OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * jcsample.c |
| 3 * |
| 4 * Copyright (C) 1991-1996, Thomas G. Lane. |
| 5 * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
| 6 * This file is part of the Independent JPEG Group's software. |
| 7 * For conditions of distribution and use, see the accompanying README file. |
| 8 * |
| 9 * This file contains downsampling routines. |
| 10 * |
| 11 * Downsampling input data is counted in "row groups". A row group |
| 12 * is defined to be max_v_samp_factor pixel rows of each component, |
| 13 * from which the downsampler produces v_samp_factor sample rows. |
| 14 * A single row group is processed in each call to the downsampler module. |
| 15 * |
| 16 * The downsampler is responsible for edge-expansion of its output data |
| 17 * to fill an integral number of DCT blocks horizontally. The source buffer |
| 18 * may be modified if it is helpful for this purpose (the source buffer is |
| 19 * allocated wide enough to correspond to the desired output width). |
| 20 * The caller (the prep controller) is responsible for vertical padding. |
| 21 * |
| 22 * The downsampler may request "context rows" by setting need_context_rows |
| 23 * during startup. In this case, the input arrays will contain at least |
| 24 * one row group's worth of pixels above and below the passed-in data; |
| 25 * the caller will create dummy rows at image top and bottom by replicating |
| 26 * the first or last real pixel row. |
| 27 * |
| 28 * An excellent reference for image resampling is |
| 29 * Digital Image Warping, George Wolberg, 1990. |
| 30 * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. |
| 31 * |
| 32 * The downsampling algorithm used here is a simple average of the source |
| 33 * pixels covered by the output pixel. The hi-falutin sampling literature |
| 34 * refers to this as a "box filter". In general the characteristics of a box |
| 35 * filter are not very good, but for the specific cases we normally use (1:1 |
| 36 * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not |
| 37 * nearly so bad. If you intend to use other sampling ratios, you'd be well |
| 38 * advised to improve this code. |
| 39 * |
| 40 * A simple input-smoothing capability is provided. This is mainly intended |
| 41 * for cleaning up color-dithered GIF input files (if you find it inadequate, |
| 42 * we suggest using an external filtering program such as pnmconvol). When |
| 43 * enabled, each input pixel P is replaced by a weighted sum of itself and its |
| 44 * eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF, |
| 45 * where SF = (smoothing_factor / 1024). |
| 46 * Currently, smoothing is only supported for 2h2v sampling factors. |
| 47 */ |
| 48 |
| 49 #define JPEG_INTERNALS |
| 50 #include "jinclude.h" |
| 51 #include "jpeglib.h" |
| 52 #include "jsimd.h" |
| 53 |
| 54 |
| 55 /* Pointer to routine to downsample a single component */ |
| 56 typedef JMETHOD(void, downsample1_ptr, |
| 57 (j_compress_ptr cinfo, jpeg_component_info * compptr, |
| 58 JSAMPARRAY input_data, JSAMPARRAY output_data)); |
| 59 |
| 60 /* Private subobject */ |
| 61 |
| 62 typedef struct { |
| 63 struct jpeg_downsampler pub; /* public fields */ |
| 64 |
| 65 /* Downsampling method pointers, one per component */ |
| 66 downsample1_ptr methods[MAX_COMPONENTS]; |
| 67 } my_downsampler; |
| 68 |
| 69 typedef my_downsampler * my_downsample_ptr; |
| 70 |
| 71 |
| 72 /* |
| 73 * Initialize for a downsampling pass. |
| 74 */ |
| 75 |
| 76 METHODDEF(void) |
| 77 start_pass_downsample (j_compress_ptr cinfo) |
| 78 { |
| 79 /* no work for now */ |
| 80 } |
| 81 |
| 82 |
| 83 /* |
| 84 * Expand a component horizontally from width input_cols to width output_cols, |
| 85 * by duplicating the rightmost samples. |
| 86 */ |
| 87 |
| 88 LOCAL(void) |
| 89 expand_right_edge (JSAMPARRAY image_data, int num_rows, |
| 90 JDIMENSION input_cols, JDIMENSION output_cols) |
| 91 { |
| 92 register JSAMPROW ptr; |
| 93 register JSAMPLE pixval; |
| 94 register int count; |
| 95 int row; |
| 96 int numcols = (int) (output_cols - input_cols); |
| 97 |
| 98 if (numcols > 0) { |
| 99 for (row = 0; row < num_rows; row++) { |
| 100 ptr = image_data[row] + input_cols; |
| 101 pixval = ptr[-1]; /* don't need GETJSAMPLE() here */ |
| 102 for (count = numcols; count > 0; count--) |
| 103 *ptr++ = pixval; |
| 104 } |
| 105 } |
| 106 } |
| 107 |
| 108 |
| 109 /* |
| 110 * Do downsampling for a whole row group (all components). |
| 111 * |
| 112 * In this version we simply downsample each component independently. |
| 113 */ |
| 114 |
| 115 METHODDEF(void) |
| 116 sep_downsample (j_compress_ptr cinfo, |
| 117 JSAMPIMAGE input_buf, JDIMENSION in_row_index, |
| 118 JSAMPIMAGE output_buf, JDIMENSION out_row_group_index) |
| 119 { |
| 120 my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; |
| 121 int ci; |
| 122 jpeg_component_info * compptr; |
| 123 JSAMPARRAY in_ptr, out_ptr; |
| 124 |
| 125 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
| 126 ci++, compptr++) { |
| 127 in_ptr = input_buf[ci] + in_row_index; |
| 128 out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor); |
| 129 (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr); |
| 130 } |
| 131 } |
| 132 |
| 133 |
| 134 /* |
| 135 * Downsample pixel values of a single component. |
| 136 * One row group is processed per call. |
| 137 * This version handles arbitrary integral sampling ratios, without smoothing. |
| 138 * Note that this version is not actually used for customary sampling ratios. |
| 139 */ |
| 140 |
| 141 METHODDEF(void) |
| 142 int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
| 143 JSAMPARRAY input_data, JSAMPARRAY output_data) |
| 144 { |
| 145 int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v; |
| 146 JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */ |
| 147 JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
| 148 JSAMPROW inptr, outptr; |
| 149 INT32 outvalue; |
| 150 |
| 151 h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor; |
| 152 v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor; |
| 153 numpix = h_expand * v_expand; |
| 154 numpix2 = numpix/2; |
| 155 |
| 156 /* Expand input data enough to let all the output samples be generated |
| 157 * by the standard loop. Special-casing padded output would be more |
| 158 * efficient. |
| 159 */ |
| 160 expand_right_edge(input_data, cinfo->max_v_samp_factor, |
| 161 cinfo->image_width, output_cols * h_expand); |
| 162 |
| 163 inrow = 0; |
| 164 for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
| 165 outptr = output_data[outrow]; |
| 166 for (outcol = 0, outcol_h = 0; outcol < output_cols; |
| 167 outcol++, outcol_h += h_expand) { |
| 168 outvalue = 0; |
| 169 for (v = 0; v < v_expand; v++) { |
| 170 inptr = input_data[inrow+v] + outcol_h; |
| 171 for (h = 0; h < h_expand; h++) { |
| 172 outvalue += (INT32) GETJSAMPLE(*inptr++); |
| 173 } |
| 174 } |
| 175 *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix); |
| 176 } |
| 177 inrow += v_expand; |
| 178 } |
| 179 } |
| 180 |
| 181 |
| 182 /* |
| 183 * Downsample pixel values of a single component. |
| 184 * This version handles the special case of a full-size component, |
| 185 * without smoothing. |
| 186 */ |
| 187 |
| 188 METHODDEF(void) |
| 189 fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
| 190 JSAMPARRAY input_data, JSAMPARRAY output_data) |
| 191 { |
| 192 /* Copy the data */ |
| 193 jcopy_sample_rows(input_data, 0, output_data, 0, |
| 194 cinfo->max_v_samp_factor, cinfo->image_width); |
| 195 /* Edge-expand */ |
| 196 expand_right_edge(output_data, cinfo->max_v_samp_factor, |
| 197 cinfo->image_width, compptr->width_in_blocks * DCTSIZE); |
| 198 } |
| 199 |
| 200 |
| 201 /* |
| 202 * Downsample pixel values of a single component. |
| 203 * This version handles the common case of 2:1 horizontal and 1:1 vertical, |
| 204 * without smoothing. |
| 205 * |
| 206 * A note about the "bias" calculations: when rounding fractional values to |
| 207 * integer, we do not want to always round 0.5 up to the next integer. |
| 208 * If we did that, we'd introduce a noticeable bias towards larger values. |
| 209 * Instead, this code is arranged so that 0.5 will be rounded up or down at |
| 210 * alternate pixel locations (a simple ordered dither pattern). |
| 211 */ |
| 212 |
| 213 METHODDEF(void) |
| 214 h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
| 215 JSAMPARRAY input_data, JSAMPARRAY output_data) |
| 216 { |
| 217 int outrow; |
| 218 JDIMENSION outcol; |
| 219 JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
| 220 register JSAMPROW inptr, outptr; |
| 221 register int bias; |
| 222 |
| 223 /* Expand input data enough to let all the output samples be generated |
| 224 * by the standard loop. Special-casing padded output would be more |
| 225 * efficient. |
| 226 */ |
| 227 expand_right_edge(input_data, cinfo->max_v_samp_factor, |
| 228 cinfo->image_width, output_cols * 2); |
| 229 |
| 230 for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
| 231 outptr = output_data[outrow]; |
| 232 inptr = input_data[outrow]; |
| 233 bias = 0; /* bias = 0,1,0,1,... for successive samples */ |
| 234 for (outcol = 0; outcol < output_cols; outcol++) { |
| 235 *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1]) |
| 236 + bias) >> 1); |
| 237 bias ^= 1; /* 0=>1, 1=>0 */ |
| 238 inptr += 2; |
| 239 } |
| 240 } |
| 241 } |
| 242 |
| 243 |
| 244 /* |
| 245 * Downsample pixel values of a single component. |
| 246 * This version handles the standard case of 2:1 horizontal and 2:1 vertical, |
| 247 * without smoothing. |
| 248 */ |
| 249 |
| 250 METHODDEF(void) |
| 251 h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
| 252 JSAMPARRAY input_data, JSAMPARRAY output_data) |
| 253 { |
| 254 int inrow, outrow; |
| 255 JDIMENSION outcol; |
| 256 JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
| 257 register JSAMPROW inptr0, inptr1, outptr; |
| 258 register int bias; |
| 259 |
| 260 /* Expand input data enough to let all the output samples be generated |
| 261 * by the standard loop. Special-casing padded output would be more |
| 262 * efficient. |
| 263 */ |
| 264 expand_right_edge(input_data, cinfo->max_v_samp_factor, |
| 265 cinfo->image_width, output_cols * 2); |
| 266 |
| 267 inrow = 0; |
| 268 for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
| 269 outptr = output_data[outrow]; |
| 270 inptr0 = input_data[inrow]; |
| 271 inptr1 = input_data[inrow+1]; |
| 272 bias = 1; /* bias = 1,2,1,2,... for successive samples */ |
| 273 for (outcol = 0; outcol < output_cols; outcol++) { |
| 274 *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
| 275 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]) |
| 276 + bias) >> 2); |
| 277 bias ^= 3; /* 1=>2, 2=>1 */ |
| 278 inptr0 += 2; inptr1 += 2; |
| 279 } |
| 280 inrow += 2; |
| 281 } |
| 282 } |
| 283 |
| 284 |
| 285 #ifdef INPUT_SMOOTHING_SUPPORTED |
| 286 |
| 287 /* |
| 288 * Downsample pixel values of a single component. |
| 289 * This version handles the standard case of 2:1 horizontal and 2:1 vertical, |
| 290 * with smoothing. One row of context is required. |
| 291 */ |
| 292 |
| 293 METHODDEF(void) |
| 294 h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
| 295 JSAMPARRAY input_data, JSAMPARRAY output_data) |
| 296 { |
| 297 int inrow, outrow; |
| 298 JDIMENSION colctr; |
| 299 JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
| 300 register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr; |
| 301 INT32 membersum, neighsum, memberscale, neighscale; |
| 302 |
| 303 /* Expand input data enough to let all the output samples be generated |
| 304 * by the standard loop. Special-casing padded output would be more |
| 305 * efficient. |
| 306 */ |
| 307 expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, |
| 308 cinfo->image_width, output_cols * 2); |
| 309 |
| 310 /* We don't bother to form the individual "smoothed" input pixel values; |
| 311 * we can directly compute the output which is the average of the four |
| 312 * smoothed values. Each of the four member pixels contributes a fraction |
| 313 * (1-8*SF) to its own smoothed image and a fraction SF to each of the three |
| 314 * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final |
| 315 * output. The four corner-adjacent neighbor pixels contribute a fraction |
| 316 * SF to just one smoothed pixel, or SF/4 to the final output; while the |
| 317 * eight edge-adjacent neighbors contribute SF to each of two smoothed |
| 318 * pixels, or SF/2 overall. In order to use integer arithmetic, these |
| 319 * factors are scaled by 2^16 = 65536. |
| 320 * Also recall that SF = smoothing_factor / 1024. |
| 321 */ |
| 322 |
| 323 memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */ |
| 324 neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */ |
| 325 |
| 326 inrow = 0; |
| 327 for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
| 328 outptr = output_data[outrow]; |
| 329 inptr0 = input_data[inrow]; |
| 330 inptr1 = input_data[inrow+1]; |
| 331 above_ptr = input_data[inrow-1]; |
| 332 below_ptr = input_data[inrow+2]; |
| 333 |
| 334 /* Special case for first column: pretend column -1 is same as column 0 */ |
| 335 membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
| 336 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
| 337 neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
| 338 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
| 339 GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) + |
| 340 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]); |
| 341 neighsum += neighsum; |
| 342 neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) + |
| 343 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]); |
| 344 membersum = membersum * memberscale + neighsum * neighscale; |
| 345 *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
| 346 inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; |
| 347 |
| 348 for (colctr = output_cols - 2; colctr > 0; colctr--) { |
| 349 /* sum of pixels directly mapped to this output element */ |
| 350 membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
| 351 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
| 352 /* sum of edge-neighbor pixels */ |
| 353 neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
| 354 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
| 355 GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) + |
| 356 GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]); |
| 357 /* The edge-neighbors count twice as much as corner-neighbors */ |
| 358 neighsum += neighsum; |
| 359 /* Add in the corner-neighbors */ |
| 360 neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) + |
| 361 GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]); |
| 362 /* form final output scaled up by 2^16 */ |
| 363 membersum = membersum * memberscale + neighsum * neighscale; |
| 364 /* round, descale and output it */ |
| 365 *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
| 366 inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; |
| 367 } |
| 368 |
| 369 /* Special case for last column */ |
| 370 membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
| 371 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
| 372 neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
| 373 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
| 374 GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) + |
| 375 GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]); |
| 376 neighsum += neighsum; |
| 377 neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) + |
| 378 GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]); |
| 379 membersum = membersum * memberscale + neighsum * neighscale; |
| 380 *outptr = (JSAMPLE) ((membersum + 32768) >> 16); |
| 381 |
| 382 inrow += 2; |
| 383 } |
| 384 } |
| 385 |
| 386 |
| 387 /* |
| 388 * Downsample pixel values of a single component. |
| 389 * This version handles the special case of a full-size component, |
| 390 * with smoothing. One row of context is required. |
| 391 */ |
| 392 |
| 393 METHODDEF(void) |
| 394 fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, |
| 395 JSAMPARRAY input_data, JSAMPARRAY output_data) |
| 396 { |
| 397 int outrow; |
| 398 JDIMENSION colctr; |
| 399 JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; |
| 400 register JSAMPROW inptr, above_ptr, below_ptr, outptr; |
| 401 INT32 membersum, neighsum, memberscale, neighscale; |
| 402 int colsum, lastcolsum, nextcolsum; |
| 403 |
| 404 /* Expand input data enough to let all the output samples be generated |
| 405 * by the standard loop. Special-casing padded output would be more |
| 406 * efficient. |
| 407 */ |
| 408 expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, |
| 409 cinfo->image_width, output_cols); |
| 410 |
| 411 /* Each of the eight neighbor pixels contributes a fraction SF to the |
| 412 * smoothed pixel, while the main pixel contributes (1-8*SF). In order |
| 413 * to use integer arithmetic, these factors are multiplied by 2^16 = 65536. |
| 414 * Also recall that SF = smoothing_factor / 1024. |
| 415 */ |
| 416 |
| 417 memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */ |
| 418 neighscale = cinfo->smoothing_factor * 64; /* scaled SF */ |
| 419 |
| 420 for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { |
| 421 outptr = output_data[outrow]; |
| 422 inptr = input_data[outrow]; |
| 423 above_ptr = input_data[outrow-1]; |
| 424 below_ptr = input_data[outrow+1]; |
| 425 |
| 426 /* Special case for first column */ |
| 427 colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) + |
| 428 GETJSAMPLE(*inptr); |
| 429 membersum = GETJSAMPLE(*inptr++); |
| 430 nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + |
| 431 GETJSAMPLE(*inptr); |
| 432 neighsum = colsum + (colsum - membersum) + nextcolsum; |
| 433 membersum = membersum * memberscale + neighsum * neighscale; |
| 434 *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
| 435 lastcolsum = colsum; colsum = nextcolsum; |
| 436 |
| 437 for (colctr = output_cols - 2; colctr > 0; colctr--) { |
| 438 membersum = GETJSAMPLE(*inptr++); |
| 439 above_ptr++; below_ptr++; |
| 440 nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + |
| 441 GETJSAMPLE(*inptr); |
| 442 neighsum = lastcolsum + (colsum - membersum) + nextcolsum; |
| 443 membersum = membersum * memberscale + neighsum * neighscale; |
| 444 *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
| 445 lastcolsum = colsum; colsum = nextcolsum; |
| 446 } |
| 447 |
| 448 /* Special case for last column */ |
| 449 membersum = GETJSAMPLE(*inptr); |
| 450 neighsum = lastcolsum + (colsum - membersum) + colsum; |
| 451 membersum = membersum * memberscale + neighsum * neighscale; |
| 452 *outptr = (JSAMPLE) ((membersum + 32768) >> 16); |
| 453 |
| 454 } |
| 455 } |
| 456 |
| 457 #endif /* INPUT_SMOOTHING_SUPPORTED */ |
| 458 |
| 459 |
| 460 /* |
| 461 * Module initialization routine for downsampling. |
| 462 * Note that we must select a routine for each component. |
| 463 */ |
| 464 |
| 465 GLOBAL(void) |
| 466 jinit_downsampler (j_compress_ptr cinfo) |
| 467 { |
| 468 my_downsample_ptr downsample; |
| 469 int ci; |
| 470 jpeg_component_info * compptr; |
| 471 boolean smoothok = TRUE; |
| 472 |
| 473 downsample = (my_downsample_ptr) |
| 474 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 475 SIZEOF(my_downsampler)); |
| 476 cinfo->downsample = (struct jpeg_downsampler *) downsample; |
| 477 downsample->pub.start_pass = start_pass_downsample; |
| 478 downsample->pub.downsample = sep_downsample; |
| 479 downsample->pub.need_context_rows = FALSE; |
| 480 |
| 481 if (cinfo->CCIR601_sampling) |
| 482 ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); |
| 483 |
| 484 /* Verify we can handle the sampling factors, and set up method pointers */ |
| 485 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
| 486 ci++, compptr++) { |
| 487 if (compptr->h_samp_factor == cinfo->max_h_samp_factor && |
| 488 compptr->v_samp_factor == cinfo->max_v_samp_factor) { |
| 489 #ifdef INPUT_SMOOTHING_SUPPORTED |
| 490 if (cinfo->smoothing_factor) { |
| 491 downsample->methods[ci] = fullsize_smooth_downsample; |
| 492 downsample->pub.need_context_rows = TRUE; |
| 493 } else |
| 494 #endif |
| 495 downsample->methods[ci] = fullsize_downsample; |
| 496 } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor && |
| 497 compptr->v_samp_factor == cinfo->max_v_samp_factor) { |
| 498 smoothok = FALSE; |
| 499 if (jsimd_can_h2v1_downsample()) |
| 500 downsample->methods[ci] = jsimd_h2v1_downsample; |
| 501 else |
| 502 downsample->methods[ci] = h2v1_downsample; |
| 503 } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor && |
| 504 compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) { |
| 505 #ifdef INPUT_SMOOTHING_SUPPORTED |
| 506 if (cinfo->smoothing_factor) { |
| 507 downsample->methods[ci] = h2v2_smooth_downsample; |
| 508 downsample->pub.need_context_rows = TRUE; |
| 509 } else |
| 510 #endif |
| 511 if (jsimd_can_h2v2_downsample()) |
| 512 downsample->methods[ci] = jsimd_h2v2_downsample; |
| 513 else |
| 514 downsample->methods[ci] = h2v2_downsample; |
| 515 } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 && |
| 516 (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) { |
| 517 smoothok = FALSE; |
| 518 downsample->methods[ci] = int_downsample; |
| 519 } else |
| 520 ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); |
| 521 } |
| 522 |
| 523 #ifdef INPUT_SMOOTHING_SUPPORTED |
| 524 if (cinfo->smoothing_factor && !smoothok) |
| 525 TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL); |
| 526 #endif |
| 527 } |
OLD | NEW |