| Index: third_party/libjpeg_turbo/jcdctmgr.c
|
| ===================================================================
|
| --- third_party/libjpeg_turbo/jcdctmgr.c (revision 0)
|
| +++ third_party/libjpeg_turbo/jcdctmgr.c (revision 0)
|
| @@ -0,0 +1,632 @@
|
| +/*
|
| + * jcdctmgr.c
|
| + *
|
| + * Copyright (C) 1994-1996, Thomas G. Lane.
|
| + * Copyright (C) 1999-2006, MIYASAKA Masaru.
|
| + * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
|
| + * This file is part of the Independent JPEG Group's software.
|
| + * For conditions of distribution and use, see the accompanying README file.
|
| + *
|
| + * This file contains the forward-DCT management logic.
|
| + * This code selects a particular DCT implementation to be used,
|
| + * and it performs related housekeeping chores including coefficient
|
| + * quantization.
|
| + */
|
| +
|
| +#define JPEG_INTERNALS
|
| +#include "jinclude.h"
|
| +#include "jpeglib.h"
|
| +#include "jdct.h" /* Private declarations for DCT subsystem */
|
| +#include "jsimddct.h"
|
| +
|
| +
|
| +/* Private subobject for this module */
|
| +
|
| +typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data));
|
| +typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data));
|
| +
|
| +typedef JMETHOD(void, convsamp_method_ptr,
|
| + (JSAMPARRAY sample_data, JDIMENSION start_col,
|
| + DCTELEM * workspace));
|
| +typedef JMETHOD(void, float_convsamp_method_ptr,
|
| + (JSAMPARRAY sample_data, JDIMENSION start_col,
|
| + FAST_FLOAT *workspace));
|
| +
|
| +typedef JMETHOD(void, quantize_method_ptr,
|
| + (JCOEFPTR coef_block, DCTELEM * divisors,
|
| + DCTELEM * workspace));
|
| +typedef JMETHOD(void, float_quantize_method_ptr,
|
| + (JCOEFPTR coef_block, FAST_FLOAT * divisors,
|
| + FAST_FLOAT * workspace));
|
| +
|
| +typedef struct {
|
| + struct jpeg_forward_dct pub; /* public fields */
|
| +
|
| + /* Pointer to the DCT routine actually in use */
|
| + forward_DCT_method_ptr dct;
|
| + convsamp_method_ptr convsamp;
|
| + quantize_method_ptr quantize;
|
| +
|
| + /* The actual post-DCT divisors --- not identical to the quant table
|
| + * entries, because of scaling (especially for an unnormalized DCT).
|
| + * Each table is given in normal array order.
|
| + */
|
| + DCTELEM * divisors[NUM_QUANT_TBLS];
|
| +
|
| + /* work area for FDCT subroutine */
|
| + DCTELEM * workspace;
|
| +
|
| +#ifdef DCT_FLOAT_SUPPORTED
|
| + /* Same as above for the floating-point case. */
|
| + float_DCT_method_ptr float_dct;
|
| + float_convsamp_method_ptr float_convsamp;
|
| + float_quantize_method_ptr float_quantize;
|
| + FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
|
| + FAST_FLOAT * float_workspace;
|
| +#endif
|
| +} my_fdct_controller;
|
| +
|
| +typedef my_fdct_controller * my_fdct_ptr;
|
| +
|
| +
|
| +/*
|
| + * Find the highest bit in an integer through binary search.
|
| + */
|
| +LOCAL(int)
|
| +flss (UINT16 val)
|
| +{
|
| + int bit;
|
| +
|
| + bit = 16;
|
| +
|
| + if (!val)
|
| + return 0;
|
| +
|
| + if (!(val & 0xff00)) {
|
| + bit -= 8;
|
| + val <<= 8;
|
| + }
|
| + if (!(val & 0xf000)) {
|
| + bit -= 4;
|
| + val <<= 4;
|
| + }
|
| + if (!(val & 0xc000)) {
|
| + bit -= 2;
|
| + val <<= 2;
|
| + }
|
| + if (!(val & 0x8000)) {
|
| + bit -= 1;
|
| + val <<= 1;
|
| + }
|
| +
|
| + return bit;
|
| +}
|
| +
|
| +/*
|
| + * Compute values to do a division using reciprocal.
|
| + *
|
| + * This implementation is based on an algorithm described in
|
| + * "How to optimize for the Pentium family of microprocessors"
|
| + * (http://www.agner.org/assem/).
|
| + * More information about the basic algorithm can be found in
|
| + * the paper "Integer Division Using Reciprocals" by Robert Alverson.
|
| + *
|
| + * The basic idea is to replace x/d by x * d^-1. In order to store
|
| + * d^-1 with enough precision we shift it left a few places. It turns
|
| + * out that this algoright gives just enough precision, and also fits
|
| + * into DCTELEM:
|
| + *
|
| + * b = (the number of significant bits in divisor) - 1
|
| + * r = (word size) + b
|
| + * f = 2^r / divisor
|
| + *
|
| + * f will not be an integer for most cases, so we need to compensate
|
| + * for the rounding error introduced:
|
| + *
|
| + * no fractional part:
|
| + *
|
| + * result = input >> r
|
| + *
|
| + * fractional part of f < 0.5:
|
| + *
|
| + * round f down to nearest integer
|
| + * result = ((input + 1) * f) >> r
|
| + *
|
| + * fractional part of f > 0.5:
|
| + *
|
| + * round f up to nearest integer
|
| + * result = (input * f) >> r
|
| + *
|
| + * This is the original algorithm that gives truncated results. But we
|
| + * want properly rounded results, so we replace "input" with
|
| + * "input + divisor/2".
|
| + *
|
| + * In order to allow SIMD implementations we also tweak the values to
|
| + * allow the same calculation to be made at all times:
|
| + *
|
| + * dctbl[0] = f rounded to nearest integer
|
| + * dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5)
|
| + * dctbl[2] = 1 << ((word size) * 2 - r)
|
| + * dctbl[3] = r - (word size)
|
| + *
|
| + * dctbl[2] is for stupid instruction sets where the shift operation
|
| + * isn't member wise (e.g. MMX).
|
| + *
|
| + * The reason dctbl[2] and dctbl[3] reduce the shift with (word size)
|
| + * is that most SIMD implementations have a "multiply and store top
|
| + * half" operation.
|
| + *
|
| + * Lastly, we store each of the values in their own table instead
|
| + * of in a consecutive manner, yet again in order to allow SIMD
|
| + * routines.
|
| + */
|
| +LOCAL(void)
|
| +compute_reciprocal (UINT16 divisor, DCTELEM * dtbl)
|
| +{
|
| + UDCTELEM2 fq, fr;
|
| + UDCTELEM c;
|
| + int b, r;
|
| +
|
| + b = flss(divisor) - 1;
|
| + r = sizeof(DCTELEM) * 8 + b;
|
| +
|
| + fq = ((UDCTELEM2)1 << r) / divisor;
|
| + fr = ((UDCTELEM2)1 << r) % divisor;
|
| +
|
| + c = divisor / 2; /* for rounding */
|
| +
|
| + if (fr == 0) { /* divisor is power of two */
|
| + /* fq will be one bit too large to fit in DCTELEM, so adjust */
|
| + fq >>= 1;
|
| + r--;
|
| + } else if (fr <= (divisor / 2)) { /* fractional part is < 0.5 */
|
| + c++;
|
| + } else { /* fractional part is > 0.5 */
|
| + fq++;
|
| + }
|
| +
|
| + dtbl[DCTSIZE2 * 0] = (DCTELEM) fq; /* reciprocal */
|
| + dtbl[DCTSIZE2 * 1] = (DCTELEM) c; /* correction + roundfactor */
|
| + dtbl[DCTSIZE2 * 2] = (DCTELEM) (1 << (sizeof(DCTELEM)*8*2 - r)); /* scale */
|
| + dtbl[DCTSIZE2 * 3] = (DCTELEM) r - sizeof(DCTELEM)*8; /* shift */
|
| +}
|
| +
|
| +/*
|
| + * Initialize for a processing pass.
|
| + * Verify that all referenced Q-tables are present, and set up
|
| + * the divisor table for each one.
|
| + * In the current implementation, DCT of all components is done during
|
| + * the first pass, even if only some components will be output in the
|
| + * first scan. Hence all components should be examined here.
|
| + */
|
| +
|
| +METHODDEF(void)
|
| +start_pass_fdctmgr (j_compress_ptr cinfo)
|
| +{
|
| + my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
| + int ci, qtblno, i;
|
| + jpeg_component_info *compptr;
|
| + JQUANT_TBL * qtbl;
|
| + DCTELEM * dtbl;
|
| +
|
| + for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
| + ci++, compptr++) {
|
| + qtblno = compptr->quant_tbl_no;
|
| + /* Make sure specified quantization table is present */
|
| + if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
|
| + cinfo->quant_tbl_ptrs[qtblno] == NULL)
|
| + ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
|
| + qtbl = cinfo->quant_tbl_ptrs[qtblno];
|
| + /* Compute divisors for this quant table */
|
| + /* We may do this more than once for same table, but it's not a big deal */
|
| + switch (cinfo->dct_method) {
|
| +#ifdef DCT_ISLOW_SUPPORTED
|
| + case JDCT_ISLOW:
|
| + /* For LL&M IDCT method, divisors are equal to raw quantization
|
| + * coefficients multiplied by 8 (to counteract scaling).
|
| + */
|
| + if (fdct->divisors[qtblno] == NULL) {
|
| + fdct->divisors[qtblno] = (DCTELEM *)
|
| + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
| + (DCTSIZE2 * 4) * SIZEOF(DCTELEM));
|
| + }
|
| + dtbl = fdct->divisors[qtblno];
|
| + for (i = 0; i < DCTSIZE2; i++) {
|
| + compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]);
|
| + }
|
| + break;
|
| +#endif
|
| +#ifdef DCT_IFAST_SUPPORTED
|
| + case JDCT_IFAST:
|
| + {
|
| + /* For AA&N IDCT method, divisors are equal to quantization
|
| + * coefficients scaled by scalefactor[row]*scalefactor[col], where
|
| + * scalefactor[0] = 1
|
| + * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
| + * We apply a further scale factor of 8.
|
| + */
|
| +#define CONST_BITS 14
|
| + static const INT16 aanscales[DCTSIZE2] = {
|
| + /* precomputed values scaled up by 14 bits */
|
| + 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
| + 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
| + 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
| + 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
| + 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
| + 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
| + 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
| + 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
| + };
|
| + SHIFT_TEMPS
|
| +
|
| + if (fdct->divisors[qtblno] == NULL) {
|
| + fdct->divisors[qtblno] = (DCTELEM *)
|
| + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
| + (DCTSIZE2 * 4) * SIZEOF(DCTELEM));
|
| + }
|
| + dtbl = fdct->divisors[qtblno];
|
| + for (i = 0; i < DCTSIZE2; i++) {
|
| + compute_reciprocal(
|
| + DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
|
| + (INT32) aanscales[i]),
|
| + CONST_BITS-3), &dtbl[i]);
|
| + }
|
| + }
|
| + break;
|
| +#endif
|
| +#ifdef DCT_FLOAT_SUPPORTED
|
| + case JDCT_FLOAT:
|
| + {
|
| + /* For float AA&N IDCT method, divisors are equal to quantization
|
| + * coefficients scaled by scalefactor[row]*scalefactor[col], where
|
| + * scalefactor[0] = 1
|
| + * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
| + * We apply a further scale factor of 8.
|
| + * What's actually stored is 1/divisor so that the inner loop can
|
| + * use a multiplication rather than a division.
|
| + */
|
| + FAST_FLOAT * fdtbl;
|
| + int row, col;
|
| + static const double aanscalefactor[DCTSIZE] = {
|
| + 1.0, 1.387039845, 1.306562965, 1.175875602,
|
| + 1.0, 0.785694958, 0.541196100, 0.275899379
|
| + };
|
| +
|
| + if (fdct->float_divisors[qtblno] == NULL) {
|
| + fdct->float_divisors[qtblno] = (FAST_FLOAT *)
|
| + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
| + DCTSIZE2 * SIZEOF(FAST_FLOAT));
|
| + }
|
| + fdtbl = fdct->float_divisors[qtblno];
|
| + i = 0;
|
| + for (row = 0; row < DCTSIZE; row++) {
|
| + for (col = 0; col < DCTSIZE; col++) {
|
| + fdtbl[i] = (FAST_FLOAT)
|
| + (1.0 / (((double) qtbl->quantval[i] *
|
| + aanscalefactor[row] * aanscalefactor[col] * 8.0)));
|
| + i++;
|
| + }
|
| + }
|
| + }
|
| + break;
|
| +#endif
|
| + default:
|
| + ERREXIT(cinfo, JERR_NOT_COMPILED);
|
| + break;
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +/*
|
| + * Load data into workspace, applying unsigned->signed conversion.
|
| + */
|
| +
|
| +METHODDEF(void)
|
| +convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace)
|
| +{
|
| + register DCTELEM *workspaceptr;
|
| + register JSAMPROW elemptr;
|
| + register int elemr;
|
| +
|
| + workspaceptr = workspace;
|
| + for (elemr = 0; elemr < DCTSIZE; elemr++) {
|
| + elemptr = sample_data[elemr] + start_col;
|
| +
|
| +#if DCTSIZE == 8 /* unroll the inner loop */
|
| + *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
| + *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
| + *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
| + *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
| + *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
| + *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
| + *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
| + *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
| +#else
|
| + {
|
| + register int elemc;
|
| + for (elemc = DCTSIZE; elemc > 0; elemc--)
|
| + *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
| + }
|
| +#endif
|
| + }
|
| +}
|
| +
|
| +
|
| +/*
|
| + * Quantize/descale the coefficients, and store into coef_blocks[].
|
| + */
|
| +
|
| +METHODDEF(void)
|
| +quantize (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace)
|
| +{
|
| + int i;
|
| + DCTELEM temp;
|
| + UDCTELEM recip, corr, shift;
|
| + UDCTELEM2 product;
|
| + JCOEFPTR output_ptr = coef_block;
|
| +
|
| + for (i = 0; i < DCTSIZE2; i++) {
|
| + temp = workspace[i];
|
| + recip = divisors[i + DCTSIZE2 * 0];
|
| + corr = divisors[i + DCTSIZE2 * 1];
|
| + shift = divisors[i + DCTSIZE2 * 3];
|
| +
|
| + if (temp < 0) {
|
| + temp = -temp;
|
| + product = (UDCTELEM2)(temp + corr) * recip;
|
| + product >>= shift + sizeof(DCTELEM)*8;
|
| + temp = product;
|
| + temp = -temp;
|
| + } else {
|
| + product = (UDCTELEM2)(temp + corr) * recip;
|
| + product >>= shift + sizeof(DCTELEM)*8;
|
| + temp = product;
|
| + }
|
| +
|
| + output_ptr[i] = (JCOEF) temp;
|
| + }
|
| +}
|
| +
|
| +
|
| +/*
|
| + * Perform forward DCT on one or more blocks of a component.
|
| + *
|
| + * The input samples are taken from the sample_data[] array starting at
|
| + * position start_row/start_col, and moving to the right for any additional
|
| + * blocks. The quantized coefficients are returned in coef_blocks[].
|
| + */
|
| +
|
| +METHODDEF(void)
|
| +forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
| + JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
| + JDIMENSION start_row, JDIMENSION start_col,
|
| + JDIMENSION num_blocks)
|
| +/* This version is used for integer DCT implementations. */
|
| +{
|
| + /* This routine is heavily used, so it's worth coding it tightly. */
|
| + my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
| + DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
|
| + DCTELEM * workspace;
|
| + JDIMENSION bi;
|
| +
|
| + /* Make sure the compiler doesn't look up these every pass */
|
| + forward_DCT_method_ptr do_dct = fdct->dct;
|
| + convsamp_method_ptr do_convsamp = fdct->convsamp;
|
| + quantize_method_ptr do_quantize = fdct->quantize;
|
| + workspace = fdct->workspace;
|
| +
|
| + sample_data += start_row; /* fold in the vertical offset once */
|
| +
|
| + for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
|
| + /* Load data into workspace, applying unsigned->signed conversion */
|
| + (*do_convsamp) (sample_data, start_col, workspace);
|
| +
|
| + /* Perform the DCT */
|
| + (*do_dct) (workspace);
|
| +
|
| + /* Quantize/descale the coefficients, and store into coef_blocks[] */
|
| + (*do_quantize) (coef_blocks[bi], divisors, workspace);
|
| + }
|
| +}
|
| +
|
| +
|
| +#ifdef DCT_FLOAT_SUPPORTED
|
| +
|
| +
|
| +METHODDEF(void)
|
| +convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * workspace)
|
| +{
|
| + register FAST_FLOAT *workspaceptr;
|
| + register JSAMPROW elemptr;
|
| + register int elemr;
|
| +
|
| + workspaceptr = workspace;
|
| + for (elemr = 0; elemr < DCTSIZE; elemr++) {
|
| + elemptr = sample_data[elemr] + start_col;
|
| +#if DCTSIZE == 8 /* unroll the inner loop */
|
| + *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
| + *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
| + *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
| + *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
| + *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
| + *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
| + *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
| + *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
| +#else
|
| + {
|
| + register int elemc;
|
| + for (elemc = DCTSIZE; elemc > 0; elemc--)
|
| + *workspaceptr++ = (FAST_FLOAT)
|
| + (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
| + }
|
| +#endif
|
| + }
|
| +}
|
| +
|
| +
|
| +METHODDEF(void)
|
| +quantize_float (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace)
|
| +{
|
| + register FAST_FLOAT temp;
|
| + register int i;
|
| + register JCOEFPTR output_ptr = coef_block;
|
| +
|
| + for (i = 0; i < DCTSIZE2; i++) {
|
| + /* Apply the quantization and scaling factor */
|
| + temp = workspace[i] * divisors[i];
|
| +
|
| + /* Round to nearest integer.
|
| + * Since C does not specify the direction of rounding for negative
|
| + * quotients, we have to force the dividend positive for portability.
|
| + * The maximum coefficient size is +-16K (for 12-bit data), so this
|
| + * code should work for either 16-bit or 32-bit ints.
|
| + */
|
| + output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
|
| + }
|
| +}
|
| +
|
| +
|
| +METHODDEF(void)
|
| +forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
| + JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
| + JDIMENSION start_row, JDIMENSION start_col,
|
| + JDIMENSION num_blocks)
|
| +/* This version is used for floating-point DCT implementations. */
|
| +{
|
| + /* This routine is heavily used, so it's worth coding it tightly. */
|
| + my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
| + FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
|
| + FAST_FLOAT * workspace;
|
| + JDIMENSION bi;
|
| +
|
| +
|
| + /* Make sure the compiler doesn't look up these every pass */
|
| + float_DCT_method_ptr do_dct = fdct->float_dct;
|
| + float_convsamp_method_ptr do_convsamp = fdct->float_convsamp;
|
| + float_quantize_method_ptr do_quantize = fdct->float_quantize;
|
| + workspace = fdct->float_workspace;
|
| +
|
| + sample_data += start_row; /* fold in the vertical offset once */
|
| +
|
| + for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
|
| + /* Load data into workspace, applying unsigned->signed conversion */
|
| + (*do_convsamp) (sample_data, start_col, workspace);
|
| +
|
| + /* Perform the DCT */
|
| + (*do_dct) (workspace);
|
| +
|
| + /* Quantize/descale the coefficients, and store into coef_blocks[] */
|
| + (*do_quantize) (coef_blocks[bi], divisors, workspace);
|
| + }
|
| +}
|
| +
|
| +#endif /* DCT_FLOAT_SUPPORTED */
|
| +
|
| +
|
| +/*
|
| + * Initialize FDCT manager.
|
| + */
|
| +
|
| +GLOBAL(void)
|
| +jinit_forward_dct (j_compress_ptr cinfo)
|
| +{
|
| + my_fdct_ptr fdct;
|
| + int i;
|
| +
|
| + fdct = (my_fdct_ptr)
|
| + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
| + SIZEOF(my_fdct_controller));
|
| + cinfo->fdct = (struct jpeg_forward_dct *) fdct;
|
| + fdct->pub.start_pass = start_pass_fdctmgr;
|
| +
|
| + /* First determine the DCT... */
|
| + switch (cinfo->dct_method) {
|
| +#ifdef DCT_ISLOW_SUPPORTED
|
| + case JDCT_ISLOW:
|
| + fdct->pub.forward_DCT = forward_DCT;
|
| + if (jsimd_can_fdct_islow())
|
| + fdct->dct = jsimd_fdct_islow;
|
| + else
|
| + fdct->dct = jpeg_fdct_islow;
|
| + break;
|
| +#endif
|
| +#ifdef DCT_IFAST_SUPPORTED
|
| + case JDCT_IFAST:
|
| + fdct->pub.forward_DCT = forward_DCT;
|
| + if (jsimd_can_fdct_ifast())
|
| + fdct->dct = jsimd_fdct_ifast;
|
| + else
|
| + fdct->dct = jpeg_fdct_ifast;
|
| + break;
|
| +#endif
|
| +#ifdef DCT_FLOAT_SUPPORTED
|
| + case JDCT_FLOAT:
|
| + fdct->pub.forward_DCT = forward_DCT_float;
|
| + if (jsimd_can_fdct_float())
|
| + fdct->float_dct = jsimd_fdct_float;
|
| + else
|
| + fdct->float_dct = jpeg_fdct_float;
|
| + break;
|
| +#endif
|
| + default:
|
| + ERREXIT(cinfo, JERR_NOT_COMPILED);
|
| + break;
|
| + }
|
| +
|
| + /* ...then the supporting stages. */
|
| + switch (cinfo->dct_method) {
|
| +#ifdef DCT_ISLOW_SUPPORTED
|
| + case JDCT_ISLOW:
|
| +#endif
|
| +#ifdef DCT_IFAST_SUPPORTED
|
| + case JDCT_IFAST:
|
| +#endif
|
| +#if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED)
|
| + if (jsimd_can_convsamp())
|
| + fdct->convsamp = jsimd_convsamp;
|
| + else
|
| + fdct->convsamp = convsamp;
|
| + if (jsimd_can_quantize())
|
| + fdct->quantize = jsimd_quantize;
|
| + else
|
| + fdct->quantize = quantize;
|
| + break;
|
| +#endif
|
| +#ifdef DCT_FLOAT_SUPPORTED
|
| + case JDCT_FLOAT:
|
| + if (jsimd_can_convsamp_float())
|
| + fdct->float_convsamp = jsimd_convsamp_float;
|
| + else
|
| + fdct->float_convsamp = convsamp_float;
|
| + if (jsimd_can_quantize_float())
|
| + fdct->float_quantize = jsimd_quantize_float;
|
| + else
|
| + fdct->float_quantize = quantize_float;
|
| + break;
|
| +#endif
|
| + default:
|
| + ERREXIT(cinfo, JERR_NOT_COMPILED);
|
| + break;
|
| + }
|
| +
|
| + /* Allocate workspace memory */
|
| +#ifdef DCT_FLOAT_SUPPORTED
|
| + if (cinfo->dct_method == JDCT_FLOAT)
|
| + fdct->float_workspace = (FAST_FLOAT *)
|
| + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
| + SIZEOF(FAST_FLOAT) * DCTSIZE2);
|
| + else
|
| +#endif
|
| + fdct->workspace = (DCTELEM *)
|
| + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
| + SIZEOF(DCTELEM) * DCTSIZE2);
|
| +
|
| + /* Mark divisor tables unallocated */
|
| + for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
| + fdct->divisors[i] = NULL;
|
| +#ifdef DCT_FLOAT_SUPPORTED
|
| + fdct->float_divisors[i] = NULL;
|
| +#endif
|
| + }
|
| +}
|
|
|