OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * jchuff.c |
| 3 * |
| 4 * Copyright (C) 1991-1997, Thomas G. Lane. |
| 5 * This file is part of the Independent JPEG Group's software. |
| 6 * For conditions of distribution and use, see the accompanying README file. |
| 7 * |
| 8 * This file contains Huffman entropy encoding routines. |
| 9 * |
| 10 * Much of the complexity here has to do with supporting output suspension. |
| 11 * If the data destination module demands suspension, we want to be able to |
| 12 * back up to the start of the current MCU. To do this, we copy state |
| 13 * variables into local working storage, and update them back to the |
| 14 * permanent JPEG objects only upon successful completion of an MCU. |
| 15 */ |
| 16 |
| 17 /* Modifications: |
| 18 * Copyright (C)2007 Sun Microsystems, Inc. |
| 19 * Copyright (C)2009 D. R. Commander |
| 20 * |
| 21 * This library is free software and may be redistributed and/or modified under |
| 22 * the terms of the wxWindows Library License, Version 3.1 or (at your option) |
| 23 * any later version. The full license is in the LICENSE.txt file included |
| 24 * with this distribution. |
| 25 * |
| 26 * This library is distributed in the hope that it will be useful, |
| 27 * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 28 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 29 * wxWindows Library License for more details. |
| 30 */ |
| 31 |
| 32 #define JPEG_INTERNALS |
| 33 #include "jinclude.h" |
| 34 #include "jpeglib.h" |
| 35 #include "jchuff.h" /* Declarations shared with jcphuff.c */ |
| 36 #include <limits.h> |
| 37 |
| 38 static unsigned char jpeg_first_bit_table[65536]; |
| 39 int jpeg_first_bit_table_init=0; |
| 40 |
| 41 #ifndef min |
| 42 #define min(a,b) ((a)<(b)?(a):(b)) |
| 43 #endif |
| 44 |
| 45 /* Expanded entropy encoder object for Huffman encoding. |
| 46 * |
| 47 * The savable_state subrecord contains fields that change within an MCU, |
| 48 * but must not be updated permanently until we complete the MCU. |
| 49 */ |
| 50 |
| 51 typedef struct { |
| 52 size_t put_buffer; /* current bit-accumulation buffer */ |
| 53 int put_bits; /* # of bits now in it */ |
| 54 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
| 55 } savable_state; |
| 56 |
| 57 /* This macro is to work around compilers with missing or broken |
| 58 * structure assignment. You'll need to fix this code if you have |
| 59 * such a compiler and you change MAX_COMPS_IN_SCAN. |
| 60 */ |
| 61 |
| 62 #ifndef NO_STRUCT_ASSIGN |
| 63 #define ASSIGN_STATE(dest,src) ((dest) = (src)) |
| 64 #else |
| 65 #if MAX_COMPS_IN_SCAN == 4 |
| 66 #define ASSIGN_STATE(dest,src) \ |
| 67 ((dest).put_buffer = (src).put_buffer, \ |
| 68 (dest).put_bits = (src).put_bits, \ |
| 69 (dest).last_dc_val[0] = (src).last_dc_val[0], \ |
| 70 (dest).last_dc_val[1] = (src).last_dc_val[1], \ |
| 71 (dest).last_dc_val[2] = (src).last_dc_val[2], \ |
| 72 (dest).last_dc_val[3] = (src).last_dc_val[3]) |
| 73 #endif |
| 74 #endif |
| 75 |
| 76 |
| 77 typedef struct { |
| 78 struct jpeg_entropy_encoder pub; /* public fields */ |
| 79 |
| 80 savable_state saved; /* Bit buffer & DC state at start of MCU */ |
| 81 |
| 82 /* These fields are NOT loaded into local working state. */ |
| 83 unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
| 84 int next_restart_num; /* next restart number to write (0-7) */ |
| 85 |
| 86 /* Pointers to derived tables (these workspaces have image lifespan) */ |
| 87 c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; |
| 88 c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; |
| 89 |
| 90 #ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */ |
| 91 long * dc_count_ptrs[NUM_HUFF_TBLS]; |
| 92 long * ac_count_ptrs[NUM_HUFF_TBLS]; |
| 93 #endif |
| 94 } huff_entropy_encoder; |
| 95 |
| 96 typedef huff_entropy_encoder * huff_entropy_ptr; |
| 97 |
| 98 /* Working state while writing an MCU. |
| 99 * This struct contains all the fields that are needed by subroutines. |
| 100 */ |
| 101 |
| 102 typedef struct { |
| 103 JOCTET * next_output_byte; /* => next byte to write in buffer */ |
| 104 size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
| 105 savable_state cur; /* Current bit buffer & DC state */ |
| 106 j_compress_ptr cinfo; /* dump_buffer needs access to this */ |
| 107 } working_state; |
| 108 |
| 109 |
| 110 /* Forward declarations */ |
| 111 METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo, |
| 112 JBLOCKROW *MCU_data)); |
| 113 METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo)); |
| 114 #ifdef ENTROPY_OPT_SUPPORTED |
| 115 METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo, |
| 116 JBLOCKROW *MCU_data)); |
| 117 METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo)); |
| 118 #endif |
| 119 |
| 120 |
| 121 /* |
| 122 * Initialize for a Huffman-compressed scan. |
| 123 * If gather_statistics is TRUE, we do not output anything during the scan, |
| 124 * just count the Huffman symbols used and generate Huffman code tables. |
| 125 */ |
| 126 |
| 127 METHODDEF(void) |
| 128 start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) |
| 129 { |
| 130 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| 131 int ci, dctbl, actbl; |
| 132 jpeg_component_info * compptr; |
| 133 |
| 134 if (gather_statistics) { |
| 135 #ifdef ENTROPY_OPT_SUPPORTED |
| 136 entropy->pub.encode_mcu = encode_mcu_gather; |
| 137 entropy->pub.finish_pass = finish_pass_gather; |
| 138 #else |
| 139 ERREXIT(cinfo, JERR_NOT_COMPILED); |
| 140 #endif |
| 141 } else { |
| 142 entropy->pub.encode_mcu = encode_mcu_huff; |
| 143 entropy->pub.finish_pass = finish_pass_huff; |
| 144 } |
| 145 |
| 146 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| 147 compptr = cinfo->cur_comp_info[ci]; |
| 148 dctbl = compptr->dc_tbl_no; |
| 149 actbl = compptr->ac_tbl_no; |
| 150 if (gather_statistics) { |
| 151 #ifdef ENTROPY_OPT_SUPPORTED |
| 152 /* Check for invalid table indexes */ |
| 153 /* (make_c_derived_tbl does this in the other path) */ |
| 154 if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS) |
| 155 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl); |
| 156 if (actbl < 0 || actbl >= NUM_HUFF_TBLS) |
| 157 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl); |
| 158 /* Allocate and zero the statistics tables */ |
| 159 /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ |
| 160 if (entropy->dc_count_ptrs[dctbl] == NULL) |
| 161 entropy->dc_count_ptrs[dctbl] = (long *) |
| 162 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 163 257 * SIZEOF(long)); |
| 164 MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long)); |
| 165 if (entropy->ac_count_ptrs[actbl] == NULL) |
| 166 entropy->ac_count_ptrs[actbl] = (long *) |
| 167 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 168 257 * SIZEOF(long)); |
| 169 MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long)); |
| 170 #endif |
| 171 } else { |
| 172 /* Compute derived values for Huffman tables */ |
| 173 /* We may do this more than once for a table, but it's not expensive */ |
| 174 jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl, |
| 175 & entropy->dc_derived_tbls[dctbl]); |
| 176 jpeg_make_c_derived_tbl(cinfo, FALSE, actbl, |
| 177 & entropy->ac_derived_tbls[actbl]); |
| 178 } |
| 179 /* Initialize DC predictions to 0 */ |
| 180 entropy->saved.last_dc_val[ci] = 0; |
| 181 } |
| 182 |
| 183 /* Initialize bit buffer to empty */ |
| 184 |
| 185 entropy->saved.put_buffer = 0; |
| 186 entropy->saved.put_bits = 0; |
| 187 |
| 188 /* Initialize restart stuff */ |
| 189 entropy->restarts_to_go = cinfo->restart_interval; |
| 190 entropy->next_restart_num = 0; |
| 191 } |
| 192 |
| 193 |
| 194 /* |
| 195 * Compute the derived values for a Huffman table. |
| 196 * This routine also performs some validation checks on the table. |
| 197 * |
| 198 * Note this is also used by jcphuff.c. |
| 199 */ |
| 200 |
| 201 GLOBAL(void) |
| 202 jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno, |
| 203 c_derived_tbl ** pdtbl) |
| 204 { |
| 205 JHUFF_TBL *htbl; |
| 206 c_derived_tbl *dtbl; |
| 207 int p, i, l, lastp, si, maxsymbol; |
| 208 char huffsize[257]; |
| 209 unsigned int huffcode[257]; |
| 210 unsigned int code; |
| 211 |
| 212 /* Note that huffsize[] and huffcode[] are filled in code-length order, |
| 213 * paralleling the order of the symbols themselves in htbl->huffval[]. |
| 214 */ |
| 215 |
| 216 /* Find the input Huffman table */ |
| 217 if (tblno < 0 || tblno >= NUM_HUFF_TBLS) |
| 218 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
| 219 htbl = |
| 220 isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; |
| 221 if (htbl == NULL) |
| 222 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
| 223 |
| 224 /* Allocate a workspace if we haven't already done so. */ |
| 225 if (*pdtbl == NULL) |
| 226 *pdtbl = (c_derived_tbl *) |
| 227 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 228 SIZEOF(c_derived_tbl)); |
| 229 dtbl = *pdtbl; |
| 230 |
| 231 /* Figure C.1: make table of Huffman code length for each symbol */ |
| 232 |
| 233 p = 0; |
| 234 for (l = 1; l <= 16; l++) { |
| 235 i = (int) htbl->bits[l]; |
| 236 if (i < 0 || p + i > 256) /* protect against table overrun */ |
| 237 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
| 238 while (i--) |
| 239 huffsize[p++] = (char) l; |
| 240 } |
| 241 huffsize[p] = 0; |
| 242 lastp = p; |
| 243 |
| 244 /* Figure C.2: generate the codes themselves */ |
| 245 /* We also validate that the counts represent a legal Huffman code tree. */ |
| 246 |
| 247 code = 0; |
| 248 si = huffsize[0]; |
| 249 p = 0; |
| 250 while (huffsize[p]) { |
| 251 while (((int) huffsize[p]) == si) { |
| 252 huffcode[p++] = code; |
| 253 code++; |
| 254 } |
| 255 /* code is now 1 more than the last code used for codelength si; but |
| 256 * it must still fit in si bits, since no code is allowed to be all ones. |
| 257 */ |
| 258 if (((INT32) code) >= (((INT32) 1) << si)) |
| 259 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
| 260 code <<= 1; |
| 261 si++; |
| 262 } |
| 263 |
| 264 /* Figure C.3: generate encoding tables */ |
| 265 /* These are code and size indexed by symbol value */ |
| 266 |
| 267 /* Set all codeless symbols to have code length 0; |
| 268 * this lets us detect duplicate VAL entries here, and later |
| 269 * allows emit_bits to detect any attempt to emit such symbols. |
| 270 */ |
| 271 MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi)); |
| 272 |
| 273 /* This is also a convenient place to check for out-of-range |
| 274 * and duplicated VAL entries. We allow 0..255 for AC symbols |
| 275 * but only 0..15 for DC. (We could constrain them further |
| 276 * based on data depth and mode, but this seems enough.) |
| 277 */ |
| 278 maxsymbol = isDC ? 15 : 255; |
| 279 |
| 280 for (p = 0; p < lastp; p++) { |
| 281 i = htbl->huffval[p]; |
| 282 if (i < 0 || i > maxsymbol || dtbl->ehufsi[i]) |
| 283 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
| 284 dtbl->ehufco[i] = huffcode[p]; |
| 285 dtbl->ehufsi[i] = huffsize[p]; |
| 286 } |
| 287 |
| 288 if(!jpeg_first_bit_table_init) { |
| 289 for(i = 0; i < 65536; i++) { |
| 290 int bit = 0, val = i; |
| 291 while (val) {val >>= 1; bit++;} |
| 292 jpeg_first_bit_table[i] = bit; |
| 293 } |
| 294 jpeg_first_bit_table_init = 1; |
| 295 } |
| 296 } |
| 297 |
| 298 |
| 299 /* Outputting bytes to the file */ |
| 300 |
| 301 /* Emit a byte, taking 'action' if must suspend. */ |
| 302 #define emit_byte(state,val,action) \ |
| 303 { *(state)->next_output_byte++ = (JOCTET) (val); \ |
| 304 if (--(state)->free_in_buffer == 0) \ |
| 305 if (! dump_buffer(state)) \ |
| 306 { action; } } |
| 307 |
| 308 |
| 309 LOCAL(boolean) |
| 310 dump_buffer (working_state * state) |
| 311 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ |
| 312 { |
| 313 struct jpeg_destination_mgr * dest = state->cinfo->dest; |
| 314 |
| 315 dest->free_in_buffer = state->free_in_buffer; |
| 316 |
| 317 if (! (*dest->empty_output_buffer) (state->cinfo)) |
| 318 return FALSE; |
| 319 /* After a successful buffer dump, must reset buffer pointers */ |
| 320 state->next_output_byte = dest->next_output_byte; |
| 321 state->free_in_buffer = dest->free_in_buffer; |
| 322 return TRUE; |
| 323 } |
| 324 |
| 325 |
| 326 /* Outputting bits to the file */ |
| 327 |
| 328 /* Only the right 24 bits of put_buffer are used; the valid bits are |
| 329 * left-justified in this part. At most 16 bits can be passed to emit_bits |
| 330 * in one call, and we never retain more than 7 bits in put_buffer |
| 331 * between calls, so 24 bits are sufficient. |
| 332 */ |
| 333 |
| 334 /***************************************************************/ |
| 335 |
| 336 #define EMIT_BYTE() { \ |
| 337 if (0xFF == (*buffer++ = (unsigned char)(put_buffer >> (put_bits -= 8)))) \ |
| 338 *buffer++ = 0; \ |
| 339 } |
| 340 |
| 341 /***************************************************************/ |
| 342 |
| 343 #define DUMP_BITS_(code, size) { \ |
| 344 put_bits += size; \ |
| 345 put_buffer = (put_buffer << size) | code; \ |
| 346 if (put_bits > 7) \ |
| 347 while(put_bits > 7) \ |
| 348 EMIT_BYTE() \ |
| 349 } |
| 350 |
| 351 /***************************************************************/ |
| 352 |
| 353 #define CHECKBUF15() { \ |
| 354 if (put_bits > 15) { \ |
| 355 EMIT_BYTE() \ |
| 356 EMIT_BYTE() \ |
| 357 } \ |
| 358 } |
| 359 |
| 360 #define CHECKBUF47() { \ |
| 361 if (put_bits > 47) { \ |
| 362 EMIT_BYTE() \ |
| 363 EMIT_BYTE() \ |
| 364 EMIT_BYTE() \ |
| 365 EMIT_BYTE() \ |
| 366 EMIT_BYTE() \ |
| 367 EMIT_BYTE() \ |
| 368 } \ |
| 369 } |
| 370 |
| 371 #define CHECKBUF31() { \ |
| 372 if (put_bits > 31) { \ |
| 373 EMIT_BYTE() \ |
| 374 EMIT_BYTE() \ |
| 375 EMIT_BYTE() \ |
| 376 EMIT_BYTE() \ |
| 377 } \ |
| 378 } |
| 379 |
| 380 /***************************************************************/ |
| 381 |
| 382 #define DUMP_BITS_NOCHECK(code, size) { \ |
| 383 put_bits += size; \ |
| 384 put_buffer = (put_buffer << size) | code; \ |
| 385 } |
| 386 |
| 387 #if __WORDSIZE==64 || defined(_WIN64) |
| 388 |
| 389 #define DUMP_BITS(code, size) { \ |
| 390 CHECKBUF47() \ |
| 391 put_bits += size; \ |
| 392 put_buffer = (put_buffer << size) | code; \ |
| 393 } |
| 394 |
| 395 #else |
| 396 |
| 397 #define DUMP_BITS(code, size) { \ |
| 398 put_bits += size; \ |
| 399 put_buffer = (put_buffer << size) | code; \ |
| 400 CHECKBUF15() \ |
| 401 } |
| 402 |
| 403 #endif |
| 404 |
| 405 /***************************************************************/ |
| 406 |
| 407 #define DUMP_SINGLE_VALUE(ht, codevalue) { \ |
| 408 size = ht->ehufsi[codevalue]; \ |
| 409 code = ht->ehufco[codevalue]; \ |
| 410 \ |
| 411 DUMP_BITS(code, size) \ |
| 412 } |
| 413 |
| 414 /***************************************************************/ |
| 415 |
| 416 #define DUMP_VALUE_SLOW(ht, codevalue, t, nbits) { \ |
| 417 size = ht->ehufsi[codevalue]; \ |
| 418 code = ht->ehufco[codevalue]; \ |
| 419 t &= ~(-1 << nbits); \ |
| 420 DUMP_BITS_NOCHECK(code, size) \ |
| 421 CHECKBUF15() \ |
| 422 DUMP_BITS_NOCHECK(t, nbits) \ |
| 423 CHECKBUF15() \ |
| 424 } |
| 425 |
| 426 int _max=0; |
| 427 |
| 428 #if __WORDSIZE==64 || defined(_WIN64) |
| 429 |
| 430 #define DUMP_VALUE(ht, codevalue, t, nbits) { \ |
| 431 size = ht->ehufsi[codevalue]; \ |
| 432 code = ht->ehufco[codevalue]; \ |
| 433 t &= ~(-1 << nbits); \ |
| 434 CHECKBUF31() \ |
| 435 DUMP_BITS_NOCHECK(code, size) \ |
| 436 DUMP_BITS_NOCHECK(t, nbits) \ |
| 437 } |
| 438 |
| 439 #else |
| 440 |
| 441 #define DUMP_VALUE(ht, codevalue, t, nbits) { \ |
| 442 size = ht->ehufsi[codevalue]; \ |
| 443 code = ht->ehufco[codevalue]; \ |
| 444 t &= ~(-1 << nbits); \ |
| 445 DUMP_BITS_NOCHECK(code, size) \ |
| 446 CHECKBUF15() \ |
| 447 DUMP_BITS_NOCHECK(t, nbits) \ |
| 448 CHECKBUF15() \ |
| 449 } |
| 450 |
| 451 #endif |
| 452 |
| 453 /***************************************************************/ |
| 454 |
| 455 #define BUFSIZE (DCTSIZE2 * 2) |
| 456 |
| 457 #define LOAD_BUFFER() { \ |
| 458 if (state->free_in_buffer < BUFSIZE) { \ |
| 459 localbuf = 1; \ |
| 460 buffer = _buffer; \ |
| 461 } \ |
| 462 else buffer = state->next_output_byte; \ |
| 463 } |
| 464 |
| 465 #define STORE_BUFFER() { \ |
| 466 if (localbuf) { \ |
| 467 bytes = buffer - _buffer; \ |
| 468 buffer = _buffer; \ |
| 469 while (bytes > 0) { \ |
| 470 bytestocopy = min(bytes, state->free_in_buffer); \ |
| 471 MEMCOPY(state->next_output_byte, buffer, bytestocopy); \ |
| 472 state->next_output_byte += bytestocopy; \ |
| 473 buffer += bytestocopy; \ |
| 474 state->free_in_buffer -= bytestocopy; \ |
| 475 if (state->free_in_buffer == 0) \ |
| 476 if (! dump_buffer(state)) return FALSE; \ |
| 477 bytes -= bytestocopy; \ |
| 478 } \ |
| 479 } \ |
| 480 else { \ |
| 481 state->free_in_buffer -= (buffer - state->next_output_byte); \ |
| 482 state->next_output_byte = buffer; \ |
| 483 } \ |
| 484 } |
| 485 |
| 486 /***************************************************************/ |
| 487 |
| 488 LOCAL(boolean) |
| 489 flush_bits (working_state * state) |
| 490 { |
| 491 unsigned char _buffer[BUFSIZE], *buffer; |
| 492 size_t put_buffer; int put_bits; |
| 493 size_t bytes, bytestocopy; int localbuf = 0; |
| 494 |
| 495 put_buffer = state->cur.put_buffer; |
| 496 put_bits = state->cur.put_bits; |
| 497 LOAD_BUFFER() |
| 498 |
| 499 DUMP_BITS_(0x7F, 7) |
| 500 |
| 501 state->cur.put_buffer = 0; /* and reset bit-buffer to empty */ |
| 502 state->cur.put_bits = 0; |
| 503 STORE_BUFFER() |
| 504 |
| 505 return TRUE; |
| 506 } |
| 507 |
| 508 /* Encode a single block's worth of coefficients */ |
| 509 |
| 510 LOCAL(boolean) |
| 511 encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, |
| 512 c_derived_tbl *dctbl, c_derived_tbl *actbl) |
| 513 { |
| 514 int temp, temp2; |
| 515 int nbits; |
| 516 int r, sflag, size, code; |
| 517 unsigned char _buffer[BUFSIZE], *buffer; |
| 518 size_t put_buffer; int put_bits; |
| 519 int code_0xf0 = actbl->ehufco[0xf0], size_0xf0 = actbl->ehufsi[0xf0]; |
| 520 size_t bytes, bytestocopy; int localbuf = 0; |
| 521 |
| 522 put_buffer = state->cur.put_buffer; |
| 523 put_bits = state->cur.put_bits; |
| 524 LOAD_BUFFER() |
| 525 |
| 526 /* Encode the DC coefficient difference per section F.1.2.1 */ |
| 527 |
| 528 temp = temp2 = block[0] - last_dc_val; |
| 529 |
| 530 sflag = temp >> 31; |
| 531 temp -= ((temp + temp) & sflag); |
| 532 temp2 += sflag; |
| 533 nbits = jpeg_first_bit_table[temp]; |
| 534 DUMP_VALUE_SLOW(dctbl, nbits, temp2, nbits) |
| 535 |
| 536 /* Encode the AC coefficients per section F.1.2.2 */ |
| 537 |
| 538 r = 0; /* r = run length of zeros */ |
| 539 |
| 540 #define innerloop(order) { \ |
| 541 temp2 = *(JCOEF*)((unsigned char*)block + order); \ |
| 542 if(temp2 == 0) r++; \ |
| 543 else { \ |
| 544 temp = (JCOEF)temp2; \ |
| 545 sflag = temp >> 31; \ |
| 546 temp = (temp ^ sflag) - sflag; \ |
| 547 temp2 += sflag; \ |
| 548 nbits = jpeg_first_bit_table[temp]; \ |
| 549 for(; r > 15; r -= 16) DUMP_BITS(code_0xf0, size_0xf0) \ |
| 550 sflag = (r << 4) + nbits; \ |
| 551 DUMP_VALUE(actbl, sflag, temp2, nbits) \ |
| 552 r = 0; \ |
| 553 }} |
| 554 |
| 555 innerloop(2*1); innerloop(2*8); innerloop(2*16); innerloop(2*9); |
| 556 innerloop(2*2); innerloop(2*3); innerloop(2*10); innerloop(2*17); |
| 557 innerloop(2*24); innerloop(2*32); innerloop(2*25); innerloop(2*18); |
| 558 innerloop(2*11); innerloop(2*4); innerloop(2*5); innerloop(2*12); |
| 559 innerloop(2*19); innerloop(2*26); innerloop(2*33); innerloop(2*40); |
| 560 innerloop(2*48); innerloop(2*41); innerloop(2*34); innerloop(2*27); |
| 561 innerloop(2*20); innerloop(2*13); innerloop(2*6); innerloop(2*7); |
| 562 innerloop(2*14); innerloop(2*21); innerloop(2*28); innerloop(2*35); |
| 563 innerloop(2*42); innerloop(2*49); innerloop(2*56); innerloop(2*57); |
| 564 innerloop(2*50); innerloop(2*43); innerloop(2*36); innerloop(2*29); |
| 565 innerloop(2*22); innerloop(2*15); innerloop(2*23); innerloop(2*30); |
| 566 innerloop(2*37); innerloop(2*44); innerloop(2*51); innerloop(2*58); |
| 567 innerloop(2*59); innerloop(2*52); innerloop(2*45); innerloop(2*38); |
| 568 innerloop(2*31); innerloop(2*39); innerloop(2*46); innerloop(2*53); |
| 569 innerloop(2*60); innerloop(2*61); innerloop(2*54); innerloop(2*47); |
| 570 innerloop(2*55); innerloop(2*62); innerloop(2*63); |
| 571 |
| 572 /* If the last coef(s) were zero, emit an end-of-block code */ |
| 573 if (r > 0) DUMP_SINGLE_VALUE(actbl, 0x0) |
| 574 |
| 575 state->cur.put_buffer = put_buffer; |
| 576 state->cur.put_bits = put_bits; |
| 577 STORE_BUFFER() |
| 578 |
| 579 return TRUE; |
| 580 } |
| 581 |
| 582 |
| 583 /* |
| 584 * Emit a restart marker & resynchronize predictions. |
| 585 */ |
| 586 |
| 587 LOCAL(boolean) |
| 588 emit_restart (working_state * state, int restart_num) |
| 589 { |
| 590 int ci; |
| 591 |
| 592 if (! flush_bits(state)) |
| 593 return FALSE; |
| 594 |
| 595 emit_byte(state, 0xFF, return FALSE); |
| 596 emit_byte(state, JPEG_RST0 + restart_num, return FALSE); |
| 597 |
| 598 /* Re-initialize DC predictions to 0 */ |
| 599 for (ci = 0; ci < state->cinfo->comps_in_scan; ci++) |
| 600 state->cur.last_dc_val[ci] = 0; |
| 601 |
| 602 /* The restart counter is not updated until we successfully write the MCU. */ |
| 603 |
| 604 return TRUE; |
| 605 } |
| 606 |
| 607 |
| 608 /* |
| 609 * Encode and output one MCU's worth of Huffman-compressed coefficients. |
| 610 */ |
| 611 |
| 612 METHODDEF(boolean) |
| 613 encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| 614 { |
| 615 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| 616 working_state state; |
| 617 int blkn, ci; |
| 618 jpeg_component_info * compptr; |
| 619 |
| 620 /* Load up working state */ |
| 621 state.next_output_byte = cinfo->dest->next_output_byte; |
| 622 state.free_in_buffer = cinfo->dest->free_in_buffer; |
| 623 ASSIGN_STATE(state.cur, entropy->saved); |
| 624 state.cinfo = cinfo; |
| 625 |
| 626 /* Emit restart marker if needed */ |
| 627 if (cinfo->restart_interval) { |
| 628 if (entropy->restarts_to_go == 0) |
| 629 if (! emit_restart(&state, entropy->next_restart_num)) |
| 630 return FALSE; |
| 631 } |
| 632 |
| 633 /* Encode the MCU data blocks */ |
| 634 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| 635 ci = cinfo->MCU_membership[blkn]; |
| 636 compptr = cinfo->cur_comp_info[ci]; |
| 637 if (! encode_one_block(&state, |
| 638 MCU_data[blkn][0], state.cur.last_dc_val[ci], |
| 639 entropy->dc_derived_tbls[compptr->dc_tbl_no], |
| 640 entropy->ac_derived_tbls[compptr->ac_tbl_no])) |
| 641 return FALSE; |
| 642 /* Update last_dc_val */ |
| 643 state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; |
| 644 } |
| 645 |
| 646 /* Completed MCU, so update state */ |
| 647 cinfo->dest->next_output_byte = state.next_output_byte; |
| 648 cinfo->dest->free_in_buffer = state.free_in_buffer; |
| 649 ASSIGN_STATE(entropy->saved, state.cur); |
| 650 |
| 651 /* Update restart-interval state too */ |
| 652 if (cinfo->restart_interval) { |
| 653 if (entropy->restarts_to_go == 0) { |
| 654 entropy->restarts_to_go = cinfo->restart_interval; |
| 655 entropy->next_restart_num++; |
| 656 entropy->next_restart_num &= 7; |
| 657 } |
| 658 entropy->restarts_to_go--; |
| 659 } |
| 660 |
| 661 return TRUE; |
| 662 } |
| 663 |
| 664 |
| 665 /* |
| 666 * Finish up at the end of a Huffman-compressed scan. |
| 667 */ |
| 668 |
| 669 METHODDEF(void) |
| 670 finish_pass_huff (j_compress_ptr cinfo) |
| 671 { |
| 672 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| 673 working_state state; |
| 674 |
| 675 /* Load up working state ... flush_bits needs it */ |
| 676 state.next_output_byte = cinfo->dest->next_output_byte; |
| 677 state.free_in_buffer = cinfo->dest->free_in_buffer; |
| 678 ASSIGN_STATE(state.cur, entropy->saved); |
| 679 state.cinfo = cinfo; |
| 680 |
| 681 /* Flush out the last data */ |
| 682 if (! flush_bits(&state)) |
| 683 ERREXIT(cinfo, JERR_CANT_SUSPEND); |
| 684 |
| 685 /* Update state */ |
| 686 cinfo->dest->next_output_byte = state.next_output_byte; |
| 687 cinfo->dest->free_in_buffer = state.free_in_buffer; |
| 688 ASSIGN_STATE(entropy->saved, state.cur); |
| 689 } |
| 690 |
| 691 |
| 692 /* |
| 693 * Huffman coding optimization. |
| 694 * |
| 695 * We first scan the supplied data and count the number of uses of each symbol |
| 696 * that is to be Huffman-coded. (This process MUST agree with the code above.) |
| 697 * Then we build a Huffman coding tree for the observed counts. |
| 698 * Symbols which are not needed at all for the particular image are not |
| 699 * assigned any code, which saves space in the DHT marker as well as in |
| 700 * the compressed data. |
| 701 */ |
| 702 |
| 703 #ifdef ENTROPY_OPT_SUPPORTED |
| 704 |
| 705 |
| 706 /* Process a single block's worth of coefficients */ |
| 707 |
| 708 LOCAL(void) |
| 709 htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, |
| 710 long dc_counts[], long ac_counts[]) |
| 711 { |
| 712 register int temp; |
| 713 register int nbits; |
| 714 register int k, r; |
| 715 |
| 716 /* Encode the DC coefficient difference per section F.1.2.1 */ |
| 717 |
| 718 temp = block[0] - last_dc_val; |
| 719 if (temp < 0) |
| 720 temp = -temp; |
| 721 |
| 722 /* Find the number of bits needed for the magnitude of the coefficient */ |
| 723 nbits = 0; |
| 724 while (temp) { |
| 725 nbits++; |
| 726 temp >>= 1; |
| 727 } |
| 728 /* Check for out-of-range coefficient values. |
| 729 * Since we're encoding a difference, the range limit is twice as much. |
| 730 */ |
| 731 if (nbits > MAX_COEF_BITS+1) |
| 732 ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
| 733 |
| 734 /* Count the Huffman symbol for the number of bits */ |
| 735 dc_counts[nbits]++; |
| 736 |
| 737 /* Encode the AC coefficients per section F.1.2.2 */ |
| 738 |
| 739 r = 0; /* r = run length of zeros */ |
| 740 |
| 741 for (k = 1; k < DCTSIZE2; k++) { |
| 742 if ((temp = block[jpeg_natural_order[k]]) == 0) { |
| 743 r++; |
| 744 } else { |
| 745 /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
| 746 while (r > 15) { |
| 747 ac_counts[0xF0]++; |
| 748 r -= 16; |
| 749 } |
| 750 |
| 751 /* Find the number of bits needed for the magnitude of the coefficient */ |
| 752 if (temp < 0) |
| 753 temp = -temp; |
| 754 |
| 755 /* Find the number of bits needed for the magnitude of the coefficient */ |
| 756 nbits = 1; /* there must be at least one 1 bit */ |
| 757 while ((temp >>= 1)) |
| 758 nbits++; |
| 759 /* Check for out-of-range coefficient values */ |
| 760 if (nbits > MAX_COEF_BITS) |
| 761 ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
| 762 |
| 763 /* Count Huffman symbol for run length / number of bits */ |
| 764 ac_counts[(r << 4) + nbits]++; |
| 765 |
| 766 r = 0; |
| 767 } |
| 768 } |
| 769 |
| 770 /* If the last coef(s) were zero, emit an end-of-block code */ |
| 771 if (r > 0) |
| 772 ac_counts[0]++; |
| 773 } |
| 774 |
| 775 |
| 776 /* |
| 777 * Trial-encode one MCU's worth of Huffman-compressed coefficients. |
| 778 * No data is actually output, so no suspension return is possible. |
| 779 */ |
| 780 |
| 781 METHODDEF(boolean) |
| 782 encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| 783 { |
| 784 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| 785 int blkn, ci; |
| 786 jpeg_component_info * compptr; |
| 787 |
| 788 /* Take care of restart intervals if needed */ |
| 789 if (cinfo->restart_interval) { |
| 790 if (entropy->restarts_to_go == 0) { |
| 791 /* Re-initialize DC predictions to 0 */ |
| 792 for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
| 793 entropy->saved.last_dc_val[ci] = 0; |
| 794 /* Update restart state */ |
| 795 entropy->restarts_to_go = cinfo->restart_interval; |
| 796 } |
| 797 entropy->restarts_to_go--; |
| 798 } |
| 799 |
| 800 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| 801 ci = cinfo->MCU_membership[blkn]; |
| 802 compptr = cinfo->cur_comp_info[ci]; |
| 803 htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci], |
| 804 entropy->dc_count_ptrs[compptr->dc_tbl_no], |
| 805 entropy->ac_count_ptrs[compptr->ac_tbl_no]); |
| 806 entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; |
| 807 } |
| 808 |
| 809 return TRUE; |
| 810 } |
| 811 |
| 812 |
| 813 /* |
| 814 * Generate the best Huffman code table for the given counts, fill htbl. |
| 815 * Note this is also used by jcphuff.c. |
| 816 * |
| 817 * The JPEG standard requires that no symbol be assigned a codeword of all |
| 818 * one bits (so that padding bits added at the end of a compressed segment |
| 819 * can't look like a valid code). Because of the canonical ordering of |
| 820 * codewords, this just means that there must be an unused slot in the |
| 821 * longest codeword length category. Section K.2 of the JPEG spec suggests |
| 822 * reserving such a slot by pretending that symbol 256 is a valid symbol |
| 823 * with count 1. In theory that's not optimal; giving it count zero but |
| 824 * including it in the symbol set anyway should give a better Huffman code. |
| 825 * But the theoretically better code actually seems to come out worse in |
| 826 * practice, because it produces more all-ones bytes (which incur stuffed |
| 827 * zero bytes in the final file). In any case the difference is tiny. |
| 828 * |
| 829 * The JPEG standard requires Huffman codes to be no more than 16 bits long. |
| 830 * If some symbols have a very small but nonzero probability, the Huffman tree |
| 831 * must be adjusted to meet the code length restriction. We currently use |
| 832 * the adjustment method suggested in JPEG section K.2. This method is *not* |
| 833 * optimal; it may not choose the best possible limited-length code. But |
| 834 * typically only very-low-frequency symbols will be given less-than-optimal |
| 835 * lengths, so the code is almost optimal. Experimental comparisons against |
| 836 * an optimal limited-length-code algorithm indicate that the difference is |
| 837 * microscopic --- usually less than a hundredth of a percent of total size. |
| 838 * So the extra complexity of an optimal algorithm doesn't seem worthwhile. |
| 839 */ |
| 840 |
| 841 GLOBAL(void) |
| 842 jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]) |
| 843 { |
| 844 #define MAX_CLEN 32 /* assumed maximum initial code length */ |
| 845 UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */ |
| 846 int codesize[257]; /* codesize[k] = code length of symbol k */ |
| 847 int others[257]; /* next symbol in current branch of tree */ |
| 848 int c1, c2; |
| 849 int p, i, j; |
| 850 long v; |
| 851 |
| 852 /* This algorithm is explained in section K.2 of the JPEG standard */ |
| 853 |
| 854 MEMZERO(bits, SIZEOF(bits)); |
| 855 MEMZERO(codesize, SIZEOF(codesize)); |
| 856 for (i = 0; i < 257; i++) |
| 857 others[i] = -1; /* init links to empty */ |
| 858 |
| 859 freq[256] = 1; /* make sure 256 has a nonzero count */ |
| 860 /* Including the pseudo-symbol 256 in the Huffman procedure guarantees |
| 861 * that no real symbol is given code-value of all ones, because 256 |
| 862 * will be placed last in the largest codeword category. |
| 863 */ |
| 864 |
| 865 /* Huffman's basic algorithm to assign optimal code lengths to symbols */ |
| 866 |
| 867 for (;;) { |
| 868 /* Find the smallest nonzero frequency, set c1 = its symbol */ |
| 869 /* In case of ties, take the larger symbol number */ |
| 870 c1 = -1; |
| 871 v = 1000000000L; |
| 872 for (i = 0; i <= 256; i++) { |
| 873 if (freq[i] && freq[i] <= v) { |
| 874 v = freq[i]; |
| 875 c1 = i; |
| 876 } |
| 877 } |
| 878 |
| 879 /* Find the next smallest nonzero frequency, set c2 = its symbol */ |
| 880 /* In case of ties, take the larger symbol number */ |
| 881 c2 = -1; |
| 882 v = 1000000000L; |
| 883 for (i = 0; i <= 256; i++) { |
| 884 if (freq[i] && freq[i] <= v && i != c1) { |
| 885 v = freq[i]; |
| 886 c2 = i; |
| 887 } |
| 888 } |
| 889 |
| 890 /* Done if we've merged everything into one frequency */ |
| 891 if (c2 < 0) |
| 892 break; |
| 893 |
| 894 /* Else merge the two counts/trees */ |
| 895 freq[c1] += freq[c2]; |
| 896 freq[c2] = 0; |
| 897 |
| 898 /* Increment the codesize of everything in c1's tree branch */ |
| 899 codesize[c1]++; |
| 900 while (others[c1] >= 0) { |
| 901 c1 = others[c1]; |
| 902 codesize[c1]++; |
| 903 } |
| 904 |
| 905 others[c1] = c2; /* chain c2 onto c1's tree branch */ |
| 906 |
| 907 /* Increment the codesize of everything in c2's tree branch */ |
| 908 codesize[c2]++; |
| 909 while (others[c2] >= 0) { |
| 910 c2 = others[c2]; |
| 911 codesize[c2]++; |
| 912 } |
| 913 } |
| 914 |
| 915 /* Now count the number of symbols of each code length */ |
| 916 for (i = 0; i <= 256; i++) { |
| 917 if (codesize[i]) { |
| 918 /* The JPEG standard seems to think that this can't happen, */ |
| 919 /* but I'm paranoid... */ |
| 920 if (codesize[i] > MAX_CLEN) |
| 921 ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW); |
| 922 |
| 923 bits[codesize[i]]++; |
| 924 } |
| 925 } |
| 926 |
| 927 /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure |
| 928 * Huffman procedure assigned any such lengths, we must adjust the coding. |
| 929 * Here is what the JPEG spec says about how this next bit works: |
| 930 * Since symbols are paired for the longest Huffman code, the symbols are |
| 931 * removed from this length category two at a time. The prefix for the pair |
| 932 * (which is one bit shorter) is allocated to one of the pair; then, |
| 933 * skipping the BITS entry for that prefix length, a code word from the next |
| 934 * shortest nonzero BITS entry is converted into a prefix for two code words |
| 935 * one bit longer. |
| 936 */ |
| 937 |
| 938 for (i = MAX_CLEN; i > 16; i--) { |
| 939 while (bits[i] > 0) { |
| 940 j = i - 2; /* find length of new prefix to be used */ |
| 941 while (bits[j] == 0) |
| 942 j--; |
| 943 |
| 944 bits[i] -= 2; /* remove two symbols */ |
| 945 bits[i-1]++; /* one goes in this length */ |
| 946 bits[j+1] += 2; /* two new symbols in this length */ |
| 947 bits[j]--; /* symbol of this length is now a prefix */ |
| 948 } |
| 949 } |
| 950 |
| 951 /* Remove the count for the pseudo-symbol 256 from the largest codelength */ |
| 952 while (bits[i] == 0) /* find largest codelength still in use */ |
| 953 i--; |
| 954 bits[i]--; |
| 955 |
| 956 /* Return final symbol counts (only for lengths 0..16) */ |
| 957 MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits)); |
| 958 |
| 959 /* Return a list of the symbols sorted by code length */ |
| 960 /* It's not real clear to me why we don't need to consider the codelength |
| 961 * changes made above, but the JPEG spec seems to think this works. |
| 962 */ |
| 963 p = 0; |
| 964 for (i = 1; i <= MAX_CLEN; i++) { |
| 965 for (j = 0; j <= 255; j++) { |
| 966 if (codesize[j] == i) { |
| 967 htbl->huffval[p] = (UINT8) j; |
| 968 p++; |
| 969 } |
| 970 } |
| 971 } |
| 972 |
| 973 /* Set sent_table FALSE so updated table will be written to JPEG file. */ |
| 974 htbl->sent_table = FALSE; |
| 975 } |
| 976 |
| 977 |
| 978 /* |
| 979 * Finish up a statistics-gathering pass and create the new Huffman tables. |
| 980 */ |
| 981 |
| 982 METHODDEF(void) |
| 983 finish_pass_gather (j_compress_ptr cinfo) |
| 984 { |
| 985 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| 986 int ci, dctbl, actbl; |
| 987 jpeg_component_info * compptr; |
| 988 JHUFF_TBL **htblptr; |
| 989 boolean did_dc[NUM_HUFF_TBLS]; |
| 990 boolean did_ac[NUM_HUFF_TBLS]; |
| 991 |
| 992 /* It's important not to apply jpeg_gen_optimal_table more than once |
| 993 * per table, because it clobbers the input frequency counts! |
| 994 */ |
| 995 MEMZERO(did_dc, SIZEOF(did_dc)); |
| 996 MEMZERO(did_ac, SIZEOF(did_ac)); |
| 997 |
| 998 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| 999 compptr = cinfo->cur_comp_info[ci]; |
| 1000 dctbl = compptr->dc_tbl_no; |
| 1001 actbl = compptr->ac_tbl_no; |
| 1002 if (! did_dc[dctbl]) { |
| 1003 htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl]; |
| 1004 if (*htblptr == NULL) |
| 1005 *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
| 1006 jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]); |
| 1007 did_dc[dctbl] = TRUE; |
| 1008 } |
| 1009 if (! did_ac[actbl]) { |
| 1010 htblptr = & cinfo->ac_huff_tbl_ptrs[actbl]; |
| 1011 if (*htblptr == NULL) |
| 1012 *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
| 1013 jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]); |
| 1014 did_ac[actbl] = TRUE; |
| 1015 } |
| 1016 } |
| 1017 } |
| 1018 |
| 1019 |
| 1020 #endif /* ENTROPY_OPT_SUPPORTED */ |
| 1021 |
| 1022 |
| 1023 /* |
| 1024 * Module initialization routine for Huffman entropy encoding. |
| 1025 */ |
| 1026 |
| 1027 GLOBAL(void) |
| 1028 jinit_huff_encoder (j_compress_ptr cinfo) |
| 1029 { |
| 1030 huff_entropy_ptr entropy; |
| 1031 int i; |
| 1032 |
| 1033 entropy = (huff_entropy_ptr) |
| 1034 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 1035 SIZEOF(huff_entropy_encoder)); |
| 1036 cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; |
| 1037 entropy->pub.start_pass = start_pass_huff; |
| 1038 |
| 1039 /* Mark tables unallocated */ |
| 1040 for (i = 0; i < NUM_HUFF_TBLS; i++) { |
| 1041 entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; |
| 1042 #ifdef ENTROPY_OPT_SUPPORTED |
| 1043 entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; |
| 1044 #endif |
| 1045 } |
| 1046 } |
OLD | NEW |