membersum * memberscale + neighsum * neighscale; |
+ *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
+ lastcolsum = colsum; colsum = nextcolsum; |
+ } |
+ |
+ /* Special case for last column */ |
+ membersum = GETJSAMPLE(*inptr); |
+ neighsum = lastcolsum + (colsum - membersum) + colsum; |
+ membersum = membersum * memberscale + neighsum * neighscale; |
+ *outptr = (JSAMPLE) ((membersum + 32768) >> 16); |
+ |
+ } |
+} |
+ |
+#endif /* INPUT_SMOOTHING_SUPPORTED */ |
+ |
+ |
+/* |
+ * Module initialization routine for downsampling. |
+ * Note that we must select a routine for each component. |
+ */ |
+ |
+GLOBAL(void) |
+jinit_downsampler (j_compress_ptr cinfo) |
+{ |
+ my_downsample_ptr downsample; |
+ int ci; |
+ jpeg_component_info * compptr; |
+ boolean smoothok = TRUE; |
+ |
+ downsample = (my_downsample_ptr) |
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
+ SIZEOF(my_downsampler)); |
+ cinfo->downsample = (struct jpeg_downsampler *) downsample; |
+ downsample->pub.start_pass = start_pass_downsample; |
+ downsample->pub.downsample = sep_downsample; |
+ downsample->pub.need_context_rows = FALSE; |
+ |
+ if (cinfo->CCIR601_sampling) |
+ ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); |
+ |
+ /* Verify we can handle the sampling factors, and set up method pointers */ |
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
+ ci++, compptr++) { |
+ if (compptr->h_samp_factor == cinfo->max_h_samp_factor && |
+ compptr->v_samp_factor == cinfo->max_v_samp_factor) { |
+#ifdef INPUT_SMOOTHING_SUPPORTED |
+ if (cinfo->smoothing_factor) { |
+ downsample->methods[ci] = fullsize_smooth_downsample; |
+ downsample->pub.need_context_rows = TRUE; |
+ } else |
+#endif |
+ downsample->methods[ci] = fullsize_downsample; |
+ } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor && |
+ compptr->v_samp_factor == cinfo->max_v_samp_factor) { |
+ smoothok = FALSE; |
+ if (jsimd_can_h2v1_downsample()) |
+ downsample->methods[ci] = jsimd_h2v1_downsample; |
+ else |
+ downsample->methods[ci] = h2v1_downsample; |
+ } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor && |
+ compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) { |
+#ifdef INPUT_SMOOTHING_SUPPORTED |
+ if (cinfo->smoothing_factor) { |
+ downsample->methods[ci] = h2v2_smooth_downsample; |
+ downsample->pub.need_context_rows = TRUE; |
+ } else |
+#endif |
+ if (jsimd_can_h2v2_downsample()) |
+ downsample->methods[ci] = jsimd_h2v2_downsample; |
+ else |
+ downsample->methods[ci] = h2v2_downsample; |
+ } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 && |
+ (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) { |
+ smoothok = FALSE; |
+ downsample->methods[ci] = int_downsample; |
+ } else |
+ ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); |
+ } |
+ |
+#ifdef INPUT_SMOOTHING_SUPPORTED |
+ if (cinfo->smoothing_factor && !smoothok) |
+ TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL); |
+#endif |
+} |