OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * jcdctmgr.c |
| 3 * |
| 4 * Copyright (C) 1994-1996, Thomas G. Lane. |
| 5 * Copyright (C) 1999-2006, MIYASAKA Masaru. |
| 6 * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
| 7 * This file is part of the Independent JPEG Group's software. |
| 8 * For conditions of distribution and use, see the accompanying README file. |
| 9 * |
| 10 * This file contains the forward-DCT management logic. |
| 11 * This code selects a particular DCT implementation to be used, |
| 12 * and it performs related housekeeping chores including coefficient |
| 13 * quantization. |
| 14 */ |
| 15 |
| 16 #define JPEG_INTERNALS |
| 17 #include "jinclude.h" |
| 18 #include "jpeglib.h" |
| 19 #include "jdct.h" /* Private declarations for DCT subsystem */ |
| 20 #include "jsimddct.h" |
| 21 |
| 22 |
| 23 /* Private subobject for this module */ |
| 24 |
| 25 typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data)); |
| 26 typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data)); |
| 27 |
| 28 typedef JMETHOD(void, convsamp_method_ptr, |
| 29 (JSAMPARRAY sample_data, JDIMENSION start_col, |
| 30 DCTELEM * workspace)); |
| 31 typedef JMETHOD(void, float_convsamp_method_ptr, |
| 32 (JSAMPARRAY sample_data, JDIMENSION start_col, |
| 33 FAST_FLOAT *workspace)); |
| 34 |
| 35 typedef JMETHOD(void, quantize_method_ptr, |
| 36 (JCOEFPTR coef_block, DCTELEM * divisors, |
| 37 DCTELEM * workspace)); |
| 38 typedef JMETHOD(void, float_quantize_method_ptr, |
| 39 (JCOEFPTR coef_block, FAST_FLOAT * divisors, |
| 40 FAST_FLOAT * workspace)); |
| 41 |
| 42 typedef struct { |
| 43 struct jpeg_forward_dct pub; /* public fields */ |
| 44 |
| 45 /* Pointer to the DCT routine actually in use */ |
| 46 forward_DCT_method_ptr dct; |
| 47 convsamp_method_ptr convsamp; |
| 48 quantize_method_ptr quantize; |
| 49 |
| 50 /* The actual post-DCT divisors --- not identical to the quant table |
| 51 * entries, because of scaling (especially for an unnormalized DCT). |
| 52 * Each table is given in normal array order. |
| 53 */ |
| 54 DCTELEM * divisors[NUM_QUANT_TBLS]; |
| 55 |
| 56 /* work area for FDCT subroutine */ |
| 57 DCTELEM * workspace; |
| 58 |
| 59 #ifdef DCT_FLOAT_SUPPORTED |
| 60 /* Same as above for the floating-point case. */ |
| 61 float_DCT_method_ptr float_dct; |
| 62 float_convsamp_method_ptr float_convsamp; |
| 63 float_quantize_method_ptr float_quantize; |
| 64 FAST_FLOAT * float_divisors[NUM_QUANT_TBLS]; |
| 65 FAST_FLOAT * float_workspace; |
| 66 #endif |
| 67 } my_fdct_controller; |
| 68 |
| 69 typedef my_fdct_controller * my_fdct_ptr; |
| 70 |
| 71 |
| 72 /* |
| 73 * Find the highest bit in an integer through binary search. |
| 74 */ |
| 75 LOCAL(int) |
| 76 flss (UINT16 val) |
| 77 { |
| 78 int bit; |
| 79 |
| 80 bit = 16; |
| 81 |
| 82 if (!val) |
| 83 return 0; |
| 84 |
| 85 if (!(val & 0xff00)) { |
| 86 bit -= 8; |
| 87 val <<= 8; |
| 88 } |
| 89 if (!(val & 0xf000)) { |
| 90 bit -= 4; |
| 91 val <<= 4; |
| 92 } |
| 93 if (!(val & 0xc000)) { |
| 94 bit -= 2; |
| 95 val <<= 2; |
| 96 } |
| 97 if (!(val & 0x8000)) { |
| 98 bit -= 1; |
| 99 val <<= 1; |
| 100 } |
| 101 |
| 102 return bit; |
| 103 } |
| 104 |
| 105 /* |
| 106 * Compute values to do a division using reciprocal. |
| 107 * |
| 108 * This implementation is based on an algorithm described in |
| 109 * "How to optimize for the Pentium family of microprocessors" |
| 110 * (http://www.agner.org/assem/). |
| 111 * More information about the basic algorithm can be found in |
| 112 * the paper "Integer Division Using Reciprocals" by Robert Alverson. |
| 113 * |
| 114 * The basic idea is to replace x/d by x * d^-1. In order to store |
| 115 * d^-1 with enough precision we shift it left a few places. It turns |
| 116 * out that this algoright gives just enough precision, and also fits |
| 117 * into DCTELEM: |
| 118 * |
| 119 * b = (the number of significant bits in divisor) - 1 |
| 120 * r = (word size) + b |
| 121 * f = 2^r / divisor |
| 122 * |
| 123 * f will not be an integer for most cases, so we need to compensate |
| 124 * for the rounding error introduced: |
| 125 * |
| 126 * no fractional part: |
| 127 * |
| 128 * result = input >> r |
| 129 * |
| 130 * fractional part of f < 0.5: |
| 131 * |
| 132 * round f down to nearest integer |
| 133 * result = ((input + 1) * f) >> r |
| 134 * |
| 135 * fractional part of f > 0.5: |
| 136 * |
| 137 * round f up to nearest integer |
| 138 * result = (input * f) >> r |
| 139 * |
| 140 * This is the original algorithm that gives truncated results. But we |
| 141 * want properly rounded results, so we replace "input" with |
| 142 * "input + divisor/2". |
| 143 * |
| 144 * In order to allow SIMD implementations we also tweak the values to |
| 145 * allow the same calculation to be made at all times: |
| 146 * |
| 147 * dctbl[0] = f rounded to nearest integer |
| 148 * dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5) |
| 149 * dctbl[2] = 1 << ((word size) * 2 - r) |
| 150 * dctbl[3] = r - (word size) |
| 151 * |
| 152 * dctbl[2] is for stupid instruction sets where the shift operation |
| 153 * isn't member wise (e.g. MMX). |
| 154 * |
| 155 * The reason dctbl[2] and dctbl[3] reduce the shift with (word size) |
| 156 * is that most SIMD implementations have a "multiply and store top |
| 157 * half" operation. |
| 158 * |
| 159 * Lastly, we store each of the values in their own table instead |
| 160 * of in a consecutive manner, yet again in order to allow SIMD |
| 161 * routines. |
| 162 */ |
| 163 LOCAL(void) |
| 164 compute_reciprocal (UINT16 divisor, DCTELEM * dtbl) |
| 165 { |
| 166 UDCTELEM2 fq, fr; |
| 167 UDCTELEM c; |
| 168 int b, r; |
| 169 |
| 170 b = flss(divisor) - 1; |
| 171 r = sizeof(DCTELEM) * 8 + b; |
| 172 |
| 173 fq = ((UDCTELEM2)1 << r) / divisor; |
| 174 fr = ((UDCTELEM2)1 << r) % divisor; |
| 175 |
| 176 c = divisor / 2; /* for rounding */ |
| 177 |
| 178 if (fr == 0) { /* divisor is power of two */ |
| 179 /* fq will be one bit too large to fit in DCTELEM, so adjust */ |
| 180 fq >>= 1; |
| 181 r--; |
| 182 } else if (fr <= (divisor / 2)) { /* fractional part is < 0.5 */ |
| 183 c++; |
| 184 } else { /* fractional part is > 0.5 */ |
| 185 fq++; |
| 186 } |
| 187 |
| 188 dtbl[DCTSIZE2 * 0] = (DCTELEM) fq; /* reciprocal */ |
| 189 dtbl[DCTSIZE2 * 1] = (DCTELEM) c; /* correction + roundfactor */ |
| 190 dtbl[DCTSIZE2 * 2] = (DCTELEM) (1 << (sizeof(DCTELEM)*8*2 - r)); /* scale */ |
| 191 dtbl[DCTSIZE2 * 3] = (DCTELEM) r - sizeof(DCTELEM)*8; /* shift */ |
| 192 } |
| 193 |
| 194 /* |
| 195 * Initialize for a processing pass. |
| 196 * Verify that all referenced Q-tables are present, and set up |
| 197 * the divisor table for each one. |
| 198 * In the current implementation, DCT of all components is done during |
| 199 * the first pass, even if only some components will be output in the |
| 200 * first scan. Hence all components should be examined here. |
| 201 */ |
| 202 |
| 203 METHODDEF(void) |
| 204 start_pass_fdctmgr (j_compress_ptr cinfo) |
| 205 { |
| 206 my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
| 207 int ci, qtblno, i; |
| 208 jpeg_component_info *compptr; |
| 209 JQUANT_TBL * qtbl; |
| 210 DCTELEM * dtbl; |
| 211 |
| 212 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
| 213 ci++, compptr++) { |
| 214 qtblno = compptr->quant_tbl_no; |
| 215 /* Make sure specified quantization table is present */ |
| 216 if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || |
| 217 cinfo->quant_tbl_ptrs[qtblno] == NULL) |
| 218 ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); |
| 219 qtbl = cinfo->quant_tbl_ptrs[qtblno]; |
| 220 /* Compute divisors for this quant table */ |
| 221 /* We may do this more than once for same table, but it's not a big deal */ |
| 222 switch (cinfo->dct_method) { |
| 223 #ifdef DCT_ISLOW_SUPPORTED |
| 224 case JDCT_ISLOW: |
| 225 /* For LL&M IDCT method, divisors are equal to raw quantization |
| 226 * coefficients multiplied by 8 (to counteract scaling). |
| 227 */ |
| 228 if (fdct->divisors[qtblno] == NULL) { |
| 229 fdct->divisors[qtblno] = (DCTELEM *) |
| 230 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 231 (DCTSIZE2 * 4) * SIZEOF(DCTELEM)); |
| 232 } |
| 233 dtbl = fdct->divisors[qtblno]; |
| 234 for (i = 0; i < DCTSIZE2; i++) { |
| 235 compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]); |
| 236 } |
| 237 break; |
| 238 #endif |
| 239 #ifdef DCT_IFAST_SUPPORTED |
| 240 case JDCT_IFAST: |
| 241 { |
| 242 /* For AA&N IDCT method, divisors are equal to quantization |
| 243 * coefficients scaled by scalefactor[row]*scalefactor[col], where |
| 244 * scalefactor[0] = 1 |
| 245 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
| 246 * We apply a further scale factor of 8. |
| 247 */ |
| 248 #define CONST_BITS 14 |
| 249 static const INT16 aanscales[DCTSIZE2] = { |
| 250 /* precomputed values scaled up by 14 bits */ |
| 251 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
| 252 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, |
| 253 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, |
| 254 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, |
| 255 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
| 256 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, |
| 257 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, |
| 258 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 |
| 259 }; |
| 260 SHIFT_TEMPS |
| 261 |
| 262 if (fdct->divisors[qtblno] == NULL) { |
| 263 fdct->divisors[qtblno] = (DCTELEM *) |
| 264 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 265 (DCTSIZE2 * 4) * SIZEOF(DCTELEM)); |
| 266 } |
| 267 dtbl = fdct->divisors[qtblno]; |
| 268 for (i = 0; i < DCTSIZE2; i++) { |
| 269 compute_reciprocal( |
| 270 DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], |
| 271 (INT32) aanscales[i]), |
| 272 CONST_BITS-3), &dtbl[i]); |
| 273 } |
| 274 } |
| 275 break; |
| 276 #endif |
| 277 #ifdef DCT_FLOAT_SUPPORTED |
| 278 case JDCT_FLOAT: |
| 279 { |
| 280 /* For float AA&N IDCT method, divisors are equal to quantization |
| 281 * coefficients scaled by scalefactor[row]*scalefactor[col], where |
| 282 * scalefactor[0] = 1 |
| 283 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
| 284 * We apply a further scale factor of 8. |
| 285 * What's actually stored is 1/divisor so that the inner loop can |
| 286 * use a multiplication rather than a division. |
| 287 */ |
| 288 FAST_FLOAT * fdtbl; |
| 289 int row, col; |
| 290 static const double aanscalefactor[DCTSIZE] = { |
| 291 1.0, 1.387039845, 1.306562965, 1.175875602, |
| 292 1.0, 0.785694958, 0.541196100, 0.275899379 |
| 293 }; |
| 294 |
| 295 if (fdct->float_divisors[qtblno] == NULL) { |
| 296 fdct->float_divisors[qtblno] = (FAST_FLOAT *) |
| 297 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 298 DCTSIZE2 * SIZEOF(FAST_FLOAT)); |
| 299 } |
| 300 fdtbl = fdct->float_divisors[qtblno]; |
| 301 i = 0; |
| 302 for (row = 0; row < DCTSIZE; row++) { |
| 303 for (col = 0; col < DCTSIZE; col++) { |
| 304 fdtbl[i] = (FAST_FLOAT) |
| 305 (1.0 / (((double) qtbl->quantval[i] * |
| 306 aanscalefactor[row] * aanscalefactor[col] * 8.0))); |
| 307 i++; |
| 308 } |
| 309 } |
| 310 } |
| 311 break; |
| 312 #endif |
| 313 default: |
| 314 ERREXIT(cinfo, JERR_NOT_COMPILED); |
| 315 break; |
| 316 } |
| 317 } |
| 318 } |
| 319 |
| 320 |
| 321 /* |
| 322 * Load data into workspace, applying unsigned->signed conversion. |
| 323 */ |
| 324 |
| 325 METHODDEF(void) |
| 326 convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace) |
| 327 { |
| 328 register DCTELEM *workspaceptr; |
| 329 register JSAMPROW elemptr; |
| 330 register int elemr; |
| 331 |
| 332 workspaceptr = workspace; |
| 333 for (elemr = 0; elemr < DCTSIZE; elemr++) { |
| 334 elemptr = sample_data[elemr] + start_col; |
| 335 |
| 336 #if DCTSIZE == 8 /* unroll the inner loop */ |
| 337 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
| 338 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
| 339 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
| 340 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
| 341 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
| 342 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
| 343 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
| 344 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
| 345 #else |
| 346 { |
| 347 register int elemc; |
| 348 for (elemc = DCTSIZE; elemc > 0; elemc--) |
| 349 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; |
| 350 } |
| 351 #endif |
| 352 } |
| 353 } |
| 354 |
| 355 |
| 356 /* |
| 357 * Quantize/descale the coefficients, and store into coef_blocks[]. |
| 358 */ |
| 359 |
| 360 METHODDEF(void) |
| 361 quantize (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace) |
| 362 { |
| 363 int i; |
| 364 DCTELEM temp; |
| 365 UDCTELEM recip, corr, shift; |
| 366 UDCTELEM2 product; |
| 367 JCOEFPTR output_ptr = coef_block; |
| 368 |
| 369 for (i = 0; i < DCTSIZE2; i++) { |
| 370 temp = workspace[i]; |
| 371 recip = divisors[i + DCTSIZE2 * 0]; |
| 372 corr = divisors[i + DCTSIZE2 * 1]; |
| 373 shift = divisors[i + DCTSIZE2 * 3]; |
| 374 |
| 375 if (temp < 0) { |
| 376 temp = -temp; |
| 377 product = (UDCTELEM2)(temp + corr) * recip; |
| 378 product >>= shift + sizeof(DCTELEM)*8; |
| 379 temp = product; |
| 380 temp = -temp; |
| 381 } else { |
| 382 product = (UDCTELEM2)(temp + corr) * recip; |
| 383 product >>= shift + sizeof(DCTELEM)*8; |
| 384 temp = product; |
| 385 } |
| 386 |
| 387 output_ptr[i] = (JCOEF) temp; |
| 388 } |
| 389 } |
| 390 |
| 391 |
| 392 /* |
| 393 * Perform forward DCT on one or more blocks of a component. |
| 394 * |
| 395 * The input samples are taken from the sample_data[] array starting at |
| 396 * position start_row/start_col, and moving to the right for any additional |
| 397 * blocks. The quantized coefficients are returned in coef_blocks[]. |
| 398 */ |
| 399 |
| 400 METHODDEF(void) |
| 401 forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, |
| 402 JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
| 403 JDIMENSION start_row, JDIMENSION start_col, |
| 404 JDIMENSION num_blocks) |
| 405 /* This version is used for integer DCT implementations. */ |
| 406 { |
| 407 /* This routine is heavily used, so it's worth coding it tightly. */ |
| 408 my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
| 409 DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no]; |
| 410 DCTELEM * workspace; |
| 411 JDIMENSION bi; |
| 412 |
| 413 /* Make sure the compiler doesn't look up these every pass */ |
| 414 forward_DCT_method_ptr do_dct = fdct->dct; |
| 415 convsamp_method_ptr do_convsamp = fdct->convsamp; |
| 416 quantize_method_ptr do_quantize = fdct->quantize; |
| 417 workspace = fdct->workspace; |
| 418 |
| 419 sample_data += start_row; /* fold in the vertical offset once */ |
| 420 |
| 421 for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { |
| 422 /* Load data into workspace, applying unsigned->signed conversion */ |
| 423 (*do_convsamp) (sample_data, start_col, workspace); |
| 424 |
| 425 /* Perform the DCT */ |
| 426 (*do_dct) (workspace); |
| 427 |
| 428 /* Quantize/descale the coefficients, and store into coef_blocks[] */ |
| 429 (*do_quantize) (coef_blocks[bi], divisors, workspace); |
| 430 } |
| 431 } |
| 432 |
| 433 |
| 434 #ifdef DCT_FLOAT_SUPPORTED |
| 435 |
| 436 |
| 437 METHODDEF(void) |
| 438 convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * works
pace) |
| 439 { |
| 440 register FAST_FLOAT *workspaceptr; |
| 441 register JSAMPROW elemptr; |
| 442 register int elemr; |
| 443 |
| 444 workspaceptr = workspace; |
| 445 for (elemr = 0; elemr < DCTSIZE; elemr++) { |
| 446 elemptr = sample_data[elemr] + start_col; |
| 447 #if DCTSIZE == 8 /* unroll the inner loop */ |
| 448 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
| 449 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
| 450 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
| 451 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
| 452 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
| 453 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
| 454 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
| 455 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
| 456 #else |
| 457 { |
| 458 register int elemc; |
| 459 for (elemc = DCTSIZE; elemc > 0; elemc--) |
| 460 *workspaceptr++ = (FAST_FLOAT) |
| 461 (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); |
| 462 } |
| 463 #endif |
| 464 } |
| 465 } |
| 466 |
| 467 |
| 468 METHODDEF(void) |
| 469 quantize_float (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspa
ce) |
| 470 { |
| 471 register FAST_FLOAT temp; |
| 472 register int i; |
| 473 register JCOEFPTR output_ptr = coef_block; |
| 474 |
| 475 for (i = 0; i < DCTSIZE2; i++) { |
| 476 /* Apply the quantization and scaling factor */ |
| 477 temp = workspace[i] * divisors[i]; |
| 478 |
| 479 /* Round to nearest integer. |
| 480 * Since C does not specify the direction of rounding for negative |
| 481 * quotients, we have to force the dividend positive for portability. |
| 482 * The maximum coefficient size is +-16K (for 12-bit data), so this |
| 483 * code should work for either 16-bit or 32-bit ints. |
| 484 */ |
| 485 output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384); |
| 486 } |
| 487 } |
| 488 |
| 489 |
| 490 METHODDEF(void) |
| 491 forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, |
| 492 JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
| 493 JDIMENSION start_row, JDIMENSION start_col, |
| 494 JDIMENSION num_blocks) |
| 495 /* This version is used for floating-point DCT implementations. */ |
| 496 { |
| 497 /* This routine is heavily used, so it's worth coding it tightly. */ |
| 498 my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
| 499 FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no]; |
| 500 FAST_FLOAT * workspace; |
| 501 JDIMENSION bi; |
| 502 |
| 503 |
| 504 /* Make sure the compiler doesn't look up these every pass */ |
| 505 float_DCT_method_ptr do_dct = fdct->float_dct; |
| 506 float_convsamp_method_ptr do_convsamp = fdct->float_convsamp; |
| 507 float_quantize_method_ptr do_quantize = fdct->float_quantize; |
| 508 workspace = fdct->float_workspace; |
| 509 |
| 510 sample_data += start_row; /* fold in the vertical offset once */ |
| 511 |
| 512 for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { |
| 513 /* Load data into workspace, applying unsigned->signed conversion */ |
| 514 (*do_convsamp) (sample_data, start_col, workspace); |
| 515 |
| 516 /* Perform the DCT */ |
| 517 (*do_dct) (workspace); |
| 518 |
| 519 /* Quantize/descale the coefficients, and store into coef_blocks[] */ |
| 520 (*do_quantize) (coef_blocks[bi], divisors, workspace); |
| 521 } |
| 522 } |
| 523 |
| 524 #endif /* DCT_FLOAT_SUPPORTED */ |
| 525 |
| 526 |
| 527 /* |
| 528 * Initialize FDCT manager. |
| 529 */ |
| 530 |
| 531 GLOBAL(void) |
| 532 jinit_forward_dct (j_compress_ptr cinfo) |
| 533 { |
| 534 my_fdct_ptr fdct; |
| 535 int i; |
| 536 |
| 537 fdct = (my_fdct_ptr) |
| 538 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 539 SIZEOF(my_fdct_controller)); |
| 540 cinfo->fdct = (struct jpeg_forward_dct *) fdct; |
| 541 fdct->pub.start_pass = start_pass_fdctmgr; |
| 542 |
| 543 /* First determine the DCT... */ |
| 544 switch (cinfo->dct_method) { |
| 545 #ifdef DCT_ISLOW_SUPPORTED |
| 546 case JDCT_ISLOW: |
| 547 fdct->pub.forward_DCT = forward_DCT; |
| 548 if (jsimd_can_fdct_islow()) |
| 549 fdct->dct = jsimd_fdct_islow; |
| 550 else |
| 551 fdct->dct = jpeg_fdct_islow; |
| 552 break; |
| 553 #endif |
| 554 #ifdef DCT_IFAST_SUPPORTED |
| 555 case JDCT_IFAST: |
| 556 fdct->pub.forward_DCT = forward_DCT; |
| 557 if (jsimd_can_fdct_ifast()) |
| 558 fdct->dct = jsimd_fdct_ifast; |
| 559 else |
| 560 fdct->dct = jpeg_fdct_ifast; |
| 561 break; |
| 562 #endif |
| 563 #ifdef DCT_FLOAT_SUPPORTED |
| 564 case JDCT_FLOAT: |
| 565 fdct->pub.forward_DCT = forward_DCT_float; |
| 566 if (jsimd_can_fdct_float()) |
| 567 fdct->float_dct = jsimd_fdct_float; |
| 568 else |
| 569 fdct->float_dct = jpeg_fdct_float; |
| 570 break; |
| 571 #endif |
| 572 default: |
| 573 ERREXIT(cinfo, JERR_NOT_COMPILED); |
| 574 break; |
| 575 } |
| 576 |
| 577 /* ...then the supporting stages. */ |
| 578 switch (cinfo->dct_method) { |
| 579 #ifdef DCT_ISLOW_SUPPORTED |
| 580 case JDCT_ISLOW: |
| 581 #endif |
| 582 #ifdef DCT_IFAST_SUPPORTED |
| 583 case JDCT_IFAST: |
| 584 #endif |
| 585 #if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED) |
| 586 if (jsimd_can_convsamp()) |
| 587 fdct->convsamp = jsimd_convsamp; |
| 588 else |
| 589 fdct->convsamp = convsamp; |
| 590 if (jsimd_can_quantize()) |
| 591 fdct->quantize = jsimd_quantize; |
| 592 else |
| 593 fdct->quantize = quantize; |
| 594 break; |
| 595 #endif |
| 596 #ifdef DCT_FLOAT_SUPPORTED |
| 597 case JDCT_FLOAT: |
| 598 if (jsimd_can_convsamp_float()) |
| 599 fdct->float_convsamp = jsimd_convsamp_float; |
| 600 else |
| 601 fdct->float_convsamp = convsamp_float; |
| 602 if (jsimd_can_quantize_float()) |
| 603 fdct->float_quantize = jsimd_quantize_float; |
| 604 else |
| 605 fdct->float_quantize = quantize_float; |
| 606 break; |
| 607 #endif |
| 608 default: |
| 609 ERREXIT(cinfo, JERR_NOT_COMPILED); |
| 610 break; |
| 611 } |
| 612 |
| 613 /* Allocate workspace memory */ |
| 614 #ifdef DCT_FLOAT_SUPPORTED |
| 615 if (cinfo->dct_method == JDCT_FLOAT) |
| 616 fdct->float_workspace = (FAST_FLOAT *) |
| 617 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 618 SIZEOF(FAST_FLOAT) * DCTSIZE2); |
| 619 else |
| 620 #endif |
| 621 fdct->workspace = (DCTELEM *) |
| 622 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 623 SIZEOF(DCTELEM) * DCTSIZE2); |
| 624 |
| 625 /* Mark divisor tables unallocated */ |
| 626 for (i = 0; i < NUM_QUANT_TBLS; i++) { |
| 627 fdct->divisors[i] = NULL; |
| 628 #ifdef DCT_FLOAT_SUPPORTED |
| 629 fdct->float_divisors[i] = NULL; |
| 630 #endif |
| 631 } |
| 632 } |
OLD | NEW |