Index: src/ia32/code-stubs-ia32.cc |
=================================================================== |
--- src/ia32/code-stubs-ia32.cc (revision 0) |
+++ src/ia32/code-stubs-ia32.cc (revision 0) |
@@ -0,0 +1,4539 @@ |
+// Copyright 2010 the V8 project authors. All rights reserved. |
+// Redistribution and use in source and binary forms, with or without |
+// modification, are permitted provided that the following conditions are |
+// met: |
+// |
+// * Redistributions of source code must retain the above copyright |
+// notice, this list of conditions and the following disclaimer. |
+// * Redistributions in binary form must reproduce the above |
+// copyright notice, this list of conditions and the following |
+// disclaimer in the documentation and/or other materials provided |
+// with the distribution. |
+// * Neither the name of Google Inc. nor the names of its |
+// contributors may be used to endorse or promote products derived |
+// from this software without specific prior written permission. |
+// |
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+ |
+#include "v8.h" |
+ |
+#if defined(V8_TARGET_ARCH_IA32) |
+ |
+#include "bootstrapper.h" |
+#include "code-stubs-ia32.h" |
+#include "codegen-inl.h" |
+#include "regexp-macro-assembler.h" |
+ |
+namespace v8 { |
+namespace internal { |
+ |
+#define __ ACCESS_MASM(masm) |
+void FastNewClosureStub::Generate(MacroAssembler* masm) { |
+ // Create a new closure from the given function info in new |
+ // space. Set the context to the current context in esi. |
+ Label gc; |
+ __ AllocateInNewSpace(JSFunction::kSize, eax, ebx, ecx, &gc, TAG_OBJECT); |
+ |
+ // Get the function info from the stack. |
+ __ mov(edx, Operand(esp, 1 * kPointerSize)); |
+ |
+ // Compute the function map in the current global context and set that |
+ // as the map of the allocated object. |
+ __ mov(ecx, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
+ __ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalContextOffset)); |
+ __ mov(ecx, Operand(ecx, Context::SlotOffset(Context::FUNCTION_MAP_INDEX))); |
+ __ mov(FieldOperand(eax, JSObject::kMapOffset), ecx); |
+ |
+ // Initialize the rest of the function. We don't have to update the |
+ // write barrier because the allocated object is in new space. |
+ __ mov(ebx, Immediate(Factory::empty_fixed_array())); |
+ __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ebx); |
+ __ mov(FieldOperand(eax, JSObject::kElementsOffset), ebx); |
+ __ mov(FieldOperand(eax, JSFunction::kPrototypeOrInitialMapOffset), |
+ Immediate(Factory::the_hole_value())); |
+ __ mov(FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset), edx); |
+ __ mov(FieldOperand(eax, JSFunction::kContextOffset), esi); |
+ __ mov(FieldOperand(eax, JSFunction::kLiteralsOffset), ebx); |
+ |
+ // Initialize the code pointer in the function to be the one |
+ // found in the shared function info object. |
+ __ mov(edx, FieldOperand(edx, SharedFunctionInfo::kCodeOffset)); |
+ __ lea(edx, FieldOperand(edx, Code::kHeaderSize)); |
+ __ mov(FieldOperand(eax, JSFunction::kCodeEntryOffset), edx); |
+ |
+ // Return and remove the on-stack parameter. |
+ __ ret(1 * kPointerSize); |
+ |
+ // Create a new closure through the slower runtime call. |
+ __ bind(&gc); |
+ __ pop(ecx); // Temporarily remove return address. |
+ __ pop(edx); |
+ __ push(esi); |
+ __ push(edx); |
+ __ push(ecx); // Restore return address. |
+ __ TailCallRuntime(Runtime::kNewClosure, 2, 1); |
+} |
+ |
+ |
+void FastNewContextStub::Generate(MacroAssembler* masm) { |
+ // Try to allocate the context in new space. |
+ Label gc; |
+ int length = slots_ + Context::MIN_CONTEXT_SLOTS; |
+ __ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize, |
+ eax, ebx, ecx, &gc, TAG_OBJECT); |
+ |
+ // Get the function from the stack. |
+ __ mov(ecx, Operand(esp, 1 * kPointerSize)); |
+ |
+ // Setup the object header. |
+ __ mov(FieldOperand(eax, HeapObject::kMapOffset), Factory::context_map()); |
+ __ mov(FieldOperand(eax, Context::kLengthOffset), |
+ Immediate(Smi::FromInt(length))); |
+ |
+ // Setup the fixed slots. |
+ __ xor_(ebx, Operand(ebx)); // Set to NULL. |
+ __ mov(Operand(eax, Context::SlotOffset(Context::CLOSURE_INDEX)), ecx); |
+ __ mov(Operand(eax, Context::SlotOffset(Context::FCONTEXT_INDEX)), eax); |
+ __ mov(Operand(eax, Context::SlotOffset(Context::PREVIOUS_INDEX)), ebx); |
+ __ mov(Operand(eax, Context::SlotOffset(Context::EXTENSION_INDEX)), ebx); |
+ |
+ // Copy the global object from the surrounding context. We go through the |
+ // context in the function (ecx) to match the allocation behavior we have |
+ // in the runtime system (see Heap::AllocateFunctionContext). |
+ __ mov(ebx, FieldOperand(ecx, JSFunction::kContextOffset)); |
+ __ mov(ebx, Operand(ebx, Context::SlotOffset(Context::GLOBAL_INDEX))); |
+ __ mov(Operand(eax, Context::SlotOffset(Context::GLOBAL_INDEX)), ebx); |
+ |
+ // Initialize the rest of the slots to undefined. |
+ __ mov(ebx, Factory::undefined_value()); |
+ for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) { |
+ __ mov(Operand(eax, Context::SlotOffset(i)), ebx); |
+ } |
+ |
+ // Return and remove the on-stack parameter. |
+ __ mov(esi, Operand(eax)); |
+ __ ret(1 * kPointerSize); |
+ |
+ // Need to collect. Call into runtime system. |
+ __ bind(&gc); |
+ __ TailCallRuntime(Runtime::kNewContext, 1, 1); |
+} |
+ |
+ |
+void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { |
+ // Stack layout on entry: |
+ // |
+ // [esp + kPointerSize]: constant elements. |
+ // [esp + (2 * kPointerSize)]: literal index. |
+ // [esp + (3 * kPointerSize)]: literals array. |
+ |
+ // All sizes here are multiples of kPointerSize. |
+ int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0; |
+ int size = JSArray::kSize + elements_size; |
+ |
+ // Load boilerplate object into ecx and check if we need to create a |
+ // boilerplate. |
+ Label slow_case; |
+ __ mov(ecx, Operand(esp, 3 * kPointerSize)); |
+ __ mov(eax, Operand(esp, 2 * kPointerSize)); |
+ STATIC_ASSERT(kPointerSize == 4); |
+ STATIC_ASSERT(kSmiTagSize == 1); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ mov(ecx, CodeGenerator::FixedArrayElementOperand(ecx, eax)); |
+ __ cmp(ecx, Factory::undefined_value()); |
+ __ j(equal, &slow_case); |
+ |
+ if (FLAG_debug_code) { |
+ const char* message; |
+ Handle<Map> expected_map; |
+ if (mode_ == CLONE_ELEMENTS) { |
+ message = "Expected (writable) fixed array"; |
+ expected_map = Factory::fixed_array_map(); |
+ } else { |
+ ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS); |
+ message = "Expected copy-on-write fixed array"; |
+ expected_map = Factory::fixed_cow_array_map(); |
+ } |
+ __ push(ecx); |
+ __ mov(ecx, FieldOperand(ecx, JSArray::kElementsOffset)); |
+ __ cmp(FieldOperand(ecx, HeapObject::kMapOffset), expected_map); |
+ __ Assert(equal, message); |
+ __ pop(ecx); |
+ } |
+ |
+ // Allocate both the JS array and the elements array in one big |
+ // allocation. This avoids multiple limit checks. |
+ __ AllocateInNewSpace(size, eax, ebx, edx, &slow_case, TAG_OBJECT); |
+ |
+ // Copy the JS array part. |
+ for (int i = 0; i < JSArray::kSize; i += kPointerSize) { |
+ if ((i != JSArray::kElementsOffset) || (length_ == 0)) { |
+ __ mov(ebx, FieldOperand(ecx, i)); |
+ __ mov(FieldOperand(eax, i), ebx); |
+ } |
+ } |
+ |
+ if (length_ > 0) { |
+ // Get hold of the elements array of the boilerplate and setup the |
+ // elements pointer in the resulting object. |
+ __ mov(ecx, FieldOperand(ecx, JSArray::kElementsOffset)); |
+ __ lea(edx, Operand(eax, JSArray::kSize)); |
+ __ mov(FieldOperand(eax, JSArray::kElementsOffset), edx); |
+ |
+ // Copy the elements array. |
+ for (int i = 0; i < elements_size; i += kPointerSize) { |
+ __ mov(ebx, FieldOperand(ecx, i)); |
+ __ mov(FieldOperand(edx, i), ebx); |
+ } |
+ } |
+ |
+ // Return and remove the on-stack parameters. |
+ __ ret(3 * kPointerSize); |
+ |
+ __ bind(&slow_case); |
+ __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1); |
+} |
+ |
+ |
+// NOTE: The stub does not handle the inlined cases (Smis, Booleans, undefined). |
+void ToBooleanStub::Generate(MacroAssembler* masm) { |
+ Label false_result, true_result, not_string; |
+ __ mov(eax, Operand(esp, 1 * kPointerSize)); |
+ |
+ // 'null' => false. |
+ __ cmp(eax, Factory::null_value()); |
+ __ j(equal, &false_result); |
+ |
+ // Get the map and type of the heap object. |
+ __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); |
+ __ movzx_b(ecx, FieldOperand(edx, Map::kInstanceTypeOffset)); |
+ |
+ // Undetectable => false. |
+ __ test_b(FieldOperand(edx, Map::kBitFieldOffset), |
+ 1 << Map::kIsUndetectable); |
+ __ j(not_zero, &false_result); |
+ |
+ // JavaScript object => true. |
+ __ CmpInstanceType(edx, FIRST_JS_OBJECT_TYPE); |
+ __ j(above_equal, &true_result); |
+ |
+ // String value => false iff empty. |
+ __ CmpInstanceType(edx, FIRST_NONSTRING_TYPE); |
+ __ j(above_equal, ¬_string); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ cmp(FieldOperand(eax, String::kLengthOffset), Immediate(0)); |
+ __ j(zero, &false_result); |
+ __ jmp(&true_result); |
+ |
+ __ bind(¬_string); |
+ // HeapNumber => false iff +0, -0, or NaN. |
+ __ cmp(edx, Factory::heap_number_map()); |
+ __ j(not_equal, &true_result); |
+ __ fldz(); |
+ __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
+ __ FCmp(); |
+ __ j(zero, &false_result); |
+ // Fall through to |true_result|. |
+ |
+ // Return 1/0 for true/false in eax. |
+ __ bind(&true_result); |
+ __ mov(eax, 1); |
+ __ ret(1 * kPointerSize); |
+ __ bind(&false_result); |
+ __ mov(eax, 0); |
+ __ ret(1 * kPointerSize); |
+} |
+ |
+ |
+const char* GenericBinaryOpStub::GetName() { |
+ if (name_ != NULL) return name_; |
+ const int kMaxNameLength = 100; |
+ name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength); |
+ if (name_ == NULL) return "OOM"; |
+ const char* op_name = Token::Name(op_); |
+ const char* overwrite_name; |
+ switch (mode_) { |
+ case NO_OVERWRITE: overwrite_name = "Alloc"; break; |
+ case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; |
+ case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; |
+ default: overwrite_name = "UnknownOverwrite"; break; |
+ } |
+ |
+ OS::SNPrintF(Vector<char>(name_, kMaxNameLength), |
+ "GenericBinaryOpStub_%s_%s%s_%s%s_%s_%s", |
+ op_name, |
+ overwrite_name, |
+ (flags_ & NO_SMI_CODE_IN_STUB) ? "_NoSmiInStub" : "", |
+ args_in_registers_ ? "RegArgs" : "StackArgs", |
+ args_reversed_ ? "_R" : "", |
+ static_operands_type_.ToString(), |
+ BinaryOpIC::GetName(runtime_operands_type_)); |
+ return name_; |
+} |
+ |
+ |
+void GenericBinaryOpStub::GenerateCall( |
+ MacroAssembler* masm, |
+ Register left, |
+ Register right) { |
+ if (!ArgsInRegistersSupported()) { |
+ // Pass arguments on the stack. |
+ __ push(left); |
+ __ push(right); |
+ } else { |
+ // The calling convention with registers is left in edx and right in eax. |
+ Register left_arg = edx; |
+ Register right_arg = eax; |
+ if (!(left.is(left_arg) && right.is(right_arg))) { |
+ if (left.is(right_arg) && right.is(left_arg)) { |
+ if (IsOperationCommutative()) { |
+ SetArgsReversed(); |
+ } else { |
+ __ xchg(left, right); |
+ } |
+ } else if (left.is(left_arg)) { |
+ __ mov(right_arg, right); |
+ } else if (right.is(right_arg)) { |
+ __ mov(left_arg, left); |
+ } else if (left.is(right_arg)) { |
+ if (IsOperationCommutative()) { |
+ __ mov(left_arg, right); |
+ SetArgsReversed(); |
+ } else { |
+ // Order of moves important to avoid destroying left argument. |
+ __ mov(left_arg, left); |
+ __ mov(right_arg, right); |
+ } |
+ } else if (right.is(left_arg)) { |
+ if (IsOperationCommutative()) { |
+ __ mov(right_arg, left); |
+ SetArgsReversed(); |
+ } else { |
+ // Order of moves important to avoid destroying right argument. |
+ __ mov(right_arg, right); |
+ __ mov(left_arg, left); |
+ } |
+ } else { |
+ // Order of moves is not important. |
+ __ mov(left_arg, left); |
+ __ mov(right_arg, right); |
+ } |
+ } |
+ |
+ // Update flags to indicate that arguments are in registers. |
+ SetArgsInRegisters(); |
+ __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
+ } |
+ |
+ // Call the stub. |
+ __ CallStub(this); |
+} |
+ |
+ |
+void GenericBinaryOpStub::GenerateCall( |
+ MacroAssembler* masm, |
+ Register left, |
+ Smi* right) { |
+ if (!ArgsInRegistersSupported()) { |
+ // Pass arguments on the stack. |
+ __ push(left); |
+ __ push(Immediate(right)); |
+ } else { |
+ // The calling convention with registers is left in edx and right in eax. |
+ Register left_arg = edx; |
+ Register right_arg = eax; |
+ if (left.is(left_arg)) { |
+ __ mov(right_arg, Immediate(right)); |
+ } else if (left.is(right_arg) && IsOperationCommutative()) { |
+ __ mov(left_arg, Immediate(right)); |
+ SetArgsReversed(); |
+ } else { |
+ // For non-commutative operations, left and right_arg might be |
+ // the same register. Therefore, the order of the moves is |
+ // important here in order to not overwrite left before moving |
+ // it to left_arg. |
+ __ mov(left_arg, left); |
+ __ mov(right_arg, Immediate(right)); |
+ } |
+ |
+ // Update flags to indicate that arguments are in registers. |
+ SetArgsInRegisters(); |
+ __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
+ } |
+ |
+ // Call the stub. |
+ __ CallStub(this); |
+} |
+ |
+ |
+void GenericBinaryOpStub::GenerateCall( |
+ MacroAssembler* masm, |
+ Smi* left, |
+ Register right) { |
+ if (!ArgsInRegistersSupported()) { |
+ // Pass arguments on the stack. |
+ __ push(Immediate(left)); |
+ __ push(right); |
+ } else { |
+ // The calling convention with registers is left in edx and right in eax. |
+ Register left_arg = edx; |
+ Register right_arg = eax; |
+ if (right.is(right_arg)) { |
+ __ mov(left_arg, Immediate(left)); |
+ } else if (right.is(left_arg) && IsOperationCommutative()) { |
+ __ mov(right_arg, Immediate(left)); |
+ SetArgsReversed(); |
+ } else { |
+ // For non-commutative operations, right and left_arg might be |
+ // the same register. Therefore, the order of the moves is |
+ // important here in order to not overwrite right before moving |
+ // it to right_arg. |
+ __ mov(right_arg, right); |
+ __ mov(left_arg, Immediate(left)); |
+ } |
+ // Update flags to indicate that arguments are in registers. |
+ SetArgsInRegisters(); |
+ __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
+ } |
+ |
+ // Call the stub. |
+ __ CallStub(this); |
+} |
+ |
+ |
+class FloatingPointHelper : public AllStatic { |
+ public: |
+ |
+ enum ArgLocation { |
+ ARGS_ON_STACK, |
+ ARGS_IN_REGISTERS |
+ }; |
+ |
+ // Code pattern for loading a floating point value. Input value must |
+ // be either a smi or a heap number object (fp value). Requirements: |
+ // operand in register number. Returns operand as floating point number |
+ // on FPU stack. |
+ static void LoadFloatOperand(MacroAssembler* masm, Register number); |
+ |
+ // Code pattern for loading floating point values. Input values must |
+ // be either smi or heap number objects (fp values). Requirements: |
+ // operand_1 on TOS+1 or in edx, operand_2 on TOS+2 or in eax. |
+ // Returns operands as floating point numbers on FPU stack. |
+ static void LoadFloatOperands(MacroAssembler* masm, |
+ Register scratch, |
+ ArgLocation arg_location = ARGS_ON_STACK); |
+ |
+ // Similar to LoadFloatOperand but assumes that both operands are smis. |
+ // Expects operands in edx, eax. |
+ static void LoadFloatSmis(MacroAssembler* masm, Register scratch); |
+ |
+ // Test if operands are smi or number objects (fp). Requirements: |
+ // operand_1 in eax, operand_2 in edx; falls through on float |
+ // operands, jumps to the non_float label otherwise. |
+ static void CheckFloatOperands(MacroAssembler* masm, |
+ Label* non_float, |
+ Register scratch); |
+ |
+ // Takes the operands in edx and eax and loads them as integers in eax |
+ // and ecx. |
+ static void LoadAsIntegers(MacroAssembler* masm, |
+ TypeInfo type_info, |
+ bool use_sse3, |
+ Label* operand_conversion_failure); |
+ static void LoadNumbersAsIntegers(MacroAssembler* masm, |
+ TypeInfo type_info, |
+ bool use_sse3, |
+ Label* operand_conversion_failure); |
+ static void LoadUnknownsAsIntegers(MacroAssembler* masm, |
+ bool use_sse3, |
+ Label* operand_conversion_failure); |
+ |
+ // Test if operands are smis or heap numbers and load them |
+ // into xmm0 and xmm1 if they are. Operands are in edx and eax. |
+ // Leaves operands unchanged. |
+ static void LoadSSE2Operands(MacroAssembler* masm); |
+ |
+ // Test if operands are numbers (smi or HeapNumber objects), and load |
+ // them into xmm0 and xmm1 if they are. Jump to label not_numbers if |
+ // either operand is not a number. Operands are in edx and eax. |
+ // Leaves operands unchanged. |
+ static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers); |
+ |
+ // Similar to LoadSSE2Operands but assumes that both operands are smis. |
+ // Expects operands in edx, eax. |
+ static void LoadSSE2Smis(MacroAssembler* masm, Register scratch); |
+}; |
+ |
+ |
+void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) { |
+ // 1. Move arguments into edx, eax except for DIV and MOD, which need the |
+ // dividend in eax and edx free for the division. Use eax, ebx for those. |
+ Comment load_comment(masm, "-- Load arguments"); |
+ Register left = edx; |
+ Register right = eax; |
+ if (op_ == Token::DIV || op_ == Token::MOD) { |
+ left = eax; |
+ right = ebx; |
+ if (HasArgsInRegisters()) { |
+ __ mov(ebx, eax); |
+ __ mov(eax, edx); |
+ } |
+ } |
+ if (!HasArgsInRegisters()) { |
+ __ mov(right, Operand(esp, 1 * kPointerSize)); |
+ __ mov(left, Operand(esp, 2 * kPointerSize)); |
+ } |
+ |
+ if (static_operands_type_.IsSmi()) { |
+ if (FLAG_debug_code) { |
+ __ AbortIfNotSmi(left); |
+ __ AbortIfNotSmi(right); |
+ } |
+ if (op_ == Token::BIT_OR) { |
+ __ or_(right, Operand(left)); |
+ GenerateReturn(masm); |
+ return; |
+ } else if (op_ == Token::BIT_AND) { |
+ __ and_(right, Operand(left)); |
+ GenerateReturn(masm); |
+ return; |
+ } else if (op_ == Token::BIT_XOR) { |
+ __ xor_(right, Operand(left)); |
+ GenerateReturn(masm); |
+ return; |
+ } |
+ } |
+ |
+ // 2. Prepare the smi check of both operands by oring them together. |
+ Comment smi_check_comment(masm, "-- Smi check arguments"); |
+ Label not_smis; |
+ Register combined = ecx; |
+ ASSERT(!left.is(combined) && !right.is(combined)); |
+ switch (op_) { |
+ case Token::BIT_OR: |
+ // Perform the operation into eax and smi check the result. Preserve |
+ // eax in case the result is not a smi. |
+ ASSERT(!left.is(ecx) && !right.is(ecx)); |
+ __ mov(ecx, right); |
+ __ or_(right, Operand(left)); // Bitwise or is commutative. |
+ combined = right; |
+ break; |
+ |
+ case Token::BIT_XOR: |
+ case Token::BIT_AND: |
+ case Token::ADD: |
+ case Token::SUB: |
+ case Token::MUL: |
+ case Token::DIV: |
+ case Token::MOD: |
+ __ mov(combined, right); |
+ __ or_(combined, Operand(left)); |
+ break; |
+ |
+ case Token::SHL: |
+ case Token::SAR: |
+ case Token::SHR: |
+ // Move the right operand into ecx for the shift operation, use eax |
+ // for the smi check register. |
+ ASSERT(!left.is(ecx) && !right.is(ecx)); |
+ __ mov(ecx, right); |
+ __ or_(right, Operand(left)); |
+ combined = right; |
+ break; |
+ |
+ default: |
+ break; |
+ } |
+ |
+ // 3. Perform the smi check of the operands. |
+ STATIC_ASSERT(kSmiTag == 0); // Adjust zero check if not the case. |
+ __ test(combined, Immediate(kSmiTagMask)); |
+ __ j(not_zero, ¬_smis, not_taken); |
+ |
+ // 4. Operands are both smis, perform the operation leaving the result in |
+ // eax and check the result if necessary. |
+ Comment perform_smi(masm, "-- Perform smi operation"); |
+ Label use_fp_on_smis; |
+ switch (op_) { |
+ case Token::BIT_OR: |
+ // Nothing to do. |
+ break; |
+ |
+ case Token::BIT_XOR: |
+ ASSERT(right.is(eax)); |
+ __ xor_(right, Operand(left)); // Bitwise xor is commutative. |
+ break; |
+ |
+ case Token::BIT_AND: |
+ ASSERT(right.is(eax)); |
+ __ and_(right, Operand(left)); // Bitwise and is commutative. |
+ break; |
+ |
+ case Token::SHL: |
+ // Remove tags from operands (but keep sign). |
+ __ SmiUntag(left); |
+ __ SmiUntag(ecx); |
+ // Perform the operation. |
+ __ shl_cl(left); |
+ // Check that the *signed* result fits in a smi. |
+ __ cmp(left, 0xc0000000); |
+ __ j(sign, &use_fp_on_smis, not_taken); |
+ // Tag the result and store it in register eax. |
+ __ SmiTag(left); |
+ __ mov(eax, left); |
+ break; |
+ |
+ case Token::SAR: |
+ // Remove tags from operands (but keep sign). |
+ __ SmiUntag(left); |
+ __ SmiUntag(ecx); |
+ // Perform the operation. |
+ __ sar_cl(left); |
+ // Tag the result and store it in register eax. |
+ __ SmiTag(left); |
+ __ mov(eax, left); |
+ break; |
+ |
+ case Token::SHR: |
+ // Remove tags from operands (but keep sign). |
+ __ SmiUntag(left); |
+ __ SmiUntag(ecx); |
+ // Perform the operation. |
+ __ shr_cl(left); |
+ // Check that the *unsigned* result fits in a smi. |
+ // Neither of the two high-order bits can be set: |
+ // - 0x80000000: high bit would be lost when smi tagging. |
+ // - 0x40000000: this number would convert to negative when |
+ // Smi tagging these two cases can only happen with shifts |
+ // by 0 or 1 when handed a valid smi. |
+ __ test(left, Immediate(0xc0000000)); |
+ __ j(not_zero, slow, not_taken); |
+ // Tag the result and store it in register eax. |
+ __ SmiTag(left); |
+ __ mov(eax, left); |
+ break; |
+ |
+ case Token::ADD: |
+ ASSERT(right.is(eax)); |
+ __ add(right, Operand(left)); // Addition is commutative. |
+ __ j(overflow, &use_fp_on_smis, not_taken); |
+ break; |
+ |
+ case Token::SUB: |
+ __ sub(left, Operand(right)); |
+ __ j(overflow, &use_fp_on_smis, not_taken); |
+ __ mov(eax, left); |
+ break; |
+ |
+ case Token::MUL: |
+ // If the smi tag is 0 we can just leave the tag on one operand. |
+ STATIC_ASSERT(kSmiTag == 0); // Adjust code below if not the case. |
+ // We can't revert the multiplication if the result is not a smi |
+ // so save the right operand. |
+ __ mov(ebx, right); |
+ // Remove tag from one of the operands (but keep sign). |
+ __ SmiUntag(right); |
+ // Do multiplication. |
+ __ imul(right, Operand(left)); // Multiplication is commutative. |
+ __ j(overflow, &use_fp_on_smis, not_taken); |
+ // Check for negative zero result. Use combined = left | right. |
+ __ NegativeZeroTest(right, combined, &use_fp_on_smis); |
+ break; |
+ |
+ case Token::DIV: |
+ // We can't revert the division if the result is not a smi so |
+ // save the left operand. |
+ __ mov(edi, left); |
+ // Check for 0 divisor. |
+ __ test(right, Operand(right)); |
+ __ j(zero, &use_fp_on_smis, not_taken); |
+ // Sign extend left into edx:eax. |
+ ASSERT(left.is(eax)); |
+ __ cdq(); |
+ // Divide edx:eax by right. |
+ __ idiv(right); |
+ // Check for the corner case of dividing the most negative smi by |
+ // -1. We cannot use the overflow flag, since it is not set by idiv |
+ // instruction. |
+ STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); |
+ __ cmp(eax, 0x40000000); |
+ __ j(equal, &use_fp_on_smis); |
+ // Check for negative zero result. Use combined = left | right. |
+ __ NegativeZeroTest(eax, combined, &use_fp_on_smis); |
+ // Check that the remainder is zero. |
+ __ test(edx, Operand(edx)); |
+ __ j(not_zero, &use_fp_on_smis); |
+ // Tag the result and store it in register eax. |
+ __ SmiTag(eax); |
+ break; |
+ |
+ case Token::MOD: |
+ // Check for 0 divisor. |
+ __ test(right, Operand(right)); |
+ __ j(zero, ¬_smis, not_taken); |
+ |
+ // Sign extend left into edx:eax. |
+ ASSERT(left.is(eax)); |
+ __ cdq(); |
+ // Divide edx:eax by right. |
+ __ idiv(right); |
+ // Check for negative zero result. Use combined = left | right. |
+ __ NegativeZeroTest(edx, combined, slow); |
+ // Move remainder to register eax. |
+ __ mov(eax, edx); |
+ break; |
+ |
+ default: |
+ UNREACHABLE(); |
+ } |
+ |
+ // 5. Emit return of result in eax. |
+ GenerateReturn(masm); |
+ |
+ // 6. For some operations emit inline code to perform floating point |
+ // operations on known smis (e.g., if the result of the operation |
+ // overflowed the smi range). |
+ switch (op_) { |
+ case Token::SHL: { |
+ Comment perform_float(masm, "-- Perform float operation on smis"); |
+ __ bind(&use_fp_on_smis); |
+ // Result we want is in left == edx, so we can put the allocated heap |
+ // number in eax. |
+ __ AllocateHeapNumber(eax, ecx, ebx, slow); |
+ // Store the result in the HeapNumber and return. |
+ if (CpuFeatures::IsSupported(SSE2)) { |
+ CpuFeatures::Scope use_sse2(SSE2); |
+ __ cvtsi2sd(xmm0, Operand(left)); |
+ __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
+ } else { |
+ // It's OK to overwrite the right argument on the stack because we |
+ // are about to return. |
+ __ mov(Operand(esp, 1 * kPointerSize), left); |
+ __ fild_s(Operand(esp, 1 * kPointerSize)); |
+ __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
+ } |
+ GenerateReturn(masm); |
+ break; |
+ } |
+ |
+ case Token::ADD: |
+ case Token::SUB: |
+ case Token::MUL: |
+ case Token::DIV: { |
+ Comment perform_float(masm, "-- Perform float operation on smis"); |
+ __ bind(&use_fp_on_smis); |
+ // Restore arguments to edx, eax. |
+ switch (op_) { |
+ case Token::ADD: |
+ // Revert right = right + left. |
+ __ sub(right, Operand(left)); |
+ break; |
+ case Token::SUB: |
+ // Revert left = left - right. |
+ __ add(left, Operand(right)); |
+ break; |
+ case Token::MUL: |
+ // Right was clobbered but a copy is in ebx. |
+ __ mov(right, ebx); |
+ break; |
+ case Token::DIV: |
+ // Left was clobbered but a copy is in edi. Right is in ebx for |
+ // division. |
+ __ mov(edx, edi); |
+ __ mov(eax, right); |
+ break; |
+ default: UNREACHABLE(); |
+ break; |
+ } |
+ __ AllocateHeapNumber(ecx, ebx, no_reg, slow); |
+ if (CpuFeatures::IsSupported(SSE2)) { |
+ CpuFeatures::Scope use_sse2(SSE2); |
+ FloatingPointHelper::LoadSSE2Smis(masm, ebx); |
+ switch (op_) { |
+ case Token::ADD: __ addsd(xmm0, xmm1); break; |
+ case Token::SUB: __ subsd(xmm0, xmm1); break; |
+ case Token::MUL: __ mulsd(xmm0, xmm1); break; |
+ case Token::DIV: __ divsd(xmm0, xmm1); break; |
+ default: UNREACHABLE(); |
+ } |
+ __ movdbl(FieldOperand(ecx, HeapNumber::kValueOffset), xmm0); |
+ } else { // SSE2 not available, use FPU. |
+ FloatingPointHelper::LoadFloatSmis(masm, ebx); |
+ switch (op_) { |
+ case Token::ADD: __ faddp(1); break; |
+ case Token::SUB: __ fsubp(1); break; |
+ case Token::MUL: __ fmulp(1); break; |
+ case Token::DIV: __ fdivp(1); break; |
+ default: UNREACHABLE(); |
+ } |
+ __ fstp_d(FieldOperand(ecx, HeapNumber::kValueOffset)); |
+ } |
+ __ mov(eax, ecx); |
+ GenerateReturn(masm); |
+ break; |
+ } |
+ |
+ default: |
+ break; |
+ } |
+ |
+ // 7. Non-smi operands, fall out to the non-smi code with the operands in |
+ // edx and eax. |
+ Comment done_comment(masm, "-- Enter non-smi code"); |
+ __ bind(¬_smis); |
+ switch (op_) { |
+ case Token::BIT_OR: |
+ case Token::SHL: |
+ case Token::SAR: |
+ case Token::SHR: |
+ // Right operand is saved in ecx and eax was destroyed by the smi |
+ // check. |
+ __ mov(eax, ecx); |
+ break; |
+ |
+ case Token::DIV: |
+ case Token::MOD: |
+ // Operands are in eax, ebx at this point. |
+ __ mov(edx, eax); |
+ __ mov(eax, ebx); |
+ break; |
+ |
+ default: |
+ break; |
+ } |
+} |
+ |
+ |
+void GenericBinaryOpStub::Generate(MacroAssembler* masm) { |
+ Label call_runtime; |
+ |
+ __ IncrementCounter(&Counters::generic_binary_stub_calls, 1); |
+ |
+ // Generate fast case smi code if requested. This flag is set when the fast |
+ // case smi code is not generated by the caller. Generating it here will speed |
+ // up common operations. |
+ if (ShouldGenerateSmiCode()) { |
+ GenerateSmiCode(masm, &call_runtime); |
+ } else if (op_ != Token::MOD) { // MOD goes straight to runtime. |
+ if (!HasArgsInRegisters()) { |
+ GenerateLoadArguments(masm); |
+ } |
+ } |
+ |
+ // Floating point case. |
+ if (ShouldGenerateFPCode()) { |
+ switch (op_) { |
+ case Token::ADD: |
+ case Token::SUB: |
+ case Token::MUL: |
+ case Token::DIV: { |
+ if (runtime_operands_type_ == BinaryOpIC::DEFAULT && |
+ HasSmiCodeInStub()) { |
+ // Execution reaches this point when the first non-smi argument occurs |
+ // (and only if smi code is generated). This is the right moment to |
+ // patch to HEAP_NUMBERS state. The transition is attempted only for |
+ // the four basic operations. The stub stays in the DEFAULT state |
+ // forever for all other operations (also if smi code is skipped). |
+ GenerateTypeTransition(masm); |
+ break; |
+ } |
+ |
+ Label not_floats; |
+ if (CpuFeatures::IsSupported(SSE2)) { |
+ CpuFeatures::Scope use_sse2(SSE2); |
+ if (static_operands_type_.IsNumber()) { |
+ if (FLAG_debug_code) { |
+ // Assert at runtime that inputs are only numbers. |
+ __ AbortIfNotNumber(edx); |
+ __ AbortIfNotNumber(eax); |
+ } |
+ if (static_operands_type_.IsSmi()) { |
+ if (FLAG_debug_code) { |
+ __ AbortIfNotSmi(edx); |
+ __ AbortIfNotSmi(eax); |
+ } |
+ FloatingPointHelper::LoadSSE2Smis(masm, ecx); |
+ } else { |
+ FloatingPointHelper::LoadSSE2Operands(masm); |
+ } |
+ } else { |
+ FloatingPointHelper::LoadSSE2Operands(masm, &call_runtime); |
+ } |
+ |
+ switch (op_) { |
+ case Token::ADD: __ addsd(xmm0, xmm1); break; |
+ case Token::SUB: __ subsd(xmm0, xmm1); break; |
+ case Token::MUL: __ mulsd(xmm0, xmm1); break; |
+ case Token::DIV: __ divsd(xmm0, xmm1); break; |
+ default: UNREACHABLE(); |
+ } |
+ GenerateHeapResultAllocation(masm, &call_runtime); |
+ __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
+ GenerateReturn(masm); |
+ } else { // SSE2 not available, use FPU. |
+ if (static_operands_type_.IsNumber()) { |
+ if (FLAG_debug_code) { |
+ // Assert at runtime that inputs are only numbers. |
+ __ AbortIfNotNumber(edx); |
+ __ AbortIfNotNumber(eax); |
+ } |
+ } else { |
+ FloatingPointHelper::CheckFloatOperands(masm, &call_runtime, ebx); |
+ } |
+ FloatingPointHelper::LoadFloatOperands( |
+ masm, |
+ ecx, |
+ FloatingPointHelper::ARGS_IN_REGISTERS); |
+ switch (op_) { |
+ case Token::ADD: __ faddp(1); break; |
+ case Token::SUB: __ fsubp(1); break; |
+ case Token::MUL: __ fmulp(1); break; |
+ case Token::DIV: __ fdivp(1); break; |
+ default: UNREACHABLE(); |
+ } |
+ Label after_alloc_failure; |
+ GenerateHeapResultAllocation(masm, &after_alloc_failure); |
+ __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
+ GenerateReturn(masm); |
+ __ bind(&after_alloc_failure); |
+ __ ffree(); |
+ __ jmp(&call_runtime); |
+ } |
+ __ bind(¬_floats); |
+ if (runtime_operands_type_ == BinaryOpIC::DEFAULT && |
+ !HasSmiCodeInStub()) { |
+ // Execution reaches this point when the first non-number argument |
+ // occurs (and only if smi code is skipped from the stub, otherwise |
+ // the patching has already been done earlier in this case branch). |
+ // Try patching to STRINGS for ADD operation. |
+ if (op_ == Token::ADD) { |
+ GenerateTypeTransition(masm); |
+ } |
+ } |
+ break; |
+ } |
+ case Token::MOD: { |
+ // For MOD we go directly to runtime in the non-smi case. |
+ break; |
+ } |
+ case Token::BIT_OR: |
+ case Token::BIT_AND: |
+ case Token::BIT_XOR: |
+ case Token::SAR: |
+ case Token::SHL: |
+ case Token::SHR: { |
+ Label non_smi_result; |
+ FloatingPointHelper::LoadAsIntegers(masm, |
+ static_operands_type_, |
+ use_sse3_, |
+ &call_runtime); |
+ switch (op_) { |
+ case Token::BIT_OR: __ or_(eax, Operand(ecx)); break; |
+ case Token::BIT_AND: __ and_(eax, Operand(ecx)); break; |
+ case Token::BIT_XOR: __ xor_(eax, Operand(ecx)); break; |
+ case Token::SAR: __ sar_cl(eax); break; |
+ case Token::SHL: __ shl_cl(eax); break; |
+ case Token::SHR: __ shr_cl(eax); break; |
+ default: UNREACHABLE(); |
+ } |
+ if (op_ == Token::SHR) { |
+ // Check if result is non-negative and fits in a smi. |
+ __ test(eax, Immediate(0xc0000000)); |
+ __ j(not_zero, &call_runtime); |
+ } else { |
+ // Check if result fits in a smi. |
+ __ cmp(eax, 0xc0000000); |
+ __ j(negative, &non_smi_result); |
+ } |
+ // Tag smi result and return. |
+ __ SmiTag(eax); |
+ GenerateReturn(masm); |
+ |
+ // All ops except SHR return a signed int32 that we load in |
+ // a HeapNumber. |
+ if (op_ != Token::SHR) { |
+ __ bind(&non_smi_result); |
+ // Allocate a heap number if needed. |
+ __ mov(ebx, Operand(eax)); // ebx: result |
+ Label skip_allocation; |
+ switch (mode_) { |
+ case OVERWRITE_LEFT: |
+ case OVERWRITE_RIGHT: |
+ // If the operand was an object, we skip the |
+ // allocation of a heap number. |
+ __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ? |
+ 1 * kPointerSize : 2 * kPointerSize)); |
+ __ test(eax, Immediate(kSmiTagMask)); |
+ __ j(not_zero, &skip_allocation, not_taken); |
+ // Fall through! |
+ case NO_OVERWRITE: |
+ __ AllocateHeapNumber(eax, ecx, edx, &call_runtime); |
+ __ bind(&skip_allocation); |
+ break; |
+ default: UNREACHABLE(); |
+ } |
+ // Store the result in the HeapNumber and return. |
+ if (CpuFeatures::IsSupported(SSE2)) { |
+ CpuFeatures::Scope use_sse2(SSE2); |
+ __ cvtsi2sd(xmm0, Operand(ebx)); |
+ __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
+ } else { |
+ __ mov(Operand(esp, 1 * kPointerSize), ebx); |
+ __ fild_s(Operand(esp, 1 * kPointerSize)); |
+ __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
+ } |
+ GenerateReturn(masm); |
+ } |
+ break; |
+ } |
+ default: UNREACHABLE(); break; |
+ } |
+ } |
+ |
+ // If all else fails, use the runtime system to get the correct |
+ // result. If arguments was passed in registers now place them on the |
+ // stack in the correct order below the return address. |
+ __ bind(&call_runtime); |
+ if (HasArgsInRegisters()) { |
+ GenerateRegisterArgsPush(masm); |
+ } |
+ |
+ switch (op_) { |
+ case Token::ADD: { |
+ // Test for string arguments before calling runtime. |
+ Label not_strings, not_string1, string1, string1_smi2; |
+ |
+ // If this stub has already generated FP-specific code then the arguments |
+ // are already in edx, eax |
+ if (!ShouldGenerateFPCode() && !HasArgsInRegisters()) { |
+ GenerateLoadArguments(masm); |
+ } |
+ |
+ // Registers containing left and right operands respectively. |
+ Register lhs, rhs; |
+ if (HasArgsReversed()) { |
+ lhs = eax; |
+ rhs = edx; |
+ } else { |
+ lhs = edx; |
+ rhs = eax; |
+ } |
+ |
+ // Test if first argument is a string. |
+ __ test(lhs, Immediate(kSmiTagMask)); |
+ __ j(zero, ¬_string1); |
+ __ CmpObjectType(lhs, FIRST_NONSTRING_TYPE, ecx); |
+ __ j(above_equal, ¬_string1); |
+ |
+ // First argument is a string, test second. |
+ __ test(rhs, Immediate(kSmiTagMask)); |
+ __ j(zero, &string1_smi2); |
+ __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, ecx); |
+ __ j(above_equal, &string1); |
+ |
+ // First and second argument are strings. Jump to the string add stub. |
+ StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB); |
+ __ TailCallStub(&string_add_stub); |
+ |
+ __ bind(&string1_smi2); |
+ // First argument is a string, second is a smi. Try to lookup the number |
+ // string for the smi in the number string cache. |
+ NumberToStringStub::GenerateLookupNumberStringCache( |
+ masm, rhs, edi, ebx, ecx, true, &string1); |
+ |
+ // Replace second argument on stack and tailcall string add stub to make |
+ // the result. |
+ __ mov(Operand(esp, 1 * kPointerSize), edi); |
+ __ TailCallStub(&string_add_stub); |
+ |
+ // Only first argument is a string. |
+ __ bind(&string1); |
+ __ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_FUNCTION); |
+ |
+ // First argument was not a string, test second. |
+ __ bind(¬_string1); |
+ __ test(rhs, Immediate(kSmiTagMask)); |
+ __ j(zero, ¬_strings); |
+ __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, ecx); |
+ __ j(above_equal, ¬_strings); |
+ |
+ // Only second argument is a string. |
+ __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_FUNCTION); |
+ |
+ __ bind(¬_strings); |
+ // Neither argument is a string. |
+ __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); |
+ break; |
+ } |
+ case Token::SUB: |
+ __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); |
+ break; |
+ case Token::MUL: |
+ __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); |
+ break; |
+ case Token::DIV: |
+ __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); |
+ break; |
+ case Token::MOD: |
+ __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); |
+ break; |
+ case Token::BIT_OR: |
+ __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); |
+ break; |
+ case Token::BIT_AND: |
+ __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); |
+ break; |
+ case Token::BIT_XOR: |
+ __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); |
+ break; |
+ case Token::SAR: |
+ __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); |
+ break; |
+ case Token::SHL: |
+ __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); |
+ break; |
+ case Token::SHR: |
+ __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+void GenericBinaryOpStub::GenerateHeapResultAllocation(MacroAssembler* masm, |
+ Label* alloc_failure) { |
+ Label skip_allocation; |
+ OverwriteMode mode = mode_; |
+ if (HasArgsReversed()) { |
+ if (mode == OVERWRITE_RIGHT) { |
+ mode = OVERWRITE_LEFT; |
+ } else if (mode == OVERWRITE_LEFT) { |
+ mode = OVERWRITE_RIGHT; |
+ } |
+ } |
+ switch (mode) { |
+ case OVERWRITE_LEFT: { |
+ // If the argument in edx is already an object, we skip the |
+ // allocation of a heap number. |
+ __ test(edx, Immediate(kSmiTagMask)); |
+ __ j(not_zero, &skip_allocation, not_taken); |
+ // Allocate a heap number for the result. Keep eax and edx intact |
+ // for the possible runtime call. |
+ __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure); |
+ // Now edx can be overwritten losing one of the arguments as we are |
+ // now done and will not need it any more. |
+ __ mov(edx, Operand(ebx)); |
+ __ bind(&skip_allocation); |
+ // Use object in edx as a result holder |
+ __ mov(eax, Operand(edx)); |
+ break; |
+ } |
+ case OVERWRITE_RIGHT: |
+ // If the argument in eax is already an object, we skip the |
+ // allocation of a heap number. |
+ __ test(eax, Immediate(kSmiTagMask)); |
+ __ j(not_zero, &skip_allocation, not_taken); |
+ // Fall through! |
+ case NO_OVERWRITE: |
+ // Allocate a heap number for the result. Keep eax and edx intact |
+ // for the possible runtime call. |
+ __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure); |
+ // Now eax can be overwritten losing one of the arguments as we are |
+ // now done and will not need it any more. |
+ __ mov(eax, ebx); |
+ __ bind(&skip_allocation); |
+ break; |
+ default: UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+void GenericBinaryOpStub::GenerateLoadArguments(MacroAssembler* masm) { |
+ // If arguments are not passed in registers read them from the stack. |
+ ASSERT(!HasArgsInRegisters()); |
+ __ mov(eax, Operand(esp, 1 * kPointerSize)); |
+ __ mov(edx, Operand(esp, 2 * kPointerSize)); |
+} |
+ |
+ |
+void GenericBinaryOpStub::GenerateReturn(MacroAssembler* masm) { |
+ // If arguments are not passed in registers remove them from the stack before |
+ // returning. |
+ if (!HasArgsInRegisters()) { |
+ __ ret(2 * kPointerSize); // Remove both operands |
+ } else { |
+ __ ret(0); |
+ } |
+} |
+ |
+ |
+void GenericBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) { |
+ ASSERT(HasArgsInRegisters()); |
+ __ pop(ecx); |
+ if (HasArgsReversed()) { |
+ __ push(eax); |
+ __ push(edx); |
+ } else { |
+ __ push(edx); |
+ __ push(eax); |
+ } |
+ __ push(ecx); |
+} |
+ |
+ |
+void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { |
+ // Ensure the operands are on the stack. |
+ if (HasArgsInRegisters()) { |
+ GenerateRegisterArgsPush(masm); |
+ } |
+ |
+ __ pop(ecx); // Save return address. |
+ |
+ // Left and right arguments are now on top. |
+ // Push this stub's key. Although the operation and the type info are |
+ // encoded into the key, the encoding is opaque, so push them too. |
+ __ push(Immediate(Smi::FromInt(MinorKey()))); |
+ __ push(Immediate(Smi::FromInt(op_))); |
+ __ push(Immediate(Smi::FromInt(runtime_operands_type_))); |
+ |
+ __ push(ecx); // Push return address. |
+ |
+ // Patch the caller to an appropriate specialized stub and return the |
+ // operation result to the caller of the stub. |
+ __ TailCallExternalReference( |
+ ExternalReference(IC_Utility(IC::kBinaryOp_Patch)), |
+ 5, |
+ 1); |
+} |
+ |
+ |
+Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) { |
+ GenericBinaryOpStub stub(key, type_info); |
+ return stub.GetCode(); |
+} |
+ |
+ |
+void TranscendentalCacheStub::Generate(MacroAssembler* masm) { |
+ // Input on stack: |
+ // esp[4]: argument (should be number). |
+ // esp[0]: return address. |
+ // Test that eax is a number. |
+ Label runtime_call; |
+ Label runtime_call_clear_stack; |
+ Label input_not_smi; |
+ Label loaded; |
+ __ mov(eax, Operand(esp, kPointerSize)); |
+ __ test(eax, Immediate(kSmiTagMask)); |
+ __ j(not_zero, &input_not_smi); |
+ // Input is a smi. Untag and load it onto the FPU stack. |
+ // Then load the low and high words of the double into ebx, edx. |
+ STATIC_ASSERT(kSmiTagSize == 1); |
+ __ sar(eax, 1); |
+ __ sub(Operand(esp), Immediate(2 * kPointerSize)); |
+ __ mov(Operand(esp, 0), eax); |
+ __ fild_s(Operand(esp, 0)); |
+ __ fst_d(Operand(esp, 0)); |
+ __ pop(edx); |
+ __ pop(ebx); |
+ __ jmp(&loaded); |
+ __ bind(&input_not_smi); |
+ // Check if input is a HeapNumber. |
+ __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
+ __ cmp(Operand(ebx), Immediate(Factory::heap_number_map())); |
+ __ j(not_equal, &runtime_call); |
+ // Input is a HeapNumber. Push it on the FPU stack and load its |
+ // low and high words into ebx, edx. |
+ __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
+ __ mov(edx, FieldOperand(eax, HeapNumber::kExponentOffset)); |
+ __ mov(ebx, FieldOperand(eax, HeapNumber::kMantissaOffset)); |
+ |
+ __ bind(&loaded); |
+ // ST[0] == double value |
+ // ebx = low 32 bits of double value |
+ // edx = high 32 bits of double value |
+ // Compute hash (the shifts are arithmetic): |
+ // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1); |
+ __ mov(ecx, ebx); |
+ __ xor_(ecx, Operand(edx)); |
+ __ mov(eax, ecx); |
+ __ sar(eax, 16); |
+ __ xor_(ecx, Operand(eax)); |
+ __ mov(eax, ecx); |
+ __ sar(eax, 8); |
+ __ xor_(ecx, Operand(eax)); |
+ ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize)); |
+ __ and_(Operand(ecx), Immediate(TranscendentalCache::kCacheSize - 1)); |
+ |
+ // ST[0] == double value. |
+ // ebx = low 32 bits of double value. |
+ // edx = high 32 bits of double value. |
+ // ecx = TranscendentalCache::hash(double value). |
+ __ mov(eax, |
+ Immediate(ExternalReference::transcendental_cache_array_address())); |
+ // Eax points to cache array. |
+ __ mov(eax, Operand(eax, type_ * sizeof(TranscendentalCache::caches_[0]))); |
+ // Eax points to the cache for the type type_. |
+ // If NULL, the cache hasn't been initialized yet, so go through runtime. |
+ __ test(eax, Operand(eax)); |
+ __ j(zero, &runtime_call_clear_stack); |
+#ifdef DEBUG |
+ // Check that the layout of cache elements match expectations. |
+ { TranscendentalCache::Element test_elem[2]; |
+ char* elem_start = reinterpret_cast<char*>(&test_elem[0]); |
+ char* elem2_start = reinterpret_cast<char*>(&test_elem[1]); |
+ char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0])); |
+ char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1])); |
+ char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output)); |
+ CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer. |
+ CHECK_EQ(0, elem_in0 - elem_start); |
+ CHECK_EQ(kIntSize, elem_in1 - elem_start); |
+ CHECK_EQ(2 * kIntSize, elem_out - elem_start); |
+ } |
+#endif |
+ // Find the address of the ecx'th entry in the cache, i.e., &eax[ecx*12]. |
+ __ lea(ecx, Operand(ecx, ecx, times_2, 0)); |
+ __ lea(ecx, Operand(eax, ecx, times_4, 0)); |
+ // Check if cache matches: Double value is stored in uint32_t[2] array. |
+ Label cache_miss; |
+ __ cmp(ebx, Operand(ecx, 0)); |
+ __ j(not_equal, &cache_miss); |
+ __ cmp(edx, Operand(ecx, kIntSize)); |
+ __ j(not_equal, &cache_miss); |
+ // Cache hit! |
+ __ mov(eax, Operand(ecx, 2 * kIntSize)); |
+ __ fstp(0); |
+ __ ret(kPointerSize); |
+ |
+ __ bind(&cache_miss); |
+ // Update cache with new value. |
+ // We are short on registers, so use no_reg as scratch. |
+ // This gives slightly larger code. |
+ __ AllocateHeapNumber(eax, edi, no_reg, &runtime_call_clear_stack); |
+ GenerateOperation(masm); |
+ __ mov(Operand(ecx, 0), ebx); |
+ __ mov(Operand(ecx, kIntSize), edx); |
+ __ mov(Operand(ecx, 2 * kIntSize), eax); |
+ __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
+ __ ret(kPointerSize); |
+ |
+ __ bind(&runtime_call_clear_stack); |
+ __ fstp(0); |
+ __ bind(&runtime_call); |
+ __ TailCallExternalReference(ExternalReference(RuntimeFunction()), 1, 1); |
+} |
+ |
+ |
+Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() { |
+ switch (type_) { |
+ // Add more cases when necessary. |
+ case TranscendentalCache::SIN: return Runtime::kMath_sin; |
+ case TranscendentalCache::COS: return Runtime::kMath_cos; |
+ default: |
+ UNIMPLEMENTED(); |
+ return Runtime::kAbort; |
+ } |
+} |
+ |
+ |
+void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm) { |
+ // Only free register is edi. |
+ Label done; |
+ ASSERT(type_ == TranscendentalCache::SIN || |
+ type_ == TranscendentalCache::COS); |
+ // More transcendental types can be added later. |
+ |
+ // Both fsin and fcos require arguments in the range +/-2^63 and |
+ // return NaN for infinities and NaN. They can share all code except |
+ // the actual fsin/fcos operation. |
+ Label in_range; |
+ // If argument is outside the range -2^63..2^63, fsin/cos doesn't |
+ // work. We must reduce it to the appropriate range. |
+ __ mov(edi, edx); |
+ __ and_(Operand(edi), Immediate(0x7ff00000)); // Exponent only. |
+ int supported_exponent_limit = |
+ (63 + HeapNumber::kExponentBias) << HeapNumber::kExponentShift; |
+ __ cmp(Operand(edi), Immediate(supported_exponent_limit)); |
+ __ j(below, &in_range, taken); |
+ // Check for infinity and NaN. Both return NaN for sin. |
+ __ cmp(Operand(edi), Immediate(0x7ff00000)); |
+ Label non_nan_result; |
+ __ j(not_equal, &non_nan_result, taken); |
+ // Input is +/-Infinity or NaN. Result is NaN. |
+ __ fstp(0); |
+ // NaN is represented by 0x7ff8000000000000. |
+ __ push(Immediate(0x7ff80000)); |
+ __ push(Immediate(0)); |
+ __ fld_d(Operand(esp, 0)); |
+ __ add(Operand(esp), Immediate(2 * kPointerSize)); |
+ __ jmp(&done); |
+ |
+ __ bind(&non_nan_result); |
+ |
+ // Use fpmod to restrict argument to the range +/-2*PI. |
+ __ mov(edi, eax); // Save eax before using fnstsw_ax. |
+ __ fldpi(); |
+ __ fadd(0); |
+ __ fld(1); |
+ // FPU Stack: input, 2*pi, input. |
+ { |
+ Label no_exceptions; |
+ __ fwait(); |
+ __ fnstsw_ax(); |
+ // Clear if Illegal Operand or Zero Division exceptions are set. |
+ __ test(Operand(eax), Immediate(5)); |
+ __ j(zero, &no_exceptions); |
+ __ fnclex(); |
+ __ bind(&no_exceptions); |
+ } |
+ |
+ // Compute st(0) % st(1) |
+ { |
+ Label partial_remainder_loop; |
+ __ bind(&partial_remainder_loop); |
+ __ fprem1(); |
+ __ fwait(); |
+ __ fnstsw_ax(); |
+ __ test(Operand(eax), Immediate(0x400 /* C2 */)); |
+ // If C2 is set, computation only has partial result. Loop to |
+ // continue computation. |
+ __ j(not_zero, &partial_remainder_loop); |
+ } |
+ // FPU Stack: input, 2*pi, input % 2*pi |
+ __ fstp(2); |
+ __ fstp(0); |
+ __ mov(eax, edi); // Restore eax (allocated HeapNumber pointer). |
+ |
+ // FPU Stack: input % 2*pi |
+ __ bind(&in_range); |
+ switch (type_) { |
+ case TranscendentalCache::SIN: |
+ __ fsin(); |
+ break; |
+ case TranscendentalCache::COS: |
+ __ fcos(); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+ __ bind(&done); |
+} |
+ |
+ |
+// Get the integer part of a heap number. Surprisingly, all this bit twiddling |
+// is faster than using the built-in instructions on floating point registers. |
+// Trashes edi and ebx. Dest is ecx. Source cannot be ecx or one of the |
+// trashed registers. |
+void IntegerConvert(MacroAssembler* masm, |
+ Register source, |
+ TypeInfo type_info, |
+ bool use_sse3, |
+ Label* conversion_failure) { |
+ ASSERT(!source.is(ecx) && !source.is(edi) && !source.is(ebx)); |
+ Label done, right_exponent, normal_exponent; |
+ Register scratch = ebx; |
+ Register scratch2 = edi; |
+ if (type_info.IsInteger32() && CpuFeatures::IsEnabled(SSE2)) { |
+ CpuFeatures::Scope scope(SSE2); |
+ __ cvttsd2si(ecx, FieldOperand(source, HeapNumber::kValueOffset)); |
+ return; |
+ } |
+ if (!type_info.IsInteger32() || !use_sse3) { |
+ // Get exponent word. |
+ __ mov(scratch, FieldOperand(source, HeapNumber::kExponentOffset)); |
+ // Get exponent alone in scratch2. |
+ __ mov(scratch2, scratch); |
+ __ and_(scratch2, HeapNumber::kExponentMask); |
+ } |
+ if (use_sse3) { |
+ CpuFeatures::Scope scope(SSE3); |
+ if (!type_info.IsInteger32()) { |
+ // Check whether the exponent is too big for a 64 bit signed integer. |
+ static const uint32_t kTooBigExponent = |
+ (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift; |
+ __ cmp(Operand(scratch2), Immediate(kTooBigExponent)); |
+ __ j(greater_equal, conversion_failure); |
+ } |
+ // Load x87 register with heap number. |
+ __ fld_d(FieldOperand(source, HeapNumber::kValueOffset)); |
+ // Reserve space for 64 bit answer. |
+ __ sub(Operand(esp), Immediate(sizeof(uint64_t))); // Nolint. |
+ // Do conversion, which cannot fail because we checked the exponent. |
+ __ fisttp_d(Operand(esp, 0)); |
+ __ mov(ecx, Operand(esp, 0)); // Load low word of answer into ecx. |
+ __ add(Operand(esp), Immediate(sizeof(uint64_t))); // Nolint. |
+ } else { |
+ // Load ecx with zero. We use this either for the final shift or |
+ // for the answer. |
+ __ xor_(ecx, Operand(ecx)); |
+ // Check whether the exponent matches a 32 bit signed int that cannot be |
+ // represented by a Smi. A non-smi 32 bit integer is 1.xxx * 2^30 so the |
+ // exponent is 30 (biased). This is the exponent that we are fastest at and |
+ // also the highest exponent we can handle here. |
+ const uint32_t non_smi_exponent = |
+ (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; |
+ __ cmp(Operand(scratch2), Immediate(non_smi_exponent)); |
+ // If we have a match of the int32-but-not-Smi exponent then skip some |
+ // logic. |
+ __ j(equal, &right_exponent); |
+ // If the exponent is higher than that then go to slow case. This catches |
+ // numbers that don't fit in a signed int32, infinities and NaNs. |
+ __ j(less, &normal_exponent); |
+ |
+ { |
+ // Handle a big exponent. The only reason we have this code is that the |
+ // >>> operator has a tendency to generate numbers with an exponent of 31. |
+ const uint32_t big_non_smi_exponent = |
+ (HeapNumber::kExponentBias + 31) << HeapNumber::kExponentShift; |
+ __ cmp(Operand(scratch2), Immediate(big_non_smi_exponent)); |
+ __ j(not_equal, conversion_failure); |
+ // We have the big exponent, typically from >>>. This means the number is |
+ // in the range 2^31 to 2^32 - 1. Get the top bits of the mantissa. |
+ __ mov(scratch2, scratch); |
+ __ and_(scratch2, HeapNumber::kMantissaMask); |
+ // Put back the implicit 1. |
+ __ or_(scratch2, 1 << HeapNumber::kExponentShift); |
+ // Shift up the mantissa bits to take up the space the exponent used to |
+ // take. We just orred in the implicit bit so that took care of one and |
+ // we want to use the full unsigned range so we subtract 1 bit from the |
+ // shift distance. |
+ const int big_shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 1; |
+ __ shl(scratch2, big_shift_distance); |
+ // Get the second half of the double. |
+ __ mov(ecx, FieldOperand(source, HeapNumber::kMantissaOffset)); |
+ // Shift down 21 bits to get the most significant 11 bits or the low |
+ // mantissa word. |
+ __ shr(ecx, 32 - big_shift_distance); |
+ __ or_(ecx, Operand(scratch2)); |
+ // We have the answer in ecx, but we may need to negate it. |
+ __ test(scratch, Operand(scratch)); |
+ __ j(positive, &done); |
+ __ neg(ecx); |
+ __ jmp(&done); |
+ } |
+ |
+ __ bind(&normal_exponent); |
+ // Exponent word in scratch, exponent part of exponent word in scratch2. |
+ // Zero in ecx. |
+ // We know the exponent is smaller than 30 (biased). If it is less than |
+ // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie |
+ // it rounds to zero. |
+ const uint32_t zero_exponent = |
+ (HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift; |
+ __ sub(Operand(scratch2), Immediate(zero_exponent)); |
+ // ecx already has a Smi zero. |
+ __ j(less, &done); |
+ |
+ // We have a shifted exponent between 0 and 30 in scratch2. |
+ __ shr(scratch2, HeapNumber::kExponentShift); |
+ __ mov(ecx, Immediate(30)); |
+ __ sub(ecx, Operand(scratch2)); |
+ |
+ __ bind(&right_exponent); |
+ // Here ecx is the shift, scratch is the exponent word. |
+ // Get the top bits of the mantissa. |
+ __ and_(scratch, HeapNumber::kMantissaMask); |
+ // Put back the implicit 1. |
+ __ or_(scratch, 1 << HeapNumber::kExponentShift); |
+ // Shift up the mantissa bits to take up the space the exponent used to |
+ // take. We have kExponentShift + 1 significant bits int he low end of the |
+ // word. Shift them to the top bits. |
+ const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; |
+ __ shl(scratch, shift_distance); |
+ // Get the second half of the double. For some exponents we don't |
+ // actually need this because the bits get shifted out again, but |
+ // it's probably slower to test than just to do it. |
+ __ mov(scratch2, FieldOperand(source, HeapNumber::kMantissaOffset)); |
+ // Shift down 22 bits to get the most significant 10 bits or the low |
+ // mantissa word. |
+ __ shr(scratch2, 32 - shift_distance); |
+ __ or_(scratch2, Operand(scratch)); |
+ // Move down according to the exponent. |
+ __ shr_cl(scratch2); |
+ // Now the unsigned answer is in scratch2. We need to move it to ecx and |
+ // we may need to fix the sign. |
+ Label negative; |
+ __ xor_(ecx, Operand(ecx)); |
+ __ cmp(ecx, FieldOperand(source, HeapNumber::kExponentOffset)); |
+ __ j(greater, &negative); |
+ __ mov(ecx, scratch2); |
+ __ jmp(&done); |
+ __ bind(&negative); |
+ __ sub(ecx, Operand(scratch2)); |
+ __ bind(&done); |
+ } |
+} |
+ |
+ |
+// Input: edx, eax are the left and right objects of a bit op. |
+// Output: eax, ecx are left and right integers for a bit op. |
+void FloatingPointHelper::LoadNumbersAsIntegers(MacroAssembler* masm, |
+ TypeInfo type_info, |
+ bool use_sse3, |
+ Label* conversion_failure) { |
+ // Check float operands. |
+ Label arg1_is_object, check_undefined_arg1; |
+ Label arg2_is_object, check_undefined_arg2; |
+ Label load_arg2, done; |
+ |
+ if (!type_info.IsDouble()) { |
+ if (!type_info.IsSmi()) { |
+ __ test(edx, Immediate(kSmiTagMask)); |
+ __ j(not_zero, &arg1_is_object); |
+ } else { |
+ if (FLAG_debug_code) __ AbortIfNotSmi(edx); |
+ } |
+ __ SmiUntag(edx); |
+ __ jmp(&load_arg2); |
+ } |
+ |
+ __ bind(&arg1_is_object); |
+ |
+ // Get the untagged integer version of the edx heap number in ecx. |
+ IntegerConvert(masm, edx, type_info, use_sse3, conversion_failure); |
+ __ mov(edx, ecx); |
+ |
+ // Here edx has the untagged integer, eax has a Smi or a heap number. |
+ __ bind(&load_arg2); |
+ if (!type_info.IsDouble()) { |
+ // Test if arg2 is a Smi. |
+ if (!type_info.IsSmi()) { |
+ __ test(eax, Immediate(kSmiTagMask)); |
+ __ j(not_zero, &arg2_is_object); |
+ } else { |
+ if (FLAG_debug_code) __ AbortIfNotSmi(eax); |
+ } |
+ __ SmiUntag(eax); |
+ __ mov(ecx, eax); |
+ __ jmp(&done); |
+ } |
+ |
+ __ bind(&arg2_is_object); |
+ |
+ // Get the untagged integer version of the eax heap number in ecx. |
+ IntegerConvert(masm, eax, type_info, use_sse3, conversion_failure); |
+ __ bind(&done); |
+ __ mov(eax, edx); |
+} |
+ |
+ |
+// Input: edx, eax are the left and right objects of a bit op. |
+// Output: eax, ecx are left and right integers for a bit op. |
+void FloatingPointHelper::LoadUnknownsAsIntegers(MacroAssembler* masm, |
+ bool use_sse3, |
+ Label* conversion_failure) { |
+ // Check float operands. |
+ Label arg1_is_object, check_undefined_arg1; |
+ Label arg2_is_object, check_undefined_arg2; |
+ Label load_arg2, done; |
+ |
+ // Test if arg1 is a Smi. |
+ __ test(edx, Immediate(kSmiTagMask)); |
+ __ j(not_zero, &arg1_is_object); |
+ |
+ __ SmiUntag(edx); |
+ __ jmp(&load_arg2); |
+ |
+ // If the argument is undefined it converts to zero (ECMA-262, section 9.5). |
+ __ bind(&check_undefined_arg1); |
+ __ cmp(edx, Factory::undefined_value()); |
+ __ j(not_equal, conversion_failure); |
+ __ mov(edx, Immediate(0)); |
+ __ jmp(&load_arg2); |
+ |
+ __ bind(&arg1_is_object); |
+ __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset)); |
+ __ cmp(ebx, Factory::heap_number_map()); |
+ __ j(not_equal, &check_undefined_arg1); |
+ |
+ // Get the untagged integer version of the edx heap number in ecx. |
+ IntegerConvert(masm, |
+ edx, |
+ TypeInfo::Unknown(), |
+ use_sse3, |
+ conversion_failure); |
+ __ mov(edx, ecx); |
+ |
+ // Here edx has the untagged integer, eax has a Smi or a heap number. |
+ __ bind(&load_arg2); |
+ |
+ // Test if arg2 is a Smi. |
+ __ test(eax, Immediate(kSmiTagMask)); |
+ __ j(not_zero, &arg2_is_object); |
+ |
+ __ SmiUntag(eax); |
+ __ mov(ecx, eax); |
+ __ jmp(&done); |
+ |
+ // If the argument is undefined it converts to zero (ECMA-262, section 9.5). |
+ __ bind(&check_undefined_arg2); |
+ __ cmp(eax, Factory::undefined_value()); |
+ __ j(not_equal, conversion_failure); |
+ __ mov(ecx, Immediate(0)); |
+ __ jmp(&done); |
+ |
+ __ bind(&arg2_is_object); |
+ __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
+ __ cmp(ebx, Factory::heap_number_map()); |
+ __ j(not_equal, &check_undefined_arg2); |
+ |
+ // Get the untagged integer version of the eax heap number in ecx. |
+ IntegerConvert(masm, |
+ eax, |
+ TypeInfo::Unknown(), |
+ use_sse3, |
+ conversion_failure); |
+ __ bind(&done); |
+ __ mov(eax, edx); |
+} |
+ |
+ |
+void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm, |
+ TypeInfo type_info, |
+ bool use_sse3, |
+ Label* conversion_failure) { |
+ if (type_info.IsNumber()) { |
+ LoadNumbersAsIntegers(masm, type_info, use_sse3, conversion_failure); |
+ } else { |
+ LoadUnknownsAsIntegers(masm, use_sse3, conversion_failure); |
+ } |
+} |
+ |
+ |
+void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm, |
+ Register number) { |
+ Label load_smi, done; |
+ |
+ __ test(number, Immediate(kSmiTagMask)); |
+ __ j(zero, &load_smi, not_taken); |
+ __ fld_d(FieldOperand(number, HeapNumber::kValueOffset)); |
+ __ jmp(&done); |
+ |
+ __ bind(&load_smi); |
+ __ SmiUntag(number); |
+ __ push(number); |
+ __ fild_s(Operand(esp, 0)); |
+ __ pop(number); |
+ |
+ __ bind(&done); |
+} |
+ |
+ |
+void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm) { |
+ Label load_smi_edx, load_eax, load_smi_eax, done; |
+ // Load operand in edx into xmm0. |
+ __ test(edx, Immediate(kSmiTagMask)); |
+ __ j(zero, &load_smi_edx, not_taken); // Argument in edx is a smi. |
+ __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); |
+ |
+ __ bind(&load_eax); |
+ // Load operand in eax into xmm1. |
+ __ test(eax, Immediate(kSmiTagMask)); |
+ __ j(zero, &load_smi_eax, not_taken); // Argument in eax is a smi. |
+ __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); |
+ __ jmp(&done); |
+ |
+ __ bind(&load_smi_edx); |
+ __ SmiUntag(edx); // Untag smi before converting to float. |
+ __ cvtsi2sd(xmm0, Operand(edx)); |
+ __ SmiTag(edx); // Retag smi for heap number overwriting test. |
+ __ jmp(&load_eax); |
+ |
+ __ bind(&load_smi_eax); |
+ __ SmiUntag(eax); // Untag smi before converting to float. |
+ __ cvtsi2sd(xmm1, Operand(eax)); |
+ __ SmiTag(eax); // Retag smi for heap number overwriting test. |
+ |
+ __ bind(&done); |
+} |
+ |
+ |
+void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm, |
+ Label* not_numbers) { |
+ Label load_smi_edx, load_eax, load_smi_eax, load_float_eax, done; |
+ // Load operand in edx into xmm0, or branch to not_numbers. |
+ __ test(edx, Immediate(kSmiTagMask)); |
+ __ j(zero, &load_smi_edx, not_taken); // Argument in edx is a smi. |
+ __ cmp(FieldOperand(edx, HeapObject::kMapOffset), Factory::heap_number_map()); |
+ __ j(not_equal, not_numbers); // Argument in edx is not a number. |
+ __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); |
+ __ bind(&load_eax); |
+ // Load operand in eax into xmm1, or branch to not_numbers. |
+ __ test(eax, Immediate(kSmiTagMask)); |
+ __ j(zero, &load_smi_eax, not_taken); // Argument in eax is a smi. |
+ __ cmp(FieldOperand(eax, HeapObject::kMapOffset), Factory::heap_number_map()); |
+ __ j(equal, &load_float_eax); |
+ __ jmp(not_numbers); // Argument in eax is not a number. |
+ __ bind(&load_smi_edx); |
+ __ SmiUntag(edx); // Untag smi before converting to float. |
+ __ cvtsi2sd(xmm0, Operand(edx)); |
+ __ SmiTag(edx); // Retag smi for heap number overwriting test. |
+ __ jmp(&load_eax); |
+ __ bind(&load_smi_eax); |
+ __ SmiUntag(eax); // Untag smi before converting to float. |
+ __ cvtsi2sd(xmm1, Operand(eax)); |
+ __ SmiTag(eax); // Retag smi for heap number overwriting test. |
+ __ jmp(&done); |
+ __ bind(&load_float_eax); |
+ __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); |
+ __ bind(&done); |
+} |
+ |
+ |
+void FloatingPointHelper::LoadSSE2Smis(MacroAssembler* masm, |
+ Register scratch) { |
+ const Register left = edx; |
+ const Register right = eax; |
+ __ mov(scratch, left); |
+ ASSERT(!scratch.is(right)); // We're about to clobber scratch. |
+ __ SmiUntag(scratch); |
+ __ cvtsi2sd(xmm0, Operand(scratch)); |
+ |
+ __ mov(scratch, right); |
+ __ SmiUntag(scratch); |
+ __ cvtsi2sd(xmm1, Operand(scratch)); |
+} |
+ |
+ |
+void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm, |
+ Register scratch, |
+ ArgLocation arg_location) { |
+ Label load_smi_1, load_smi_2, done_load_1, done; |
+ if (arg_location == ARGS_IN_REGISTERS) { |
+ __ mov(scratch, edx); |
+ } else { |
+ __ mov(scratch, Operand(esp, 2 * kPointerSize)); |
+ } |
+ __ test(scratch, Immediate(kSmiTagMask)); |
+ __ j(zero, &load_smi_1, not_taken); |
+ __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset)); |
+ __ bind(&done_load_1); |
+ |
+ if (arg_location == ARGS_IN_REGISTERS) { |
+ __ mov(scratch, eax); |
+ } else { |
+ __ mov(scratch, Operand(esp, 1 * kPointerSize)); |
+ } |
+ __ test(scratch, Immediate(kSmiTagMask)); |
+ __ j(zero, &load_smi_2, not_taken); |
+ __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset)); |
+ __ jmp(&done); |
+ |
+ __ bind(&load_smi_1); |
+ __ SmiUntag(scratch); |
+ __ push(scratch); |
+ __ fild_s(Operand(esp, 0)); |
+ __ pop(scratch); |
+ __ jmp(&done_load_1); |
+ |
+ __ bind(&load_smi_2); |
+ __ SmiUntag(scratch); |
+ __ push(scratch); |
+ __ fild_s(Operand(esp, 0)); |
+ __ pop(scratch); |
+ |
+ __ bind(&done); |
+} |
+ |
+ |
+void FloatingPointHelper::LoadFloatSmis(MacroAssembler* masm, |
+ Register scratch) { |
+ const Register left = edx; |
+ const Register right = eax; |
+ __ mov(scratch, left); |
+ ASSERT(!scratch.is(right)); // We're about to clobber scratch. |
+ __ SmiUntag(scratch); |
+ __ push(scratch); |
+ __ fild_s(Operand(esp, 0)); |
+ |
+ __ mov(scratch, right); |
+ __ SmiUntag(scratch); |
+ __ mov(Operand(esp, 0), scratch); |
+ __ fild_s(Operand(esp, 0)); |
+ __ pop(scratch); |
+} |
+ |
+ |
+void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm, |
+ Label* non_float, |
+ Register scratch) { |
+ Label test_other, done; |
+ // Test if both operands are floats or smi -> scratch=k_is_float; |
+ // Otherwise scratch = k_not_float. |
+ __ test(edx, Immediate(kSmiTagMask)); |
+ __ j(zero, &test_other, not_taken); // argument in edx is OK |
+ __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset)); |
+ __ cmp(scratch, Factory::heap_number_map()); |
+ __ j(not_equal, non_float); // argument in edx is not a number -> NaN |
+ |
+ __ bind(&test_other); |
+ __ test(eax, Immediate(kSmiTagMask)); |
+ __ j(zero, &done); // argument in eax is OK |
+ __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset)); |
+ __ cmp(scratch, Factory::heap_number_map()); |
+ __ j(not_equal, non_float); // argument in eax is not a number -> NaN |
+ |
+ // Fall-through: Both operands are numbers. |
+ __ bind(&done); |
+} |
+ |
+ |
+void GenericUnaryOpStub::Generate(MacroAssembler* masm) { |
+ Label slow, done; |
+ |
+ if (op_ == Token::SUB) { |
+ // Check whether the value is a smi. |
+ Label try_float; |
+ __ test(eax, Immediate(kSmiTagMask)); |
+ __ j(not_zero, &try_float, not_taken); |
+ |
+ if (negative_zero_ == kStrictNegativeZero) { |
+ // Go slow case if the value of the expression is zero |
+ // to make sure that we switch between 0 and -0. |
+ __ test(eax, Operand(eax)); |
+ __ j(zero, &slow, not_taken); |
+ } |
+ |
+ // The value of the expression is a smi that is not zero. Try |
+ // optimistic subtraction '0 - value'. |
+ Label undo; |
+ __ mov(edx, Operand(eax)); |
+ __ Set(eax, Immediate(0)); |
+ __ sub(eax, Operand(edx)); |
+ __ j(no_overflow, &done, taken); |
+ |
+ // Restore eax and go slow case. |
+ __ bind(&undo); |
+ __ mov(eax, Operand(edx)); |
+ __ jmp(&slow); |
+ |
+ // Try floating point case. |
+ __ bind(&try_float); |
+ __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); |
+ __ cmp(edx, Factory::heap_number_map()); |
+ __ j(not_equal, &slow); |
+ if (overwrite_ == UNARY_OVERWRITE) { |
+ __ mov(edx, FieldOperand(eax, HeapNumber::kExponentOffset)); |
+ __ xor_(edx, HeapNumber::kSignMask); // Flip sign. |
+ __ mov(FieldOperand(eax, HeapNumber::kExponentOffset), edx); |
+ } else { |
+ __ mov(edx, Operand(eax)); |
+ // edx: operand |
+ __ AllocateHeapNumber(eax, ebx, ecx, &undo); |
+ // eax: allocated 'empty' number |
+ __ mov(ecx, FieldOperand(edx, HeapNumber::kExponentOffset)); |
+ __ xor_(ecx, HeapNumber::kSignMask); // Flip sign. |
+ __ mov(FieldOperand(eax, HeapNumber::kExponentOffset), ecx); |
+ __ mov(ecx, FieldOperand(edx, HeapNumber::kMantissaOffset)); |
+ __ mov(FieldOperand(eax, HeapNumber::kMantissaOffset), ecx); |
+ } |
+ } else if (op_ == Token::BIT_NOT) { |
+ // Check if the operand is a heap number. |
+ __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); |
+ __ cmp(edx, Factory::heap_number_map()); |
+ __ j(not_equal, &slow, not_taken); |
+ |
+ // Convert the heap number in eax to an untagged integer in ecx. |
+ IntegerConvert(masm, |
+ eax, |
+ TypeInfo::Unknown(), |
+ CpuFeatures::IsSupported(SSE3), |
+ &slow); |
+ |
+ // Do the bitwise operation and check if the result fits in a smi. |
+ Label try_float; |
+ __ not_(ecx); |
+ __ cmp(ecx, 0xc0000000); |
+ __ j(sign, &try_float, not_taken); |
+ |
+ // Tag the result as a smi and we're done. |
+ STATIC_ASSERT(kSmiTagSize == 1); |
+ __ lea(eax, Operand(ecx, times_2, kSmiTag)); |
+ __ jmp(&done); |
+ |
+ // Try to store the result in a heap number. |
+ __ bind(&try_float); |
+ if (overwrite_ == UNARY_NO_OVERWRITE) { |
+ // Allocate a fresh heap number, but don't overwrite eax until |
+ // we're sure we can do it without going through the slow case |
+ // that needs the value in eax. |
+ __ AllocateHeapNumber(ebx, edx, edi, &slow); |
+ __ mov(eax, Operand(ebx)); |
+ } |
+ if (CpuFeatures::IsSupported(SSE2)) { |
+ CpuFeatures::Scope use_sse2(SSE2); |
+ __ cvtsi2sd(xmm0, Operand(ecx)); |
+ __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
+ } else { |
+ __ push(ecx); |
+ __ fild_s(Operand(esp, 0)); |
+ __ pop(ecx); |
+ __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
+ } |
+ } else { |
+ UNIMPLEMENTED(); |
+ } |
+ |
+ // Return from the stub. |
+ __ bind(&done); |
+ __ StubReturn(1); |
+ |
+ // Handle the slow case by jumping to the JavaScript builtin. |
+ __ bind(&slow); |
+ __ pop(ecx); // pop return address. |
+ __ push(eax); |
+ __ push(ecx); // push return address |
+ switch (op_) { |
+ case Token::SUB: |
+ __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION); |
+ break; |
+ case Token::BIT_NOT: |
+ __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { |
+ // The key is in edx and the parameter count is in eax. |
+ |
+ // The displacement is used for skipping the frame pointer on the |
+ // stack. It is the offset of the last parameter (if any) relative |
+ // to the frame pointer. |
+ static const int kDisplacement = 1 * kPointerSize; |
+ |
+ // Check that the key is a smi. |
+ Label slow; |
+ __ test(edx, Immediate(kSmiTagMask)); |
+ __ j(not_zero, &slow, not_taken); |
+ |
+ // Check if the calling frame is an arguments adaptor frame. |
+ Label adaptor; |
+ __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); |
+ __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset)); |
+ __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
+ __ j(equal, &adaptor); |
+ |
+ // Check index against formal parameters count limit passed in |
+ // through register eax. Use unsigned comparison to get negative |
+ // check for free. |
+ __ cmp(edx, Operand(eax)); |
+ __ j(above_equal, &slow, not_taken); |
+ |
+ // Read the argument from the stack and return it. |
+ STATIC_ASSERT(kSmiTagSize == 1); |
+ STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these. |
+ __ lea(ebx, Operand(ebp, eax, times_2, 0)); |
+ __ neg(edx); |
+ __ mov(eax, Operand(ebx, edx, times_2, kDisplacement)); |
+ __ ret(0); |
+ |
+ // Arguments adaptor case: Check index against actual arguments |
+ // limit found in the arguments adaptor frame. Use unsigned |
+ // comparison to get negative check for free. |
+ __ bind(&adaptor); |
+ __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
+ __ cmp(edx, Operand(ecx)); |
+ __ j(above_equal, &slow, not_taken); |
+ |
+ // Read the argument from the stack and return it. |
+ STATIC_ASSERT(kSmiTagSize == 1); |
+ STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these. |
+ __ lea(ebx, Operand(ebx, ecx, times_2, 0)); |
+ __ neg(edx); |
+ __ mov(eax, Operand(ebx, edx, times_2, kDisplacement)); |
+ __ ret(0); |
+ |
+ // Slow-case: Handle non-smi or out-of-bounds access to arguments |
+ // by calling the runtime system. |
+ __ bind(&slow); |
+ __ pop(ebx); // Return address. |
+ __ push(edx); |
+ __ push(ebx); |
+ __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); |
+} |
+ |
+ |
+void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) { |
+ // esp[0] : return address |
+ // esp[4] : number of parameters |
+ // esp[8] : receiver displacement |
+ // esp[16] : function |
+ |
+ // The displacement is used for skipping the return address and the |
+ // frame pointer on the stack. It is the offset of the last |
+ // parameter (if any) relative to the frame pointer. |
+ static const int kDisplacement = 2 * kPointerSize; |
+ |
+ // Check if the calling frame is an arguments adaptor frame. |
+ Label adaptor_frame, try_allocate, runtime; |
+ __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); |
+ __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset)); |
+ __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
+ __ j(equal, &adaptor_frame); |
+ |
+ // Get the length from the frame. |
+ __ mov(ecx, Operand(esp, 1 * kPointerSize)); |
+ __ jmp(&try_allocate); |
+ |
+ // Patch the arguments.length and the parameters pointer. |
+ __ bind(&adaptor_frame); |
+ __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
+ __ mov(Operand(esp, 1 * kPointerSize), ecx); |
+ __ lea(edx, Operand(edx, ecx, times_2, kDisplacement)); |
+ __ mov(Operand(esp, 2 * kPointerSize), edx); |
+ |
+ // Try the new space allocation. Start out with computing the size of |
+ // the arguments object and the elements array. |
+ Label add_arguments_object; |
+ __ bind(&try_allocate); |
+ __ test(ecx, Operand(ecx)); |
+ __ j(zero, &add_arguments_object); |
+ __ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize)); |
+ __ bind(&add_arguments_object); |
+ __ add(Operand(ecx), Immediate(Heap::kArgumentsObjectSize)); |
+ |
+ // Do the allocation of both objects in one go. |
+ __ AllocateInNewSpace(ecx, eax, edx, ebx, &runtime, TAG_OBJECT); |
+ |
+ // Get the arguments boilerplate from the current (global) context. |
+ int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX); |
+ __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
+ __ mov(edi, FieldOperand(edi, GlobalObject::kGlobalContextOffset)); |
+ __ mov(edi, Operand(edi, offset)); |
+ |
+ // Copy the JS object part. |
+ for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) { |
+ __ mov(ebx, FieldOperand(edi, i)); |
+ __ mov(FieldOperand(eax, i), ebx); |
+ } |
+ |
+ // Setup the callee in-object property. |
+ STATIC_ASSERT(Heap::arguments_callee_index == 0); |
+ __ mov(ebx, Operand(esp, 3 * kPointerSize)); |
+ __ mov(FieldOperand(eax, JSObject::kHeaderSize), ebx); |
+ |
+ // Get the length (smi tagged) and set that as an in-object property too. |
+ STATIC_ASSERT(Heap::arguments_length_index == 1); |
+ __ mov(ecx, Operand(esp, 1 * kPointerSize)); |
+ __ mov(FieldOperand(eax, JSObject::kHeaderSize + kPointerSize), ecx); |
+ |
+ // If there are no actual arguments, we're done. |
+ Label done; |
+ __ test(ecx, Operand(ecx)); |
+ __ j(zero, &done); |
+ |
+ // Get the parameters pointer from the stack. |
+ __ mov(edx, Operand(esp, 2 * kPointerSize)); |
+ |
+ // Setup the elements pointer in the allocated arguments object and |
+ // initialize the header in the elements fixed array. |
+ __ lea(edi, Operand(eax, Heap::kArgumentsObjectSize)); |
+ __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi); |
+ __ mov(FieldOperand(edi, FixedArray::kMapOffset), |
+ Immediate(Factory::fixed_array_map())); |
+ __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx); |
+ // Untag the length for the loop below. |
+ __ SmiUntag(ecx); |
+ |
+ // Copy the fixed array slots. |
+ Label loop; |
+ __ bind(&loop); |
+ __ mov(ebx, Operand(edx, -1 * kPointerSize)); // Skip receiver. |
+ __ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx); |
+ __ add(Operand(edi), Immediate(kPointerSize)); |
+ __ sub(Operand(edx), Immediate(kPointerSize)); |
+ __ dec(ecx); |
+ __ j(not_zero, &loop); |
+ |
+ // Return and remove the on-stack parameters. |
+ __ bind(&done); |
+ __ ret(3 * kPointerSize); |
+ |
+ // Do the runtime call to allocate the arguments object. |
+ __ bind(&runtime); |
+ __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); |
+} |
+ |
+ |
+void RegExpExecStub::Generate(MacroAssembler* masm) { |
+ // Just jump directly to runtime if native RegExp is not selected at compile |
+ // time or if regexp entry in generated code is turned off runtime switch or |
+ // at compilation. |
+#ifdef V8_INTERPRETED_REGEXP |
+ __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
+#else // V8_INTERPRETED_REGEXP |
+ if (!FLAG_regexp_entry_native) { |
+ __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
+ return; |
+ } |
+ |
+ // Stack frame on entry. |
+ // esp[0]: return address |
+ // esp[4]: last_match_info (expected JSArray) |
+ // esp[8]: previous index |
+ // esp[12]: subject string |
+ // esp[16]: JSRegExp object |
+ |
+ static const int kLastMatchInfoOffset = 1 * kPointerSize; |
+ static const int kPreviousIndexOffset = 2 * kPointerSize; |
+ static const int kSubjectOffset = 3 * kPointerSize; |
+ static const int kJSRegExpOffset = 4 * kPointerSize; |
+ |
+ Label runtime, invoke_regexp; |
+ |
+ // Ensure that a RegExp stack is allocated. |
+ ExternalReference address_of_regexp_stack_memory_address = |
+ ExternalReference::address_of_regexp_stack_memory_address(); |
+ ExternalReference address_of_regexp_stack_memory_size = |
+ ExternalReference::address_of_regexp_stack_memory_size(); |
+ __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size)); |
+ __ test(ebx, Operand(ebx)); |
+ __ j(zero, &runtime, not_taken); |
+ |
+ // Check that the first argument is a JSRegExp object. |
+ __ mov(eax, Operand(esp, kJSRegExpOffset)); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ test(eax, Immediate(kSmiTagMask)); |
+ __ j(zero, &runtime); |
+ __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx); |
+ __ j(not_equal, &runtime); |
+ // Check that the RegExp has been compiled (data contains a fixed array). |
+ __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset)); |
+ if (FLAG_debug_code) { |
+ __ test(ecx, Immediate(kSmiTagMask)); |
+ __ Check(not_zero, "Unexpected type for RegExp data, FixedArray expected"); |
+ __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx); |
+ __ Check(equal, "Unexpected type for RegExp data, FixedArray expected"); |
+ } |
+ |
+ // ecx: RegExp data (FixedArray) |
+ // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. |
+ __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset)); |
+ __ cmp(Operand(ebx), Immediate(Smi::FromInt(JSRegExp::IRREGEXP))); |
+ __ j(not_equal, &runtime); |
+ |
+ // ecx: RegExp data (FixedArray) |
+ // Check that the number of captures fit in the static offsets vector buffer. |
+ __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset)); |
+ // Calculate number of capture registers (number_of_captures + 1) * 2. This |
+ // uses the asumption that smis are 2 * their untagged value. |
+ STATIC_ASSERT(kSmiTag == 0); |
+ STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
+ __ add(Operand(edx), Immediate(2)); // edx was a smi. |
+ // Check that the static offsets vector buffer is large enough. |
+ __ cmp(edx, OffsetsVector::kStaticOffsetsVectorSize); |
+ __ j(above, &runtime); |
+ |
+ // ecx: RegExp data (FixedArray) |
+ // edx: Number of capture registers |
+ // Check that the second argument is a string. |
+ __ mov(eax, Operand(esp, kSubjectOffset)); |
+ __ test(eax, Immediate(kSmiTagMask)); |
+ __ j(zero, &runtime); |
+ Condition is_string = masm->IsObjectStringType(eax, ebx, ebx); |
+ __ j(NegateCondition(is_string), &runtime); |
+ // Get the length of the string to ebx. |
+ __ mov(ebx, FieldOperand(eax, String::kLengthOffset)); |
+ |
+ // ebx: Length of subject string as a smi |
+ // ecx: RegExp data (FixedArray) |
+ // edx: Number of capture registers |
+ // Check that the third argument is a positive smi less than the subject |
+ // string length. A negative value will be greater (unsigned comparison). |
+ __ mov(eax, Operand(esp, kPreviousIndexOffset)); |
+ __ test(eax, Immediate(kSmiTagMask)); |
+ __ j(not_zero, &runtime); |
+ __ cmp(eax, Operand(ebx)); |
+ __ j(above_equal, &runtime); |
+ |
+ // ecx: RegExp data (FixedArray) |
+ // edx: Number of capture registers |
+ // Check that the fourth object is a JSArray object. |
+ __ mov(eax, Operand(esp, kLastMatchInfoOffset)); |
+ __ test(eax, Immediate(kSmiTagMask)); |
+ __ j(zero, &runtime); |
+ __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx); |
+ __ j(not_equal, &runtime); |
+ // Check that the JSArray is in fast case. |
+ __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset)); |
+ __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset)); |
+ __ cmp(eax, Factory::fixed_array_map()); |
+ __ j(not_equal, &runtime); |
+ // Check that the last match info has space for the capture registers and the |
+ // additional information. |
+ __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset)); |
+ __ SmiUntag(eax); |
+ __ add(Operand(edx), Immediate(RegExpImpl::kLastMatchOverhead)); |
+ __ cmp(edx, Operand(eax)); |
+ __ j(greater, &runtime); |
+ |
+ // ecx: RegExp data (FixedArray) |
+ // Check the representation and encoding of the subject string. |
+ Label seq_ascii_string, seq_two_byte_string, check_code; |
+ __ mov(eax, Operand(esp, kSubjectOffset)); |
+ __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
+ __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); |
+ // First check for flat two byte string. |
+ __ and_(ebx, |
+ kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask); |
+ STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0); |
+ __ j(zero, &seq_two_byte_string); |
+ // Any other flat string must be a flat ascii string. |
+ __ test(Operand(ebx), |
+ Immediate(kIsNotStringMask | kStringRepresentationMask)); |
+ __ j(zero, &seq_ascii_string); |
+ |
+ // Check for flat cons string. |
+ // A flat cons string is a cons string where the second part is the empty |
+ // string. In that case the subject string is just the first part of the cons |
+ // string. Also in this case the first part of the cons string is known to be |
+ // a sequential string or an external string. |
+ STATIC_ASSERT(kExternalStringTag != 0); |
+ STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0); |
+ __ test(Operand(ebx), |
+ Immediate(kIsNotStringMask | kExternalStringTag)); |
+ __ j(not_zero, &runtime); |
+ // String is a cons string. |
+ __ mov(edx, FieldOperand(eax, ConsString::kSecondOffset)); |
+ __ cmp(Operand(edx), Factory::empty_string()); |
+ __ j(not_equal, &runtime); |
+ __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset)); |
+ __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
+ // String is a cons string with empty second part. |
+ // eax: first part of cons string. |
+ // ebx: map of first part of cons string. |
+ // Is first part a flat two byte string? |
+ __ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset), |
+ kStringRepresentationMask | kStringEncodingMask); |
+ STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0); |
+ __ j(zero, &seq_two_byte_string); |
+ // Any other flat string must be ascii. |
+ __ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset), |
+ kStringRepresentationMask); |
+ __ j(not_zero, &runtime); |
+ |
+ __ bind(&seq_ascii_string); |
+ // eax: subject string (flat ascii) |
+ // ecx: RegExp data (FixedArray) |
+ __ mov(edx, FieldOperand(ecx, JSRegExp::kDataAsciiCodeOffset)); |
+ __ Set(edi, Immediate(1)); // Type is ascii. |
+ __ jmp(&check_code); |
+ |
+ __ bind(&seq_two_byte_string); |
+ // eax: subject string (flat two byte) |
+ // ecx: RegExp data (FixedArray) |
+ __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset)); |
+ __ Set(edi, Immediate(0)); // Type is two byte. |
+ |
+ __ bind(&check_code); |
+ // Check that the irregexp code has been generated for the actual string |
+ // encoding. If it has, the field contains a code object otherwise it contains |
+ // the hole. |
+ __ CmpObjectType(edx, CODE_TYPE, ebx); |
+ __ j(not_equal, &runtime); |
+ |
+ // eax: subject string |
+ // edx: code |
+ // edi: encoding of subject string (1 if ascii, 0 if two_byte); |
+ // Load used arguments before starting to push arguments for call to native |
+ // RegExp code to avoid handling changing stack height. |
+ __ mov(ebx, Operand(esp, kPreviousIndexOffset)); |
+ __ SmiUntag(ebx); // Previous index from smi. |
+ |
+ // eax: subject string |
+ // ebx: previous index |
+ // edx: code |
+ // edi: encoding of subject string (1 if ascii 0 if two_byte); |
+ // All checks done. Now push arguments for native regexp code. |
+ __ IncrementCounter(&Counters::regexp_entry_native, 1); |
+ |
+ static const int kRegExpExecuteArguments = 7; |
+ __ PrepareCallCFunction(kRegExpExecuteArguments, ecx); |
+ |
+ // Argument 7: Indicate that this is a direct call from JavaScript. |
+ __ mov(Operand(esp, 6 * kPointerSize), Immediate(1)); |
+ |
+ // Argument 6: Start (high end) of backtracking stack memory area. |
+ __ mov(ecx, Operand::StaticVariable(address_of_regexp_stack_memory_address)); |
+ __ add(ecx, Operand::StaticVariable(address_of_regexp_stack_memory_size)); |
+ __ mov(Operand(esp, 5 * kPointerSize), ecx); |
+ |
+ // Argument 5: static offsets vector buffer. |
+ __ mov(Operand(esp, 4 * kPointerSize), |
+ Immediate(ExternalReference::address_of_static_offsets_vector())); |
+ |
+ // Argument 4: End of string data |
+ // Argument 3: Start of string data |
+ Label setup_two_byte, setup_rest; |
+ __ test(edi, Operand(edi)); |
+ __ mov(edi, FieldOperand(eax, String::kLengthOffset)); |
+ __ j(zero, &setup_two_byte); |
+ __ SmiUntag(edi); |
+ __ lea(ecx, FieldOperand(eax, edi, times_1, SeqAsciiString::kHeaderSize)); |
+ __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4. |
+ __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqAsciiString::kHeaderSize)); |
+ __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3. |
+ __ jmp(&setup_rest); |
+ |
+ __ bind(&setup_two_byte); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ STATIC_ASSERT(kSmiTagSize == 1); // edi is smi (powered by 2). |
+ __ lea(ecx, FieldOperand(eax, edi, times_1, SeqTwoByteString::kHeaderSize)); |
+ __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4. |
+ __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize)); |
+ __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3. |
+ |
+ __ bind(&setup_rest); |
+ |
+ // Argument 2: Previous index. |
+ __ mov(Operand(esp, 1 * kPointerSize), ebx); |
+ |
+ // Argument 1: Subject string. |
+ __ mov(Operand(esp, 0 * kPointerSize), eax); |
+ |
+ // Locate the code entry and call it. |
+ __ add(Operand(edx), Immediate(Code::kHeaderSize - kHeapObjectTag)); |
+ __ CallCFunction(edx, kRegExpExecuteArguments); |
+ |
+ // Check the result. |
+ Label success; |
+ __ cmp(eax, NativeRegExpMacroAssembler::SUCCESS); |
+ __ j(equal, &success, taken); |
+ Label failure; |
+ __ cmp(eax, NativeRegExpMacroAssembler::FAILURE); |
+ __ j(equal, &failure, taken); |
+ __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION); |
+ // If not exception it can only be retry. Handle that in the runtime system. |
+ __ j(not_equal, &runtime); |
+ // Result must now be exception. If there is no pending exception already a |
+ // stack overflow (on the backtrack stack) was detected in RegExp code but |
+ // haven't created the exception yet. Handle that in the runtime system. |
+ // TODO(592): Rerunning the RegExp to get the stack overflow exception. |
+ ExternalReference pending_exception(Top::k_pending_exception_address); |
+ __ mov(eax, |
+ Operand::StaticVariable(ExternalReference::the_hole_value_location())); |
+ __ cmp(eax, Operand::StaticVariable(pending_exception)); |
+ __ j(equal, &runtime); |
+ __ bind(&failure); |
+ // For failure and exception return null. |
+ __ mov(Operand(eax), Factory::null_value()); |
+ __ ret(4 * kPointerSize); |
+ |
+ // Load RegExp data. |
+ __ bind(&success); |
+ __ mov(eax, Operand(esp, kJSRegExpOffset)); |
+ __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset)); |
+ __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset)); |
+ // Calculate number of capture registers (number_of_captures + 1) * 2. |
+ STATIC_ASSERT(kSmiTag == 0); |
+ STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
+ __ add(Operand(edx), Immediate(2)); // edx was a smi. |
+ |
+ // edx: Number of capture registers |
+ // Load last_match_info which is still known to be a fast case JSArray. |
+ __ mov(eax, Operand(esp, kLastMatchInfoOffset)); |
+ __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset)); |
+ |
+ // ebx: last_match_info backing store (FixedArray) |
+ // edx: number of capture registers |
+ // Store the capture count. |
+ __ SmiTag(edx); // Number of capture registers to smi. |
+ __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx); |
+ __ SmiUntag(edx); // Number of capture registers back from smi. |
+ // Store last subject and last input. |
+ __ mov(eax, Operand(esp, kSubjectOffset)); |
+ __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax); |
+ __ mov(ecx, ebx); |
+ __ RecordWrite(ecx, RegExpImpl::kLastSubjectOffset, eax, edi); |
+ __ mov(eax, Operand(esp, kSubjectOffset)); |
+ __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax); |
+ __ mov(ecx, ebx); |
+ __ RecordWrite(ecx, RegExpImpl::kLastInputOffset, eax, edi); |
+ |
+ // Get the static offsets vector filled by the native regexp code. |
+ ExternalReference address_of_static_offsets_vector = |
+ ExternalReference::address_of_static_offsets_vector(); |
+ __ mov(ecx, Immediate(address_of_static_offsets_vector)); |
+ |
+ // ebx: last_match_info backing store (FixedArray) |
+ // ecx: offsets vector |
+ // edx: number of capture registers |
+ Label next_capture, done; |
+ // Capture register counter starts from number of capture registers and |
+ // counts down until wraping after zero. |
+ __ bind(&next_capture); |
+ __ sub(Operand(edx), Immediate(1)); |
+ __ j(negative, &done); |
+ // Read the value from the static offsets vector buffer. |
+ __ mov(edi, Operand(ecx, edx, times_int_size, 0)); |
+ __ SmiTag(edi); |
+ // Store the smi value in the last match info. |
+ __ mov(FieldOperand(ebx, |
+ edx, |
+ times_pointer_size, |
+ RegExpImpl::kFirstCaptureOffset), |
+ edi); |
+ __ jmp(&next_capture); |
+ __ bind(&done); |
+ |
+ // Return last match info. |
+ __ mov(eax, Operand(esp, kLastMatchInfoOffset)); |
+ __ ret(4 * kPointerSize); |
+ |
+ // Do the runtime call to execute the regexp. |
+ __ bind(&runtime); |
+ __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
+#endif // V8_INTERPRETED_REGEXP |
+} |
+ |
+ |
+void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, |
+ Register object, |
+ Register result, |
+ Register scratch1, |
+ Register scratch2, |
+ bool object_is_smi, |
+ Label* not_found) { |
+ // Use of registers. Register result is used as a temporary. |
+ Register number_string_cache = result; |
+ Register mask = scratch1; |
+ Register scratch = scratch2; |
+ |
+ // Load the number string cache. |
+ ExternalReference roots_address = ExternalReference::roots_address(); |
+ __ mov(scratch, Immediate(Heap::kNumberStringCacheRootIndex)); |
+ __ mov(number_string_cache, |
+ Operand::StaticArray(scratch, times_pointer_size, roots_address)); |
+ // Make the hash mask from the length of the number string cache. It |
+ // contains two elements (number and string) for each cache entry. |
+ __ mov(mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset)); |
+ __ shr(mask, kSmiTagSize + 1); // Untag length and divide it by two. |
+ __ sub(Operand(mask), Immediate(1)); // Make mask. |
+ |
+ // Calculate the entry in the number string cache. The hash value in the |
+ // number string cache for smis is just the smi value, and the hash for |
+ // doubles is the xor of the upper and lower words. See |
+ // Heap::GetNumberStringCache. |
+ Label smi_hash_calculated; |
+ Label load_result_from_cache; |
+ if (object_is_smi) { |
+ __ mov(scratch, object); |
+ __ SmiUntag(scratch); |
+ } else { |
+ Label not_smi, hash_calculated; |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ test(object, Immediate(kSmiTagMask)); |
+ __ j(not_zero, ¬_smi); |
+ __ mov(scratch, object); |
+ __ SmiUntag(scratch); |
+ __ jmp(&smi_hash_calculated); |
+ __ bind(¬_smi); |
+ __ cmp(FieldOperand(object, HeapObject::kMapOffset), |
+ Factory::heap_number_map()); |
+ __ j(not_equal, not_found); |
+ STATIC_ASSERT(8 == kDoubleSize); |
+ __ mov(scratch, FieldOperand(object, HeapNumber::kValueOffset)); |
+ __ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4)); |
+ // Object is heap number and hash is now in scratch. Calculate cache index. |
+ __ and_(scratch, Operand(mask)); |
+ Register index = scratch; |
+ Register probe = mask; |
+ __ mov(probe, |
+ FieldOperand(number_string_cache, |
+ index, |
+ times_twice_pointer_size, |
+ FixedArray::kHeaderSize)); |
+ __ test(probe, Immediate(kSmiTagMask)); |
+ __ j(zero, not_found); |
+ if (CpuFeatures::IsSupported(SSE2)) { |
+ CpuFeatures::Scope fscope(SSE2); |
+ __ movdbl(xmm0, FieldOperand(object, HeapNumber::kValueOffset)); |
+ __ movdbl(xmm1, FieldOperand(probe, HeapNumber::kValueOffset)); |
+ __ ucomisd(xmm0, xmm1); |
+ } else { |
+ __ fld_d(FieldOperand(object, HeapNumber::kValueOffset)); |
+ __ fld_d(FieldOperand(probe, HeapNumber::kValueOffset)); |
+ __ FCmp(); |
+ } |
+ __ j(parity_even, not_found); // Bail out if NaN is involved. |
+ __ j(not_equal, not_found); // The cache did not contain this value. |
+ __ jmp(&load_result_from_cache); |
+ } |
+ |
+ __ bind(&smi_hash_calculated); |
+ // Object is smi and hash is now in scratch. Calculate cache index. |
+ __ and_(scratch, Operand(mask)); |
+ Register index = scratch; |
+ // Check if the entry is the smi we are looking for. |
+ __ cmp(object, |
+ FieldOperand(number_string_cache, |
+ index, |
+ times_twice_pointer_size, |
+ FixedArray::kHeaderSize)); |
+ __ j(not_equal, not_found); |
+ |
+ // Get the result from the cache. |
+ __ bind(&load_result_from_cache); |
+ __ mov(result, |
+ FieldOperand(number_string_cache, |
+ index, |
+ times_twice_pointer_size, |
+ FixedArray::kHeaderSize + kPointerSize)); |
+ __ IncrementCounter(&Counters::number_to_string_native, 1); |
+} |
+ |
+ |
+void NumberToStringStub::Generate(MacroAssembler* masm) { |
+ Label runtime; |
+ |
+ __ mov(ebx, Operand(esp, kPointerSize)); |
+ |
+ // Generate code to lookup number in the number string cache. |
+ GenerateLookupNumberStringCache(masm, ebx, eax, ecx, edx, false, &runtime); |
+ __ ret(1 * kPointerSize); |
+ |
+ __ bind(&runtime); |
+ // Handle number to string in the runtime system if not found in the cache. |
+ __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1); |
+} |
+ |
+ |
+static int NegativeComparisonResult(Condition cc) { |
+ ASSERT(cc != equal); |
+ ASSERT((cc == less) || (cc == less_equal) |
+ || (cc == greater) || (cc == greater_equal)); |
+ return (cc == greater || cc == greater_equal) ? LESS : GREATER; |
+} |
+ |
+void CompareStub::Generate(MacroAssembler* masm) { |
+ ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); |
+ |
+ Label check_unequal_objects, done; |
+ |
+ // NOTICE! This code is only reached after a smi-fast-case check, so |
+ // it is certain that at least one operand isn't a smi. |
+ |
+ // Identical objects can be compared fast, but there are some tricky cases |
+ // for NaN and undefined. |
+ { |
+ Label not_identical; |
+ __ cmp(eax, Operand(edx)); |
+ __ j(not_equal, ¬_identical); |
+ |
+ if (cc_ != equal) { |
+ // Check for undefined. undefined OP undefined is false even though |
+ // undefined == undefined. |
+ Label check_for_nan; |
+ __ cmp(edx, Factory::undefined_value()); |
+ __ j(not_equal, &check_for_nan); |
+ __ Set(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc_)))); |
+ __ ret(0); |
+ __ bind(&check_for_nan); |
+ } |
+ |
+ // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), |
+ // so we do the second best thing - test it ourselves. |
+ // Note: if cc_ != equal, never_nan_nan_ is not used. |
+ if (never_nan_nan_ && (cc_ == equal)) { |
+ __ Set(eax, Immediate(Smi::FromInt(EQUAL))); |
+ __ ret(0); |
+ } else { |
+ Label heap_number; |
+ __ cmp(FieldOperand(edx, HeapObject::kMapOffset), |
+ Immediate(Factory::heap_number_map())); |
+ __ j(equal, &heap_number); |
+ if (cc_ != equal) { |
+ // Call runtime on identical JSObjects. Otherwise return equal. |
+ __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx); |
+ __ j(above_equal, ¬_identical); |
+ } |
+ __ Set(eax, Immediate(Smi::FromInt(EQUAL))); |
+ __ ret(0); |
+ |
+ __ bind(&heap_number); |
+ // It is a heap number, so return non-equal if it's NaN and equal if |
+ // it's not NaN. |
+ // The representation of NaN values has all exponent bits (52..62) set, |
+ // and not all mantissa bits (0..51) clear. |
+ // We only accept QNaNs, which have bit 51 set. |
+ // Read top bits of double representation (second word of value). |
+ |
+ // Value is a QNaN if value & kQuietNaNMask == kQuietNaNMask, i.e., |
+ // all bits in the mask are set. We only need to check the word |
+ // that contains the exponent and high bit of the mantissa. |
+ STATIC_ASSERT(((kQuietNaNHighBitsMask << 1) & 0x80000000u) != 0); |
+ __ mov(edx, FieldOperand(edx, HeapNumber::kExponentOffset)); |
+ __ xor_(eax, Operand(eax)); |
+ // Shift value and mask so kQuietNaNHighBitsMask applies to topmost |
+ // bits. |
+ __ add(edx, Operand(edx)); |
+ __ cmp(edx, kQuietNaNHighBitsMask << 1); |
+ if (cc_ == equal) { |
+ STATIC_ASSERT(EQUAL != 1); |
+ __ setcc(above_equal, eax); |
+ __ ret(0); |
+ } else { |
+ Label nan; |
+ __ j(above_equal, &nan); |
+ __ Set(eax, Immediate(Smi::FromInt(EQUAL))); |
+ __ ret(0); |
+ __ bind(&nan); |
+ __ Set(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc_)))); |
+ __ ret(0); |
+ } |
+ } |
+ |
+ __ bind(¬_identical); |
+ } |
+ |
+ // Strict equality can quickly decide whether objects are equal. |
+ // Non-strict object equality is slower, so it is handled later in the stub. |
+ if (cc_ == equal && strict_) { |
+ Label slow; // Fallthrough label. |
+ Label not_smis; |
+ // If we're doing a strict equality comparison, we don't have to do |
+ // type conversion, so we generate code to do fast comparison for objects |
+ // and oddballs. Non-smi numbers and strings still go through the usual |
+ // slow-case code. |
+ // If either is a Smi (we know that not both are), then they can only |
+ // be equal if the other is a HeapNumber. If so, use the slow case. |
+ STATIC_ASSERT(kSmiTag == 0); |
+ ASSERT_EQ(0, Smi::FromInt(0)); |
+ __ mov(ecx, Immediate(kSmiTagMask)); |
+ __ and_(ecx, Operand(eax)); |
+ __ test(ecx, Operand(edx)); |
+ __ j(not_zero, ¬_smis); |
+ // One operand is a smi. |
+ |
+ // Check whether the non-smi is a heap number. |
+ STATIC_ASSERT(kSmiTagMask == 1); |
+ // ecx still holds eax & kSmiTag, which is either zero or one. |
+ __ sub(Operand(ecx), Immediate(0x01)); |
+ __ mov(ebx, edx); |
+ __ xor_(ebx, Operand(eax)); |
+ __ and_(ebx, Operand(ecx)); // ebx holds either 0 or eax ^ edx. |
+ __ xor_(ebx, Operand(eax)); |
+ // if eax was smi, ebx is now edx, else eax. |
+ |
+ // Check if the non-smi operand is a heap number. |
+ __ cmp(FieldOperand(ebx, HeapObject::kMapOffset), |
+ Immediate(Factory::heap_number_map())); |
+ // If heap number, handle it in the slow case. |
+ __ j(equal, &slow); |
+ // Return non-equal (ebx is not zero) |
+ __ mov(eax, ebx); |
+ __ ret(0); |
+ |
+ __ bind(¬_smis); |
+ // If either operand is a JSObject or an oddball value, then they are not |
+ // equal since their pointers are different |
+ // There is no test for undetectability in strict equality. |
+ |
+ // Get the type of the first operand. |
+ // If the first object is a JS object, we have done pointer comparison. |
+ Label first_non_object; |
+ STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
+ __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx); |
+ __ j(below, &first_non_object); |
+ |
+ // Return non-zero (eax is not zero) |
+ Label return_not_equal; |
+ STATIC_ASSERT(kHeapObjectTag != 0); |
+ __ bind(&return_not_equal); |
+ __ ret(0); |
+ |
+ __ bind(&first_non_object); |
+ // Check for oddballs: true, false, null, undefined. |
+ __ CmpInstanceType(ecx, ODDBALL_TYPE); |
+ __ j(equal, &return_not_equal); |
+ |
+ __ CmpObjectType(edx, FIRST_JS_OBJECT_TYPE, ecx); |
+ __ j(above_equal, &return_not_equal); |
+ |
+ // Check for oddballs: true, false, null, undefined. |
+ __ CmpInstanceType(ecx, ODDBALL_TYPE); |
+ __ j(equal, &return_not_equal); |
+ |
+ // Fall through to the general case. |
+ __ bind(&slow); |
+ } |
+ |
+ // Generate the number comparison code. |
+ if (include_number_compare_) { |
+ Label non_number_comparison; |
+ Label unordered; |
+ if (CpuFeatures::IsSupported(SSE2)) { |
+ CpuFeatures::Scope use_sse2(SSE2); |
+ CpuFeatures::Scope use_cmov(CMOV); |
+ |
+ FloatingPointHelper::LoadSSE2Operands(masm, &non_number_comparison); |
+ __ ucomisd(xmm0, xmm1); |
+ |
+ // Don't base result on EFLAGS when a NaN is involved. |
+ __ j(parity_even, &unordered, not_taken); |
+ // Return a result of -1, 0, or 1, based on EFLAGS. |
+ __ mov(eax, 0); // equal |
+ __ mov(ecx, Immediate(Smi::FromInt(1))); |
+ __ cmov(above, eax, Operand(ecx)); |
+ __ mov(ecx, Immediate(Smi::FromInt(-1))); |
+ __ cmov(below, eax, Operand(ecx)); |
+ __ ret(0); |
+ } else { |
+ FloatingPointHelper::CheckFloatOperands( |
+ masm, &non_number_comparison, ebx); |
+ FloatingPointHelper::LoadFloatOperand(masm, eax); |
+ FloatingPointHelper::LoadFloatOperand(masm, edx); |
+ __ FCmp(); |
+ |
+ // Don't base result on EFLAGS when a NaN is involved. |
+ __ j(parity_even, &unordered, not_taken); |
+ |
+ Label below_label, above_label; |
+ // Return a result of -1, 0, or 1, based on EFLAGS. |
+ __ j(below, &below_label, not_taken); |
+ __ j(above, &above_label, not_taken); |
+ |
+ __ xor_(eax, Operand(eax)); |
+ __ ret(0); |
+ |
+ __ bind(&below_label); |
+ __ mov(eax, Immediate(Smi::FromInt(-1))); |
+ __ ret(0); |
+ |
+ __ bind(&above_label); |
+ __ mov(eax, Immediate(Smi::FromInt(1))); |
+ __ ret(0); |
+ } |
+ |
+ // If one of the numbers was NaN, then the result is always false. |
+ // The cc is never not-equal. |
+ __ bind(&unordered); |
+ ASSERT(cc_ != not_equal); |
+ if (cc_ == less || cc_ == less_equal) { |
+ __ mov(eax, Immediate(Smi::FromInt(1))); |
+ } else { |
+ __ mov(eax, Immediate(Smi::FromInt(-1))); |
+ } |
+ __ ret(0); |
+ |
+ // The number comparison code did not provide a valid result. |
+ __ bind(&non_number_comparison); |
+ } |
+ |
+ // Fast negative check for symbol-to-symbol equality. |
+ Label check_for_strings; |
+ if (cc_ == equal) { |
+ BranchIfNonSymbol(masm, &check_for_strings, eax, ecx); |
+ BranchIfNonSymbol(masm, &check_for_strings, edx, ecx); |
+ |
+ // We've already checked for object identity, so if both operands |
+ // are symbols they aren't equal. Register eax already holds a |
+ // non-zero value, which indicates not equal, so just return. |
+ __ ret(0); |
+ } |
+ |
+ __ bind(&check_for_strings); |
+ |
+ __ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx, |
+ &check_unequal_objects); |
+ |
+ // Inline comparison of ascii strings. |
+ StringCompareStub::GenerateCompareFlatAsciiStrings(masm, |
+ edx, |
+ eax, |
+ ecx, |
+ ebx, |
+ edi); |
+#ifdef DEBUG |
+ __ Abort("Unexpected fall-through from string comparison"); |
+#endif |
+ |
+ __ bind(&check_unequal_objects); |
+ if (cc_ == equal && !strict_) { |
+ // Non-strict equality. Objects are unequal if |
+ // they are both JSObjects and not undetectable, |
+ // and their pointers are different. |
+ Label not_both_objects; |
+ Label return_unequal; |
+ // At most one is a smi, so we can test for smi by adding the two. |
+ // A smi plus a heap object has the low bit set, a heap object plus |
+ // a heap object has the low bit clear. |
+ STATIC_ASSERT(kSmiTag == 0); |
+ STATIC_ASSERT(kSmiTagMask == 1); |
+ __ lea(ecx, Operand(eax, edx, times_1, 0)); |
+ __ test(ecx, Immediate(kSmiTagMask)); |
+ __ j(not_zero, ¬_both_objects); |
+ __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx); |
+ __ j(below, ¬_both_objects); |
+ __ CmpObjectType(edx, FIRST_JS_OBJECT_TYPE, ebx); |
+ __ j(below, ¬_both_objects); |
+ // We do not bail out after this point. Both are JSObjects, and |
+ // they are equal if and only if both are undetectable. |
+ // The and of the undetectable flags is 1 if and only if they are equal. |
+ __ test_b(FieldOperand(ecx, Map::kBitFieldOffset), |
+ 1 << Map::kIsUndetectable); |
+ __ j(zero, &return_unequal); |
+ __ test_b(FieldOperand(ebx, Map::kBitFieldOffset), |
+ 1 << Map::kIsUndetectable); |
+ __ j(zero, &return_unequal); |
+ // The objects are both undetectable, so they both compare as the value |
+ // undefined, and are equal. |
+ __ Set(eax, Immediate(EQUAL)); |
+ __ bind(&return_unequal); |
+ // Return non-equal by returning the non-zero object pointer in eax, |
+ // or return equal if we fell through to here. |
+ __ ret(0); // rax, rdx were pushed |
+ __ bind(¬_both_objects); |
+ } |
+ |
+ // Push arguments below the return address. |
+ __ pop(ecx); |
+ __ push(edx); |
+ __ push(eax); |
+ |
+ // Figure out which native to call and setup the arguments. |
+ Builtins::JavaScript builtin; |
+ if (cc_ == equal) { |
+ builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; |
+ } else { |
+ builtin = Builtins::COMPARE; |
+ __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc_)))); |
+ } |
+ |
+ // Restore return address on the stack. |
+ __ push(ecx); |
+ |
+ // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) |
+ // tagged as a small integer. |
+ __ InvokeBuiltin(builtin, JUMP_FUNCTION); |
+} |
+ |
+ |
+void CompareStub::BranchIfNonSymbol(MacroAssembler* masm, |
+ Label* label, |
+ Register object, |
+ Register scratch) { |
+ __ test(object, Immediate(kSmiTagMask)); |
+ __ j(zero, label); |
+ __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset)); |
+ __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); |
+ __ and_(scratch, kIsSymbolMask | kIsNotStringMask); |
+ __ cmp(scratch, kSymbolTag | kStringTag); |
+ __ j(not_equal, label); |
+} |
+ |
+ |
+void StackCheckStub::Generate(MacroAssembler* masm) { |
+ // Because builtins always remove the receiver from the stack, we |
+ // have to fake one to avoid underflowing the stack. The receiver |
+ // must be inserted below the return address on the stack so we |
+ // temporarily store that in a register. |
+ __ pop(eax); |
+ __ push(Immediate(Smi::FromInt(0))); |
+ __ push(eax); |
+ |
+ // Do tail-call to runtime routine. |
+ __ TailCallRuntime(Runtime::kStackGuard, 1, 1); |
+} |
+ |
+ |
+void CallFunctionStub::Generate(MacroAssembler* masm) { |
+ Label slow; |
+ |
+ // If the receiver might be a value (string, number or boolean) check for this |
+ // and box it if it is. |
+ if (ReceiverMightBeValue()) { |
+ // Get the receiver from the stack. |
+ // +1 ~ return address |
+ Label receiver_is_value, receiver_is_js_object; |
+ __ mov(eax, Operand(esp, (argc_ + 1) * kPointerSize)); |
+ |
+ // Check if receiver is a smi (which is a number value). |
+ __ test(eax, Immediate(kSmiTagMask)); |
+ __ j(zero, &receiver_is_value, not_taken); |
+ |
+ // Check if the receiver is a valid JS object. |
+ __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, edi); |
+ __ j(above_equal, &receiver_is_js_object); |
+ |
+ // Call the runtime to box the value. |
+ __ bind(&receiver_is_value); |
+ __ EnterInternalFrame(); |
+ __ push(eax); |
+ __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); |
+ __ LeaveInternalFrame(); |
+ __ mov(Operand(esp, (argc_ + 1) * kPointerSize), eax); |
+ |
+ __ bind(&receiver_is_js_object); |
+ } |
+ |
+ // Get the function to call from the stack. |
+ // +2 ~ receiver, return address |
+ __ mov(edi, Operand(esp, (argc_ + 2) * kPointerSize)); |
+ |
+ // Check that the function really is a JavaScript function. |
+ __ test(edi, Immediate(kSmiTagMask)); |
+ __ j(zero, &slow, not_taken); |
+ // Goto slow case if we do not have a function. |
+ __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); |
+ __ j(not_equal, &slow, not_taken); |
+ |
+ // Fast-case: Just invoke the function. |
+ ParameterCount actual(argc_); |
+ __ InvokeFunction(edi, actual, JUMP_FUNCTION); |
+ |
+ // Slow-case: Non-function called. |
+ __ bind(&slow); |
+ // CALL_NON_FUNCTION expects the non-function callee as receiver (instead |
+ // of the original receiver from the call site). |
+ __ mov(Operand(esp, (argc_ + 1) * kPointerSize), edi); |
+ __ Set(eax, Immediate(argc_)); |
+ __ Set(ebx, Immediate(0)); |
+ __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION); |
+ Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)); |
+ __ jmp(adaptor, RelocInfo::CODE_TARGET); |
+} |
+ |
+ |
+void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) { |
+ // eax holds the exception. |
+ |
+ // Adjust this code if not the case. |
+ STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); |
+ |
+ // Drop the sp to the top of the handler. |
+ ExternalReference handler_address(Top::k_handler_address); |
+ __ mov(esp, Operand::StaticVariable(handler_address)); |
+ |
+ // Restore next handler and frame pointer, discard handler state. |
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
+ __ pop(Operand::StaticVariable(handler_address)); |
+ STATIC_ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize); |
+ __ pop(ebp); |
+ __ pop(edx); // Remove state. |
+ |
+ // Before returning we restore the context from the frame pointer if |
+ // not NULL. The frame pointer is NULL in the exception handler of |
+ // a JS entry frame. |
+ __ xor_(esi, Operand(esi)); // Tentatively set context pointer to NULL. |
+ Label skip; |
+ __ cmp(ebp, 0); |
+ __ j(equal, &skip, not_taken); |
+ __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); |
+ __ bind(&skip); |
+ |
+ STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); |
+ __ ret(0); |
+} |
+ |
+ |
+// If true, a Handle<T> passed by value is passed and returned by |
+// using the location_ field directly. If false, it is passed and |
+// returned as a pointer to a handle. |
+#ifdef USING_BSD_ABI |
+static const bool kPassHandlesDirectly = true; |
+#else |
+static const bool kPassHandlesDirectly = false; |
+#endif |
+ |
+ |
+void ApiGetterEntryStub::Generate(MacroAssembler* masm) { |
+ Label empty_handle; |
+ Label prologue; |
+ Label promote_scheduled_exception; |
+ __ EnterApiExitFrame(ExitFrame::MODE_NORMAL, kStackSpace, kArgc); |
+ STATIC_ASSERT(kArgc == 4); |
+ if (kPassHandlesDirectly) { |
+ // When handles as passed directly we don't have to allocate extra |
+ // space for and pass an out parameter. |
+ __ mov(Operand(esp, 0 * kPointerSize), ebx); // name. |
+ __ mov(Operand(esp, 1 * kPointerSize), eax); // arguments pointer. |
+ } else { |
+ // The function expects three arguments to be passed but we allocate |
+ // four to get space for the output cell. The argument slots are filled |
+ // as follows: |
+ // |
+ // 3: output cell |
+ // 2: arguments pointer |
+ // 1: name |
+ // 0: pointer to the output cell |
+ // |
+ // Note that this is one more "argument" than the function expects |
+ // so the out cell will have to be popped explicitly after returning |
+ // from the function. |
+ __ mov(Operand(esp, 1 * kPointerSize), ebx); // name. |
+ __ mov(Operand(esp, 2 * kPointerSize), eax); // arguments pointer. |
+ __ mov(ebx, esp); |
+ __ add(Operand(ebx), Immediate(3 * kPointerSize)); |
+ __ mov(Operand(esp, 0 * kPointerSize), ebx); // output |
+ __ mov(Operand(esp, 3 * kPointerSize), Immediate(0)); // out cell. |
+ } |
+ // Call the api function! |
+ __ call(fun()->address(), RelocInfo::RUNTIME_ENTRY); |
+ // Check if the function scheduled an exception. |
+ ExternalReference scheduled_exception_address = |
+ ExternalReference::scheduled_exception_address(); |
+ __ cmp(Operand::StaticVariable(scheduled_exception_address), |
+ Immediate(Factory::the_hole_value())); |
+ __ j(not_equal, &promote_scheduled_exception, not_taken); |
+ if (!kPassHandlesDirectly) { |
+ // The returned value is a pointer to the handle holding the result. |
+ // Dereference this to get to the location. |
+ __ mov(eax, Operand(eax, 0)); |
+ } |
+ // Check if the result handle holds 0. |
+ __ test(eax, Operand(eax)); |
+ __ j(zero, &empty_handle, not_taken); |
+ // It was non-zero. Dereference to get the result value. |
+ __ mov(eax, Operand(eax, 0)); |
+ __ bind(&prologue); |
+ __ LeaveExitFrame(ExitFrame::MODE_NORMAL); |
+ __ ret(0); |
+ __ bind(&promote_scheduled_exception); |
+ __ TailCallRuntime(Runtime::kPromoteScheduledException, 0, 1); |
+ __ bind(&empty_handle); |
+ // It was zero; the result is undefined. |
+ __ mov(eax, Factory::undefined_value()); |
+ __ jmp(&prologue); |
+} |
+ |
+ |
+void CEntryStub::GenerateCore(MacroAssembler* masm, |
+ Label* throw_normal_exception, |
+ Label* throw_termination_exception, |
+ Label* throw_out_of_memory_exception, |
+ bool do_gc, |
+ bool always_allocate_scope, |
+ int /* alignment_skew */) { |
+ // eax: result parameter for PerformGC, if any |
+ // ebx: pointer to C function (C callee-saved) |
+ // ebp: frame pointer (restored after C call) |
+ // esp: stack pointer (restored after C call) |
+ // edi: number of arguments including receiver (C callee-saved) |
+ // esi: pointer to the first argument (C callee-saved) |
+ |
+ // Result returned in eax, or eax+edx if result_size_ is 2. |
+ |
+ // Check stack alignment. |
+ if (FLAG_debug_code) { |
+ __ CheckStackAlignment(); |
+ } |
+ |
+ if (do_gc) { |
+ // Pass failure code returned from last attempt as first argument to |
+ // PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the |
+ // stack alignment is known to be correct. This function takes one argument |
+ // which is passed on the stack, and we know that the stack has been |
+ // prepared to pass at least one argument. |
+ __ mov(Operand(esp, 0 * kPointerSize), eax); // Result. |
+ __ call(FUNCTION_ADDR(Runtime::PerformGC), RelocInfo::RUNTIME_ENTRY); |
+ } |
+ |
+ ExternalReference scope_depth = |
+ ExternalReference::heap_always_allocate_scope_depth(); |
+ if (always_allocate_scope) { |
+ __ inc(Operand::StaticVariable(scope_depth)); |
+ } |
+ |
+ // Call C function. |
+ __ mov(Operand(esp, 0 * kPointerSize), edi); // argc. |
+ __ mov(Operand(esp, 1 * kPointerSize), esi); // argv. |
+ __ call(Operand(ebx)); |
+ // Result is in eax or edx:eax - do not destroy these registers! |
+ |
+ if (always_allocate_scope) { |
+ __ dec(Operand::StaticVariable(scope_depth)); |
+ } |
+ |
+ // Make sure we're not trying to return 'the hole' from the runtime |
+ // call as this may lead to crashes in the IC code later. |
+ if (FLAG_debug_code) { |
+ Label okay; |
+ __ cmp(eax, Factory::the_hole_value()); |
+ __ j(not_equal, &okay); |
+ __ int3(); |
+ __ bind(&okay); |
+ } |
+ |
+ // Check for failure result. |
+ Label failure_returned; |
+ STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); |
+ __ lea(ecx, Operand(eax, 1)); |
+ // Lower 2 bits of ecx are 0 iff eax has failure tag. |
+ __ test(ecx, Immediate(kFailureTagMask)); |
+ __ j(zero, &failure_returned, not_taken); |
+ |
+ // Exit the JavaScript to C++ exit frame. |
+ __ LeaveExitFrame(mode_); |
+ __ ret(0); |
+ |
+ // Handling of failure. |
+ __ bind(&failure_returned); |
+ |
+ Label retry; |
+ // If the returned exception is RETRY_AFTER_GC continue at retry label |
+ STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0); |
+ __ test(eax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); |
+ __ j(zero, &retry, taken); |
+ |
+ // Special handling of out of memory exceptions. |
+ __ cmp(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException())); |
+ __ j(equal, throw_out_of_memory_exception); |
+ |
+ // Retrieve the pending exception and clear the variable. |
+ ExternalReference pending_exception_address(Top::k_pending_exception_address); |
+ __ mov(eax, Operand::StaticVariable(pending_exception_address)); |
+ __ mov(edx, |
+ Operand::StaticVariable(ExternalReference::the_hole_value_location())); |
+ __ mov(Operand::StaticVariable(pending_exception_address), edx); |
+ |
+ // Special handling of termination exceptions which are uncatchable |
+ // by javascript code. |
+ __ cmp(eax, Factory::termination_exception()); |
+ __ j(equal, throw_termination_exception); |
+ |
+ // Handle normal exception. |
+ __ jmp(throw_normal_exception); |
+ |
+ // Retry. |
+ __ bind(&retry); |
+} |
+ |
+ |
+void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm, |
+ UncatchableExceptionType type) { |
+ // Adjust this code if not the case. |
+ STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); |
+ |
+ // Drop sp to the top stack handler. |
+ ExternalReference handler_address(Top::k_handler_address); |
+ __ mov(esp, Operand::StaticVariable(handler_address)); |
+ |
+ // Unwind the handlers until the ENTRY handler is found. |
+ Label loop, done; |
+ __ bind(&loop); |
+ // Load the type of the current stack handler. |
+ const int kStateOffset = StackHandlerConstants::kStateOffset; |
+ __ cmp(Operand(esp, kStateOffset), Immediate(StackHandler::ENTRY)); |
+ __ j(equal, &done); |
+ // Fetch the next handler in the list. |
+ const int kNextOffset = StackHandlerConstants::kNextOffset; |
+ __ mov(esp, Operand(esp, kNextOffset)); |
+ __ jmp(&loop); |
+ __ bind(&done); |
+ |
+ // Set the top handler address to next handler past the current ENTRY handler. |
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
+ __ pop(Operand::StaticVariable(handler_address)); |
+ |
+ if (type == OUT_OF_MEMORY) { |
+ // Set external caught exception to false. |
+ ExternalReference external_caught(Top::k_external_caught_exception_address); |
+ __ mov(eax, false); |
+ __ mov(Operand::StaticVariable(external_caught), eax); |
+ |
+ // Set pending exception and eax to out of memory exception. |
+ ExternalReference pending_exception(Top::k_pending_exception_address); |
+ __ mov(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException())); |
+ __ mov(Operand::StaticVariable(pending_exception), eax); |
+ } |
+ |
+ // Clear the context pointer. |
+ __ xor_(esi, Operand(esi)); |
+ |
+ // Restore fp from handler and discard handler state. |
+ STATIC_ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize); |
+ __ pop(ebp); |
+ __ pop(edx); // State. |
+ |
+ STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); |
+ __ ret(0); |
+} |
+ |
+ |
+void CEntryStub::Generate(MacroAssembler* masm) { |
+ // eax: number of arguments including receiver |
+ // ebx: pointer to C function (C callee-saved) |
+ // ebp: frame pointer (restored after C call) |
+ // esp: stack pointer (restored after C call) |
+ // esi: current context (C callee-saved) |
+ // edi: JS function of the caller (C callee-saved) |
+ |
+ // NOTE: Invocations of builtins may return failure objects instead |
+ // of a proper result. The builtin entry handles this by performing |
+ // a garbage collection and retrying the builtin (twice). |
+ |
+ // Enter the exit frame that transitions from JavaScript to C++. |
+ __ EnterExitFrame(mode_); |
+ |
+ // eax: result parameter for PerformGC, if any (setup below) |
+ // ebx: pointer to builtin function (C callee-saved) |
+ // ebp: frame pointer (restored after C call) |
+ // esp: stack pointer (restored after C call) |
+ // edi: number of arguments including receiver (C callee-saved) |
+ // esi: argv pointer (C callee-saved) |
+ |
+ Label throw_normal_exception; |
+ Label throw_termination_exception; |
+ Label throw_out_of_memory_exception; |
+ |
+ // Call into the runtime system. |
+ GenerateCore(masm, |
+ &throw_normal_exception, |
+ &throw_termination_exception, |
+ &throw_out_of_memory_exception, |
+ false, |
+ false); |
+ |
+ // Do space-specific GC and retry runtime call. |
+ GenerateCore(masm, |
+ &throw_normal_exception, |
+ &throw_termination_exception, |
+ &throw_out_of_memory_exception, |
+ true, |
+ false); |
+ |
+ // Do full GC and retry runtime call one final time. |
+ Failure* failure = Failure::InternalError(); |
+ __ mov(eax, Immediate(reinterpret_cast<int32_t>(failure))); |
+ GenerateCore(masm, |
+ &throw_normal_exception, |
+ &throw_termination_exception, |
+ &throw_out_of_memory_exception, |
+ true, |
+ true); |
+ |
+ __ bind(&throw_out_of_memory_exception); |
+ GenerateThrowUncatchable(masm, OUT_OF_MEMORY); |
+ |
+ __ bind(&throw_termination_exception); |
+ GenerateThrowUncatchable(masm, TERMINATION); |
+ |
+ __ bind(&throw_normal_exception); |
+ GenerateThrowTOS(masm); |
+} |
+ |
+ |
+void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { |
+ Label invoke, exit; |
+#ifdef ENABLE_LOGGING_AND_PROFILING |
+ Label not_outermost_js, not_outermost_js_2; |
+#endif |
+ |
+ // Setup frame. |
+ __ push(ebp); |
+ __ mov(ebp, Operand(esp)); |
+ |
+ // Push marker in two places. |
+ int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; |
+ __ push(Immediate(Smi::FromInt(marker))); // context slot |
+ __ push(Immediate(Smi::FromInt(marker))); // function slot |
+ // Save callee-saved registers (C calling conventions). |
+ __ push(edi); |
+ __ push(esi); |
+ __ push(ebx); |
+ |
+ // Save copies of the top frame descriptor on the stack. |
+ ExternalReference c_entry_fp(Top::k_c_entry_fp_address); |
+ __ push(Operand::StaticVariable(c_entry_fp)); |
+ |
+#ifdef ENABLE_LOGGING_AND_PROFILING |
+ // If this is the outermost JS call, set js_entry_sp value. |
+ ExternalReference js_entry_sp(Top::k_js_entry_sp_address); |
+ __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0)); |
+ __ j(not_equal, ¬_outermost_js); |
+ __ mov(Operand::StaticVariable(js_entry_sp), ebp); |
+ __ bind(¬_outermost_js); |
+#endif |
+ |
+ // Call a faked try-block that does the invoke. |
+ __ call(&invoke); |
+ |
+ // Caught exception: Store result (exception) in the pending |
+ // exception field in the JSEnv and return a failure sentinel. |
+ ExternalReference pending_exception(Top::k_pending_exception_address); |
+ __ mov(Operand::StaticVariable(pending_exception), eax); |
+ __ mov(eax, reinterpret_cast<int32_t>(Failure::Exception())); |
+ __ jmp(&exit); |
+ |
+ // Invoke: Link this frame into the handler chain. |
+ __ bind(&invoke); |
+ __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER); |
+ |
+ // Clear any pending exceptions. |
+ __ mov(edx, |
+ Operand::StaticVariable(ExternalReference::the_hole_value_location())); |
+ __ mov(Operand::StaticVariable(pending_exception), edx); |
+ |
+ // Fake a receiver (NULL). |
+ __ push(Immediate(0)); // receiver |
+ |
+ // Invoke the function by calling through JS entry trampoline |
+ // builtin and pop the faked function when we return. Notice that we |
+ // cannot store a reference to the trampoline code directly in this |
+ // stub, because the builtin stubs may not have been generated yet. |
+ if (is_construct) { |
+ ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline); |
+ __ mov(edx, Immediate(construct_entry)); |
+ } else { |
+ ExternalReference entry(Builtins::JSEntryTrampoline); |
+ __ mov(edx, Immediate(entry)); |
+ } |
+ __ mov(edx, Operand(edx, 0)); // deref address |
+ __ lea(edx, FieldOperand(edx, Code::kHeaderSize)); |
+ __ call(Operand(edx)); |
+ |
+ // Unlink this frame from the handler chain. |
+ __ pop(Operand::StaticVariable(ExternalReference(Top::k_handler_address))); |
+ // Pop next_sp. |
+ __ add(Operand(esp), Immediate(StackHandlerConstants::kSize - kPointerSize)); |
+ |
+#ifdef ENABLE_LOGGING_AND_PROFILING |
+ // If current EBP value is the same as js_entry_sp value, it means that |
+ // the current function is the outermost. |
+ __ cmp(ebp, Operand::StaticVariable(js_entry_sp)); |
+ __ j(not_equal, ¬_outermost_js_2); |
+ __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0)); |
+ __ bind(¬_outermost_js_2); |
+#endif |
+ |
+ // Restore the top frame descriptor from the stack. |
+ __ bind(&exit); |
+ __ pop(Operand::StaticVariable(ExternalReference(Top::k_c_entry_fp_address))); |
+ |
+ // Restore callee-saved registers (C calling conventions). |
+ __ pop(ebx); |
+ __ pop(esi); |
+ __ pop(edi); |
+ __ add(Operand(esp), Immediate(2 * kPointerSize)); // remove markers |
+ |
+ // Restore frame pointer and return. |
+ __ pop(ebp); |
+ __ ret(0); |
+} |
+ |
+ |
+void InstanceofStub::Generate(MacroAssembler* masm) { |
+ // Get the object - go slow case if it's a smi. |
+ Label slow; |
+ __ mov(eax, Operand(esp, 2 * kPointerSize)); // 2 ~ return address, function |
+ __ test(eax, Immediate(kSmiTagMask)); |
+ __ j(zero, &slow, not_taken); |
+ |
+ // Check that the left hand is a JS object. |
+ __ IsObjectJSObjectType(eax, eax, edx, &slow); |
+ |
+ // Get the prototype of the function. |
+ __ mov(edx, Operand(esp, 1 * kPointerSize)); // 1 ~ return address |
+ // edx is function, eax is map. |
+ |
+ // Look up the function and the map in the instanceof cache. |
+ Label miss; |
+ ExternalReference roots_address = ExternalReference::roots_address(); |
+ __ mov(ecx, Immediate(Heap::kInstanceofCacheFunctionRootIndex)); |
+ __ cmp(edx, Operand::StaticArray(ecx, times_pointer_size, roots_address)); |
+ __ j(not_equal, &miss); |
+ __ mov(ecx, Immediate(Heap::kInstanceofCacheMapRootIndex)); |
+ __ cmp(eax, Operand::StaticArray(ecx, times_pointer_size, roots_address)); |
+ __ j(not_equal, &miss); |
+ __ mov(ecx, Immediate(Heap::kInstanceofCacheAnswerRootIndex)); |
+ __ mov(eax, Operand::StaticArray(ecx, times_pointer_size, roots_address)); |
+ __ ret(2 * kPointerSize); |
+ |
+ __ bind(&miss); |
+ __ TryGetFunctionPrototype(edx, ebx, ecx, &slow); |
+ |
+ // Check that the function prototype is a JS object. |
+ __ test(ebx, Immediate(kSmiTagMask)); |
+ __ j(zero, &slow, not_taken); |
+ __ IsObjectJSObjectType(ebx, ecx, ecx, &slow); |
+ |
+ // Register mapping: |
+ // eax is object map. |
+ // edx is function. |
+ // ebx is function prototype. |
+ __ mov(ecx, Immediate(Heap::kInstanceofCacheMapRootIndex)); |
+ __ mov(Operand::StaticArray(ecx, times_pointer_size, roots_address), eax); |
+ __ mov(ecx, Immediate(Heap::kInstanceofCacheFunctionRootIndex)); |
+ __ mov(Operand::StaticArray(ecx, times_pointer_size, roots_address), edx); |
+ |
+ __ mov(ecx, FieldOperand(eax, Map::kPrototypeOffset)); |
+ |
+ // Loop through the prototype chain looking for the function prototype. |
+ Label loop, is_instance, is_not_instance; |
+ __ bind(&loop); |
+ __ cmp(ecx, Operand(ebx)); |
+ __ j(equal, &is_instance); |
+ __ cmp(Operand(ecx), Immediate(Factory::null_value())); |
+ __ j(equal, &is_not_instance); |
+ __ mov(ecx, FieldOperand(ecx, HeapObject::kMapOffset)); |
+ __ mov(ecx, FieldOperand(ecx, Map::kPrototypeOffset)); |
+ __ jmp(&loop); |
+ |
+ __ bind(&is_instance); |
+ __ Set(eax, Immediate(0)); |
+ __ mov(ecx, Immediate(Heap::kInstanceofCacheAnswerRootIndex)); |
+ __ mov(Operand::StaticArray(ecx, times_pointer_size, roots_address), eax); |
+ __ ret(2 * kPointerSize); |
+ |
+ __ bind(&is_not_instance); |
+ __ Set(eax, Immediate(Smi::FromInt(1))); |
+ __ mov(ecx, Immediate(Heap::kInstanceofCacheAnswerRootIndex)); |
+ __ mov(Operand::StaticArray(ecx, times_pointer_size, roots_address), eax); |
+ __ ret(2 * kPointerSize); |
+ |
+ // Slow-case: Go through the JavaScript implementation. |
+ __ bind(&slow); |
+ __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); |
+} |
+ |
+ |
+int CompareStub::MinorKey() { |
+ // Encode the three parameters in a unique 16 bit value. To avoid duplicate |
+ // stubs the never NaN NaN condition is only taken into account if the |
+ // condition is equals. |
+ ASSERT(static_cast<unsigned>(cc_) < (1 << 12)); |
+ ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); |
+ return ConditionField::encode(static_cast<unsigned>(cc_)) |
+ | RegisterField::encode(false) // lhs_ and rhs_ are not used |
+ | StrictField::encode(strict_) |
+ | NeverNanNanField::encode(cc_ == equal ? never_nan_nan_ : false) |
+ | IncludeNumberCompareField::encode(include_number_compare_); |
+} |
+ |
+ |
+// Unfortunately you have to run without snapshots to see most of these |
+// names in the profile since most compare stubs end up in the snapshot. |
+const char* CompareStub::GetName() { |
+ ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); |
+ |
+ if (name_ != NULL) return name_; |
+ const int kMaxNameLength = 100; |
+ name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength); |
+ if (name_ == NULL) return "OOM"; |
+ |
+ const char* cc_name; |
+ switch (cc_) { |
+ case less: cc_name = "LT"; break; |
+ case greater: cc_name = "GT"; break; |
+ case less_equal: cc_name = "LE"; break; |
+ case greater_equal: cc_name = "GE"; break; |
+ case equal: cc_name = "EQ"; break; |
+ case not_equal: cc_name = "NE"; break; |
+ default: cc_name = "UnknownCondition"; break; |
+ } |
+ |
+ const char* strict_name = ""; |
+ if (strict_ && (cc_ == equal || cc_ == not_equal)) { |
+ strict_name = "_STRICT"; |
+ } |
+ |
+ const char* never_nan_nan_name = ""; |
+ if (never_nan_nan_ && (cc_ == equal || cc_ == not_equal)) { |
+ never_nan_nan_name = "_NO_NAN"; |
+ } |
+ |
+ const char* include_number_compare_name = ""; |
+ if (!include_number_compare_) { |
+ include_number_compare_name = "_NO_NUMBER"; |
+ } |
+ |
+ OS::SNPrintF(Vector<char>(name_, kMaxNameLength), |
+ "CompareStub_%s%s%s%s", |
+ cc_name, |
+ strict_name, |
+ never_nan_nan_name, |
+ include_number_compare_name); |
+ return name_; |
+} |
+ |
+ |
+// ------------------------------------------------------------------------- |
+// StringCharCodeAtGenerator |
+ |
+void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { |
+ Label flat_string; |
+ Label ascii_string; |
+ Label got_char_code; |
+ |
+ // If the receiver is a smi trigger the non-string case. |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ test(object_, Immediate(kSmiTagMask)); |
+ __ j(zero, receiver_not_string_); |
+ |
+ // Fetch the instance type of the receiver into result register. |
+ __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset)); |
+ __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); |
+ // If the receiver is not a string trigger the non-string case. |
+ __ test(result_, Immediate(kIsNotStringMask)); |
+ __ j(not_zero, receiver_not_string_); |
+ |
+ // If the index is non-smi trigger the non-smi case. |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ test(index_, Immediate(kSmiTagMask)); |
+ __ j(not_zero, &index_not_smi_); |
+ |
+ // Put smi-tagged index into scratch register. |
+ __ mov(scratch_, index_); |
+ __ bind(&got_smi_index_); |
+ |
+ // Check for index out of range. |
+ __ cmp(scratch_, FieldOperand(object_, String::kLengthOffset)); |
+ __ j(above_equal, index_out_of_range_); |
+ |
+ // We need special handling for non-flat strings. |
+ STATIC_ASSERT(kSeqStringTag == 0); |
+ __ test(result_, Immediate(kStringRepresentationMask)); |
+ __ j(zero, &flat_string); |
+ |
+ // Handle non-flat strings. |
+ __ test(result_, Immediate(kIsConsStringMask)); |
+ __ j(zero, &call_runtime_); |
+ |
+ // ConsString. |
+ // Check whether the right hand side is the empty string (i.e. if |
+ // this is really a flat string in a cons string). If that is not |
+ // the case we would rather go to the runtime system now to flatten |
+ // the string. |
+ __ cmp(FieldOperand(object_, ConsString::kSecondOffset), |
+ Immediate(Factory::empty_string())); |
+ __ j(not_equal, &call_runtime_); |
+ // Get the first of the two strings and load its instance type. |
+ __ mov(object_, FieldOperand(object_, ConsString::kFirstOffset)); |
+ __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset)); |
+ __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); |
+ // If the first cons component is also non-flat, then go to runtime. |
+ STATIC_ASSERT(kSeqStringTag == 0); |
+ __ test(result_, Immediate(kStringRepresentationMask)); |
+ __ j(not_zero, &call_runtime_); |
+ |
+ // Check for 1-byte or 2-byte string. |
+ __ bind(&flat_string); |
+ STATIC_ASSERT(kAsciiStringTag != 0); |
+ __ test(result_, Immediate(kStringEncodingMask)); |
+ __ j(not_zero, &ascii_string); |
+ |
+ // 2-byte string. |
+ // Load the 2-byte character code into the result register. |
+ STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); |
+ __ movzx_w(result_, FieldOperand(object_, |
+ scratch_, times_1, // Scratch is smi-tagged. |
+ SeqTwoByteString::kHeaderSize)); |
+ __ jmp(&got_char_code); |
+ |
+ // ASCII string. |
+ // Load the byte into the result register. |
+ __ bind(&ascii_string); |
+ __ SmiUntag(scratch_); |
+ __ movzx_b(result_, FieldOperand(object_, |
+ scratch_, times_1, |
+ SeqAsciiString::kHeaderSize)); |
+ __ bind(&got_char_code); |
+ __ SmiTag(result_); |
+ __ bind(&exit_); |
+} |
+ |
+ |
+void StringCharCodeAtGenerator::GenerateSlow( |
+ MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
+ __ Abort("Unexpected fallthrough to CharCodeAt slow case"); |
+ |
+ // Index is not a smi. |
+ __ bind(&index_not_smi_); |
+ // If index is a heap number, try converting it to an integer. |
+ __ CheckMap(index_, Factory::heap_number_map(), index_not_number_, true); |
+ call_helper.BeforeCall(masm); |
+ __ push(object_); |
+ __ push(index_); |
+ __ push(index_); // Consumed by runtime conversion function. |
+ if (index_flags_ == STRING_INDEX_IS_NUMBER) { |
+ __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); |
+ } else { |
+ ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); |
+ // NumberToSmi discards numbers that are not exact integers. |
+ __ CallRuntime(Runtime::kNumberToSmi, 1); |
+ } |
+ if (!scratch_.is(eax)) { |
+ // Save the conversion result before the pop instructions below |
+ // have a chance to overwrite it. |
+ __ mov(scratch_, eax); |
+ } |
+ __ pop(index_); |
+ __ pop(object_); |
+ // Reload the instance type. |
+ __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset)); |
+ __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); |
+ call_helper.AfterCall(masm); |
+ // If index is still not a smi, it must be out of range. |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ test(scratch_, Immediate(kSmiTagMask)); |
+ __ j(not_zero, index_out_of_range_); |
+ // Otherwise, return to the fast path. |
+ __ jmp(&got_smi_index_); |
+ |
+ // Call runtime. We get here when the receiver is a string and the |
+ // index is a number, but the code of getting the actual character |
+ // is too complex (e.g., when the string needs to be flattened). |
+ __ bind(&call_runtime_); |
+ call_helper.BeforeCall(masm); |
+ __ push(object_); |
+ __ push(index_); |
+ __ CallRuntime(Runtime::kStringCharCodeAt, 2); |
+ if (!result_.is(eax)) { |
+ __ mov(result_, eax); |
+ } |
+ call_helper.AfterCall(masm); |
+ __ jmp(&exit_); |
+ |
+ __ Abort("Unexpected fallthrough from CharCodeAt slow case"); |
+} |
+ |
+ |
+// ------------------------------------------------------------------------- |
+// StringCharFromCodeGenerator |
+ |
+void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { |
+ // Fast case of Heap::LookupSingleCharacterStringFromCode. |
+ STATIC_ASSERT(kSmiTag == 0); |
+ STATIC_ASSERT(kSmiShiftSize == 0); |
+ ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1)); |
+ __ test(code_, |
+ Immediate(kSmiTagMask | |
+ ((~String::kMaxAsciiCharCode) << kSmiTagSize))); |
+ __ j(not_zero, &slow_case_, not_taken); |
+ |
+ __ Set(result_, Immediate(Factory::single_character_string_cache())); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ STATIC_ASSERT(kSmiTagSize == 1); |
+ STATIC_ASSERT(kSmiShiftSize == 0); |
+ // At this point code register contains smi tagged ascii char code. |
+ __ mov(result_, FieldOperand(result_, |
+ code_, times_half_pointer_size, |
+ FixedArray::kHeaderSize)); |
+ __ cmp(result_, Factory::undefined_value()); |
+ __ j(equal, &slow_case_, not_taken); |
+ __ bind(&exit_); |
+} |
+ |
+ |
+void StringCharFromCodeGenerator::GenerateSlow( |
+ MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
+ __ Abort("Unexpected fallthrough to CharFromCode slow case"); |
+ |
+ __ bind(&slow_case_); |
+ call_helper.BeforeCall(masm); |
+ __ push(code_); |
+ __ CallRuntime(Runtime::kCharFromCode, 1); |
+ if (!result_.is(eax)) { |
+ __ mov(result_, eax); |
+ } |
+ call_helper.AfterCall(masm); |
+ __ jmp(&exit_); |
+ |
+ __ Abort("Unexpected fallthrough from CharFromCode slow case"); |
+} |
+ |
+ |
+// ------------------------------------------------------------------------- |
+// StringCharAtGenerator |
+ |
+void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) { |
+ char_code_at_generator_.GenerateFast(masm); |
+ char_from_code_generator_.GenerateFast(masm); |
+} |
+ |
+ |
+void StringCharAtGenerator::GenerateSlow( |
+ MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
+ char_code_at_generator_.GenerateSlow(masm, call_helper); |
+ char_from_code_generator_.GenerateSlow(masm, call_helper); |
+} |
+ |
+ |
+void StringAddStub::Generate(MacroAssembler* masm) { |
+ Label string_add_runtime; |
+ |
+ // Load the two arguments. |
+ __ mov(eax, Operand(esp, 2 * kPointerSize)); // First argument. |
+ __ mov(edx, Operand(esp, 1 * kPointerSize)); // Second argument. |
+ |
+ // Make sure that both arguments are strings if not known in advance. |
+ if (string_check_) { |
+ __ test(eax, Immediate(kSmiTagMask)); |
+ __ j(zero, &string_add_runtime); |
+ __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, ebx); |
+ __ j(above_equal, &string_add_runtime); |
+ |
+ // First argument is a a string, test second. |
+ __ test(edx, Immediate(kSmiTagMask)); |
+ __ j(zero, &string_add_runtime); |
+ __ CmpObjectType(edx, FIRST_NONSTRING_TYPE, ebx); |
+ __ j(above_equal, &string_add_runtime); |
+ } |
+ |
+ // Both arguments are strings. |
+ // eax: first string |
+ // edx: second string |
+ // Check if either of the strings are empty. In that case return the other. |
+ Label second_not_zero_length, both_not_zero_length; |
+ __ mov(ecx, FieldOperand(edx, String::kLengthOffset)); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ test(ecx, Operand(ecx)); |
+ __ j(not_zero, &second_not_zero_length); |
+ // Second string is empty, result is first string which is already in eax. |
+ __ IncrementCounter(&Counters::string_add_native, 1); |
+ __ ret(2 * kPointerSize); |
+ __ bind(&second_not_zero_length); |
+ __ mov(ebx, FieldOperand(eax, String::kLengthOffset)); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ test(ebx, Operand(ebx)); |
+ __ j(not_zero, &both_not_zero_length); |
+ // First string is empty, result is second string which is in edx. |
+ __ mov(eax, edx); |
+ __ IncrementCounter(&Counters::string_add_native, 1); |
+ __ ret(2 * kPointerSize); |
+ |
+ // Both strings are non-empty. |
+ // eax: first string |
+ // ebx: length of first string as a smi |
+ // ecx: length of second string as a smi |
+ // edx: second string |
+ // Look at the length of the result of adding the two strings. |
+ Label string_add_flat_result, longer_than_two; |
+ __ bind(&both_not_zero_length); |
+ __ add(ebx, Operand(ecx)); |
+ STATIC_ASSERT(Smi::kMaxValue == String::kMaxLength); |
+ // Handle exceptionally long strings in the runtime system. |
+ __ j(overflow, &string_add_runtime); |
+ // Use the runtime system when adding two one character strings, as it |
+ // contains optimizations for this specific case using the symbol table. |
+ __ cmp(Operand(ebx), Immediate(Smi::FromInt(2))); |
+ __ j(not_equal, &longer_than_two); |
+ |
+ // Check that both strings are non-external ascii strings. |
+ __ JumpIfNotBothSequentialAsciiStrings(eax, edx, ebx, ecx, |
+ &string_add_runtime); |
+ |
+ // Get the two characters forming the sub string. |
+ __ movzx_b(ebx, FieldOperand(eax, SeqAsciiString::kHeaderSize)); |
+ __ movzx_b(ecx, FieldOperand(edx, SeqAsciiString::kHeaderSize)); |
+ |
+ // Try to lookup two character string in symbol table. If it is not found |
+ // just allocate a new one. |
+ Label make_two_character_string, make_flat_ascii_string; |
+ StringHelper::GenerateTwoCharacterSymbolTableProbe( |
+ masm, ebx, ecx, eax, edx, edi, &make_two_character_string); |
+ __ IncrementCounter(&Counters::string_add_native, 1); |
+ __ ret(2 * kPointerSize); |
+ |
+ __ bind(&make_two_character_string); |
+ __ Set(ebx, Immediate(Smi::FromInt(2))); |
+ __ jmp(&make_flat_ascii_string); |
+ |
+ __ bind(&longer_than_two); |
+ // Check if resulting string will be flat. |
+ __ cmp(Operand(ebx), Immediate(Smi::FromInt(String::kMinNonFlatLength))); |
+ __ j(below, &string_add_flat_result); |
+ |
+ // If result is not supposed to be flat allocate a cons string object. If both |
+ // strings are ascii the result is an ascii cons string. |
+ Label non_ascii, allocated, ascii_data; |
+ __ mov(edi, FieldOperand(eax, HeapObject::kMapOffset)); |
+ __ movzx_b(ecx, FieldOperand(edi, Map::kInstanceTypeOffset)); |
+ __ mov(edi, FieldOperand(edx, HeapObject::kMapOffset)); |
+ __ movzx_b(edi, FieldOperand(edi, Map::kInstanceTypeOffset)); |
+ __ and_(ecx, Operand(edi)); |
+ STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag); |
+ __ test(ecx, Immediate(kAsciiStringTag)); |
+ __ j(zero, &non_ascii); |
+ __ bind(&ascii_data); |
+ // Allocate an acsii cons string. |
+ __ AllocateAsciiConsString(ecx, edi, no_reg, &string_add_runtime); |
+ __ bind(&allocated); |
+ // Fill the fields of the cons string. |
+ if (FLAG_debug_code) __ AbortIfNotSmi(ebx); |
+ __ mov(FieldOperand(ecx, ConsString::kLengthOffset), ebx); |
+ __ mov(FieldOperand(ecx, ConsString::kHashFieldOffset), |
+ Immediate(String::kEmptyHashField)); |
+ __ mov(FieldOperand(ecx, ConsString::kFirstOffset), eax); |
+ __ mov(FieldOperand(ecx, ConsString::kSecondOffset), edx); |
+ __ mov(eax, ecx); |
+ __ IncrementCounter(&Counters::string_add_native, 1); |
+ __ ret(2 * kPointerSize); |
+ __ bind(&non_ascii); |
+ // At least one of the strings is two-byte. Check whether it happens |
+ // to contain only ascii characters. |
+ // ecx: first instance type AND second instance type. |
+ // edi: second instance type. |
+ __ test(ecx, Immediate(kAsciiDataHintMask)); |
+ __ j(not_zero, &ascii_data); |
+ __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); |
+ __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); |
+ __ xor_(edi, Operand(ecx)); |
+ STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0); |
+ __ and_(edi, kAsciiStringTag | kAsciiDataHintTag); |
+ __ cmp(edi, kAsciiStringTag | kAsciiDataHintTag); |
+ __ j(equal, &ascii_data); |
+ // Allocate a two byte cons string. |
+ __ AllocateConsString(ecx, edi, no_reg, &string_add_runtime); |
+ __ jmp(&allocated); |
+ |
+ // Handle creating a flat result. First check that both strings are not |
+ // external strings. |
+ // eax: first string |
+ // ebx: length of resulting flat string as a smi |
+ // edx: second string |
+ __ bind(&string_add_flat_result); |
+ __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); |
+ __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); |
+ __ and_(ecx, kStringRepresentationMask); |
+ __ cmp(ecx, kExternalStringTag); |
+ __ j(equal, &string_add_runtime); |
+ __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); |
+ __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); |
+ __ and_(ecx, kStringRepresentationMask); |
+ __ cmp(ecx, kExternalStringTag); |
+ __ j(equal, &string_add_runtime); |
+ // Now check if both strings are ascii strings. |
+ // eax: first string |
+ // ebx: length of resulting flat string as a smi |
+ // edx: second string |
+ Label non_ascii_string_add_flat_result; |
+ STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag); |
+ __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); |
+ __ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag); |
+ __ j(zero, &non_ascii_string_add_flat_result); |
+ __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); |
+ __ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag); |
+ __ j(zero, &string_add_runtime); |
+ |
+ __ bind(&make_flat_ascii_string); |
+ // Both strings are ascii strings. As they are short they are both flat. |
+ // ebx: length of resulting flat string as a smi |
+ __ SmiUntag(ebx); |
+ __ AllocateAsciiString(eax, ebx, ecx, edx, edi, &string_add_runtime); |
+ // eax: result string |
+ __ mov(ecx, eax); |
+ // Locate first character of result. |
+ __ add(Operand(ecx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
+ // Load first argument and locate first character. |
+ __ mov(edx, Operand(esp, 2 * kPointerSize)); |
+ __ mov(edi, FieldOperand(edx, String::kLengthOffset)); |
+ __ SmiUntag(edi); |
+ __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
+ // eax: result string |
+ // ecx: first character of result |
+ // edx: first char of first argument |
+ // edi: length of first argument |
+ StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, true); |
+ // Load second argument and locate first character. |
+ __ mov(edx, Operand(esp, 1 * kPointerSize)); |
+ __ mov(edi, FieldOperand(edx, String::kLengthOffset)); |
+ __ SmiUntag(edi); |
+ __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
+ // eax: result string |
+ // ecx: next character of result |
+ // edx: first char of second argument |
+ // edi: length of second argument |
+ StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, true); |
+ __ IncrementCounter(&Counters::string_add_native, 1); |
+ __ ret(2 * kPointerSize); |
+ |
+ // Handle creating a flat two byte result. |
+ // eax: first string - known to be two byte |
+ // ebx: length of resulting flat string as a smi |
+ // edx: second string |
+ __ bind(&non_ascii_string_add_flat_result); |
+ __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); |
+ __ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag); |
+ __ j(not_zero, &string_add_runtime); |
+ // Both strings are two byte strings. As they are short they are both |
+ // flat. |
+ __ SmiUntag(ebx); |
+ __ AllocateTwoByteString(eax, ebx, ecx, edx, edi, &string_add_runtime); |
+ // eax: result string |
+ __ mov(ecx, eax); |
+ // Locate first character of result. |
+ __ add(Operand(ecx), |
+ Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
+ // Load first argument and locate first character. |
+ __ mov(edx, Operand(esp, 2 * kPointerSize)); |
+ __ mov(edi, FieldOperand(edx, String::kLengthOffset)); |
+ __ SmiUntag(edi); |
+ __ add(Operand(edx), |
+ Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
+ // eax: result string |
+ // ecx: first character of result |
+ // edx: first char of first argument |
+ // edi: length of first argument |
+ StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, false); |
+ // Load second argument and locate first character. |
+ __ mov(edx, Operand(esp, 1 * kPointerSize)); |
+ __ mov(edi, FieldOperand(edx, String::kLengthOffset)); |
+ __ SmiUntag(edi); |
+ __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
+ // eax: result string |
+ // ecx: next character of result |
+ // edx: first char of second argument |
+ // edi: length of second argument |
+ StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, false); |
+ __ IncrementCounter(&Counters::string_add_native, 1); |
+ __ ret(2 * kPointerSize); |
+ |
+ // Just jump to runtime to add the two strings. |
+ __ bind(&string_add_runtime); |
+ __ TailCallRuntime(Runtime::kStringAdd, 2, 1); |
+} |
+ |
+ |
+void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, |
+ Register dest, |
+ Register src, |
+ Register count, |
+ Register scratch, |
+ bool ascii) { |
+ Label loop; |
+ __ bind(&loop); |
+ // This loop just copies one character at a time, as it is only used for very |
+ // short strings. |
+ if (ascii) { |
+ __ mov_b(scratch, Operand(src, 0)); |
+ __ mov_b(Operand(dest, 0), scratch); |
+ __ add(Operand(src), Immediate(1)); |
+ __ add(Operand(dest), Immediate(1)); |
+ } else { |
+ __ mov_w(scratch, Operand(src, 0)); |
+ __ mov_w(Operand(dest, 0), scratch); |
+ __ add(Operand(src), Immediate(2)); |
+ __ add(Operand(dest), Immediate(2)); |
+ } |
+ __ sub(Operand(count), Immediate(1)); |
+ __ j(not_zero, &loop); |
+} |
+ |
+ |
+void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm, |
+ Register dest, |
+ Register src, |
+ Register count, |
+ Register scratch, |
+ bool ascii) { |
+ // Copy characters using rep movs of doublewords. |
+ // The destination is aligned on a 4 byte boundary because we are |
+ // copying to the beginning of a newly allocated string. |
+ ASSERT(dest.is(edi)); // rep movs destination |
+ ASSERT(src.is(esi)); // rep movs source |
+ ASSERT(count.is(ecx)); // rep movs count |
+ ASSERT(!scratch.is(dest)); |
+ ASSERT(!scratch.is(src)); |
+ ASSERT(!scratch.is(count)); |
+ |
+ // Nothing to do for zero characters. |
+ Label done; |
+ __ test(count, Operand(count)); |
+ __ j(zero, &done); |
+ |
+ // Make count the number of bytes to copy. |
+ if (!ascii) { |
+ __ shl(count, 1); |
+ } |
+ |
+ // Don't enter the rep movs if there are less than 4 bytes to copy. |
+ Label last_bytes; |
+ __ test(count, Immediate(~3)); |
+ __ j(zero, &last_bytes); |
+ |
+ // Copy from edi to esi using rep movs instruction. |
+ __ mov(scratch, count); |
+ __ sar(count, 2); // Number of doublewords to copy. |
+ __ cld(); |
+ __ rep_movs(); |
+ |
+ // Find number of bytes left. |
+ __ mov(count, scratch); |
+ __ and_(count, 3); |
+ |
+ // Check if there are more bytes to copy. |
+ __ bind(&last_bytes); |
+ __ test(count, Operand(count)); |
+ __ j(zero, &done); |
+ |
+ // Copy remaining characters. |
+ Label loop; |
+ __ bind(&loop); |
+ __ mov_b(scratch, Operand(src, 0)); |
+ __ mov_b(Operand(dest, 0), scratch); |
+ __ add(Operand(src), Immediate(1)); |
+ __ add(Operand(dest), Immediate(1)); |
+ __ sub(Operand(count), Immediate(1)); |
+ __ j(not_zero, &loop); |
+ |
+ __ bind(&done); |
+} |
+ |
+ |
+void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, |
+ Register c1, |
+ Register c2, |
+ Register scratch1, |
+ Register scratch2, |
+ Register scratch3, |
+ Label* not_found) { |
+ // Register scratch3 is the general scratch register in this function. |
+ Register scratch = scratch3; |
+ |
+ // Make sure that both characters are not digits as such strings has a |
+ // different hash algorithm. Don't try to look for these in the symbol table. |
+ Label not_array_index; |
+ __ mov(scratch, c1); |
+ __ sub(Operand(scratch), Immediate(static_cast<int>('0'))); |
+ __ cmp(Operand(scratch), Immediate(static_cast<int>('9' - '0'))); |
+ __ j(above, ¬_array_index); |
+ __ mov(scratch, c2); |
+ __ sub(Operand(scratch), Immediate(static_cast<int>('0'))); |
+ __ cmp(Operand(scratch), Immediate(static_cast<int>('9' - '0'))); |
+ __ j(below_equal, not_found); |
+ |
+ __ bind(¬_array_index); |
+ // Calculate the two character string hash. |
+ Register hash = scratch1; |
+ GenerateHashInit(masm, hash, c1, scratch); |
+ GenerateHashAddCharacter(masm, hash, c2, scratch); |
+ GenerateHashGetHash(masm, hash, scratch); |
+ |
+ // Collect the two characters in a register. |
+ Register chars = c1; |
+ __ shl(c2, kBitsPerByte); |
+ __ or_(chars, Operand(c2)); |
+ |
+ // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
+ // hash: hash of two character string. |
+ |
+ // Load the symbol table. |
+ Register symbol_table = c2; |
+ ExternalReference roots_address = ExternalReference::roots_address(); |
+ __ mov(scratch, Immediate(Heap::kSymbolTableRootIndex)); |
+ __ mov(symbol_table, |
+ Operand::StaticArray(scratch, times_pointer_size, roots_address)); |
+ |
+ // Calculate capacity mask from the symbol table capacity. |
+ Register mask = scratch2; |
+ __ mov(mask, FieldOperand(symbol_table, SymbolTable::kCapacityOffset)); |
+ __ SmiUntag(mask); |
+ __ sub(Operand(mask), Immediate(1)); |
+ |
+ // Registers |
+ // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
+ // hash: hash of two character string |
+ // symbol_table: symbol table |
+ // mask: capacity mask |
+ // scratch: - |
+ |
+ // Perform a number of probes in the symbol table. |
+ static const int kProbes = 4; |
+ Label found_in_symbol_table; |
+ Label next_probe[kProbes], next_probe_pop_mask[kProbes]; |
+ for (int i = 0; i < kProbes; i++) { |
+ // Calculate entry in symbol table. |
+ __ mov(scratch, hash); |
+ if (i > 0) { |
+ __ add(Operand(scratch), Immediate(SymbolTable::GetProbeOffset(i))); |
+ } |
+ __ and_(scratch, Operand(mask)); |
+ |
+ // Load the entry from the symbol table. |
+ Register candidate = scratch; // Scratch register contains candidate. |
+ STATIC_ASSERT(SymbolTable::kEntrySize == 1); |
+ __ mov(candidate, |
+ FieldOperand(symbol_table, |
+ scratch, |
+ times_pointer_size, |
+ SymbolTable::kElementsStartOffset)); |
+ |
+ // If entry is undefined no string with this hash can be found. |
+ __ cmp(candidate, Factory::undefined_value()); |
+ __ j(equal, not_found); |
+ |
+ // If length is not 2 the string is not a candidate. |
+ __ cmp(FieldOperand(candidate, String::kLengthOffset), |
+ Immediate(Smi::FromInt(2))); |
+ __ j(not_equal, &next_probe[i]); |
+ |
+ // As we are out of registers save the mask on the stack and use that |
+ // register as a temporary. |
+ __ push(mask); |
+ Register temp = mask; |
+ |
+ // Check that the candidate is a non-external ascii string. |
+ __ mov(temp, FieldOperand(candidate, HeapObject::kMapOffset)); |
+ __ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset)); |
+ __ JumpIfInstanceTypeIsNotSequentialAscii( |
+ temp, temp, &next_probe_pop_mask[i]); |
+ |
+ // Check if the two characters match. |
+ __ mov(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize)); |
+ __ and_(temp, 0x0000ffff); |
+ __ cmp(chars, Operand(temp)); |
+ __ j(equal, &found_in_symbol_table); |
+ __ bind(&next_probe_pop_mask[i]); |
+ __ pop(mask); |
+ __ bind(&next_probe[i]); |
+ } |
+ |
+ // No matching 2 character string found by probing. |
+ __ jmp(not_found); |
+ |
+ // Scratch register contains result when we fall through to here. |
+ Register result = scratch; |
+ __ bind(&found_in_symbol_table); |
+ __ pop(mask); // Pop saved mask from the stack. |
+ if (!result.is(eax)) { |
+ __ mov(eax, result); |
+ } |
+} |
+ |
+ |
+void StringHelper::GenerateHashInit(MacroAssembler* masm, |
+ Register hash, |
+ Register character, |
+ Register scratch) { |
+ // hash = character + (character << 10); |
+ __ mov(hash, character); |
+ __ shl(hash, 10); |
+ __ add(hash, Operand(character)); |
+ // hash ^= hash >> 6; |
+ __ mov(scratch, hash); |
+ __ sar(scratch, 6); |
+ __ xor_(hash, Operand(scratch)); |
+} |
+ |
+ |
+void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, |
+ Register hash, |
+ Register character, |
+ Register scratch) { |
+ // hash += character; |
+ __ add(hash, Operand(character)); |
+ // hash += hash << 10; |
+ __ mov(scratch, hash); |
+ __ shl(scratch, 10); |
+ __ add(hash, Operand(scratch)); |
+ // hash ^= hash >> 6; |
+ __ mov(scratch, hash); |
+ __ sar(scratch, 6); |
+ __ xor_(hash, Operand(scratch)); |
+} |
+ |
+ |
+void StringHelper::GenerateHashGetHash(MacroAssembler* masm, |
+ Register hash, |
+ Register scratch) { |
+ // hash += hash << 3; |
+ __ mov(scratch, hash); |
+ __ shl(scratch, 3); |
+ __ add(hash, Operand(scratch)); |
+ // hash ^= hash >> 11; |
+ __ mov(scratch, hash); |
+ __ sar(scratch, 11); |
+ __ xor_(hash, Operand(scratch)); |
+ // hash += hash << 15; |
+ __ mov(scratch, hash); |
+ __ shl(scratch, 15); |
+ __ add(hash, Operand(scratch)); |
+ |
+ // if (hash == 0) hash = 27; |
+ Label hash_not_zero; |
+ __ test(hash, Operand(hash)); |
+ __ j(not_zero, &hash_not_zero); |
+ __ mov(hash, Immediate(27)); |
+ __ bind(&hash_not_zero); |
+} |
+ |
+ |
+void SubStringStub::Generate(MacroAssembler* masm) { |
+ Label runtime; |
+ |
+ // Stack frame on entry. |
+ // esp[0]: return address |
+ // esp[4]: to |
+ // esp[8]: from |
+ // esp[12]: string |
+ |
+ // Make sure first argument is a string. |
+ __ mov(eax, Operand(esp, 3 * kPointerSize)); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ test(eax, Immediate(kSmiTagMask)); |
+ __ j(zero, &runtime); |
+ Condition is_string = masm->IsObjectStringType(eax, ebx, ebx); |
+ __ j(NegateCondition(is_string), &runtime); |
+ |
+ // eax: string |
+ // ebx: instance type |
+ |
+ // Calculate length of sub string using the smi values. |
+ Label result_longer_than_two; |
+ __ mov(ecx, Operand(esp, 1 * kPointerSize)); // To index. |
+ __ test(ecx, Immediate(kSmiTagMask)); |
+ __ j(not_zero, &runtime); |
+ __ mov(edx, Operand(esp, 2 * kPointerSize)); // From index. |
+ __ test(edx, Immediate(kSmiTagMask)); |
+ __ j(not_zero, &runtime); |
+ __ sub(ecx, Operand(edx)); |
+ __ cmp(ecx, FieldOperand(eax, String::kLengthOffset)); |
+ Label return_eax; |
+ __ j(equal, &return_eax); |
+ // Special handling of sub-strings of length 1 and 2. One character strings |
+ // are handled in the runtime system (looked up in the single character |
+ // cache). Two character strings are looked for in the symbol cache. |
+ __ SmiUntag(ecx); // Result length is no longer smi. |
+ __ cmp(ecx, 2); |
+ __ j(greater, &result_longer_than_two); |
+ __ j(less, &runtime); |
+ |
+ // Sub string of length 2 requested. |
+ // eax: string |
+ // ebx: instance type |
+ // ecx: sub string length (value is 2) |
+ // edx: from index (smi) |
+ __ JumpIfInstanceTypeIsNotSequentialAscii(ebx, ebx, &runtime); |
+ |
+ // Get the two characters forming the sub string. |
+ __ SmiUntag(edx); // From index is no longer smi. |
+ __ movzx_b(ebx, FieldOperand(eax, edx, times_1, SeqAsciiString::kHeaderSize)); |
+ __ movzx_b(ecx, |
+ FieldOperand(eax, edx, times_1, SeqAsciiString::kHeaderSize + 1)); |
+ |
+ // Try to lookup two character string in symbol table. |
+ Label make_two_character_string; |
+ StringHelper::GenerateTwoCharacterSymbolTableProbe( |
+ masm, ebx, ecx, eax, edx, edi, &make_two_character_string); |
+ __ ret(3 * kPointerSize); |
+ |
+ __ bind(&make_two_character_string); |
+ // Setup registers for allocating the two character string. |
+ __ mov(eax, Operand(esp, 3 * kPointerSize)); |
+ __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
+ __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); |
+ __ Set(ecx, Immediate(2)); |
+ |
+ __ bind(&result_longer_than_two); |
+ // eax: string |
+ // ebx: instance type |
+ // ecx: result string length |
+ // Check for flat ascii string |
+ Label non_ascii_flat; |
+ __ JumpIfInstanceTypeIsNotSequentialAscii(ebx, ebx, &non_ascii_flat); |
+ |
+ // Allocate the result. |
+ __ AllocateAsciiString(eax, ecx, ebx, edx, edi, &runtime); |
+ |
+ // eax: result string |
+ // ecx: result string length |
+ __ mov(edx, esi); // esi used by following code. |
+ // Locate first character of result. |
+ __ mov(edi, eax); |
+ __ add(Operand(edi), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
+ // Load string argument and locate character of sub string start. |
+ __ mov(esi, Operand(esp, 3 * kPointerSize)); |
+ __ add(Operand(esi), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
+ __ mov(ebx, Operand(esp, 2 * kPointerSize)); // from |
+ __ SmiUntag(ebx); |
+ __ add(esi, Operand(ebx)); |
+ |
+ // eax: result string |
+ // ecx: result length |
+ // edx: original value of esi |
+ // edi: first character of result |
+ // esi: character of sub string start |
+ StringHelper::GenerateCopyCharactersREP(masm, edi, esi, ecx, ebx, true); |
+ __ mov(esi, edx); // Restore esi. |
+ __ IncrementCounter(&Counters::sub_string_native, 1); |
+ __ ret(3 * kPointerSize); |
+ |
+ __ bind(&non_ascii_flat); |
+ // eax: string |
+ // ebx: instance type & kStringRepresentationMask | kStringEncodingMask |
+ // ecx: result string length |
+ // Check for flat two byte string |
+ __ cmp(ebx, kSeqStringTag | kTwoByteStringTag); |
+ __ j(not_equal, &runtime); |
+ |
+ // Allocate the result. |
+ __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime); |
+ |
+ // eax: result string |
+ // ecx: result string length |
+ __ mov(edx, esi); // esi used by following code. |
+ // Locate first character of result. |
+ __ mov(edi, eax); |
+ __ add(Operand(edi), |
+ Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
+ // Load string argument and locate character of sub string start. |
+ __ mov(esi, Operand(esp, 3 * kPointerSize)); |
+ __ add(Operand(esi), |
+ Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
+ __ mov(ebx, Operand(esp, 2 * kPointerSize)); // from |
+ // As from is a smi it is 2 times the value which matches the size of a two |
+ // byte character. |
+ STATIC_ASSERT(kSmiTag == 0); |
+ STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
+ __ add(esi, Operand(ebx)); |
+ |
+ // eax: result string |
+ // ecx: result length |
+ // edx: original value of esi |
+ // edi: first character of result |
+ // esi: character of sub string start |
+ StringHelper::GenerateCopyCharactersREP(masm, edi, esi, ecx, ebx, false); |
+ __ mov(esi, edx); // Restore esi. |
+ |
+ __ bind(&return_eax); |
+ __ IncrementCounter(&Counters::sub_string_native, 1); |
+ __ ret(3 * kPointerSize); |
+ |
+ // Just jump to runtime to create the sub string. |
+ __ bind(&runtime); |
+ __ TailCallRuntime(Runtime::kSubString, 3, 1); |
+} |
+ |
+ |
+void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, |
+ Register left, |
+ Register right, |
+ Register scratch1, |
+ Register scratch2, |
+ Register scratch3) { |
+ Label result_not_equal; |
+ Label result_greater; |
+ Label compare_lengths; |
+ |
+ __ IncrementCounter(&Counters::string_compare_native, 1); |
+ |
+ // Find minimum length. |
+ Label left_shorter; |
+ __ mov(scratch1, FieldOperand(left, String::kLengthOffset)); |
+ __ mov(scratch3, scratch1); |
+ __ sub(scratch3, FieldOperand(right, String::kLengthOffset)); |
+ |
+ Register length_delta = scratch3; |
+ |
+ __ j(less_equal, &left_shorter); |
+ // Right string is shorter. Change scratch1 to be length of right string. |
+ __ sub(scratch1, Operand(length_delta)); |
+ __ bind(&left_shorter); |
+ |
+ Register min_length = scratch1; |
+ |
+ // If either length is zero, just compare lengths. |
+ __ test(min_length, Operand(min_length)); |
+ __ j(zero, &compare_lengths); |
+ |
+ // Change index to run from -min_length to -1 by adding min_length |
+ // to string start. This means that loop ends when index reaches zero, |
+ // which doesn't need an additional compare. |
+ __ SmiUntag(min_length); |
+ __ lea(left, |
+ FieldOperand(left, |
+ min_length, times_1, |
+ SeqAsciiString::kHeaderSize)); |
+ __ lea(right, |
+ FieldOperand(right, |
+ min_length, times_1, |
+ SeqAsciiString::kHeaderSize)); |
+ __ neg(min_length); |
+ |
+ Register index = min_length; // index = -min_length; |
+ |
+ { |
+ // Compare loop. |
+ Label loop; |
+ __ bind(&loop); |
+ // Compare characters. |
+ __ mov_b(scratch2, Operand(left, index, times_1, 0)); |
+ __ cmpb(scratch2, Operand(right, index, times_1, 0)); |
+ __ j(not_equal, &result_not_equal); |
+ __ add(Operand(index), Immediate(1)); |
+ __ j(not_zero, &loop); |
+ } |
+ |
+ // Compare lengths - strings up to min-length are equal. |
+ __ bind(&compare_lengths); |
+ __ test(length_delta, Operand(length_delta)); |
+ __ j(not_zero, &result_not_equal); |
+ |
+ // Result is EQUAL. |
+ STATIC_ASSERT(EQUAL == 0); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ Set(eax, Immediate(Smi::FromInt(EQUAL))); |
+ __ ret(0); |
+ |
+ __ bind(&result_not_equal); |
+ __ j(greater, &result_greater); |
+ |
+ // Result is LESS. |
+ __ Set(eax, Immediate(Smi::FromInt(LESS))); |
+ __ ret(0); |
+ |
+ // Result is GREATER. |
+ __ bind(&result_greater); |
+ __ Set(eax, Immediate(Smi::FromInt(GREATER))); |
+ __ ret(0); |
+} |
+ |
+ |
+void StringCompareStub::Generate(MacroAssembler* masm) { |
+ Label runtime; |
+ |
+ // Stack frame on entry. |
+ // esp[0]: return address |
+ // esp[4]: right string |
+ // esp[8]: left string |
+ |
+ __ mov(edx, Operand(esp, 2 * kPointerSize)); // left |
+ __ mov(eax, Operand(esp, 1 * kPointerSize)); // right |
+ |
+ Label not_same; |
+ __ cmp(edx, Operand(eax)); |
+ __ j(not_equal, ¬_same); |
+ STATIC_ASSERT(EQUAL == 0); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ Set(eax, Immediate(Smi::FromInt(EQUAL))); |
+ __ IncrementCounter(&Counters::string_compare_native, 1); |
+ __ ret(2 * kPointerSize); |
+ |
+ __ bind(¬_same); |
+ |
+ // Check that both objects are sequential ascii strings. |
+ __ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx, &runtime); |
+ |
+ // Compare flat ascii strings. |
+ // Drop arguments from the stack. |
+ __ pop(ecx); |
+ __ add(Operand(esp), Immediate(2 * kPointerSize)); |
+ __ push(ecx); |
+ GenerateCompareFlatAsciiStrings(masm, edx, eax, ecx, ebx, edi); |
+ |
+ // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) |
+ // tagged as a small integer. |
+ __ bind(&runtime); |
+ __ TailCallRuntime(Runtime::kStringCompare, 2, 1); |
+} |
+ |
+#undef __ |
+ |
+} } // namespace v8::internal |
+ |
+#endif // V8_TARGET_ARCH_IA32 |
Property changes on: src/ia32/code-stubs-ia32.cc |
___________________________________________________________________ |
Added: svn:eol-style |
+ LF |