Index: third_party/libjpeg_turbo/jcdctmgr.c |
=================================================================== |
--- third_party/libjpeg_turbo/jcdctmgr.c (revision 0) |
+++ third_party/libjpeg_turbo/jcdctmgr.c (revision 0) |
@@ -0,0 +1,632 @@ |
+/* |
+ * jcdctmgr.c |
+ * |
+ * Copyright (C) 1994-1996, Thomas G. Lane. |
+ * Copyright (C) 1999-2006, MIYASAKA Masaru. |
+ * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
+ * This file is part of the Independent JPEG Group's software. |
+ * For conditions of distribution and use, see the accompanying README file. |
+ * |
+ * This file contains the forward-DCT management logic. |
+ * This code selects a particular DCT implementation to be used, |
+ * and it performs related housekeeping chores including coefficient |
+ * quantization. |
+ */ |
+ |
+#define JPEG_INTERNALS |
+#include "jinclude.h" |
+#include "jpeglib.h" |
+#include "jdct.h" /* Private declarations for DCT subsystem */ |
+#include "jsimddct.h" |
+ |
+ |
+/* Private subobject for this module */ |
+ |
+typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data)); |
+typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data)); |
+ |
+typedef JMETHOD(void, convsamp_method_ptr, |
+ (JSAMPARRAY sample_data, JDIMENSION start_col, |
+ DCTELEM * workspace)); |
+typedef JMETHOD(void, float_convsamp_method_ptr, |
+ (JSAMPARRAY sample_data, JDIMENSION start_col, |
+ FAST_FLOAT *workspace)); |
+ |
+typedef JMETHOD(void, quantize_method_ptr, |
+ (JCOEFPTR coef_block, DCTELEM * divisors, |
+ DCTELEM * workspace)); |
+typedef JMETHOD(void, float_quantize_method_ptr, |
+ (JCOEFPTR coef_block, FAST_FLOAT * divisors, |
+ FAST_FLOAT * workspace)); |
+ |
+typedef struct { |
+ struct jpeg_forward_dct pub; /* public fields */ |
+ |
+ /* Pointer to the DCT routine actually in use */ |
+ forward_DCT_method_ptr dct; |
+ convsamp_method_ptr convsamp; |
+ quantize_method_ptr quantize; |
+ |
+ /* The actual post-DCT divisors --- not identical to the quant table |
+ * entries, because of scaling (especially for an unnormalized DCT). |
+ * Each table is given in normal array order. |
+ */ |
+ DCTELEM * divisors[NUM_QUANT_TBLS]; |
+ |
+ /* work area for FDCT subroutine */ |
+ DCTELEM * workspace; |
+ |
+#ifdef DCT_FLOAT_SUPPORTED |
+ /* Same as above for the floating-point case. */ |
+ float_DCT_method_ptr float_dct; |
+ float_convsamp_method_ptr float_convsamp; |
+ float_quantize_method_ptr float_quantize; |
+ FAST_FLOAT * float_divisors[NUM_QUANT_TBLS]; |
+ FAST_FLOAT * float_workspace; |
+#endif |
+} my_fdct_controller; |
+ |
+typedef my_fdct_controller * my_fdct_ptr; |
+ |
+ |
+/* |
+ * Find the highest bit in an integer through binary search. |
+ */ |
+LOCAL(int) |
+flss (UINT16 val) |
+{ |
+ int bit; |
+ |
+ bit = 16; |
+ |
+ if (!val) |
+ return 0; |
+ |
+ if (!(val & 0xff00)) { |
+ bit -= 8; |
+ val <<= 8; |
+ } |
+ if (!(val & 0xf000)) { |
+ bit -= 4; |
+ val <<= 4; |
+ } |
+ if (!(val & 0xc000)) { |
+ bit -= 2; |
+ val <<= 2; |
+ } |
+ if (!(val & 0x8000)) { |
+ bit -= 1; |
+ val <<= 1; |
+ } |
+ |
+ return bit; |
+} |
+ |
+/* |
+ * Compute values to do a division using reciprocal. |
+ * |
+ * This implementation is based on an algorithm described in |
+ * "How to optimize for the Pentium family of microprocessors" |
+ * (http://www.agner.org/assem/). |
+ * More information about the basic algorithm can be found in |
+ * the paper "Integer Division Using Reciprocals" by Robert Alverson. |
+ * |
+ * The basic idea is to replace x/d by x * d^-1. In order to store |
+ * d^-1 with enough precision we shift it left a few places. It turns |
+ * out that this algoright gives just enough precision, and also fits |
+ * into DCTELEM: |
+ * |
+ * b = (the number of significant bits in divisor) - 1 |
+ * r = (word size) + b |
+ * f = 2^r / divisor |
+ * |
+ * f will not be an integer for most cases, so we need to compensate |
+ * for the rounding error introduced: |
+ * |
+ * no fractional part: |
+ * |
+ * result = input >> r |
+ * |
+ * fractional part of f < 0.5: |
+ * |
+ * round f down to nearest integer |
+ * result = ((input + 1) * f) >> r |
+ * |
+ * fractional part of f > 0.5: |
+ * |
+ * round f up to nearest integer |
+ * result = (input * f) >> r |
+ * |
+ * This is the original algorithm that gives truncated results. But we |
+ * want properly rounded results, so we replace "input" with |
+ * "input + divisor/2". |
+ * |
+ * In order to allow SIMD implementations we also tweak the values to |
+ * allow the same calculation to be made at all times: |
+ * |
+ * dctbl[0] = f rounded to nearest integer |
+ * dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5) |
+ * dctbl[2] = 1 << ((word size) * 2 - r) |
+ * dctbl[3] = r - (word size) |
+ * |
+ * dctbl[2] is for stupid instruction sets where the shift operation |
+ * isn't member wise (e.g. MMX). |
+ * |
+ * The reason dctbl[2] and dctbl[3] reduce the shift with (word size) |
+ * is that most SIMD implementations have a "multiply and store top |
+ * half" operation. |
+ * |
+ * Lastly, we store each of the values in their own table instead |
+ * of in a consecutive manner, yet again in order to allow SIMD |
+ * routines. |
+ */ |
+LOCAL(void) |
+compute_reciprocal (UINT16 divisor, DCTELEM * dtbl) |
+{ |
+ UDCTELEM2 fq, fr; |
+ UDCTELEM c; |
+ int b, r; |
+ |
+ b = flss(divisor) - 1; |
+ r = sizeof(DCTELEM) * 8 + b; |
+ |
+ fq = ((UDCTELEM2)1 << r) / divisor; |
+ fr = ((UDCTELEM2)1 << r) % divisor; |
+ |
+ c = divisor / 2; /* for rounding */ |
+ |
+ if (fr == 0) { /* divisor is power of two */ |
+ /* fq will be one bit too large to fit in DCTELEM, so adjust */ |
+ fq >>= 1; |
+ r--; |
+ } else if (fr <= (divisor / 2)) { /* fractional part is < 0.5 */ |
+ c++; |
+ } else { /* fractional part is > 0.5 */ |
+ fq++; |
+ } |
+ |
+ dtbl[DCTSIZE2 * 0] = (DCTELEM) fq; /* reciprocal */ |
+ dtbl[DCTSIZE2 * 1] = (DCTELEM) c; /* correction + roundfactor */ |
+ dtbl[DCTSIZE2 * 2] = (DCTELEM) (1 << (sizeof(DCTELEM)*8*2 - r)); /* scale */ |
+ dtbl[DCTSIZE2 * 3] = (DCTELEM) r - sizeof(DCTELEM)*8; /* shift */ |
+} |
+ |
+/* |
+ * Initialize for a processing pass. |
+ * Verify that all referenced Q-tables are present, and set up |
+ * the divisor table for each one. |
+ * In the current implementation, DCT of all components is done during |
+ * the first pass, even if only some components will be output in the |
+ * first scan. Hence all components should be examined here. |
+ */ |
+ |
+METHODDEF(void) |
+start_pass_fdctmgr (j_compress_ptr cinfo) |
+{ |
+ my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
+ int ci, qtblno, i; |
+ jpeg_component_info *compptr; |
+ JQUANT_TBL * qtbl; |
+ DCTELEM * dtbl; |
+ |
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
+ ci++, compptr++) { |
+ qtblno = compptr->quant_tbl_no; |
+ /* Make sure specified quantization table is present */ |
+ if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || |
+ cinfo->quant_tbl_ptrs[qtblno] == NULL) |
+ ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); |
+ qtbl = cinfo->quant_tbl_ptrs[qtblno]; |
+ /* Compute divisors for this quant table */ |
+ /* We may do this more than once for same table, but it's not a big deal */ |
+ switch (cinfo->dct_method) { |
+#ifdef DCT_ISLOW_SUPPORTED |
+ case JDCT_ISLOW: |
+ /* For LL&M IDCT method, divisors are equal to raw quantization |
+ * coefficients multiplied by 8 (to counteract scaling). |
+ */ |
+ if (fdct->divisors[qtblno] == NULL) { |
+ fdct->divisors[qtblno] = (DCTELEM *) |
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
+ (DCTSIZE2 * 4) * SIZEOF(DCTELEM)); |
+ } |
+ dtbl = fdct->divisors[qtblno]; |
+ for (i = 0; i < DCTSIZE2; i++) { |
+ compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]); |
+ } |
+ break; |
+#endif |
+#ifdef DCT_IFAST_SUPPORTED |
+ case JDCT_IFAST: |
+ { |
+ /* For AA&N IDCT method, divisors are equal to quantization |
+ * coefficients scaled by scalefactor[row]*scalefactor[col], where |
+ * scalefactor[0] = 1 |
+ * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
+ * We apply a further scale factor of 8. |
+ */ |
+#define CONST_BITS 14 |
+ static const INT16 aanscales[DCTSIZE2] = { |
+ /* precomputed values scaled up by 14 bits */ |
+ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
+ 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, |
+ 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, |
+ 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, |
+ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
+ 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, |
+ 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, |
+ 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 |
+ }; |
+ SHIFT_TEMPS |
+ |
+ if (fdct->divisors[qtblno] == NULL) { |
+ fdct->divisors[qtblno] = (DCTELEM *) |
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
+ (DCTSIZE2 * 4) * SIZEOF(DCTELEM)); |
+ } |
+ dtbl = fdct->divisors[qtblno]; |
+ for (i = 0; i < DCTSIZE2; i++) { |
+ compute_reciprocal( |
+ DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], |
+ (INT32) aanscales[i]), |
+ CONST_BITS-3), &dtbl[i]); |
+ } |
+ } |
+ break; |
+#endif |
+#ifdef DCT_FLOAT_SUPPORTED |
+ case JDCT_FLOAT: |
+ { |
+ /* For float AA&N IDCT method, divisors are equal to quantization |
+ * coefficients scaled by scalefactor[row]*scalefactor[col], where |
+ * scalefactor[0] = 1 |
+ * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
+ * We apply a further scale factor of 8. |
+ * What's actually stored is 1/divisor so that the inner loop can |
+ * use a multiplication rather than a division. |
+ */ |
+ FAST_FLOAT * fdtbl; |
+ int row, col; |
+ static const double aanscalefactor[DCTSIZE] = { |
+ 1.0, 1.387039845, 1.306562965, 1.175875602, |
+ 1.0, 0.785694958, 0.541196100, 0.275899379 |
+ }; |
+ |
+ if (fdct->float_divisors[qtblno] == NULL) { |
+ fdct->float_divisors[qtblno] = (FAST_FLOAT *) |
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
+ DCTSIZE2 * SIZEOF(FAST_FLOAT)); |
+ } |
+ fdtbl = fdct->float_divisors[qtblno]; |
+ i = 0; |
+ for (row = 0; row < DCTSIZE; row++) { |
+ for (col = 0; col < DCTSIZE; col++) { |
+ fdtbl[i] = (FAST_FLOAT) |
+ (1.0 / (((double) qtbl->quantval[i] * |
+ aanscalefactor[row] * aanscalefactor[col] * 8.0))); |
+ i++; |
+ } |
+ } |
+ } |
+ break; |
+#endif |
+ default: |
+ ERREXIT(cinfo, JERR_NOT_COMPILED); |
+ break; |
+ } |
+ } |
+} |
+ |
+ |
+/* |
+ * Load data into workspace, applying unsigned->signed conversion. |
+ */ |
+ |
+METHODDEF(void) |
+convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace) |
+{ |
+ register DCTELEM *workspaceptr; |
+ register JSAMPROW elemptr; |
+ register int elemr; |
+ |
+ workspaceptr = workspace; |
+ for (elemr = 0; elemr < DCTSIZE; elemr++) { |
+ elemptr = sample_data[elemr] + start_col; |
+ |
+#if DCTSIZE == 8 /* unroll the inner loop */ |
+ *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
+ *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
+ *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
+ *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
+ *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
+ *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
+ *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
+ *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
+#else |
+ { |
+ register int elemc; |
+ for (elemc = DCTSIZE; elemc > 0; elemc--) |
+ *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
+ } |
+#endif |
+ } |
+} |
+ |
+ |
+/* |
+ * Quantize/descale the coefficients, and store into coef_blocks[]. |
+ */ |
+ |
+METHODDEF(void) |
+quantize (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace) |
+{ |
+ int i; |
+ DCTELEM temp; |
+ UDCTELEM recip, corr, shift; |
+ UDCTELEM2 product; |
+ JCOEFPTR output_ptr = coef_block; |
+ |
+ for (i = 0; i < DCTSIZE2; i++) { |
+ temp = workspace[i]; |
+ recip = divisors[i + DCTSIZE2 * 0]; |
+ corr = divisors[i + DCTSIZE2 * 1]; |
+ shift = divisors[i + DCTSIZE2 * 3]; |
+ |
+ if (temp < 0) { |
+ temp = -temp; |
+ product = (UDCTELEM2)(temp + corr) * recip; |
+ product >>= shift + sizeof(DCTELEM)*8; |
+ temp = product; |
+ temp = -temp; |
+ } else { |
+ product = (UDCTELEM2)(temp + corr) * recip; |
+ product >>= shift + sizeof(DCTELEM)*8; |
+ temp = product; |
+ } |
+ |
+ output_ptr[i] = (JCOEF) temp; |
+ } |
+} |
+ |
+ |
+/* |
+ * Perform forward DCT on one or more blocks of a component. |
+ * |
+ * The input samples are taken from the sample_data[] array starting at |
+ * position start_row/start_col, and moving to the right for any additional |
+ * blocks. The quantized coefficients are returned in coef_blocks[]. |
+ */ |
+ |
+METHODDEF(void) |
+forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, |
+ JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
+ JDIMENSION start_row, JDIMENSION start_col, |
+ JDIMENSION num_blocks) |
+/* This version is used for integer DCT implementations. */ |
+{ |
+ /* This routine is heavily used, so it's worth coding it tightly. */ |
+ my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
+ DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no]; |
+ DCTELEM * workspace; |
+ JDIMENSION bi; |
+ |
+ /* Make sure the compiler doesn't look up these every pass */ |
+ forward_DCT_method_ptr do_dct = fdct->dct; |
+ convsamp_method_ptr do_convsamp = fdct->convsamp; |
+ quantize_method_ptr do_quantize = fdct->quantize; |
+ workspace = fdct->workspace; |
+ |
+ sample_data += start_row; /* fold in the vertical offset once */ |
+ |
+ for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { |
+ /* Load data into workspace, applying unsigned->signed conversion */ |
+ (*do_convsamp) (sample_data, start_col, workspace); |
+ |
+ /* Perform the DCT */ |
+ (*do_dct) (workspace); |
+ |
+ /* Quantize/descale the coefficients, and store into coef_blocks[] */ |
+ (*do_quantize) (coef_blocks[bi], divisors, workspace); |
+ } |
+} |
+ |
+ |
+#ifdef DCT_FLOAT_SUPPORTED |
+ |
+ |
+METHODDEF(void) |
+convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * workspace) |
+{ |
+ register FAST_FLOAT *workspaceptr; |
+ register JSAMPROW elemptr; |
+ register int elemr; |
+ |
+ workspaceptr = workspace; |
+ for (elemr = 0; elemr < DCTSIZE; elemr++) { |
+ elemptr = sample_data[elemr] + start_col; |
+#if DCTSIZE == 8 /* unroll the inner loop */ |
+ *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
+ *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
+ *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
+ *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
+ *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
+ *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
+ *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
+ *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
+#else |
+ { |
+ register int elemc; |
+ for (elemc = DCTSIZE; elemc > 0; elemc--) |
+ *workspaceptr++ = (FAST_FLOAT) |
+ (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
+ } |
+#endif |
+ } |
+} |
+ |
+ |
+METHODDEF(void) |
+quantize_float (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace) |
+{ |
+ register FAST_FLOAT temp; |
+ register int i; |
+ register JCOEFPTR output_ptr = coef_block; |
+ |
+ for (i = 0; i < DCTSIZE2; i++) { |
+ /* Apply the quantization and scaling factor */ |
+ temp = workspace[i] * divisors[i]; |
+ |
+ /* Round to nearest integer. |
+ * Since C does not specify the direction of rounding for negative |
+ * quotients, we have to force the dividend positive for portability. |
+ * The maximum coefficient size is +-16K (for 12-bit data), so this |
+ * code should work for either 16-bit or 32-bit ints. |
+ */ |
+ output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384); |
+ } |
+} |
+ |
+ |
+METHODDEF(void) |
+forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, |
+ JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
+ JDIMENSION start_row, JDIMENSION start_col, |
+ JDIMENSION num_blocks) |
+/* This version is used for floating-point DCT implementations. */ |
+{ |
+ /* This routine is heavily used, so it's worth coding it tightly. */ |
+ my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
+ FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no]; |
+ FAST_FLOAT * workspace; |
+ JDIMENSION bi; |
+ |
+ |
+ /* Make sure the compiler doesn't look up these every pass */ |
+ float_DCT_method_ptr do_dct = fdct->float_dct; |
+ float_convsamp_method_ptr do_convsamp = fdct->float_convsamp; |
+ float_quantize_method_ptr do_quantize = fdct->float_quantize; |
+ workspace = fdct->float_workspace; |
+ |
+ sample_data += start_row; /* fold in the vertical offset once */ |
+ |
+ for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { |
+ /* Load data into workspace, applying unsigned->signed conversion */ |
+ (*do_convsamp) (sample_data, start_col, workspace); |
+ |
+ /* Perform the DCT */ |
+ (*do_dct) (workspace); |
+ |
+ /* Quantize/descale the coefficients, and store into coef_blocks[] */ |
+ (*do_quantize) (coef_blocks[bi], divisors, workspace); |
+ } |
+} |
+ |
+#endif /* DCT_FLOAT_SUPPORTED */ |
+ |
+ |
+/* |
+ * Initialize FDCT manager. |
+ */ |
+ |
+GLOBAL(void) |
+jinit_forward_dct (j_compress_ptr cinfo) |
+{ |
+ my_fdct_ptr fdct; |
+ int i; |
+ |
+ fdct = (my_fdct_ptr) |
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
+ SIZEOF(my_fdct_controller)); |
+ cinfo->fdct = (struct jpeg_forward_dct *) fdct; |
+ fdct->pub.start_pass = start_pass_fdctmgr; |
+ |
+ /* First determine the DCT... */ |
+ switch (cinfo->dct_method) { |
+#ifdef DCT_ISLOW_SUPPORTED |
+ case JDCT_ISLOW: |
+ fdct->pub.forward_DCT = forward_DCT; |
+ if (jsimd_can_fdct_islow()) |
+ fdct->dct = jsimd_fdct_islow; |
+ else |
+ fdct->dct = jpeg_fdct_islow; |
+ break; |
+#endif |
+#ifdef DCT_IFAST_SUPPORTED |
+ case JDCT_IFAST: |
+ fdct->pub.forward_DCT = forward_DCT; |
+ if (jsimd_can_fdct_ifast()) |
+ fdct->dct = jsimd_fdct_ifast; |
+ else |
+ fdct->dct = jpeg_fdct_ifast; |
+ break; |
+#endif |
+#ifdef DCT_FLOAT_SUPPORTED |
+ case JDCT_FLOAT: |
+ fdct->pub.forward_DCT = forward_DCT_float; |
+ if (jsimd_can_fdct_float()) |
+ fdct->float_dct = jsimd_fdct_float; |
+ else |
+ fdct->float_dct = jpeg_fdct_float; |
+ break; |
+#endif |
+ default: |
+ ERREXIT(cinfo, JERR_NOT_COMPILED); |
+ break; |
+ } |
+ |
+ /* ...then the supporting stages. */ |
+ switch (cinfo->dct_method) { |
+#ifdef DCT_ISLOW_SUPPORTED |
+ case JDCT_ISLOW: |
+#endif |
+#ifdef DCT_IFAST_SUPPORTED |
+ case JDCT_IFAST: |
+#endif |
+#if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED) |
+ if (jsimd_can_convsamp()) |
+ fdct->convsamp = jsimd_convsamp; |
+ else |
+ fdct->convsamp = convsamp; |
+ if (jsimd_can_quantize()) |
+ fdct->quantize = jsimd_quantize; |
+ else |
+ fdct->quantize = quantize; |
+ break; |
+#endif |
+#ifdef DCT_FLOAT_SUPPORTED |
+ case JDCT_FLOAT: |
+ if (jsimd_can_convsamp_float()) |
+ fdct->float_convsamp = jsimd_convsamp_float; |
+ else |
+ fdct->float_convsamp = convsamp_float; |
+ if (jsimd_can_quantize_float()) |
+ fdct->float_quantize = jsimd_quantize_float; |
+ else |
+ fdct->float_quantize = quantize_float; |
+ break; |
+#endif |
+ default: |
+ ERREXIT(cinfo, JERR_NOT_COMPILED); |
+ break; |
+ } |
+ |
+ /* Allocate workspace memory */ |
+#ifdef DCT_FLOAT_SUPPORTED |
+ if (cinfo->dct_method == JDCT_FLOAT) |
+ fdct->float_workspace = (FAST_FLOAT *) |
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
+ SIZEOF(FAST_FLOAT) * DCTSIZE2); |
+ else |
+#endif |
+ fdct->workspace = (DCTELEM *) |
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
+ SIZEOF(DCTELEM) * DCTSIZE2); |
+ |
+ /* Mark divisor tables unallocated */ |
+ for (i = 0; i < NUM_QUANT_TBLS; i++) { |
+ fdct->divisors[i] = NULL; |
+#ifdef DCT_FLOAT_SUPPORTED |
+ fdct->float_divisors[i] = NULL; |
+#endif |
+ } |
+} |