Index: third_party/libjpeg_turbo/jchuff.c |
=================================================================== |
--- third_party/libjpeg_turbo/jchuff.c (revision 0) |
+++ third_party/libjpeg_turbo/jchuff.c (revision 0) |
@@ -0,0 +1,1046 @@ |
+/* |
+ * jchuff.c |
+ * |
+ * Copyright (C) 1991-1997, Thomas G. Lane. |
+ * This file is part of the Independent JPEG Group's software. |
+ * For conditions of distribution and use, see the accompanying README file. |
+ * |
+ * This file contains Huffman entropy encoding routines. |
+ * |
+ * Much of the complexity here has to do with supporting output suspension. |
+ * If the data destination module demands suspension, we want to be able to |
+ * back up to the start of the current MCU. To do this, we copy state |
+ * variables into local working storage, and update them back to the |
+ * permanent JPEG objects only upon successful completion of an MCU. |
+ */ |
+ |
+/* Modifications: |
+ * Copyright (C)2007 Sun Microsystems, Inc. |
+ * Copyright (C)2009 D. R. Commander |
+ * |
+ * This library is free software and may be redistributed and/or modified under |
+ * the terms of the wxWindows Library License, Version 3.1 or (at your option) |
+ * any later version. The full license is in the LICENSE.txt file included |
+ * with this distribution. |
+ * |
+ * This library is distributed in the hope that it will be useful, |
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of |
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
+ * wxWindows Library License for more details. |
+ */ |
+ |
+#define JPEG_INTERNALS |
+#include "jinclude.h" |
+#include "jpeglib.h" |
+#include "jchuff.h" /* Declarations shared with jcphuff.c */ |
+#include <limits.h> |
+ |
+static unsigned char jpeg_first_bit_table[65536]; |
+int jpeg_first_bit_table_init=0; |
+ |
+#ifndef min |
+ #define min(a,b) ((a)<(b)?(a):(b)) |
+#endif |
+ |
+/* Expanded entropy encoder object for Huffman encoding. |
+ * |
+ * The savable_state subrecord contains fields that change within an MCU, |
+ * but must not be updated permanently until we complete the MCU. |
+ */ |
+ |
+typedef struct { |
+ size_t put_buffer; /* current bit-accumulation buffer */ |
+ int put_bits; /* # of bits now in it */ |
+ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
+} savable_state; |
+ |
+/* This macro is to work around compilers with missing or broken |
+ * structure assignment. You'll need to fix this code if you have |
+ * such a compiler and you change MAX_COMPS_IN_SCAN. |
+ */ |
+ |
+#ifndef NO_STRUCT_ASSIGN |
+#define ASSIGN_STATE(dest,src) ((dest) = (src)) |
+#else |
+#if MAX_COMPS_IN_SCAN == 4 |
+#define ASSIGN_STATE(dest,src) \ |
+ ((dest).put_buffer = (src).put_buffer, \ |
+ (dest).put_bits = (src).put_bits, \ |
+ (dest).last_dc_val[0] = (src).last_dc_val[0], \ |
+ (dest).last_dc_val[1] = (src).last_dc_val[1], \ |
+ (dest).last_dc_val[2] = (src).last_dc_val[2], \ |
+ (dest).last_dc_val[3] = (src).last_dc_val[3]) |
+#endif |
+#endif |
+ |
+ |
+typedef struct { |
+ struct jpeg_entropy_encoder pub; /* public fields */ |
+ |
+ savable_state saved; /* Bit buffer & DC state at start of MCU */ |
+ |
+ /* These fields are NOT loaded into local working state. */ |
+ unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
+ int next_restart_num; /* next restart number to write (0-7) */ |
+ |
+ /* Pointers to derived tables (these workspaces have image lifespan) */ |
+ c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; |
+ c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; |
+ |
+#ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */ |
+ long * dc_count_ptrs[NUM_HUFF_TBLS]; |
+ long * ac_count_ptrs[NUM_HUFF_TBLS]; |
+#endif |
+} huff_entropy_encoder; |
+ |
+typedef huff_entropy_encoder * huff_entropy_ptr; |
+ |
+/* Working state while writing an MCU. |
+ * This struct contains all the fields that are needed by subroutines. |
+ */ |
+ |
+typedef struct { |
+ JOCTET * next_output_byte; /* => next byte to write in buffer */ |
+ size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
+ savable_state cur; /* Current bit buffer & DC state */ |
+ j_compress_ptr cinfo; /* dump_buffer needs access to this */ |
+} working_state; |
+ |
+ |
+/* Forward declarations */ |
+METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo, |
+ JBLOCKROW *MCU_data)); |
+METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo)); |
+#ifdef ENTROPY_OPT_SUPPORTED |
+METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo, |
+ JBLOCKROW *MCU_data)); |
+METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo)); |
+#endif |
+ |
+ |
+/* |
+ * Initialize for a Huffman-compressed scan. |
+ * If gather_statistics is TRUE, we do not output anything during the scan, |
+ * just count the Huffman symbols used and generate Huffman code tables. |
+ */ |
+ |
+METHODDEF(void) |
+start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) |
+{ |
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
+ int ci, dctbl, actbl; |
+ jpeg_component_info * compptr; |
+ |
+ if (gather_statistics) { |
+#ifdef ENTROPY_OPT_SUPPORTED |
+ entropy->pub.encode_mcu = encode_mcu_gather; |
+ entropy->pub.finish_pass = finish_pass_gather; |
+#else |
+ ERREXIT(cinfo, JERR_NOT_COMPILED); |
+#endif |
+ } else { |
+ entropy->pub.encode_mcu = encode_mcu_huff; |
+ entropy->pub.finish_pass = finish_pass_huff; |
+ } |
+ |
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
+ compptr = cinfo->cur_comp_info[ci]; |
+ dctbl = compptr->dc_tbl_no; |
+ actbl = compptr->ac_tbl_no; |
+ if (gather_statistics) { |
+#ifdef ENTROPY_OPT_SUPPORTED |
+ /* Check for invalid table indexes */ |
+ /* (make_c_derived_tbl does this in the other path) */ |
+ if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS) |
+ ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl); |
+ if (actbl < 0 || actbl >= NUM_HUFF_TBLS) |
+ ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl); |
+ /* Allocate and zero the statistics tables */ |
+ /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ |
+ if (entropy->dc_count_ptrs[dctbl] == NULL) |
+ entropy->dc_count_ptrs[dctbl] = (long *) |
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
+ 257 * SIZEOF(long)); |
+ MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long)); |
+ if (entropy->ac_count_ptrs[actbl] == NULL) |
+ entropy->ac_count_ptrs[actbl] = (long *) |
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
+ 257 * SIZEOF(long)); |
+ MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long)); |
+#endif |
+ } else { |
+ /* Compute derived values for Huffman tables */ |
+ /* We may do this more than once for a table, but it's not expensive */ |
+ jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl, |
+ & entropy->dc_derived_tbls[dctbl]); |
+ jpeg_make_c_derived_tbl(cinfo, FALSE, actbl, |
+ & entropy->ac_derived_tbls[actbl]); |
+ } |
+ /* Initialize DC predictions to 0 */ |
+ entropy->saved.last_dc_val[ci] = 0; |
+ } |
+ |
+ /* Initialize bit buffer to empty */ |
+ |
+ entropy->saved.put_buffer = 0; |
+ entropy->saved.put_bits = 0; |
+ |
+ /* Initialize restart stuff */ |
+ entropy->restarts_to_go = cinfo->restart_interval; |
+ entropy->next_restart_num = 0; |
+} |
+ |
+ |
+/* |
+ * Compute the derived values for a Huffman table. |
+ * This routine also performs some validation checks on the table. |
+ * |
+ * Note this is also used by jcphuff.c. |
+ */ |
+ |
+GLOBAL(void) |
+jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno, |
+ c_derived_tbl ** pdtbl) |
+{ |
+ JHUFF_TBL *htbl; |
+ c_derived_tbl *dtbl; |
+ int p, i, l, lastp, si, maxsymbol; |
+ char huffsize[257]; |
+ unsigned int huffcode[257]; |
+ unsigned int code; |
+ |
+ /* Note that huffsize[] and huffcode[] are filled in code-length order, |
+ * paralleling the order of the symbols themselves in htbl->huffval[]. |
+ */ |
+ |
+ /* Find the input Huffman table */ |
+ if (tblno < 0 || tblno >= NUM_HUFF_TBLS) |
+ ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
+ htbl = |
+ isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; |
+ if (htbl == NULL) |
+ ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
+ |
+ /* Allocate a workspace if we haven't already done so. */ |
+ if (*pdtbl == NULL) |
+ *pdtbl = (c_derived_tbl *) |
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
+ SIZEOF(c_derived_tbl)); |
+ dtbl = *pdtbl; |
+ |
+ /* Figure C.1: make table of Huffman code length for each symbol */ |
+ |
+ p = 0; |
+ for (l = 1; l <= 16; l++) { |
+ i = (int) htbl->bits[l]; |
+ if (i < 0 || p + i > 256) /* protect against table overrun */ |
+ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
+ while (i--) |
+ huffsize[p++] = (char) l; |
+ } |
+ huffsize[p] = 0; |
+ lastp = p; |
+ |
+ /* Figure C.2: generate the codes themselves */ |
+ /* We also validate that the counts represent a legal Huffman code tree. */ |
+ |
+ code = 0; |
+ si = huffsize[0]; |
+ p = 0; |
+ while (huffsize[p]) { |
+ while (((int) huffsize[p]) == si) { |
+ huffcode[p++] = code; |
+ code++; |
+ } |
+ /* code is now 1 more than the last code used for codelength si; but |
+ * it must still fit in si bits, since no code is allowed to be all ones. |
+ */ |
+ if (((INT32) code) >= (((INT32) 1) << si)) |
+ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
+ code <<= 1; |
+ si++; |
+ } |
+ |
+ /* Figure C.3: generate encoding tables */ |
+ /* These are code and size indexed by symbol value */ |
+ |
+ /* Set all codeless symbols to have code length 0; |
+ * this lets us detect duplicate VAL entries here, and later |
+ * allows emit_bits to detect any attempt to emit such symbols. |
+ */ |
+ MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi)); |
+ |
+ /* This is also a convenient place to check for out-of-range |
+ * and duplicated VAL entries. We allow 0..255 for AC symbols |
+ * but only 0..15 for DC. (We could constrain them further |
+ * based on data depth and mode, but this seems enough.) |
+ */ |
+ maxsymbol = isDC ? 15 : 255; |
+ |
+ for (p = 0; p < lastp; p++) { |
+ i = htbl->huffval[p]; |
+ if (i < 0 || i > maxsymbol || dtbl->ehufsi[i]) |
+ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
+ dtbl->ehufco[i] = huffcode[p]; |
+ dtbl->ehufsi[i] = huffsize[p]; |
+ } |
+ |
+ if(!jpeg_first_bit_table_init) { |
+ for(i = 0; i < 65536; i++) { |
+ int bit = 0, val = i; |
+ while (val) {val >>= 1; bit++;} |
+ jpeg_first_bit_table[i] = bit; |
+ } |
+ jpeg_first_bit_table_init = 1; |
+ } |
+} |
+ |
+ |
+/* Outputting bytes to the file */ |
+ |
+/* Emit a byte, taking 'action' if must suspend. */ |
+#define emit_byte(state,val,action) \ |
+ { *(state)->next_output_byte++ = (JOCTET) (val); \ |
+ if (--(state)->free_in_buffer == 0) \ |
+ if (! dump_buffer(state)) \ |
+ { action; } } |
+ |
+ |
+LOCAL(boolean) |
+dump_buffer (working_state * state) |
+/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ |
+{ |
+ struct jpeg_destination_mgr * dest = state->cinfo->dest; |
+ |
+ dest->free_in_buffer = state->free_in_buffer; |
+ |
+ if (! (*dest->empty_output_buffer) (state->cinfo)) |
+ return FALSE; |
+ /* After a successful buffer dump, must reset buffer pointers */ |
+ state->next_output_byte = dest->next_output_byte; |
+ state->free_in_buffer = dest->free_in_buffer; |
+ return TRUE; |
+} |
+ |
+ |
+/* Outputting bits to the file */ |
+ |
+/* Only the right 24 bits of put_buffer are used; the valid bits are |
+ * left-justified in this part. At most 16 bits can be passed to emit_bits |
+ * in one call, and we never retain more than 7 bits in put_buffer |
+ * between calls, so 24 bits are sufficient. |
+ */ |
+ |
+/***************************************************************/ |
+ |
+#define EMIT_BYTE() { \ |
+ if (0xFF == (*buffer++ = (unsigned char)(put_buffer >> (put_bits -= 8)))) \ |
+ *buffer++ = 0; \ |
+ } |
+ |
+/***************************************************************/ |
+ |
+#define DUMP_BITS_(code, size) { \ |
+ put_bits += size; \ |
+ put_buffer = (put_buffer << size) | code; \ |
+ if (put_bits > 7) \ |
+ while(put_bits > 7) \ |
+ EMIT_BYTE() \ |
+ } |
+ |
+/***************************************************************/ |
+ |
+#define CHECKBUF15() { \ |
+ if (put_bits > 15) { \ |
+ EMIT_BYTE() \ |
+ EMIT_BYTE() \ |
+ } \ |
+} |
+ |
+#define CHECKBUF47() { \ |
+ if (put_bits > 47) { \ |
+ EMIT_BYTE() \ |
+ EMIT_BYTE() \ |
+ EMIT_BYTE() \ |
+ EMIT_BYTE() \ |
+ EMIT_BYTE() \ |
+ EMIT_BYTE() \ |
+ } \ |
+} |
+ |
+#define CHECKBUF31() { \ |
+ if (put_bits > 31) { \ |
+ EMIT_BYTE() \ |
+ EMIT_BYTE() \ |
+ EMIT_BYTE() \ |
+ EMIT_BYTE() \ |
+ } \ |
+} |
+ |
+/***************************************************************/ |
+ |
+#define DUMP_BITS_NOCHECK(code, size) { \ |
+ put_bits += size; \ |
+ put_buffer = (put_buffer << size) | code; \ |
+ } |
+ |
+#if __WORDSIZE==64 || defined(_WIN64) |
+ |
+#define DUMP_BITS(code, size) { \ |
+ CHECKBUF47() \ |
+ put_bits += size; \ |
+ put_buffer = (put_buffer << size) | code; \ |
+ } |
+ |
+#else |
+ |
+#define DUMP_BITS(code, size) { \ |
+ put_bits += size; \ |
+ put_buffer = (put_buffer << size) | code; \ |
+ CHECKBUF15() \ |
+ } |
+ |
+#endif |
+ |
+/***************************************************************/ |
+ |
+#define DUMP_SINGLE_VALUE(ht, codevalue) { \ |
+ size = ht->ehufsi[codevalue]; \ |
+ code = ht->ehufco[codevalue]; \ |
+ \ |
+ DUMP_BITS(code, size) \ |
+ } |
+ |
+/***************************************************************/ |
+ |
+#define DUMP_VALUE_SLOW(ht, codevalue, t, nbits) { \ |
+ size = ht->ehufsi[codevalue]; \ |
+ code = ht->ehufco[codevalue]; \ |
+ t &= ~(-1 << nbits); \ |
+ DUMP_BITS_NOCHECK(code, size) \ |
+ CHECKBUF15() \ |
+ DUMP_BITS_NOCHECK(t, nbits) \ |
+ CHECKBUF15() \ |
+ } |
+ |
+int _max=0; |
+ |
+#if __WORDSIZE==64 || defined(_WIN64) |
+ |
+#define DUMP_VALUE(ht, codevalue, t, nbits) { \ |
+ size = ht->ehufsi[codevalue]; \ |
+ code = ht->ehufco[codevalue]; \ |
+ t &= ~(-1 << nbits); \ |
+ CHECKBUF31() \ |
+ DUMP_BITS_NOCHECK(code, size) \ |
+ DUMP_BITS_NOCHECK(t, nbits) \ |
+ } |
+ |
+#else |
+ |
+#define DUMP_VALUE(ht, codevalue, t, nbits) { \ |
+ size = ht->ehufsi[codevalue]; \ |
+ code = ht->ehufco[codevalue]; \ |
+ t &= ~(-1 << nbits); \ |
+ DUMP_BITS_NOCHECK(code, size) \ |
+ CHECKBUF15() \ |
+ DUMP_BITS_NOCHECK(t, nbits) \ |
+ CHECKBUF15() \ |
+ } |
+ |
+#endif |
+ |
+/***************************************************************/ |
+ |
+#define BUFSIZE (DCTSIZE2 * 2) |
+ |
+#define LOAD_BUFFER() { \ |
+ if (state->free_in_buffer < BUFSIZE) { \ |
+ localbuf = 1; \ |
+ buffer = _buffer; \ |
+ } \ |
+ else buffer = state->next_output_byte; \ |
+ } |
+ |
+#define STORE_BUFFER() { \ |
+ if (localbuf) { \ |
+ bytes = buffer - _buffer; \ |
+ buffer = _buffer; \ |
+ while (bytes > 0) { \ |
+ bytestocopy = min(bytes, state->free_in_buffer); \ |
+ MEMCOPY(state->next_output_byte, buffer, bytestocopy); \ |
+ state->next_output_byte += bytestocopy; \ |
+ buffer += bytestocopy; \ |
+ state->free_in_buffer -= bytestocopy; \ |
+ if (state->free_in_buffer == 0) \ |
+ if (! dump_buffer(state)) return FALSE; \ |
+ bytes -= bytestocopy; \ |
+ } \ |
+ } \ |
+ else { \ |
+ state->free_in_buffer -= (buffer - state->next_output_byte); \ |
+ state->next_output_byte = buffer; \ |
+ } \ |
+ } |
+ |
+/***************************************************************/ |
+ |
+LOCAL(boolean) |
+flush_bits (working_state * state) |
+{ |
+ unsigned char _buffer[BUFSIZE], *buffer; |
+ size_t put_buffer; int put_bits; |
+ size_t bytes, bytestocopy; int localbuf = 0; |
+ |
+ put_buffer = state->cur.put_buffer; |
+ put_bits = state->cur.put_bits; |
+ LOAD_BUFFER() |
+ |
+ DUMP_BITS_(0x7F, 7) |
+ |
+ state->cur.put_buffer = 0; /* and reset bit-buffer to empty */ |
+ state->cur.put_bits = 0; |
+ STORE_BUFFER() |
+ |
+ return TRUE; |
+} |
+ |
+/* Encode a single block's worth of coefficients */ |
+ |
+LOCAL(boolean) |
+encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, |
+ c_derived_tbl *dctbl, c_derived_tbl *actbl) |
+{ |
+ int temp, temp2; |
+ int nbits; |
+ int r, sflag, size, code; |
+ unsigned char _buffer[BUFSIZE], *buffer; |
+ size_t put_buffer; int put_bits; |
+ int code_0xf0 = actbl->ehufco[0xf0], size_0xf0 = actbl->ehufsi[0xf0]; |
+ size_t bytes, bytestocopy; int localbuf = 0; |
+ |
+ put_buffer = state->cur.put_buffer; |
+ put_bits = state->cur.put_bits; |
+ LOAD_BUFFER() |
+ |
+ /* Encode the DC coefficient difference per section F.1.2.1 */ |
+ |
+ temp = temp2 = block[0] - last_dc_val; |
+ |
+ sflag = temp >> 31; |
+ temp -= ((temp + temp) & sflag); |
+ temp2 += sflag; |
+ nbits = jpeg_first_bit_table[temp]; |
+ DUMP_VALUE_SLOW(dctbl, nbits, temp2, nbits) |
+ |
+ /* Encode the AC coefficients per section F.1.2.2 */ |
+ |
+ r = 0; /* r = run length of zeros */ |
+ |
+#define innerloop(order) { \ |
+ temp2 = *(JCOEF*)((unsigned char*)block + order); \ |
+ if(temp2 == 0) r++; \ |
+ else { \ |
+ temp = (JCOEF)temp2; \ |
+ sflag = temp >> 31; \ |
+ temp = (temp ^ sflag) - sflag; \ |
+ temp2 += sflag; \ |
+ nbits = jpeg_first_bit_table[temp]; \ |
+ for(; r > 15; r -= 16) DUMP_BITS(code_0xf0, size_0xf0) \ |
+ sflag = (r << 4) + nbits; \ |
+ DUMP_VALUE(actbl, sflag, temp2, nbits) \ |
+ r = 0; \ |
+ }} |
+ |
+ innerloop(2*1); innerloop(2*8); innerloop(2*16); innerloop(2*9); |
+ innerloop(2*2); innerloop(2*3); innerloop(2*10); innerloop(2*17); |
+ innerloop(2*24); innerloop(2*32); innerloop(2*25); innerloop(2*18); |
+ innerloop(2*11); innerloop(2*4); innerloop(2*5); innerloop(2*12); |
+ innerloop(2*19); innerloop(2*26); innerloop(2*33); innerloop(2*40); |
+ innerloop(2*48); innerloop(2*41); innerloop(2*34); innerloop(2*27); |
+ innerloop(2*20); innerloop(2*13); innerloop(2*6); innerloop(2*7); |
+ innerloop(2*14); innerloop(2*21); innerloop(2*28); innerloop(2*35); |
+ innerloop(2*42); innerloop(2*49); innerloop(2*56); innerloop(2*57); |
+ innerloop(2*50); innerloop(2*43); innerloop(2*36); innerloop(2*29); |
+ innerloop(2*22); innerloop(2*15); innerloop(2*23); innerloop(2*30); |
+ innerloop(2*37); innerloop(2*44); innerloop(2*51); innerloop(2*58); |
+ innerloop(2*59); innerloop(2*52); innerloop(2*45); innerloop(2*38); |
+ innerloop(2*31); innerloop(2*39); innerloop(2*46); innerloop(2*53); |
+ innerloop(2*60); innerloop(2*61); innerloop(2*54); innerloop(2*47); |
+ innerloop(2*55); innerloop(2*62); innerloop(2*63); |
+ |
+ /* If the last coef(s) were zero, emit an end-of-block code */ |
+ if (r > 0) DUMP_SINGLE_VALUE(actbl, 0x0) |
+ |
+ state->cur.put_buffer = put_buffer; |
+ state->cur.put_bits = put_bits; |
+ STORE_BUFFER() |
+ |
+ return TRUE; |
+} |
+ |
+ |
+/* |
+ * Emit a restart marker & resynchronize predictions. |
+ */ |
+ |
+LOCAL(boolean) |
+emit_restart (working_state * state, int restart_num) |
+{ |
+ int ci; |
+ |
+ if (! flush_bits(state)) |
+ return FALSE; |
+ |
+ emit_byte(state, 0xFF, return FALSE); |
+ emit_byte(state, JPEG_RST0 + restart_num, return FALSE); |
+ |
+ /* Re-initialize DC predictions to 0 */ |
+ for (ci = 0; ci < state->cinfo->comps_in_scan; ci++) |
+ state->cur.last_dc_val[ci] = 0; |
+ |
+ /* The restart counter is not updated until we successfully write the MCU. */ |
+ |
+ return TRUE; |
+} |
+ |
+ |
+/* |
+ * Encode and output one MCU's worth of Huffman-compressed coefficients. |
+ */ |
+ |
+METHODDEF(boolean) |
+encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
+{ |
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
+ working_state state; |
+ int blkn, ci; |
+ jpeg_component_info * compptr; |
+ |
+ /* Load up working state */ |
+ state.next_output_byte = cinfo->dest->next_output_byte; |
+ state.free_in_buffer = cinfo->dest->free_in_buffer; |
+ ASSIGN_STATE(state.cur, entropy->saved); |
+ state.cinfo = cinfo; |
+ |
+ /* Emit restart marker if needed */ |
+ if (cinfo->restart_interval) { |
+ if (entropy->restarts_to_go == 0) |
+ if (! emit_restart(&state, entropy->next_restart_num)) |
+ return FALSE; |
+ } |
+ |
+ /* Encode the MCU data blocks */ |
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
+ ci = cinfo->MCU_membership[blkn]; |
+ compptr = cinfo->cur_comp_info[ci]; |
+ if (! encode_one_block(&state, |
+ MCU_data[blkn][0], state.cur.last_dc_val[ci], |
+ entropy->dc_derived_tbls[compptr->dc_tbl_no], |
+ entropy->ac_derived_tbls[compptr->ac_tbl_no])) |
+ return FALSE; |
+ /* Update last_dc_val */ |
+ state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; |
+ } |
+ |
+ /* Completed MCU, so update state */ |
+ cinfo->dest->next_output_byte = state.next_output_byte; |
+ cinfo->dest->free_in_buffer = state.free_in_buffer; |
+ ASSIGN_STATE(entropy->saved, state.cur); |
+ |
+ /* Update restart-interval state too */ |
+ if (cinfo->restart_interval) { |
+ if (entropy->restarts_to_go == 0) { |
+ entropy->restarts_to_go = cinfo->restart_interval; |
+ entropy->next_restart_num++; |
+ entropy->next_restart_num &= 7; |
+ } |
+ entropy->restarts_to_go--; |
+ } |
+ |
+ return TRUE; |
+} |
+ |
+ |
+/* |
+ * Finish up at the end of a Huffman-compressed scan. |
+ */ |
+ |
+METHODDEF(void) |
+finish_pass_huff (j_compress_ptr cinfo) |
+{ |
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
+ working_state state; |
+ |
+ /* Load up working state ... flush_bits needs it */ |
+ state.next_output_byte = cinfo->dest->next_output_byte; |
+ state.free_in_buffer = cinfo->dest->free_in_buffer; |
+ ASSIGN_STATE(state.cur, entropy->saved); |
+ state.cinfo = cinfo; |
+ |
+ /* Flush out the last data */ |
+ if (! flush_bits(&state)) |
+ ERREXIT(cinfo, JERR_CANT_SUSPEND); |
+ |
+ /* Update state */ |
+ cinfo->dest->next_output_byte = state.next_output_byte; |
+ cinfo->dest->free_in_buffer = state.free_in_buffer; |
+ ASSIGN_STATE(entropy->saved, state.cur); |
+} |
+ |
+ |
+/* |
+ * Huffman coding optimization. |
+ * |
+ * We first scan the supplied data and count the number of uses of each symbol |
+ * that is to be Huffman-coded. (This process MUST agree with the code above.) |
+ * Then we build a Huffman coding tree for the observed counts. |
+ * Symbols which are not needed at all for the particular image are not |
+ * assigned any code, which saves space in the DHT marker as well as in |
+ * the compressed data. |
+ */ |
+ |
+#ifdef ENTROPY_OPT_SUPPORTED |
+ |
+ |
+/* Process a single block's worth of coefficients */ |
+ |
+LOCAL(void) |
+htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, |
+ long dc_counts[], long ac_counts[]) |
+{ |
+ register int temp; |
+ register int nbits; |
+ register int k, r; |
+ |
+ /* Encode the DC coefficient difference per section F.1.2.1 */ |
+ |
+ temp = block[0] - last_dc_val; |
+ if (temp < 0) |
+ temp = -temp; |
+ |
+ /* Find the number of bits needed for the magnitude of the coefficient */ |
+ nbits = 0; |
+ while (temp) { |
+ nbits++; |
+ temp >>= 1; |
+ } |
+ /* Check for out-of-range coefficient values. |
+ * Since we're encoding a difference, the range limit is twice as much. |
+ */ |
+ if (nbits > MAX_COEF_BITS+1) |
+ ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
+ |
+ /* Count the Huffman symbol for the number of bits */ |
+ dc_counts[nbits]++; |
+ |
+ /* Encode the AC coefficients per section F.1.2.2 */ |
+ |
+ r = 0; /* r = run length of zeros */ |
+ |
+ for (k = 1; k < DCTSIZE2; k++) { |
+ if ((temp = block[jpeg_natural_order[k]]) == 0) { |
+ r++; |
+ } else { |
+ /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
+ while (r > 15) { |
+ ac_counts[0xF0]++; |
+ r -= 16; |
+ } |
+ |
+ /* Find the number of bits needed for the magnitude of the coefficient */ |
+ if (temp < 0) |
+ temp = -temp; |
+ |
+ /* Find the number of bits needed for the magnitude of the coefficient */ |
+ nbits = 1; /* there must be at least one 1 bit */ |
+ while ((temp >>= 1)) |
+ nbits++; |
+ /* Check for out-of-range coefficient values */ |
+ if (nbits > MAX_COEF_BITS) |
+ ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
+ |
+ /* Count Huffman symbol for run length / number of bits */ |
+ ac_counts[(r << 4) + nbits]++; |
+ |
+ r = 0; |
+ } |
+ } |
+ |
+ /* If the last coef(s) were zero, emit an end-of-block code */ |
+ if (r > 0) |
+ ac_counts[0]++; |
+} |
+ |
+ |
+/* |
+ * Trial-encode one MCU's worth of Huffman-compressed coefficients. |
+ * No data is actually output, so no suspension return is possible. |
+ */ |
+ |
+METHODDEF(boolean) |
+encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
+{ |
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
+ int blkn, ci; |
+ jpeg_component_info * compptr; |
+ |
+ /* Take care of restart intervals if needed */ |
+ if (cinfo->restart_interval) { |
+ if (entropy->restarts_to_go == 0) { |
+ /* Re-initialize DC predictions to 0 */ |
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
+ entropy->saved.last_dc_val[ci] = 0; |
+ /* Update restart state */ |
+ entropy->restarts_to_go = cinfo->restart_interval; |
+ } |
+ entropy->restarts_to_go--; |
+ } |
+ |
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
+ ci = cinfo->MCU_membership[blkn]; |
+ compptr = cinfo->cur_comp_info[ci]; |
+ htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci], |
+ entropy->dc_count_ptrs[compptr->dc_tbl_no], |
+ entropy->ac_count_ptrs[compptr->ac_tbl_no]); |
+ entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; |
+ } |
+ |
+ return TRUE; |
+} |
+ |
+ |
+/* |
+ * Generate the best Huffman code table for the given counts, fill htbl. |
+ * Note this is also used by jcphuff.c. |
+ * |
+ * The JPEG standard requires that no symbol be assigned a codeword of all |
+ * one bits (so that padding bits added at the end of a compressed segment |
+ * can't look like a valid code). Because of the canonical ordering of |
+ * codewords, this just means that there must be an unused slot in the |
+ * longest codeword length category. Section K.2 of the JPEG spec suggests |
+ * reserving such a slot by pretending that symbol 256 is a valid symbol |
+ * with count 1. In theory that's not optimal; giving it count zero but |
+ * including it in the symbol set anyway should give a better Huffman code. |
+ * But the theoretically better code actually seems to come out worse in |
+ * practice, because it produces more all-ones bytes (which incur stuffed |
+ * zero bytes in the final file). In any case the difference is tiny. |
+ * |
+ * The JPEG standard requires Huffman codes to be no more than 16 bits long. |
+ * If some symbols have a very small but nonzero probability, the Huffman tree |
+ * must be adjusted to meet the code length restriction. We currently use |
+ * the adjustment method suggested in JPEG section K.2. This method is *not* |
+ * optimal; it may not choose the best possible limited-length code. But |
+ * typically only very-low-frequency symbols will be given less-than-optimal |
+ * lengths, so the code is almost optimal. Experimental comparisons against |
+ * an optimal limited-length-code algorithm indicate that the difference is |
+ * microscopic --- usually less than a hundredth of a percent of total size. |
+ * So the extra complexity of an optimal algorithm doesn't seem worthwhile. |
+ */ |
+ |
+GLOBAL(void) |
+jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]) |
+{ |
+#define MAX_CLEN 32 /* assumed maximum initial code length */ |
+ UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */ |
+ int codesize[257]; /* codesize[k] = code length of symbol k */ |
+ int others[257]; /* next symbol in current branch of tree */ |
+ int c1, c2; |
+ int p, i, j; |
+ long v; |
+ |
+ /* This algorithm is explained in section K.2 of the JPEG standard */ |
+ |
+ MEMZERO(bits, SIZEOF(bits)); |
+ MEMZERO(codesize, SIZEOF(codesize)); |
+ for (i = 0; i < 257; i++) |
+ others[i] = -1; /* init links to empty */ |
+ |
+ freq[256] = 1; /* make sure 256 has a nonzero count */ |
+ /* Including the pseudo-symbol 256 in the Huffman procedure guarantees |
+ * that no real symbol is given code-value of all ones, because 256 |
+ * will be placed last in the largest codeword category. |
+ */ |
+ |
+ /* Huffman's basic algorithm to assign optimal code lengths to symbols */ |
+ |
+ for (;;) { |
+ /* Find the smallest nonzero frequency, set c1 = its symbol */ |
+ /* In case of ties, take the larger symbol number */ |
+ c1 = -1; |
+ v = 1000000000L; |
+ for (i = 0; i <= 256; i++) { |
+ if (freq[i] && freq[i] <= v) { |
+ v = freq[i]; |
+ c1 = i; |
+ } |
+ } |
+ |
+ /* Find the next smallest nonzero frequency, set c2 = its symbol */ |
+ /* In case of ties, take the larger symbol number */ |
+ c2 = -1; |
+ v = 1000000000L; |
+ for (i = 0; i <= 256; i++) { |
+ if (freq[i] && freq[i] <= v && i != c1) { |
+ v = freq[i]; |
+ c2 = i; |
+ } |
+ } |
+ |
+ /* Done if we've merged everything into one frequency */ |
+ if (c2 < 0) |
+ break; |
+ |
+ /* Else merge the two counts/trees */ |
+ freq[c1] += freq[c2]; |
+ freq[c2] = 0; |
+ |
+ /* Increment the codesize of everything in c1's tree branch */ |
+ codesize[c1]++; |
+ while (others[c1] >= 0) { |
+ c1 = others[c1]; |
+ codesize[c1]++; |
+ } |
+ |
+ others[c1] = c2; /* chain c2 onto c1's tree branch */ |
+ |
+ /* Increment the codesize of everything in c2's tree branch */ |
+ codesize[c2]++; |
+ while (others[c2] >= 0) { |
+ c2 = others[c2]; |
+ codesize[c2]++; |
+ } |
+ } |
+ |
+ /* Now count the number of symbols of each code length */ |
+ for (i = 0; i <= 256; i++) { |
+ if (codesize[i]) { |
+ /* The JPEG standard seems to think that this can't happen, */ |
+ /* but I'm paranoid... */ |
+ if (codesize[i] > MAX_CLEN) |
+ ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW); |
+ |
+ bits[codesize[i]]++; |
+ } |
+ } |
+ |
+ /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure |
+ * Huffman procedure assigned any such lengths, we must adjust the coding. |
+ * Here is what the JPEG spec says about how this next bit works: |
+ * Since symbols are paired for the longest Huffman code, the symbols are |
+ * removed from this length category two at a time. The prefix for the pair |
+ * (which is one bit shorter) is allocated to one of the pair; then, |
+ * skipping the BITS entry for that prefix length, a code word from the next |
+ * shortest nonzero BITS entry is converted into a prefix for two code words |
+ * one bit longer. |
+ */ |
+ |
+ for (i = MAX_CLEN; i > 16; i--) { |
+ while (bits[i] > 0) { |
+ j = i - 2; /* find length of new prefix to be used */ |
+ while (bits[j] == 0) |
+ j--; |
+ |
+ bits[i] -= 2; /* remove two symbols */ |
+ bits[i-1]++; /* one goes in this length */ |
+ bits[j+1] += 2; /* two new symbols in this length */ |
+ bits[j]--; /* symbol of this length is now a prefix */ |
+ } |
+ } |
+ |
+ /* Remove the count for the pseudo-symbol 256 from the largest codelength */ |
+ while (bits[i] == 0) /* find largest codelength still in use */ |
+ i--; |
+ bits[i]--; |
+ |
+ /* Return final symbol counts (only for lengths 0..16) */ |
+ MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits)); |
+ |
+ /* Return a list of the symbols sorted by code length */ |
+ /* It's not real clear to me why we don't need to consider the codelength |
+ * changes made above, but the JPEG spec seems to think this works. |
+ */ |
+ p = 0; |
+ for (i = 1; i <= MAX_CLEN; i++) { |
+ for (j = 0; j <= 255; j++) { |
+ if (codesize[j] == i) { |
+ htbl->huffval[p] = (UINT8) j; |
+ p++; |
+ } |
+ } |
+ } |
+ |
+ /* Set sent_table FALSE so updated table will be written to JPEG file. */ |
+ htbl->sent_table = FALSE; |
+} |
+ |
+ |
+/* |
+ * Finish up a statistics-gathering pass and create the new Huffman tables. |
+ */ |
+ |
+METHODDEF(void) |
+finish_pass_gather (j_compress_ptr cinfo) |
+{ |
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
+ int ci, dctbl, actbl; |
+ jpeg_component_info * compptr; |
+ JHUFF_TBL **htblptr; |
+ boolean did_dc[NUM_HUFF_TBLS]; |
+ boolean did_ac[NUM_HUFF_TBLS]; |
+ |
+ /* It's important not to apply jpeg_gen_optimal_table more than once |
+ * per table, because it clobbers the input frequency counts! |
+ */ |
+ MEMZERO(did_dc, SIZEOF(did_dc)); |
+ MEMZERO(did_ac, SIZEOF(did_ac)); |
+ |
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
+ compptr = cinfo->cur_comp_info[ci]; |
+ dctbl = compptr->dc_tbl_no; |
+ actbl = compptr->ac_tbl_no; |
+ if (! did_dc[dctbl]) { |
+ htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl]; |
+ if (*htblptr == NULL) |
+ *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
+ jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]); |
+ did_dc[dctbl] = TRUE; |
+ } |
+ if (! did_ac[actbl]) { |
+ htblptr = & cinfo->ac_huff_tbl_ptrs[actbl]; |
+ if (*htblptr == NULL) |
+ *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
+ jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]); |
+ did_ac[actbl] = TRUE; |
+ } |
+ } |
+} |
+ |
+ |
+#endif /* ENTROPY_OPT_SUPPORTED */ |
+ |
+ |
+/* |
+ * Module initialization routine for Huffman entropy encoding. |
+ */ |
+ |
+GLOBAL(void) |
+jinit_huff_encoder (j_compress_ptr cinfo) |
+{ |
+ huff_entropy_ptr entropy; |
+ int i; |
+ |
+ entropy = (huff_entropy_ptr) |
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
+ SIZEOF(huff_entropy_encoder)); |
+ cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; |
+ entropy->pub.start_pass = start_pass_huff; |
+ |
+ /* Mark tables unallocated */ |
+ for (i = 0; i < NUM_HUFF_TBLS; i++) { |
+ entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; |
+#ifdef ENTROPY_OPT_SUPPORTED |
+ entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; |
+#endif |
+ } |
+} |