Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(164)

Side by Side Diff: third_party/libjpeg_turbo/jmemmgr.c

Issue 4134011: Adds libjpeg-turbo to deps... (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/deps/
Patch Set: Created 10 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « third_party/libjpeg_turbo/jinclude.h ('k') | third_party/libjpeg_turbo/jmemnobs.c » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 * jmemmgr.c
3 *
4 * Copyright (C) 1991-1997, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains the JPEG system-independent memory management
9 * routines. This code is usable across a wide variety of machines; most
10 * of the system dependencies have been isolated in a separate file.
11 * The major functions provided here are:
12 * * pool-based allocation and freeing of memory;
13 * * policy decisions about how to divide available memory among the
14 * virtual arrays;
15 * * control logic for swapping virtual arrays between main memory and
16 * backing storage.
17 * The separate system-dependent file provides the actual backing-storage
18 * access code, and it contains the policy decision about how much total
19 * main memory to use.
20 * This file is system-dependent in the sense that some of its functions
21 * are unnecessary in some systems. For example, if there is enough virtual
22 * memory so that backing storage will never be used, much of the virtual
23 * array control logic could be removed. (Of course, if you have that much
24 * memory then you shouldn't care about a little bit of unused code...)
25 */
26
27 #define JPEG_INTERNALS
28 #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
29 #include "jinclude.h"
30 #include "jpeglib.h"
31 #include "jmemsys.h" /* import the system-dependent declarations */
32
33 #ifndef NO_GETENV
34 #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
35 extern char * getenv JPP((const char * name));
36 #endif
37 #endif
38
39
40 /*
41 * Some important notes:
42 * The allocation routines provided here must never return NULL.
43 * They should exit to error_exit if unsuccessful.
44 *
45 * It's not a good idea to try to merge the sarray and barray routines,
46 * even though they are textually almost the same, because samples are
47 * usually stored as bytes while coefficients are shorts or ints. Thus,
48 * in machines where byte pointers have a different representation from
49 * word pointers, the resulting machine code could not be the same.
50 */
51
52
53 /*
54 * Many machines require storage alignment: longs must start on 4-byte
55 * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
56 * always returns pointers that are multiples of the worst-case alignment
57 * requirement, and we had better do so too.
58 * There isn't any really portable way to determine the worst-case alignment
59 * requirement. This module assumes that the alignment requirement is
60 * multiples of ALIGN_SIZE.
61 * By default, we define ALIGN_SIZE as sizeof(double). This is necessary on som e
62 * workstations (where doubles really do need 8-byte alignment) and will work
63 * fine on nearly everything. If your machine has lesser alignment needs,
64 * you can save a few bytes by making ALIGN_SIZE smaller.
65 * The only place I know of where this will NOT work is certain Macintosh
66 * 680x0 compilers that define double as a 10-byte IEEE extended float.
67 * Doing 10-byte alignment is counterproductive because longwords won't be
68 * aligned well. Put "#define ALIGN_SIZE 4" in jconfig.h if you have
69 * such a compiler.
70 */
71
72 #ifndef ALIGN_SIZE /* so can override from jconfig.h */
73 #ifndef WITH_SIMD
74 #define ALIGN_SIZE SIZEOF(double)
75 #else
76 #define ALIGN_SIZE 16 /* Most SIMD implementations require this */
77 #endif
78 #endif
79
80 /*
81 * We allocate objects from "pools", where each pool is gotten with a single
82 * request to jpeg_get_small() or jpeg_get_large(). There is no per-object
83 * overhead within a pool, except for alignment padding. Each pool has a
84 * header with a link to the next pool of the same class.
85 * Small and large pool headers are identical except that the latter's
86 * link pointer must be FAR on 80x86 machines.
87 */
88
89 typedef struct small_pool_struct * small_pool_ptr;
90
91 typedef struct small_pool_struct {
92 small_pool_ptr next; /* next in list of pools */
93 size_t bytes_used; /* how many bytes already used within pool */
94 size_t bytes_left; /* bytes still available in this pool */
95 } small_pool_hdr;
96
97 typedef struct large_pool_struct FAR * large_pool_ptr;
98
99 typedef struct large_pool_struct {
100 large_pool_ptr next; /* next in list of pools */
101 size_t bytes_used; /* how many bytes already used within pool */
102 size_t bytes_left; /* bytes still available in this pool */
103 } large_pool_hdr;
104
105 /*
106 * Here is the full definition of a memory manager object.
107 */
108
109 typedef struct {
110 struct jpeg_memory_mgr pub; /* public fields */
111
112 /* Each pool identifier (lifetime class) names a linked list of pools. */
113 small_pool_ptr small_list[JPOOL_NUMPOOLS];
114 large_pool_ptr large_list[JPOOL_NUMPOOLS];
115
116 /* Since we only have one lifetime class of virtual arrays, only one
117 * linked list is necessary (for each datatype). Note that the virtual
118 * array control blocks being linked together are actually stored somewhere
119 * in the small-pool list.
120 */
121 jvirt_sarray_ptr virt_sarray_list;
122 jvirt_barray_ptr virt_barray_list;
123
124 /* This counts total space obtained from jpeg_get_small/large */
125 size_t total_space_allocated;
126
127 /* alloc_sarray and alloc_barray set this value for use by virtual
128 * array routines.
129 */
130 JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
131 } my_memory_mgr;
132
133 typedef my_memory_mgr * my_mem_ptr;
134
135
136 /*
137 * The control blocks for virtual arrays.
138 * Note that these blocks are allocated in the "small" pool area.
139 * System-dependent info for the associated backing store (if any) is hidden
140 * inside the backing_store_info struct.
141 */
142
143 struct jvirt_sarray_control {
144 JSAMPARRAY mem_buffer; /* => the in-memory buffer */
145 JDIMENSION rows_in_array; /* total virtual array height */
146 JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
147 JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */
148 JDIMENSION rows_in_mem; /* height of memory buffer */
149 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
150 JDIMENSION cur_start_row; /* first logical row # in the buffer */
151 JDIMENSION first_undef_row; /* row # of first uninitialized row */
152 boolean pre_zero; /* pre-zero mode requested? */
153 boolean dirty; /* do current buffer contents need written? */
154 boolean b_s_open; /* is backing-store data valid? */
155 jvirt_sarray_ptr next; /* link to next virtual sarray control block */
156 backing_store_info b_s_info; /* System-dependent control info */
157 };
158
159 struct jvirt_barray_control {
160 JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
161 JDIMENSION rows_in_array; /* total virtual array height */
162 JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
163 JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */
164 JDIMENSION rows_in_mem; /* height of memory buffer */
165 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
166 JDIMENSION cur_start_row; /* first logical row # in the buffer */
167 JDIMENSION first_undef_row; /* row # of first uninitialized row */
168 boolean pre_zero; /* pre-zero mode requested? */
169 boolean dirty; /* do current buffer contents need written? */
170 boolean b_s_open; /* is backing-store data valid? */
171 jvirt_barray_ptr next; /* link to next virtual barray control block */
172 backing_store_info b_s_info; /* System-dependent control info */
173 };
174
175
176 #ifdef MEM_STATS /* optional extra stuff for statistics */
177
178 LOCAL(void)
179 print_mem_stats (j_common_ptr cinfo, int pool_id)
180 {
181 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
182 small_pool_ptr shdr_ptr;
183 large_pool_ptr lhdr_ptr;
184
185 /* Since this is only a debugging stub, we can cheat a little by using
186 * fprintf directly rather than going through the trace message code.
187 * This is helpful because message parm array can't handle longs.
188 */
189 fprintf(stderr, "Freeing pool %d, total space = %ld\n",
190 pool_id, mem->total_space_allocated);
191
192 for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
193 lhdr_ptr = lhdr_ptr->next) {
194 fprintf(stderr, " Large chunk used %ld\n",
195 (long) lhdr_ptr->bytes_used);
196 }
197
198 for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
199 shdr_ptr = shdr_ptr->next) {
200 fprintf(stderr, " Small chunk used %ld free %ld\n",
201 (long) shdr_ptr->bytes_used,
202 (long) shdr_ptr->bytes_left);
203 }
204 }
205
206 #endif /* MEM_STATS */
207
208
209 LOCAL(void)
210 out_of_memory (j_common_ptr cinfo, int which)
211 /* Report an out-of-memory error and stop execution */
212 /* If we compiled MEM_STATS support, report alloc requests before dying */
213 {
214 #ifdef MEM_STATS
215 cinfo->err->trace_level = 2; /* force self_destruct to report stats */
216 #endif
217 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
218 }
219
220
221 /*
222 * Allocation of "small" objects.
223 *
224 * For these, we use pooled storage. When a new pool must be created,
225 * we try to get enough space for the current request plus a "slop" factor,
226 * where the slop will be the amount of leftover space in the new pool.
227 * The speed vs. space tradeoff is largely determined by the slop values.
228 * A different slop value is provided for each pool class (lifetime),
229 * and we also distinguish the first pool of a class from later ones.
230 * NOTE: the values given work fairly well on both 16- and 32-bit-int
231 * machines, but may be too small if longs are 64 bits or more.
232 *
233 * Since we do not know what alignment malloc() gives us, we have to
234 * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment
235 * adjustment.
236 */
237
238 static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
239 {
240 1600, /* first PERMANENT pool */
241 16000 /* first IMAGE pool */
242 };
243
244 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
245 {
246 0, /* additional PERMANENT pools */
247 5000 /* additional IMAGE pools */
248 };
249
250 #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
251
252
253 METHODDEF(void *)
254 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
255 /* Allocate a "small" object */
256 {
257 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
258 small_pool_ptr hdr_ptr, prev_hdr_ptr;
259 char * data_ptr;
260 size_t min_request, slop;
261
262 /*
263 * Round up the requested size to a multiple of ALIGN_SIZE in order
264 * to assure alignment for the next object allocated in the same pool
265 * and so that algorithms can straddle outside the proper area up
266 * to the next alignment.
267 */
268 sizeofobject = jround_up(sizeofobject, ALIGN_SIZE);
269
270 /* Check for unsatisfiable request (do now to ensure no overflow below) */
271 if ((SIZEOF(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK )
272 out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
273
274 /* See if space is available in any existing pool */
275 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
276 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
277 prev_hdr_ptr = NULL;
278 hdr_ptr = mem->small_list[pool_id];
279 while (hdr_ptr != NULL) {
280 if (hdr_ptr->bytes_left >= sizeofobject)
281 break; /* found pool with enough space */
282 prev_hdr_ptr = hdr_ptr;
283 hdr_ptr = hdr_ptr->next;
284 }
285
286 /* Time to make a new pool? */
287 if (hdr_ptr == NULL) {
288 /* min_request is what we need now, slop is what will be leftover */
289 min_request = SIZEOF(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1;
290 if (prev_hdr_ptr == NULL) /* first pool in class? */
291 slop = first_pool_slop[pool_id];
292 else
293 slop = extra_pool_slop[pool_id];
294 /* Don't ask for more than MAX_ALLOC_CHUNK */
295 if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
296 slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
297 /* Try to get space, if fail reduce slop and try again */
298 for (;;) {
299 hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
300 if (hdr_ptr != NULL)
301 break;
302 slop /= 2;
303 if (slop < MIN_SLOP) /* give up when it gets real small */
304 out_of_memory(cinfo, 2); /* jpeg_get_small failed */
305 }
306 mem->total_space_allocated += min_request + slop;
307 /* Success, initialize the new pool header and add to end of list */
308 hdr_ptr->next = NULL;
309 hdr_ptr->bytes_used = 0;
310 hdr_ptr->bytes_left = sizeofobject + slop;
311 if (prev_hdr_ptr == NULL) /* first pool in class? */
312 mem->small_list[pool_id] = hdr_ptr;
313 else
314 prev_hdr_ptr->next = hdr_ptr;
315 }
316
317 /* OK, allocate the object from the current pool */
318 data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
319 data_ptr += SIZEOF(small_pool_hdr); /* ...by skipping the header... */
320 if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
321 data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
322 data_ptr += hdr_ptr->bytes_used; /* point to place for object */
323 hdr_ptr->bytes_used += sizeofobject;
324 hdr_ptr->bytes_left -= sizeofobject;
325
326 return (void *) data_ptr;
327 }
328
329
330 /*
331 * Allocation of "large" objects.
332 *
333 * The external semantics of these are the same as "small" objects,
334 * except that FAR pointers are used on 80x86. However the pool
335 * management heuristics are quite different. We assume that each
336 * request is large enough that it may as well be passed directly to
337 * jpeg_get_large; the pool management just links everything together
338 * so that we can free it all on demand.
339 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
340 * structures. The routines that create these structures (see below)
341 * deliberately bunch rows together to ensure a large request size.
342 */
343
344 METHODDEF(void FAR *)
345 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
346 /* Allocate a "large" object */
347 {
348 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
349 large_pool_ptr hdr_ptr;
350 char FAR * data_ptr;
351
352 /*
353 * Round up the requested size to a multiple of ALIGN_SIZE so that
354 * algorithms can straddle outside the proper area up to the next
355 * alignment.
356 */
357 sizeofobject = jround_up(sizeofobject, ALIGN_SIZE);
358
359 /* Check for unsatisfiable request (do now to ensure no overflow below) */
360 if ((SIZEOF(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK )
361 out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
362
363 /* Always make a new pool */
364 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
365 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
366
367 hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
368 SIZEOF(large_pool_hdr) +
369 ALIGN_SIZE - 1);
370 if (hdr_ptr == NULL)
371 out_of_memory(cinfo, 4); /* jpeg_get_large failed */
372 mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr) + ALIGN_SI ZE - 1;
373
374 /* Success, initialize the new pool header and add to list */
375 hdr_ptr->next = mem->large_list[pool_id];
376 /* We maintain space counts in each pool header for statistical purposes,
377 * even though they are not needed for allocation.
378 */
379 hdr_ptr->bytes_used = sizeofobject;
380 hdr_ptr->bytes_left = 0;
381 mem->large_list[pool_id] = hdr_ptr;
382
383 data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
384 data_ptr += SIZEOF(small_pool_hdr); /* ...by skipping the header... */
385 if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
386 data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
387
388 return (void FAR *) data_ptr;
389 }
390
391
392 /*
393 * Creation of 2-D sample arrays.
394 * The pointers are in near heap, the samples themselves in FAR heap.
395 *
396 * To minimize allocation overhead and to allow I/O of large contiguous
397 * blocks, we allocate the sample rows in groups of as many rows as possible
398 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
399 * NB: the virtual array control routines, later in this file, know about
400 * this chunking of rows. The rowsperchunk value is left in the mem manager
401 * object so that it can be saved away if this sarray is the workspace for
402 * a virtual array.
403 *
404 * Since we are often upsampling with a factor 2, we align the size (not
405 * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have
406 * to be as careful about size.
407 */
408
409 METHODDEF(JSAMPARRAY)
410 alloc_sarray (j_common_ptr cinfo, int pool_id,
411 JDIMENSION samplesperrow, JDIMENSION numrows)
412 /* Allocate a 2-D sample array */
413 {
414 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
415 JSAMPARRAY result;
416 JSAMPROW workspace;
417 JDIMENSION rowsperchunk, currow, i;
418 long ltemp;
419
420 /* Make sure each row is properly aligned */
421 if ((ALIGN_SIZE % SIZEOF(JSAMPLE)) != 0)
422 out_of_memory(cinfo, 5); /* safety check */
423 samplesperrow = (JDIMENSION)jround_up(samplesperrow, (2 * ALIGN_SIZE) / SIZEOF (JSAMPLE));
424
425 /* Calculate max # of rows allowed in one allocation chunk */
426 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
427 ((long) samplesperrow * SIZEOF(JSAMPLE));
428 if (ltemp <= 0)
429 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
430 if (ltemp < (long) numrows)
431 rowsperchunk = (JDIMENSION) ltemp;
432 else
433 rowsperchunk = numrows;
434 mem->last_rowsperchunk = rowsperchunk;
435
436 /* Get space for row pointers (small object) */
437 result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
438 (size_t) (numrows * SIZEOF(JSAMPROW)));
439
440 /* Get the rows themselves (large objects) */
441 currow = 0;
442 while (currow < numrows) {
443 rowsperchunk = MIN(rowsperchunk, numrows - currow);
444 workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
445 (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
446 * SIZEOF(JSAMPLE)));
447 for (i = rowsperchunk; i > 0; i--) {
448 result[currow++] = workspace;
449 workspace += samplesperrow;
450 }
451 }
452
453 return result;
454 }
455
456
457 /*
458 * Creation of 2-D coefficient-block arrays.
459 * This is essentially the same as the code for sample arrays, above.
460 */
461
462 METHODDEF(JBLOCKARRAY)
463 alloc_barray (j_common_ptr cinfo, int pool_id,
464 JDIMENSION blocksperrow, JDIMENSION numrows)
465 /* Allocate a 2-D coefficient-block array */
466 {
467 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
468 JBLOCKARRAY result;
469 JBLOCKROW workspace;
470 JDIMENSION rowsperchunk, currow, i;
471 long ltemp;
472
473 /* Make sure each row is properly aligned */
474 if ((SIZEOF(JBLOCK) % ALIGN_SIZE) != 0)
475 out_of_memory(cinfo, 6); /* safety check */
476
477 /* Calculate max # of rows allowed in one allocation chunk */
478 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
479 ((long) blocksperrow * SIZEOF(JBLOCK));
480 if (ltemp <= 0)
481 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
482 if (ltemp < (long) numrows)
483 rowsperchunk = (JDIMENSION) ltemp;
484 else
485 rowsperchunk = numrows;
486 mem->last_rowsperchunk = rowsperchunk;
487
488 /* Get space for row pointers (small object) */
489 result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
490 (size_t) (numrows * SIZEOF(JBLOCKROW)));
491
492 /* Get the rows themselves (large objects) */
493 currow = 0;
494 while (currow < numrows) {
495 rowsperchunk = MIN(rowsperchunk, numrows - currow);
496 workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
497 (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
498 * SIZEOF(JBLOCK)));
499 for (i = rowsperchunk; i > 0; i--) {
500 result[currow++] = workspace;
501 workspace += blocksperrow;
502 }
503 }
504
505 return result;
506 }
507
508
509 /*
510 * About virtual array management:
511 *
512 * The above "normal" array routines are only used to allocate strip buffers
513 * (as wide as the image, but just a few rows high). Full-image-sized buffers
514 * are handled as "virtual" arrays. The array is still accessed a strip at a
515 * time, but the memory manager must save the whole array for repeated
516 * accesses. The intended implementation is that there is a strip buffer in
517 * memory (as high as is possible given the desired memory limit), plus a
518 * backing file that holds the rest of the array.
519 *
520 * The request_virt_array routines are told the total size of the image and
521 * the maximum number of rows that will be accessed at once. The in-memory
522 * buffer must be at least as large as the maxaccess value.
523 *
524 * The request routines create control blocks but not the in-memory buffers.
525 * That is postponed until realize_virt_arrays is called. At that time the
526 * total amount of space needed is known (approximately, anyway), so free
527 * memory can be divided up fairly.
528 *
529 * The access_virt_array routines are responsible for making a specific strip
530 * area accessible (after reading or writing the backing file, if necessary).
531 * Note that the access routines are told whether the caller intends to modify
532 * the accessed strip; during a read-only pass this saves having to rewrite
533 * data to disk. The access routines are also responsible for pre-zeroing
534 * any newly accessed rows, if pre-zeroing was requested.
535 *
536 * In current usage, the access requests are usually for nonoverlapping
537 * strips; that is, successive access start_row numbers differ by exactly
538 * num_rows = maxaccess. This means we can get good performance with simple
539 * buffer dump/reload logic, by making the in-memory buffer be a multiple
540 * of the access height; then there will never be accesses across bufferload
541 * boundaries. The code will still work with overlapping access requests,
542 * but it doesn't handle bufferload overlaps very efficiently.
543 */
544
545
546 METHODDEF(jvirt_sarray_ptr)
547 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
548 JDIMENSION samplesperrow, JDIMENSION numrows,
549 JDIMENSION maxaccess)
550 /* Request a virtual 2-D sample array */
551 {
552 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
553 jvirt_sarray_ptr result;
554
555 /* Only IMAGE-lifetime virtual arrays are currently supported */
556 if (pool_id != JPOOL_IMAGE)
557 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
558
559 /* get control block */
560 result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
561 SIZEOF(struct jvirt_sarray_control));
562
563 result->mem_buffer = NULL; /* marks array not yet realized */
564 result->rows_in_array = numrows;
565 result->samplesperrow = samplesperrow;
566 result->maxaccess = maxaccess;
567 result->pre_zero = pre_zero;
568 result->b_s_open = FALSE; /* no associated backing-store object */
569 result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
570 mem->virt_sarray_list = result;
571
572 return result;
573 }
574
575
576 METHODDEF(jvirt_barray_ptr)
577 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
578 JDIMENSION blocksperrow, JDIMENSION numrows,
579 JDIMENSION maxaccess)
580 /* Request a virtual 2-D coefficient-block array */
581 {
582 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
583 jvirt_barray_ptr result;
584
585 /* Only IMAGE-lifetime virtual arrays are currently supported */
586 if (pool_id != JPOOL_IMAGE)
587 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
588
589 /* get control block */
590 result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
591 SIZEOF(struct jvirt_barray_control));
592
593 result->mem_buffer = NULL; /* marks array not yet realized */
594 result->rows_in_array = numrows;
595 result->blocksperrow = blocksperrow;
596 result->maxaccess = maxaccess;
597 result->pre_zero = pre_zero;
598 result->b_s_open = FALSE; /* no associated backing-store object */
599 result->next = mem->virt_barray_list; /* add to list of virtual arrays */
600 mem->virt_barray_list = result;
601
602 return result;
603 }
604
605
606 METHODDEF(void)
607 realize_virt_arrays (j_common_ptr cinfo)
608 /* Allocate the in-memory buffers for any unrealized virtual arrays */
609 {
610 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
611 size_t space_per_minheight, maximum_space, avail_mem;
612 size_t minheights, max_minheights;
613 jvirt_sarray_ptr sptr;
614 jvirt_barray_ptr bptr;
615
616 /* Compute the minimum space needed (maxaccess rows in each buffer)
617 * and the maximum space needed (full image height in each buffer).
618 * These may be of use to the system-dependent jpeg_mem_available routine.
619 */
620 space_per_minheight = 0;
621 maximum_space = 0;
622 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
623 if (sptr->mem_buffer == NULL) { /* if not realized yet */
624 space_per_minheight += (long) sptr->maxaccess *
625 (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
626 maximum_space += (long) sptr->rows_in_array *
627 (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
628 }
629 }
630 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
631 if (bptr->mem_buffer == NULL) { /* if not realized yet */
632 space_per_minheight += (long) bptr->maxaccess *
633 (long) bptr->blocksperrow * SIZEOF(JBLOCK);
634 maximum_space += (long) bptr->rows_in_array *
635 (long) bptr->blocksperrow * SIZEOF(JBLOCK);
636 }
637 }
638
639 if (space_per_minheight <= 0)
640 return; /* no unrealized arrays, no work */
641
642 /* Determine amount of memory to actually use; this is system-dependent. */
643 avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
644 mem->total_space_allocated);
645
646 /* If the maximum space needed is available, make all the buffers full
647 * height; otherwise parcel it out with the same number of minheights
648 * in each buffer.
649 */
650 if (avail_mem >= maximum_space)
651 max_minheights = 1000000000L;
652 else {
653 max_minheights = avail_mem / space_per_minheight;
654 /* If there doesn't seem to be enough space, try to get the minimum
655 * anyway. This allows a "stub" implementation of jpeg_mem_available().
656 */
657 if (max_minheights <= 0)
658 max_minheights = 1;
659 }
660
661 /* Allocate the in-memory buffers and initialize backing store as needed. */
662
663 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
664 if (sptr->mem_buffer == NULL) { /* if not realized yet */
665 minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
666 if (minheights <= max_minheights) {
667 /* This buffer fits in memory */
668 sptr->rows_in_mem = sptr->rows_in_array;
669 } else {
670 /* It doesn't fit in memory, create backing store. */
671 sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
672 jpeg_open_backing_store(cinfo, & sptr->b_s_info,
673 (long) sptr->rows_in_array *
674 (long) sptr->samplesperrow *
675 (long) SIZEOF(JSAMPLE));
676 sptr->b_s_open = TRUE;
677 }
678 sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
679 sptr->samplesperrow, sptr->rows_in_mem);
680 sptr->rowsperchunk = mem->last_rowsperchunk;
681 sptr->cur_start_row = 0;
682 sptr->first_undef_row = 0;
683 sptr->dirty = FALSE;
684 }
685 }
686
687 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
688 if (bptr->mem_buffer == NULL) { /* if not realized yet */
689 minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
690 if (minheights <= max_minheights) {
691 /* This buffer fits in memory */
692 bptr->rows_in_mem = bptr->rows_in_array;
693 } else {
694 /* It doesn't fit in memory, create backing store. */
695 bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
696 jpeg_open_backing_store(cinfo, & bptr->b_s_info,
697 (long) bptr->rows_in_array *
698 (long) bptr->blocksperrow *
699 (long) SIZEOF(JBLOCK));
700 bptr->b_s_open = TRUE;
701 }
702 bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
703 bptr->blocksperrow, bptr->rows_in_mem);
704 bptr->rowsperchunk = mem->last_rowsperchunk;
705 bptr->cur_start_row = 0;
706 bptr->first_undef_row = 0;
707 bptr->dirty = FALSE;
708 }
709 }
710 }
711
712
713 LOCAL(void)
714 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
715 /* Do backing store read or write of a virtual sample array */
716 {
717 long bytesperrow, file_offset, byte_count, rows, thisrow, i;
718
719 bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
720 file_offset = ptr->cur_start_row * bytesperrow;
721 /* Loop to read or write each allocation chunk in mem_buffer */
722 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
723 /* One chunk, but check for short chunk at end of buffer */
724 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
725 /* Transfer no more than is currently defined */
726 thisrow = (long) ptr->cur_start_row + i;
727 rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
728 /* Transfer no more than fits in file */
729 rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
730 if (rows <= 0) /* this chunk might be past end of file! */
731 break;
732 byte_count = rows * bytesperrow;
733 if (writing)
734 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
735 (void FAR *) ptr->mem_buffer[i],
736 file_offset, byte_count);
737 else
738 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
739 (void FAR *) ptr->mem_buffer[i],
740 file_offset, byte_count);
741 file_offset += byte_count;
742 }
743 }
744
745
746 LOCAL(void)
747 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
748 /* Do backing store read or write of a virtual coefficient-block array */
749 {
750 long bytesperrow, file_offset, byte_count, rows, thisrow, i;
751
752 bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
753 file_offset = ptr->cur_start_row * bytesperrow;
754 /* Loop to read or write each allocation chunk in mem_buffer */
755 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
756 /* One chunk, but check for short chunk at end of buffer */
757 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
758 /* Transfer no more than is currently defined */
759 thisrow = (long) ptr->cur_start_row + i;
760 rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
761 /* Transfer no more than fits in file */
762 rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
763 if (rows <= 0) /* this chunk might be past end of file! */
764 break;
765 byte_count = rows * bytesperrow;
766 if (writing)
767 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
768 (void FAR *) ptr->mem_buffer[i],
769 file_offset, byte_count);
770 else
771 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
772 (void FAR *) ptr->mem_buffer[i],
773 file_offset, byte_count);
774 file_offset += byte_count;
775 }
776 }
777
778
779 METHODDEF(JSAMPARRAY)
780 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
781 JDIMENSION start_row, JDIMENSION num_rows,
782 boolean writable)
783 /* Access the part of a virtual sample array starting at start_row */
784 /* and extending for num_rows rows. writable is true if */
785 /* caller intends to modify the accessed area. */
786 {
787 JDIMENSION end_row = start_row + num_rows;
788 JDIMENSION undef_row;
789
790 /* debugging check */
791 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
792 ptr->mem_buffer == NULL)
793 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
794
795 /* Make the desired part of the virtual array accessible */
796 if (start_row < ptr->cur_start_row ||
797 end_row > ptr->cur_start_row+ptr->rows_in_mem) {
798 if (! ptr->b_s_open)
799 ERREXIT(cinfo, JERR_VIRTUAL_BUG);
800 /* Flush old buffer contents if necessary */
801 if (ptr->dirty) {
802 do_sarray_io(cinfo, ptr, TRUE);
803 ptr->dirty = FALSE;
804 }
805 /* Decide what part of virtual array to access.
806 * Algorithm: if target address > current window, assume forward scan,
807 * load starting at target address. If target address < current window,
808 * assume backward scan, load so that target area is top of window.
809 * Note that when switching from forward write to forward read, will have
810 * start_row = 0, so the limiting case applies and we load from 0 anyway.
811 */
812 if (start_row > ptr->cur_start_row) {
813 ptr->cur_start_row = start_row;
814 } else {
815 /* use long arithmetic here to avoid overflow & unsigned problems */
816 long ltemp;
817
818 ltemp = (long) end_row - (long) ptr->rows_in_mem;
819 if (ltemp < 0)
820 ltemp = 0; /* don't fall off front end of file */
821 ptr->cur_start_row = (JDIMENSION) ltemp;
822 }
823 /* Read in the selected part of the array.
824 * During the initial write pass, we will do no actual read
825 * because the selected part is all undefined.
826 */
827 do_sarray_io(cinfo, ptr, FALSE);
828 }
829 /* Ensure the accessed part of the array is defined; prezero if needed.
830 * To improve locality of access, we only prezero the part of the array
831 * that the caller is about to access, not the entire in-memory array.
832 */
833 if (ptr->first_undef_row < end_row) {
834 if (ptr->first_undef_row < start_row) {
835 if (writable) /* writer skipped over a section of array */
836 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
837 undef_row = start_row; /* but reader is allowed to read ahead */
838 } else {
839 undef_row = ptr->first_undef_row;
840 }
841 if (writable)
842 ptr->first_undef_row = end_row;
843 if (ptr->pre_zero) {
844 size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
845 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
846 end_row -= ptr->cur_start_row;
847 while (undef_row < end_row) {
848 jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
849 undef_row++;
850 }
851 } else {
852 if (! writable) /* reader looking at undefined data */
853 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
854 }
855 }
856 /* Flag the buffer dirty if caller will write in it */
857 if (writable)
858 ptr->dirty = TRUE;
859 /* Return address of proper part of the buffer */
860 return ptr->mem_buffer + (start_row - ptr->cur_start_row);
861 }
862
863
864 METHODDEF(JBLOCKARRAY)
865 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
866 JDIMENSION start_row, JDIMENSION num_rows,
867 boolean writable)
868 /* Access the part of a virtual block array starting at start_row */
869 /* and extending for num_rows rows. writable is true if */
870 /* caller intends to modify the accessed area. */
871 {
872 JDIMENSION end_row = start_row + num_rows;
873 JDIMENSION undef_row;
874
875 /* debugging check */
876 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
877 ptr->mem_buffer == NULL)
878 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
879
880 /* Make the desired part of the virtual array accessible */
881 if (start_row < ptr->cur_start_row ||
882 end_row > ptr->cur_start_row+ptr->rows_in_mem) {
883 if (! ptr->b_s_open)
884 ERREXIT(cinfo, JERR_VIRTUAL_BUG);
885 /* Flush old buffer contents if necessary */
886 if (ptr->dirty) {
887 do_barray_io(cinfo, ptr, TRUE);
888 ptr->dirty = FALSE;
889 }
890 /* Decide what part of virtual array to access.
891 * Algorithm: if target address > current window, assume forward scan,
892 * load starting at target address. If target address < current window,
893 * assume backward scan, load so that target area is top of window.
894 * Note that when switching from forward write to forward read, will have
895 * start_row = 0, so the limiting case applies and we load from 0 anyway.
896 */
897 if (start_row > ptr->cur_start_row) {
898 ptr->cur_start_row = start_row;
899 } else {
900 /* use long arithmetic here to avoid overflow & unsigned problems */
901 long ltemp;
902
903 ltemp = (long) end_row - (long) ptr->rows_in_mem;
904 if (ltemp < 0)
905 ltemp = 0; /* don't fall off front end of file */
906 ptr->cur_start_row = (JDIMENSION) ltemp;
907 }
908 /* Read in the selected part of the array.
909 * During the initial write pass, we will do no actual read
910 * because the selected part is all undefined.
911 */
912 do_barray_io(cinfo, ptr, FALSE);
913 }
914 /* Ensure the accessed part of the array is defined; prezero if needed.
915 * To improve locality of access, we only prezero the part of the array
916 * that the caller is about to access, not the entire in-memory array.
917 */
918 if (ptr->first_undef_row < end_row) {
919 if (ptr->first_undef_row < start_row) {
920 if (writable) /* writer skipped over a section of array */
921 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
922 undef_row = start_row; /* but reader is allowed to read ahead */
923 } else {
924 undef_row = ptr->first_undef_row;
925 }
926 if (writable)
927 ptr->first_undef_row = end_row;
928 if (ptr->pre_zero) {
929 size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
930 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
931 end_row -= ptr->cur_start_row;
932 while (undef_row < end_row) {
933 jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
934 undef_row++;
935 }
936 } else {
937 if (! writable) /* reader looking at undefined data */
938 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
939 }
940 }
941 /* Flag the buffer dirty if caller will write in it */
942 if (writable)
943 ptr->dirty = TRUE;
944 /* Return address of proper part of the buffer */
945 return ptr->mem_buffer + (start_row - ptr->cur_start_row);
946 }
947
948
949 /*
950 * Release all objects belonging to a specified pool.
951 */
952
953 METHODDEF(void)
954 free_pool (j_common_ptr cinfo, int pool_id)
955 {
956 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
957 small_pool_ptr shdr_ptr;
958 large_pool_ptr lhdr_ptr;
959 size_t space_freed;
960
961 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
962 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
963
964 #ifdef MEM_STATS
965 if (cinfo->err->trace_level > 1)
966 print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
967 #endif
968
969 /* If freeing IMAGE pool, close any virtual arrays first */
970 if (pool_id == JPOOL_IMAGE) {
971 jvirt_sarray_ptr sptr;
972 jvirt_barray_ptr bptr;
973
974 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
975 if (sptr->b_s_open) { /* there may be no backing store */
976 sptr->b_s_open = FALSE; /* prevent recursive close if error */
977 (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
978 }
979 }
980 mem->virt_sarray_list = NULL;
981 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
982 if (bptr->b_s_open) { /* there may be no backing store */
983 bptr->b_s_open = FALSE; /* prevent recursive close if error */
984 (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
985 }
986 }
987 mem->virt_barray_list = NULL;
988 }
989
990 /* Release large objects */
991 lhdr_ptr = mem->large_list[pool_id];
992 mem->large_list[pool_id] = NULL;
993
994 while (lhdr_ptr != NULL) {
995 large_pool_ptr next_lhdr_ptr = lhdr_ptr->next;
996 space_freed = lhdr_ptr->bytes_used +
997 lhdr_ptr->bytes_left +
998 SIZEOF(large_pool_hdr);
999 jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
1000 mem->total_space_allocated -= space_freed;
1001 lhdr_ptr = next_lhdr_ptr;
1002 }
1003
1004 /* Release small objects */
1005 shdr_ptr = mem->small_list[pool_id];
1006 mem->small_list[pool_id] = NULL;
1007
1008 while (shdr_ptr != NULL) {
1009 small_pool_ptr next_shdr_ptr = shdr_ptr->next;
1010 space_freed = shdr_ptr->bytes_used +
1011 shdr_ptr->bytes_left +
1012 SIZEOF(small_pool_hdr);
1013 jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
1014 mem->total_space_allocated -= space_freed;
1015 shdr_ptr = next_shdr_ptr;
1016 }
1017 }
1018
1019
1020 /*
1021 * Close up shop entirely.
1022 * Note that this cannot be called unless cinfo->mem is non-NULL.
1023 */
1024
1025 METHODDEF(void)
1026 self_destruct (j_common_ptr cinfo)
1027 {
1028 int pool;
1029
1030 /* Close all backing store, release all memory.
1031 * Releasing pools in reverse order might help avoid fragmentation
1032 * with some (brain-damaged) malloc libraries.
1033 */
1034 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1035 free_pool(cinfo, pool);
1036 }
1037
1038 /* Release the memory manager control block too. */
1039 jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
1040 cinfo->mem = NULL; /* ensures I will be called only once */
1041
1042 jpeg_mem_term(cinfo); /* system-dependent cleanup */
1043 }
1044
1045
1046 /*
1047 * Memory manager initialization.
1048 * When this is called, only the error manager pointer is valid in cinfo!
1049 */
1050
1051 GLOBAL(void)
1052 jinit_memory_mgr (j_common_ptr cinfo)
1053 {
1054 my_mem_ptr mem;
1055 long max_to_use;
1056 int pool;
1057 size_t test_mac;
1058
1059 cinfo->mem = NULL; /* for safety if init fails */
1060
1061 /* Check for configuration errors.
1062 * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1063 * doesn't reflect any real hardware alignment requirement.
1064 * The test is a little tricky: for X>0, X and X-1 have no one-bits
1065 * in common if and only if X is a power of 2, ie has only one one-bit.
1066 * Some compilers may give an "unreachable code" warning here; ignore it.
1067 */
1068 if ((ALIGN_SIZE & (ALIGN_SIZE-1)) != 0)
1069 ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1070 /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1071 * a multiple of ALIGN_SIZE.
1072 * Again, an "unreachable code" warning may be ignored here.
1073 * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1074 */
1075 test_mac = (size_t) MAX_ALLOC_CHUNK;
1076 if ((long) test_mac != MAX_ALLOC_CHUNK ||
1077 (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0)
1078 ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1079
1080 max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1081
1082 /* Attempt to allocate memory manager's control block */
1083 mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
1084
1085 if (mem == NULL) {
1086 jpeg_mem_term(cinfo); /* system-dependent cleanup */
1087 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1088 }
1089
1090 /* OK, fill in the method pointers */
1091 mem->pub.alloc_small = alloc_small;
1092 mem->pub.alloc_large = alloc_large;
1093 mem->pub.alloc_sarray = alloc_sarray;
1094 mem->pub.alloc_barray = alloc_barray;
1095 mem->pub.request_virt_sarray = request_virt_sarray;
1096 mem->pub.request_virt_barray = request_virt_barray;
1097 mem->pub.realize_virt_arrays = realize_virt_arrays;
1098 mem->pub.access_virt_sarray = access_virt_sarray;
1099 mem->pub.access_virt_barray = access_virt_barray;
1100 mem->pub.free_pool = free_pool;
1101 mem->pub.self_destruct = self_destruct;
1102
1103 /* Make MAX_ALLOC_CHUNK accessible to other modules */
1104 mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1105
1106 /* Initialize working state */
1107 mem->pub.max_memory_to_use = max_to_use;
1108
1109 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1110 mem->small_list[pool] = NULL;
1111 mem->large_list[pool] = NULL;
1112 }
1113 mem->virt_sarray_list = NULL;
1114 mem->virt_barray_list = NULL;
1115
1116 mem->total_space_allocated = SIZEOF(my_memory_mgr);
1117
1118 /* Declare ourselves open for business */
1119 cinfo->mem = & mem->pub;
1120
1121 /* Check for an environment variable JPEGMEM; if found, override the
1122 * default max_memory setting from jpeg_mem_init. Note that the
1123 * surrounding application may again override this value.
1124 * If your system doesn't support getenv(), define NO_GETENV to disable
1125 * this feature.
1126 */
1127 #ifndef NO_GETENV
1128 { char * memenv;
1129
1130 if ((memenv = getenv("JPEGMEM")) != NULL) {
1131 char ch = 'x';
1132
1133 if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1134 if (ch == 'm' || ch == 'M')
1135 max_to_use *= 1000L;
1136 mem->pub.max_memory_to_use = max_to_use * 1000L;
1137 }
1138 }
1139 }
1140 #endif
1141
1142 }
OLDNEW
« no previous file with comments | « third_party/libjpeg_turbo/jinclude.h ('k') | third_party/libjpeg_turbo/jmemnobs.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698