Index: third_party/libjpeg_turbo/jmemmgr.c |
=================================================================== |
--- third_party/libjpeg_turbo/jmemmgr.c (revision 0) |
+++ third_party/libjpeg_turbo/jmemmgr.c (revision 0) |
@@ -0,0 +1,1142 @@ |
+/* |
+ * jmemmgr.c |
+ * |
+ * Copyright (C) 1991-1997, Thomas G. Lane. |
+ * This file is part of the Independent JPEG Group's software. |
+ * For conditions of distribution and use, see the accompanying README file. |
+ * |
+ * This file contains the JPEG system-independent memory management |
+ * routines. This code is usable across a wide variety of machines; most |
+ * of the system dependencies have been isolated in a separate file. |
+ * The major functions provided here are: |
+ * * pool-based allocation and freeing of memory; |
+ * * policy decisions about how to divide available memory among the |
+ * virtual arrays; |
+ * * control logic for swapping virtual arrays between main memory and |
+ * backing storage. |
+ * The separate system-dependent file provides the actual backing-storage |
+ * access code, and it contains the policy decision about how much total |
+ * main memory to use. |
+ * This file is system-dependent in the sense that some of its functions |
+ * are unnecessary in some systems. For example, if there is enough virtual |
+ * memory so that backing storage will never be used, much of the virtual |
+ * array control logic could be removed. (Of course, if you have that much |
+ * memory then you shouldn't care about a little bit of unused code...) |
+ */ |
+ |
+#define JPEG_INTERNALS |
+#define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */ |
+#include "jinclude.h" |
+#include "jpeglib.h" |
+#include "jmemsys.h" /* import the system-dependent declarations */ |
+ |
+#ifndef NO_GETENV |
+#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */ |
+extern char * getenv JPP((const char * name)); |
+#endif |
+#endif |
+ |
+ |
+/* |
+ * Some important notes: |
+ * The allocation routines provided here must never return NULL. |
+ * They should exit to error_exit if unsuccessful. |
+ * |
+ * It's not a good idea to try to merge the sarray and barray routines, |
+ * even though they are textually almost the same, because samples are |
+ * usually stored as bytes while coefficients are shorts or ints. Thus, |
+ * in machines where byte pointers have a different representation from |
+ * word pointers, the resulting machine code could not be the same. |
+ */ |
+ |
+ |
+/* |
+ * Many machines require storage alignment: longs must start on 4-byte |
+ * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() |
+ * always returns pointers that are multiples of the worst-case alignment |
+ * requirement, and we had better do so too. |
+ * There isn't any really portable way to determine the worst-case alignment |
+ * requirement. This module assumes that the alignment requirement is |
+ * multiples of ALIGN_SIZE. |
+ * By default, we define ALIGN_SIZE as sizeof(double). This is necessary on some |
+ * workstations (where doubles really do need 8-byte alignment) and will work |
+ * fine on nearly everything. If your machine has lesser alignment needs, |
+ * you can save a few bytes by making ALIGN_SIZE smaller. |
+ * The only place I know of where this will NOT work is certain Macintosh |
+ * 680x0 compilers that define double as a 10-byte IEEE extended float. |
+ * Doing 10-byte alignment is counterproductive because longwords won't be |
+ * aligned well. Put "#define ALIGN_SIZE 4" in jconfig.h if you have |
+ * such a compiler. |
+ */ |
+ |
+#ifndef ALIGN_SIZE /* so can override from jconfig.h */ |
+#ifndef WITH_SIMD |
+#define ALIGN_SIZE SIZEOF(double) |
+#else |
+#define ALIGN_SIZE 16 /* Most SIMD implementations require this */ |
+#endif |
+#endif |
+ |
+/* |
+ * We allocate objects from "pools", where each pool is gotten with a single |
+ * request to jpeg_get_small() or jpeg_get_large(). There is no per-object |
+ * overhead within a pool, except for alignment padding. Each pool has a |
+ * header with a link to the next pool of the same class. |
+ * Small and large pool headers are identical except that the latter's |
+ * link pointer must be FAR on 80x86 machines. |
+ */ |
+ |
+typedef struct small_pool_struct * small_pool_ptr; |
+ |
+typedef struct small_pool_struct { |
+ small_pool_ptr next; /* next in list of pools */ |
+ size_t bytes_used; /* how many bytes already used within pool */ |
+ size_t bytes_left; /* bytes still available in this pool */ |
+} small_pool_hdr; |
+ |
+typedef struct large_pool_struct FAR * large_pool_ptr; |
+ |
+typedef struct large_pool_struct { |
+ large_pool_ptr next; /* next in list of pools */ |
+ size_t bytes_used; /* how many bytes already used within pool */ |
+ size_t bytes_left; /* bytes still available in this pool */ |
+} large_pool_hdr; |
+ |
+/* |
+ * Here is the full definition of a memory manager object. |
+ */ |
+ |
+typedef struct { |
+ struct jpeg_memory_mgr pub; /* public fields */ |
+ |
+ /* Each pool identifier (lifetime class) names a linked list of pools. */ |
+ small_pool_ptr small_list[JPOOL_NUMPOOLS]; |
+ large_pool_ptr large_list[JPOOL_NUMPOOLS]; |
+ |
+ /* Since we only have one lifetime class of virtual arrays, only one |
+ * linked list is necessary (for each datatype). Note that the virtual |
+ * array control blocks being linked together are actually stored somewhere |
+ * in the small-pool list. |
+ */ |
+ jvirt_sarray_ptr virt_sarray_list; |
+ jvirt_barray_ptr virt_barray_list; |
+ |
+ /* This counts total space obtained from jpeg_get_small/large */ |
+ size_t total_space_allocated; |
+ |
+ /* alloc_sarray and alloc_barray set this value for use by virtual |
+ * array routines. |
+ */ |
+ JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ |
+} my_memory_mgr; |
+ |
+typedef my_memory_mgr * my_mem_ptr; |
+ |
+ |
+/* |
+ * The control blocks for virtual arrays. |
+ * Note that these blocks are allocated in the "small" pool area. |
+ * System-dependent info for the associated backing store (if any) is hidden |
+ * inside the backing_store_info struct. |
+ */ |
+ |
+struct jvirt_sarray_control { |
+ JSAMPARRAY mem_buffer; /* => the in-memory buffer */ |
+ JDIMENSION rows_in_array; /* total virtual array height */ |
+ JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ |
+ JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ |
+ JDIMENSION rows_in_mem; /* height of memory buffer */ |
+ JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ |
+ JDIMENSION cur_start_row; /* first logical row # in the buffer */ |
+ JDIMENSION first_undef_row; /* row # of first uninitialized row */ |
+ boolean pre_zero; /* pre-zero mode requested? */ |
+ boolean dirty; /* do current buffer contents need written? */ |
+ boolean b_s_open; /* is backing-store data valid? */ |
+ jvirt_sarray_ptr next; /* link to next virtual sarray control block */ |
+ backing_store_info b_s_info; /* System-dependent control info */ |
+}; |
+ |
+struct jvirt_barray_control { |
+ JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ |
+ JDIMENSION rows_in_array; /* total virtual array height */ |
+ JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ |
+ JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ |
+ JDIMENSION rows_in_mem; /* height of memory buffer */ |
+ JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ |
+ JDIMENSION cur_start_row; /* first logical row # in the buffer */ |
+ JDIMENSION first_undef_row; /* row # of first uninitialized row */ |
+ boolean pre_zero; /* pre-zero mode requested? */ |
+ boolean dirty; /* do current buffer contents need written? */ |
+ boolean b_s_open; /* is backing-store data valid? */ |
+ jvirt_barray_ptr next; /* link to next virtual barray control block */ |
+ backing_store_info b_s_info; /* System-dependent control info */ |
+}; |
+ |
+ |
+#ifdef MEM_STATS /* optional extra stuff for statistics */ |
+ |
+LOCAL(void) |
+print_mem_stats (j_common_ptr cinfo, int pool_id) |
+{ |
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
+ small_pool_ptr shdr_ptr; |
+ large_pool_ptr lhdr_ptr; |
+ |
+ /* Since this is only a debugging stub, we can cheat a little by using |
+ * fprintf directly rather than going through the trace message code. |
+ * This is helpful because message parm array can't handle longs. |
+ */ |
+ fprintf(stderr, "Freeing pool %d, total space = %ld\n", |
+ pool_id, mem->total_space_allocated); |
+ |
+ for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; |
+ lhdr_ptr = lhdr_ptr->next) { |
+ fprintf(stderr, " Large chunk used %ld\n", |
+ (long) lhdr_ptr->bytes_used); |
+ } |
+ |
+ for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; |
+ shdr_ptr = shdr_ptr->next) { |
+ fprintf(stderr, " Small chunk used %ld free %ld\n", |
+ (long) shdr_ptr->bytes_used, |
+ (long) shdr_ptr->bytes_left); |
+ } |
+} |
+ |
+#endif /* MEM_STATS */ |
+ |
+ |
+LOCAL(void) |
+out_of_memory (j_common_ptr cinfo, int which) |
+/* Report an out-of-memory error and stop execution */ |
+/* If we compiled MEM_STATS support, report alloc requests before dying */ |
+{ |
+#ifdef MEM_STATS |
+ cinfo->err->trace_level = 2; /* force self_destruct to report stats */ |
+#endif |
+ ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); |
+} |
+ |
+ |
+/* |
+ * Allocation of "small" objects. |
+ * |
+ * For these, we use pooled storage. When a new pool must be created, |
+ * we try to get enough space for the current request plus a "slop" factor, |
+ * where the slop will be the amount of leftover space in the new pool. |
+ * The speed vs. space tradeoff is largely determined by the slop values. |
+ * A different slop value is provided for each pool class (lifetime), |
+ * and we also distinguish the first pool of a class from later ones. |
+ * NOTE: the values given work fairly well on both 16- and 32-bit-int |
+ * machines, but may be too small if longs are 64 bits or more. |
+ * |
+ * Since we do not know what alignment malloc() gives us, we have to |
+ * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment |
+ * adjustment. |
+ */ |
+ |
+static const size_t first_pool_slop[JPOOL_NUMPOOLS] = |
+{ |
+ 1600, /* first PERMANENT pool */ |
+ 16000 /* first IMAGE pool */ |
+}; |
+ |
+static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = |
+{ |
+ 0, /* additional PERMANENT pools */ |
+ 5000 /* additional IMAGE pools */ |
+}; |
+ |
+#define MIN_SLOP 50 /* greater than 0 to avoid futile looping */ |
+ |
+ |
+METHODDEF(void *) |
+alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject) |
+/* Allocate a "small" object */ |
+{ |
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
+ small_pool_ptr hdr_ptr, prev_hdr_ptr; |
+ char * data_ptr; |
+ size_t min_request, slop; |
+ |
+ /* |
+ * Round up the requested size to a multiple of ALIGN_SIZE in order |
+ * to assure alignment for the next object allocated in the same pool |
+ * and so that algorithms can straddle outside the proper area up |
+ * to the next alignment. |
+ */ |
+ sizeofobject = jround_up(sizeofobject, ALIGN_SIZE); |
+ |
+ /* Check for unsatisfiable request (do now to ensure no overflow below) */ |
+ if ((SIZEOF(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK) |
+ out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ |
+ |
+ /* See if space is available in any existing pool */ |
+ if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
+ ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
+ prev_hdr_ptr = NULL; |
+ hdr_ptr = mem->small_list[pool_id]; |
+ while (hdr_ptr != NULL) { |
+ if (hdr_ptr->bytes_left >= sizeofobject) |
+ break; /* found pool with enough space */ |
+ prev_hdr_ptr = hdr_ptr; |
+ hdr_ptr = hdr_ptr->next; |
+ } |
+ |
+ /* Time to make a new pool? */ |
+ if (hdr_ptr == NULL) { |
+ /* min_request is what we need now, slop is what will be leftover */ |
+ min_request = SIZEOF(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1; |
+ if (prev_hdr_ptr == NULL) /* first pool in class? */ |
+ slop = first_pool_slop[pool_id]; |
+ else |
+ slop = extra_pool_slop[pool_id]; |
+ /* Don't ask for more than MAX_ALLOC_CHUNK */ |
+ if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request)) |
+ slop = (size_t) (MAX_ALLOC_CHUNK-min_request); |
+ /* Try to get space, if fail reduce slop and try again */ |
+ for (;;) { |
+ hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop); |
+ if (hdr_ptr != NULL) |
+ break; |
+ slop /= 2; |
+ if (slop < MIN_SLOP) /* give up when it gets real small */ |
+ out_of_memory(cinfo, 2); /* jpeg_get_small failed */ |
+ } |
+ mem->total_space_allocated += min_request + slop; |
+ /* Success, initialize the new pool header and add to end of list */ |
+ hdr_ptr->next = NULL; |
+ hdr_ptr->bytes_used = 0; |
+ hdr_ptr->bytes_left = sizeofobject + slop; |
+ if (prev_hdr_ptr == NULL) /* first pool in class? */ |
+ mem->small_list[pool_id] = hdr_ptr; |
+ else |
+ prev_hdr_ptr->next = hdr_ptr; |
+ } |
+ |
+ /* OK, allocate the object from the current pool */ |
+ data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */ |
+ data_ptr += SIZEOF(small_pool_hdr); /* ...by skipping the header... */ |
+ if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */ |
+ data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE; |
+ data_ptr += hdr_ptr->bytes_used; /* point to place for object */ |
+ hdr_ptr->bytes_used += sizeofobject; |
+ hdr_ptr->bytes_left -= sizeofobject; |
+ |
+ return (void *) data_ptr; |
+} |
+ |
+ |
+/* |
+ * Allocation of "large" objects. |
+ * |
+ * The external semantics of these are the same as "small" objects, |
+ * except that FAR pointers are used on 80x86. However the pool |
+ * management heuristics are quite different. We assume that each |
+ * request is large enough that it may as well be passed directly to |
+ * jpeg_get_large; the pool management just links everything together |
+ * so that we can free it all on demand. |
+ * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY |
+ * structures. The routines that create these structures (see below) |
+ * deliberately bunch rows together to ensure a large request size. |
+ */ |
+ |
+METHODDEF(void FAR *) |
+alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject) |
+/* Allocate a "large" object */ |
+{ |
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
+ large_pool_ptr hdr_ptr; |
+ char FAR * data_ptr; |
+ |
+ /* |
+ * Round up the requested size to a multiple of ALIGN_SIZE so that |
+ * algorithms can straddle outside the proper area up to the next |
+ * alignment. |
+ */ |
+ sizeofobject = jround_up(sizeofobject, ALIGN_SIZE); |
+ |
+ /* Check for unsatisfiable request (do now to ensure no overflow below) */ |
+ if ((SIZEOF(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK) |
+ out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ |
+ |
+ /* Always make a new pool */ |
+ if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
+ ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
+ |
+ hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject + |
+ SIZEOF(large_pool_hdr) + |
+ ALIGN_SIZE - 1); |
+ if (hdr_ptr == NULL) |
+ out_of_memory(cinfo, 4); /* jpeg_get_large failed */ |
+ mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr) + ALIGN_SIZE - 1; |
+ |
+ /* Success, initialize the new pool header and add to list */ |
+ hdr_ptr->next = mem->large_list[pool_id]; |
+ /* We maintain space counts in each pool header for statistical purposes, |
+ * even though they are not needed for allocation. |
+ */ |
+ hdr_ptr->bytes_used = sizeofobject; |
+ hdr_ptr->bytes_left = 0; |
+ mem->large_list[pool_id] = hdr_ptr; |
+ |
+ data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */ |
+ data_ptr += SIZEOF(small_pool_hdr); /* ...by skipping the header... */ |
+ if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */ |
+ data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE; |
+ |
+ return (void FAR *) data_ptr; |
+} |
+ |
+ |
+/* |
+ * Creation of 2-D sample arrays. |
+ * The pointers are in near heap, the samples themselves in FAR heap. |
+ * |
+ * To minimize allocation overhead and to allow I/O of large contiguous |
+ * blocks, we allocate the sample rows in groups of as many rows as possible |
+ * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. |
+ * NB: the virtual array control routines, later in this file, know about |
+ * this chunking of rows. The rowsperchunk value is left in the mem manager |
+ * object so that it can be saved away if this sarray is the workspace for |
+ * a virtual array. |
+ * |
+ * Since we are often upsampling with a factor 2, we align the size (not |
+ * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have |
+ * to be as careful about size. |
+ */ |
+ |
+METHODDEF(JSAMPARRAY) |
+alloc_sarray (j_common_ptr cinfo, int pool_id, |
+ JDIMENSION samplesperrow, JDIMENSION numrows) |
+/* Allocate a 2-D sample array */ |
+{ |
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
+ JSAMPARRAY result; |
+ JSAMPROW workspace; |
+ JDIMENSION rowsperchunk, currow, i; |
+ long ltemp; |
+ |
+ /* Make sure each row is properly aligned */ |
+ if ((ALIGN_SIZE % SIZEOF(JSAMPLE)) != 0) |
+ out_of_memory(cinfo, 5); /* safety check */ |
+ samplesperrow = (JDIMENSION)jround_up(samplesperrow, (2 * ALIGN_SIZE) / SIZEOF(JSAMPLE)); |
+ |
+ /* Calculate max # of rows allowed in one allocation chunk */ |
+ ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / |
+ ((long) samplesperrow * SIZEOF(JSAMPLE)); |
+ if (ltemp <= 0) |
+ ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
+ if (ltemp < (long) numrows) |
+ rowsperchunk = (JDIMENSION) ltemp; |
+ else |
+ rowsperchunk = numrows; |
+ mem->last_rowsperchunk = rowsperchunk; |
+ |
+ /* Get space for row pointers (small object) */ |
+ result = (JSAMPARRAY) alloc_small(cinfo, pool_id, |
+ (size_t) (numrows * SIZEOF(JSAMPROW))); |
+ |
+ /* Get the rows themselves (large objects) */ |
+ currow = 0; |
+ while (currow < numrows) { |
+ rowsperchunk = MIN(rowsperchunk, numrows - currow); |
+ workspace = (JSAMPROW) alloc_large(cinfo, pool_id, |
+ (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow |
+ * SIZEOF(JSAMPLE))); |
+ for (i = rowsperchunk; i > 0; i--) { |
+ result[currow++] = workspace; |
+ workspace += samplesperrow; |
+ } |
+ } |
+ |
+ return result; |
+} |
+ |
+ |
+/* |
+ * Creation of 2-D coefficient-block arrays. |
+ * This is essentially the same as the code for sample arrays, above. |
+ */ |
+ |
+METHODDEF(JBLOCKARRAY) |
+alloc_barray (j_common_ptr cinfo, int pool_id, |
+ JDIMENSION blocksperrow, JDIMENSION numrows) |
+/* Allocate a 2-D coefficient-block array */ |
+{ |
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
+ JBLOCKARRAY result; |
+ JBLOCKROW workspace; |
+ JDIMENSION rowsperchunk, currow, i; |
+ long ltemp; |
+ |
+ /* Make sure each row is properly aligned */ |
+ if ((SIZEOF(JBLOCK) % ALIGN_SIZE) != 0) |
+ out_of_memory(cinfo, 6); /* safety check */ |
+ |
+ /* Calculate max # of rows allowed in one allocation chunk */ |
+ ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / |
+ ((long) blocksperrow * SIZEOF(JBLOCK)); |
+ if (ltemp <= 0) |
+ ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
+ if (ltemp < (long) numrows) |
+ rowsperchunk = (JDIMENSION) ltemp; |
+ else |
+ rowsperchunk = numrows; |
+ mem->last_rowsperchunk = rowsperchunk; |
+ |
+ /* Get space for row pointers (small object) */ |
+ result = (JBLOCKARRAY) alloc_small(cinfo, pool_id, |
+ (size_t) (numrows * SIZEOF(JBLOCKROW))); |
+ |
+ /* Get the rows themselves (large objects) */ |
+ currow = 0; |
+ while (currow < numrows) { |
+ rowsperchunk = MIN(rowsperchunk, numrows - currow); |
+ workspace = (JBLOCKROW) alloc_large(cinfo, pool_id, |
+ (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow |
+ * SIZEOF(JBLOCK))); |
+ for (i = rowsperchunk; i > 0; i--) { |
+ result[currow++] = workspace; |
+ workspace += blocksperrow; |
+ } |
+ } |
+ |
+ return result; |
+} |
+ |
+ |
+/* |
+ * About virtual array management: |
+ * |
+ * The above "normal" array routines are only used to allocate strip buffers |
+ * (as wide as the image, but just a few rows high). Full-image-sized buffers |
+ * are handled as "virtual" arrays. The array is still accessed a strip at a |
+ * time, but the memory manager must save the whole array for repeated |
+ * accesses. The intended implementation is that there is a strip buffer in |
+ * memory (as high as is possible given the desired memory limit), plus a |
+ * backing file that holds the rest of the array. |
+ * |
+ * The request_virt_array routines are told the total size of the image and |
+ * the maximum number of rows that will be accessed at once. The in-memory |
+ * buffer must be at least as large as the maxaccess value. |
+ * |
+ * The request routines create control blocks but not the in-memory buffers. |
+ * That is postponed until realize_virt_arrays is called. At that time the |
+ * total amount of space needed is known (approximately, anyway), so free |
+ * memory can be divided up fairly. |
+ * |
+ * The access_virt_array routines are responsible for making a specific strip |
+ * area accessible (after reading or writing the backing file, if necessary). |
+ * Note that the access routines are told whether the caller intends to modify |
+ * the accessed strip; during a read-only pass this saves having to rewrite |
+ * data to disk. The access routines are also responsible for pre-zeroing |
+ * any newly accessed rows, if pre-zeroing was requested. |
+ * |
+ * In current usage, the access requests are usually for nonoverlapping |
+ * strips; that is, successive access start_row numbers differ by exactly |
+ * num_rows = maxaccess. This means we can get good performance with simple |
+ * buffer dump/reload logic, by making the in-memory buffer be a multiple |
+ * of the access height; then there will never be accesses across bufferload |
+ * boundaries. The code will still work with overlapping access requests, |
+ * but it doesn't handle bufferload overlaps very efficiently. |
+ */ |
+ |
+ |
+METHODDEF(jvirt_sarray_ptr) |
+request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero, |
+ JDIMENSION samplesperrow, JDIMENSION numrows, |
+ JDIMENSION maxaccess) |
+/* Request a virtual 2-D sample array */ |
+{ |
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
+ jvirt_sarray_ptr result; |
+ |
+ /* Only IMAGE-lifetime virtual arrays are currently supported */ |
+ if (pool_id != JPOOL_IMAGE) |
+ ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
+ |
+ /* get control block */ |
+ result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id, |
+ SIZEOF(struct jvirt_sarray_control)); |
+ |
+ result->mem_buffer = NULL; /* marks array not yet realized */ |
+ result->rows_in_array = numrows; |
+ result->samplesperrow = samplesperrow; |
+ result->maxaccess = maxaccess; |
+ result->pre_zero = pre_zero; |
+ result->b_s_open = FALSE; /* no associated backing-store object */ |
+ result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ |
+ mem->virt_sarray_list = result; |
+ |
+ return result; |
+} |
+ |
+ |
+METHODDEF(jvirt_barray_ptr) |
+request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero, |
+ JDIMENSION blocksperrow, JDIMENSION numrows, |
+ JDIMENSION maxaccess) |
+/* Request a virtual 2-D coefficient-block array */ |
+{ |
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
+ jvirt_barray_ptr result; |
+ |
+ /* Only IMAGE-lifetime virtual arrays are currently supported */ |
+ if (pool_id != JPOOL_IMAGE) |
+ ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
+ |
+ /* get control block */ |
+ result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id, |
+ SIZEOF(struct jvirt_barray_control)); |
+ |
+ result->mem_buffer = NULL; /* marks array not yet realized */ |
+ result->rows_in_array = numrows; |
+ result->blocksperrow = blocksperrow; |
+ result->maxaccess = maxaccess; |
+ result->pre_zero = pre_zero; |
+ result->b_s_open = FALSE; /* no associated backing-store object */ |
+ result->next = mem->virt_barray_list; /* add to list of virtual arrays */ |
+ mem->virt_barray_list = result; |
+ |
+ return result; |
+} |
+ |
+ |
+METHODDEF(void) |
+realize_virt_arrays (j_common_ptr cinfo) |
+/* Allocate the in-memory buffers for any unrealized virtual arrays */ |
+{ |
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
+ size_t space_per_minheight, maximum_space, avail_mem; |
+ size_t minheights, max_minheights; |
+ jvirt_sarray_ptr sptr; |
+ jvirt_barray_ptr bptr; |
+ |
+ /* Compute the minimum space needed (maxaccess rows in each buffer) |
+ * and the maximum space needed (full image height in each buffer). |
+ * These may be of use to the system-dependent jpeg_mem_available routine. |
+ */ |
+ space_per_minheight = 0; |
+ maximum_space = 0; |
+ for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
+ if (sptr->mem_buffer == NULL) { /* if not realized yet */ |
+ space_per_minheight += (long) sptr->maxaccess * |
+ (long) sptr->samplesperrow * SIZEOF(JSAMPLE); |
+ maximum_space += (long) sptr->rows_in_array * |
+ (long) sptr->samplesperrow * SIZEOF(JSAMPLE); |
+ } |
+ } |
+ for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
+ if (bptr->mem_buffer == NULL) { /* if not realized yet */ |
+ space_per_minheight += (long) bptr->maxaccess * |
+ (long) bptr->blocksperrow * SIZEOF(JBLOCK); |
+ maximum_space += (long) bptr->rows_in_array * |
+ (long) bptr->blocksperrow * SIZEOF(JBLOCK); |
+ } |
+ } |
+ |
+ if (space_per_minheight <= 0) |
+ return; /* no unrealized arrays, no work */ |
+ |
+ /* Determine amount of memory to actually use; this is system-dependent. */ |
+ avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, |
+ mem->total_space_allocated); |
+ |
+ /* If the maximum space needed is available, make all the buffers full |
+ * height; otherwise parcel it out with the same number of minheights |
+ * in each buffer. |
+ */ |
+ if (avail_mem >= maximum_space) |
+ max_minheights = 1000000000L; |
+ else { |
+ max_minheights = avail_mem / space_per_minheight; |
+ /* If there doesn't seem to be enough space, try to get the minimum |
+ * anyway. This allows a "stub" implementation of jpeg_mem_available(). |
+ */ |
+ if (max_minheights <= 0) |
+ max_minheights = 1; |
+ } |
+ |
+ /* Allocate the in-memory buffers and initialize backing store as needed. */ |
+ |
+ for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
+ if (sptr->mem_buffer == NULL) { /* if not realized yet */ |
+ minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; |
+ if (minheights <= max_minheights) { |
+ /* This buffer fits in memory */ |
+ sptr->rows_in_mem = sptr->rows_in_array; |
+ } else { |
+ /* It doesn't fit in memory, create backing store. */ |
+ sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess); |
+ jpeg_open_backing_store(cinfo, & sptr->b_s_info, |
+ (long) sptr->rows_in_array * |
+ (long) sptr->samplesperrow * |
+ (long) SIZEOF(JSAMPLE)); |
+ sptr->b_s_open = TRUE; |
+ } |
+ sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, |
+ sptr->samplesperrow, sptr->rows_in_mem); |
+ sptr->rowsperchunk = mem->last_rowsperchunk; |
+ sptr->cur_start_row = 0; |
+ sptr->first_undef_row = 0; |
+ sptr->dirty = FALSE; |
+ } |
+ } |
+ |
+ for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
+ if (bptr->mem_buffer == NULL) { /* if not realized yet */ |
+ minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; |
+ if (minheights <= max_minheights) { |
+ /* This buffer fits in memory */ |
+ bptr->rows_in_mem = bptr->rows_in_array; |
+ } else { |
+ /* It doesn't fit in memory, create backing store. */ |
+ bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess); |
+ jpeg_open_backing_store(cinfo, & bptr->b_s_info, |
+ (long) bptr->rows_in_array * |
+ (long) bptr->blocksperrow * |
+ (long) SIZEOF(JBLOCK)); |
+ bptr->b_s_open = TRUE; |
+ } |
+ bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, |
+ bptr->blocksperrow, bptr->rows_in_mem); |
+ bptr->rowsperchunk = mem->last_rowsperchunk; |
+ bptr->cur_start_row = 0; |
+ bptr->first_undef_row = 0; |
+ bptr->dirty = FALSE; |
+ } |
+ } |
+} |
+ |
+ |
+LOCAL(void) |
+do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) |
+/* Do backing store read or write of a virtual sample array */ |
+{ |
+ long bytesperrow, file_offset, byte_count, rows, thisrow, i; |
+ |
+ bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE); |
+ file_offset = ptr->cur_start_row * bytesperrow; |
+ /* Loop to read or write each allocation chunk in mem_buffer */ |
+ for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { |
+ /* One chunk, but check for short chunk at end of buffer */ |
+ rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); |
+ /* Transfer no more than is currently defined */ |
+ thisrow = (long) ptr->cur_start_row + i; |
+ rows = MIN(rows, (long) ptr->first_undef_row - thisrow); |
+ /* Transfer no more than fits in file */ |
+ rows = MIN(rows, (long) ptr->rows_in_array - thisrow); |
+ if (rows <= 0) /* this chunk might be past end of file! */ |
+ break; |
+ byte_count = rows * bytesperrow; |
+ if (writing) |
+ (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, |
+ (void FAR *) ptr->mem_buffer[i], |
+ file_offset, byte_count); |
+ else |
+ (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, |
+ (void FAR *) ptr->mem_buffer[i], |
+ file_offset, byte_count); |
+ file_offset += byte_count; |
+ } |
+} |
+ |
+ |
+LOCAL(void) |
+do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) |
+/* Do backing store read or write of a virtual coefficient-block array */ |
+{ |
+ long bytesperrow, file_offset, byte_count, rows, thisrow, i; |
+ |
+ bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK); |
+ file_offset = ptr->cur_start_row * bytesperrow; |
+ /* Loop to read or write each allocation chunk in mem_buffer */ |
+ for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { |
+ /* One chunk, but check for short chunk at end of buffer */ |
+ rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); |
+ /* Transfer no more than is currently defined */ |
+ thisrow = (long) ptr->cur_start_row + i; |
+ rows = MIN(rows, (long) ptr->first_undef_row - thisrow); |
+ /* Transfer no more than fits in file */ |
+ rows = MIN(rows, (long) ptr->rows_in_array - thisrow); |
+ if (rows <= 0) /* this chunk might be past end of file! */ |
+ break; |
+ byte_count = rows * bytesperrow; |
+ if (writing) |
+ (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, |
+ (void FAR *) ptr->mem_buffer[i], |
+ file_offset, byte_count); |
+ else |
+ (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, |
+ (void FAR *) ptr->mem_buffer[i], |
+ file_offset, byte_count); |
+ file_offset += byte_count; |
+ } |
+} |
+ |
+ |
+METHODDEF(JSAMPARRAY) |
+access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr, |
+ JDIMENSION start_row, JDIMENSION num_rows, |
+ boolean writable) |
+/* Access the part of a virtual sample array starting at start_row */ |
+/* and extending for num_rows rows. writable is true if */ |
+/* caller intends to modify the accessed area. */ |
+{ |
+ JDIMENSION end_row = start_row + num_rows; |
+ JDIMENSION undef_row; |
+ |
+ /* debugging check */ |
+ if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || |
+ ptr->mem_buffer == NULL) |
+ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
+ |
+ /* Make the desired part of the virtual array accessible */ |
+ if (start_row < ptr->cur_start_row || |
+ end_row > ptr->cur_start_row+ptr->rows_in_mem) { |
+ if (! ptr->b_s_open) |
+ ERREXIT(cinfo, JERR_VIRTUAL_BUG); |
+ /* Flush old buffer contents if necessary */ |
+ if (ptr->dirty) { |
+ do_sarray_io(cinfo, ptr, TRUE); |
+ ptr->dirty = FALSE; |
+ } |
+ /* Decide what part of virtual array to access. |
+ * Algorithm: if target address > current window, assume forward scan, |
+ * load starting at target address. If target address < current window, |
+ * assume backward scan, load so that target area is top of window. |
+ * Note that when switching from forward write to forward read, will have |
+ * start_row = 0, so the limiting case applies and we load from 0 anyway. |
+ */ |
+ if (start_row > ptr->cur_start_row) { |
+ ptr->cur_start_row = start_row; |
+ } else { |
+ /* use long arithmetic here to avoid overflow & unsigned problems */ |
+ long ltemp; |
+ |
+ ltemp = (long) end_row - (long) ptr->rows_in_mem; |
+ if (ltemp < 0) |
+ ltemp = 0; /* don't fall off front end of file */ |
+ ptr->cur_start_row = (JDIMENSION) ltemp; |
+ } |
+ /* Read in the selected part of the array. |
+ * During the initial write pass, we will do no actual read |
+ * because the selected part is all undefined. |
+ */ |
+ do_sarray_io(cinfo, ptr, FALSE); |
+ } |
+ /* Ensure the accessed part of the array is defined; prezero if needed. |
+ * To improve locality of access, we only prezero the part of the array |
+ * that the caller is about to access, not the entire in-memory array. |
+ */ |
+ if (ptr->first_undef_row < end_row) { |
+ if (ptr->first_undef_row < start_row) { |
+ if (writable) /* writer skipped over a section of array */ |
+ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
+ undef_row = start_row; /* but reader is allowed to read ahead */ |
+ } else { |
+ undef_row = ptr->first_undef_row; |
+ } |
+ if (writable) |
+ ptr->first_undef_row = end_row; |
+ if (ptr->pre_zero) { |
+ size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE); |
+ undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ |
+ end_row -= ptr->cur_start_row; |
+ while (undef_row < end_row) { |
+ jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); |
+ undef_row++; |
+ } |
+ } else { |
+ if (! writable) /* reader looking at undefined data */ |
+ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
+ } |
+ } |
+ /* Flag the buffer dirty if caller will write in it */ |
+ if (writable) |
+ ptr->dirty = TRUE; |
+ /* Return address of proper part of the buffer */ |
+ return ptr->mem_buffer + (start_row - ptr->cur_start_row); |
+} |
+ |
+ |
+METHODDEF(JBLOCKARRAY) |
+access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr, |
+ JDIMENSION start_row, JDIMENSION num_rows, |
+ boolean writable) |
+/* Access the part of a virtual block array starting at start_row */ |
+/* and extending for num_rows rows. writable is true if */ |
+/* caller intends to modify the accessed area. */ |
+{ |
+ JDIMENSION end_row = start_row + num_rows; |
+ JDIMENSION undef_row; |
+ |
+ /* debugging check */ |
+ if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || |
+ ptr->mem_buffer == NULL) |
+ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
+ |
+ /* Make the desired part of the virtual array accessible */ |
+ if (start_row < ptr->cur_start_row || |
+ end_row > ptr->cur_start_row+ptr->rows_in_mem) { |
+ if (! ptr->b_s_open) |
+ ERREXIT(cinfo, JERR_VIRTUAL_BUG); |
+ /* Flush old buffer contents if necessary */ |
+ if (ptr->dirty) { |
+ do_barray_io(cinfo, ptr, TRUE); |
+ ptr->dirty = FALSE; |
+ } |
+ /* Decide what part of virtual array to access. |
+ * Algorithm: if target address > current window, assume forward scan, |
+ * load starting at target address. If target address < current window, |
+ * assume backward scan, load so that target area is top of window. |
+ * Note that when switching from forward write to forward read, will have |
+ * start_row = 0, so the limiting case applies and we load from 0 anyway. |
+ */ |
+ if (start_row > ptr->cur_start_row) { |
+ ptr->cur_start_row = start_row; |
+ } else { |
+ /* use long arithmetic here to avoid overflow & unsigned problems */ |
+ long ltemp; |
+ |
+ ltemp = (long) end_row - (long) ptr->rows_in_mem; |
+ if (ltemp < 0) |
+ ltemp = 0; /* don't fall off front end of file */ |
+ ptr->cur_start_row = (JDIMENSION) ltemp; |
+ } |
+ /* Read in the selected part of the array. |
+ * During the initial write pass, we will do no actual read |
+ * because the selected part is all undefined. |
+ */ |
+ do_barray_io(cinfo, ptr, FALSE); |
+ } |
+ /* Ensure the accessed part of the array is defined; prezero if needed. |
+ * To improve locality of access, we only prezero the part of the array |
+ * that the caller is about to access, not the entire in-memory array. |
+ */ |
+ if (ptr->first_undef_row < end_row) { |
+ if (ptr->first_undef_row < start_row) { |
+ if (writable) /* writer skipped over a section of array */ |
+ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
+ undef_row = start_row; /* but reader is allowed to read ahead */ |
+ } else { |
+ undef_row = ptr->first_undef_row; |
+ } |
+ if (writable) |
+ ptr->first_undef_row = end_row; |
+ if (ptr->pre_zero) { |
+ size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK); |
+ undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ |
+ end_row -= ptr->cur_start_row; |
+ while (undef_row < end_row) { |
+ jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); |
+ undef_row++; |
+ } |
+ } else { |
+ if (! writable) /* reader looking at undefined data */ |
+ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
+ } |
+ } |
+ /* Flag the buffer dirty if caller will write in it */ |
+ if (writable) |
+ ptr->dirty = TRUE; |
+ /* Return address of proper part of the buffer */ |
+ return ptr->mem_buffer + (start_row - ptr->cur_start_row); |
+} |
+ |
+ |
+/* |
+ * Release all objects belonging to a specified pool. |
+ */ |
+ |
+METHODDEF(void) |
+free_pool (j_common_ptr cinfo, int pool_id) |
+{ |
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
+ small_pool_ptr shdr_ptr; |
+ large_pool_ptr lhdr_ptr; |
+ size_t space_freed; |
+ |
+ if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
+ ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
+ |
+#ifdef MEM_STATS |
+ if (cinfo->err->trace_level > 1) |
+ print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ |
+#endif |
+ |
+ /* If freeing IMAGE pool, close any virtual arrays first */ |
+ if (pool_id == JPOOL_IMAGE) { |
+ jvirt_sarray_ptr sptr; |
+ jvirt_barray_ptr bptr; |
+ |
+ for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
+ if (sptr->b_s_open) { /* there may be no backing store */ |
+ sptr->b_s_open = FALSE; /* prevent recursive close if error */ |
+ (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info); |
+ } |
+ } |
+ mem->virt_sarray_list = NULL; |
+ for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
+ if (bptr->b_s_open) { /* there may be no backing store */ |
+ bptr->b_s_open = FALSE; /* prevent recursive close if error */ |
+ (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info); |
+ } |
+ } |
+ mem->virt_barray_list = NULL; |
+ } |
+ |
+ /* Release large objects */ |
+ lhdr_ptr = mem->large_list[pool_id]; |
+ mem->large_list[pool_id] = NULL; |
+ |
+ while (lhdr_ptr != NULL) { |
+ large_pool_ptr next_lhdr_ptr = lhdr_ptr->next; |
+ space_freed = lhdr_ptr->bytes_used + |
+ lhdr_ptr->bytes_left + |
+ SIZEOF(large_pool_hdr); |
+ jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed); |
+ mem->total_space_allocated -= space_freed; |
+ lhdr_ptr = next_lhdr_ptr; |
+ } |
+ |
+ /* Release small objects */ |
+ shdr_ptr = mem->small_list[pool_id]; |
+ mem->small_list[pool_id] = NULL; |
+ |
+ while (shdr_ptr != NULL) { |
+ small_pool_ptr next_shdr_ptr = shdr_ptr->next; |
+ space_freed = shdr_ptr->bytes_used + |
+ shdr_ptr->bytes_left + |
+ SIZEOF(small_pool_hdr); |
+ jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed); |
+ mem->total_space_allocated -= space_freed; |
+ shdr_ptr = next_shdr_ptr; |
+ } |
+} |
+ |
+ |
+/* |
+ * Close up shop entirely. |
+ * Note that this cannot be called unless cinfo->mem is non-NULL. |
+ */ |
+ |
+METHODDEF(void) |
+self_destruct (j_common_ptr cinfo) |
+{ |
+ int pool; |
+ |
+ /* Close all backing store, release all memory. |
+ * Releasing pools in reverse order might help avoid fragmentation |
+ * with some (brain-damaged) malloc libraries. |
+ */ |
+ for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { |
+ free_pool(cinfo, pool); |
+ } |
+ |
+ /* Release the memory manager control block too. */ |
+ jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr)); |
+ cinfo->mem = NULL; /* ensures I will be called only once */ |
+ |
+ jpeg_mem_term(cinfo); /* system-dependent cleanup */ |
+} |
+ |
+ |
+/* |
+ * Memory manager initialization. |
+ * When this is called, only the error manager pointer is valid in cinfo! |
+ */ |
+ |
+GLOBAL(void) |
+jinit_memory_mgr (j_common_ptr cinfo) |
+{ |
+ my_mem_ptr mem; |
+ long max_to_use; |
+ int pool; |
+ size_t test_mac; |
+ |
+ cinfo->mem = NULL; /* for safety if init fails */ |
+ |
+ /* Check for configuration errors. |
+ * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably |
+ * doesn't reflect any real hardware alignment requirement. |
+ * The test is a little tricky: for X>0, X and X-1 have no one-bits |
+ * in common if and only if X is a power of 2, ie has only one one-bit. |
+ * Some compilers may give an "unreachable code" warning here; ignore it. |
+ */ |
+ if ((ALIGN_SIZE & (ALIGN_SIZE-1)) != 0) |
+ ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); |
+ /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be |
+ * a multiple of ALIGN_SIZE. |
+ * Again, an "unreachable code" warning may be ignored here. |
+ * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. |
+ */ |
+ test_mac = (size_t) MAX_ALLOC_CHUNK; |
+ if ((long) test_mac != MAX_ALLOC_CHUNK || |
+ (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0) |
+ ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); |
+ |
+ max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ |
+ |
+ /* Attempt to allocate memory manager's control block */ |
+ mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr)); |
+ |
+ if (mem == NULL) { |
+ jpeg_mem_term(cinfo); /* system-dependent cleanup */ |
+ ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); |
+ } |
+ |
+ /* OK, fill in the method pointers */ |
+ mem->pub.alloc_small = alloc_small; |
+ mem->pub.alloc_large = alloc_large; |
+ mem->pub.alloc_sarray = alloc_sarray; |
+ mem->pub.alloc_barray = alloc_barray; |
+ mem->pub.request_virt_sarray = request_virt_sarray; |
+ mem->pub.request_virt_barray = request_virt_barray; |
+ mem->pub.realize_virt_arrays = realize_virt_arrays; |
+ mem->pub.access_virt_sarray = access_virt_sarray; |
+ mem->pub.access_virt_barray = access_virt_barray; |
+ mem->pub.free_pool = free_pool; |
+ mem->pub.self_destruct = self_destruct; |
+ |
+ /* Make MAX_ALLOC_CHUNK accessible to other modules */ |
+ mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; |
+ |
+ /* Initialize working state */ |
+ mem->pub.max_memory_to_use = max_to_use; |
+ |
+ for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { |
+ mem->small_list[pool] = NULL; |
+ mem->large_list[pool] = NULL; |
+ } |
+ mem->virt_sarray_list = NULL; |
+ mem->virt_barray_list = NULL; |
+ |
+ mem->total_space_allocated = SIZEOF(my_memory_mgr); |
+ |
+ /* Declare ourselves open for business */ |
+ cinfo->mem = & mem->pub; |
+ |
+ /* Check for an environment variable JPEGMEM; if found, override the |
+ * default max_memory setting from jpeg_mem_init. Note that the |
+ * surrounding application may again override this value. |
+ * If your system doesn't support getenv(), define NO_GETENV to disable |
+ * this feature. |
+ */ |
+#ifndef NO_GETENV |
+ { char * memenv; |
+ |
+ if ((memenv = getenv("JPEGMEM")) != NULL) { |
+ char ch = 'x'; |
+ |
+ if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) { |
+ if (ch == 'm' || ch == 'M') |
+ max_to_use *= 1000L; |
+ mem->pub.max_memory_to_use = max_to_use * 1000L; |
+ } |
+ } |
+ } |
+#endif |
+ |
+} |