OLD | NEW |
(Empty) | |
| 1 // Copyright 2010 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are |
| 4 // met: |
| 5 // |
| 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided |
| 11 // with the distribution. |
| 12 // * Neither the name of Google Inc. nor the names of its |
| 13 // contributors may be used to endorse or promote products derived |
| 14 // from this software without specific prior written permission. |
| 15 // |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 |
| 28 #include "v8.h" |
| 29 |
| 30 #if defined(V8_TARGET_ARCH_IA32) |
| 31 |
| 32 #include "bootstrapper.h" |
| 33 #include "code-stubs-ia32.h" |
| 34 #include "codegen-inl.h" |
| 35 #include "regexp-macro-assembler.h" |
| 36 |
| 37 namespace v8 { |
| 38 namespace internal { |
| 39 |
| 40 #define __ ACCESS_MASM(masm) |
| 41 void FastNewClosureStub::Generate(MacroAssembler* masm) { |
| 42 // Create a new closure from the given function info in new |
| 43 // space. Set the context to the current context in esi. |
| 44 Label gc; |
| 45 __ AllocateInNewSpace(JSFunction::kSize, eax, ebx, ecx, &gc, TAG_OBJECT); |
| 46 |
| 47 // Get the function info from the stack. |
| 48 __ mov(edx, Operand(esp, 1 * kPointerSize)); |
| 49 |
| 50 // Compute the function map in the current global context and set that |
| 51 // as the map of the allocated object. |
| 52 __ mov(ecx, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| 53 __ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalContextOffset)); |
| 54 __ mov(ecx, Operand(ecx, Context::SlotOffset(Context::FUNCTION_MAP_INDEX))); |
| 55 __ mov(FieldOperand(eax, JSObject::kMapOffset), ecx); |
| 56 |
| 57 // Initialize the rest of the function. We don't have to update the |
| 58 // write barrier because the allocated object is in new space. |
| 59 __ mov(ebx, Immediate(Factory::empty_fixed_array())); |
| 60 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ebx); |
| 61 __ mov(FieldOperand(eax, JSObject::kElementsOffset), ebx); |
| 62 __ mov(FieldOperand(eax, JSFunction::kPrototypeOrInitialMapOffset), |
| 63 Immediate(Factory::the_hole_value())); |
| 64 __ mov(FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset), edx); |
| 65 __ mov(FieldOperand(eax, JSFunction::kContextOffset), esi); |
| 66 __ mov(FieldOperand(eax, JSFunction::kLiteralsOffset), ebx); |
| 67 |
| 68 // Initialize the code pointer in the function to be the one |
| 69 // found in the shared function info object. |
| 70 __ mov(edx, FieldOperand(edx, SharedFunctionInfo::kCodeOffset)); |
| 71 __ lea(edx, FieldOperand(edx, Code::kHeaderSize)); |
| 72 __ mov(FieldOperand(eax, JSFunction::kCodeEntryOffset), edx); |
| 73 |
| 74 // Return and remove the on-stack parameter. |
| 75 __ ret(1 * kPointerSize); |
| 76 |
| 77 // Create a new closure through the slower runtime call. |
| 78 __ bind(&gc); |
| 79 __ pop(ecx); // Temporarily remove return address. |
| 80 __ pop(edx); |
| 81 __ push(esi); |
| 82 __ push(edx); |
| 83 __ push(ecx); // Restore return address. |
| 84 __ TailCallRuntime(Runtime::kNewClosure, 2, 1); |
| 85 } |
| 86 |
| 87 |
| 88 void FastNewContextStub::Generate(MacroAssembler* masm) { |
| 89 // Try to allocate the context in new space. |
| 90 Label gc; |
| 91 int length = slots_ + Context::MIN_CONTEXT_SLOTS; |
| 92 __ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize, |
| 93 eax, ebx, ecx, &gc, TAG_OBJECT); |
| 94 |
| 95 // Get the function from the stack. |
| 96 __ mov(ecx, Operand(esp, 1 * kPointerSize)); |
| 97 |
| 98 // Setup the object header. |
| 99 __ mov(FieldOperand(eax, HeapObject::kMapOffset), Factory::context_map()); |
| 100 __ mov(FieldOperand(eax, Context::kLengthOffset), |
| 101 Immediate(Smi::FromInt(length))); |
| 102 |
| 103 // Setup the fixed slots. |
| 104 __ xor_(ebx, Operand(ebx)); // Set to NULL. |
| 105 __ mov(Operand(eax, Context::SlotOffset(Context::CLOSURE_INDEX)), ecx); |
| 106 __ mov(Operand(eax, Context::SlotOffset(Context::FCONTEXT_INDEX)), eax); |
| 107 __ mov(Operand(eax, Context::SlotOffset(Context::PREVIOUS_INDEX)), ebx); |
| 108 __ mov(Operand(eax, Context::SlotOffset(Context::EXTENSION_INDEX)), ebx); |
| 109 |
| 110 // Copy the global object from the surrounding context. We go through the |
| 111 // context in the function (ecx) to match the allocation behavior we have |
| 112 // in the runtime system (see Heap::AllocateFunctionContext). |
| 113 __ mov(ebx, FieldOperand(ecx, JSFunction::kContextOffset)); |
| 114 __ mov(ebx, Operand(ebx, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| 115 __ mov(Operand(eax, Context::SlotOffset(Context::GLOBAL_INDEX)), ebx); |
| 116 |
| 117 // Initialize the rest of the slots to undefined. |
| 118 __ mov(ebx, Factory::undefined_value()); |
| 119 for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) { |
| 120 __ mov(Operand(eax, Context::SlotOffset(i)), ebx); |
| 121 } |
| 122 |
| 123 // Return and remove the on-stack parameter. |
| 124 __ mov(esi, Operand(eax)); |
| 125 __ ret(1 * kPointerSize); |
| 126 |
| 127 // Need to collect. Call into runtime system. |
| 128 __ bind(&gc); |
| 129 __ TailCallRuntime(Runtime::kNewContext, 1, 1); |
| 130 } |
| 131 |
| 132 |
| 133 void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { |
| 134 // Stack layout on entry: |
| 135 // |
| 136 // [esp + kPointerSize]: constant elements. |
| 137 // [esp + (2 * kPointerSize)]: literal index. |
| 138 // [esp + (3 * kPointerSize)]: literals array. |
| 139 |
| 140 // All sizes here are multiples of kPointerSize. |
| 141 int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0; |
| 142 int size = JSArray::kSize + elements_size; |
| 143 |
| 144 // Load boilerplate object into ecx and check if we need to create a |
| 145 // boilerplate. |
| 146 Label slow_case; |
| 147 __ mov(ecx, Operand(esp, 3 * kPointerSize)); |
| 148 __ mov(eax, Operand(esp, 2 * kPointerSize)); |
| 149 STATIC_ASSERT(kPointerSize == 4); |
| 150 STATIC_ASSERT(kSmiTagSize == 1); |
| 151 STATIC_ASSERT(kSmiTag == 0); |
| 152 __ mov(ecx, CodeGenerator::FixedArrayElementOperand(ecx, eax)); |
| 153 __ cmp(ecx, Factory::undefined_value()); |
| 154 __ j(equal, &slow_case); |
| 155 |
| 156 if (FLAG_debug_code) { |
| 157 const char* message; |
| 158 Handle<Map> expected_map; |
| 159 if (mode_ == CLONE_ELEMENTS) { |
| 160 message = "Expected (writable) fixed array"; |
| 161 expected_map = Factory::fixed_array_map(); |
| 162 } else { |
| 163 ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS); |
| 164 message = "Expected copy-on-write fixed array"; |
| 165 expected_map = Factory::fixed_cow_array_map(); |
| 166 } |
| 167 __ push(ecx); |
| 168 __ mov(ecx, FieldOperand(ecx, JSArray::kElementsOffset)); |
| 169 __ cmp(FieldOperand(ecx, HeapObject::kMapOffset), expected_map); |
| 170 __ Assert(equal, message); |
| 171 __ pop(ecx); |
| 172 } |
| 173 |
| 174 // Allocate both the JS array and the elements array in one big |
| 175 // allocation. This avoids multiple limit checks. |
| 176 __ AllocateInNewSpace(size, eax, ebx, edx, &slow_case, TAG_OBJECT); |
| 177 |
| 178 // Copy the JS array part. |
| 179 for (int i = 0; i < JSArray::kSize; i += kPointerSize) { |
| 180 if ((i != JSArray::kElementsOffset) || (length_ == 0)) { |
| 181 __ mov(ebx, FieldOperand(ecx, i)); |
| 182 __ mov(FieldOperand(eax, i), ebx); |
| 183 } |
| 184 } |
| 185 |
| 186 if (length_ > 0) { |
| 187 // Get hold of the elements array of the boilerplate and setup the |
| 188 // elements pointer in the resulting object. |
| 189 __ mov(ecx, FieldOperand(ecx, JSArray::kElementsOffset)); |
| 190 __ lea(edx, Operand(eax, JSArray::kSize)); |
| 191 __ mov(FieldOperand(eax, JSArray::kElementsOffset), edx); |
| 192 |
| 193 // Copy the elements array. |
| 194 for (int i = 0; i < elements_size; i += kPointerSize) { |
| 195 __ mov(ebx, FieldOperand(ecx, i)); |
| 196 __ mov(FieldOperand(edx, i), ebx); |
| 197 } |
| 198 } |
| 199 |
| 200 // Return and remove the on-stack parameters. |
| 201 __ ret(3 * kPointerSize); |
| 202 |
| 203 __ bind(&slow_case); |
| 204 __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1); |
| 205 } |
| 206 |
| 207 |
| 208 // NOTE: The stub does not handle the inlined cases (Smis, Booleans, undefined). |
| 209 void ToBooleanStub::Generate(MacroAssembler* masm) { |
| 210 Label false_result, true_result, not_string; |
| 211 __ mov(eax, Operand(esp, 1 * kPointerSize)); |
| 212 |
| 213 // 'null' => false. |
| 214 __ cmp(eax, Factory::null_value()); |
| 215 __ j(equal, &false_result); |
| 216 |
| 217 // Get the map and type of the heap object. |
| 218 __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); |
| 219 __ movzx_b(ecx, FieldOperand(edx, Map::kInstanceTypeOffset)); |
| 220 |
| 221 // Undetectable => false. |
| 222 __ test_b(FieldOperand(edx, Map::kBitFieldOffset), |
| 223 1 << Map::kIsUndetectable); |
| 224 __ j(not_zero, &false_result); |
| 225 |
| 226 // JavaScript object => true. |
| 227 __ CmpInstanceType(edx, FIRST_JS_OBJECT_TYPE); |
| 228 __ j(above_equal, &true_result); |
| 229 |
| 230 // String value => false iff empty. |
| 231 __ CmpInstanceType(edx, FIRST_NONSTRING_TYPE); |
| 232 __ j(above_equal, ¬_string); |
| 233 STATIC_ASSERT(kSmiTag == 0); |
| 234 __ cmp(FieldOperand(eax, String::kLengthOffset), Immediate(0)); |
| 235 __ j(zero, &false_result); |
| 236 __ jmp(&true_result); |
| 237 |
| 238 __ bind(¬_string); |
| 239 // HeapNumber => false iff +0, -0, or NaN. |
| 240 __ cmp(edx, Factory::heap_number_map()); |
| 241 __ j(not_equal, &true_result); |
| 242 __ fldz(); |
| 243 __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| 244 __ FCmp(); |
| 245 __ j(zero, &false_result); |
| 246 // Fall through to |true_result|. |
| 247 |
| 248 // Return 1/0 for true/false in eax. |
| 249 __ bind(&true_result); |
| 250 __ mov(eax, 1); |
| 251 __ ret(1 * kPointerSize); |
| 252 __ bind(&false_result); |
| 253 __ mov(eax, 0); |
| 254 __ ret(1 * kPointerSize); |
| 255 } |
| 256 |
| 257 |
| 258 const char* GenericBinaryOpStub::GetName() { |
| 259 if (name_ != NULL) return name_; |
| 260 const int kMaxNameLength = 100; |
| 261 name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength); |
| 262 if (name_ == NULL) return "OOM"; |
| 263 const char* op_name = Token::Name(op_); |
| 264 const char* overwrite_name; |
| 265 switch (mode_) { |
| 266 case NO_OVERWRITE: overwrite_name = "Alloc"; break; |
| 267 case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; |
| 268 case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; |
| 269 default: overwrite_name = "UnknownOverwrite"; break; |
| 270 } |
| 271 |
| 272 OS::SNPrintF(Vector<char>(name_, kMaxNameLength), |
| 273 "GenericBinaryOpStub_%s_%s%s_%s%s_%s_%s", |
| 274 op_name, |
| 275 overwrite_name, |
| 276 (flags_ & NO_SMI_CODE_IN_STUB) ? "_NoSmiInStub" : "", |
| 277 args_in_registers_ ? "RegArgs" : "StackArgs", |
| 278 args_reversed_ ? "_R" : "", |
| 279 static_operands_type_.ToString(), |
| 280 BinaryOpIC::GetName(runtime_operands_type_)); |
| 281 return name_; |
| 282 } |
| 283 |
| 284 |
| 285 void GenericBinaryOpStub::GenerateCall( |
| 286 MacroAssembler* masm, |
| 287 Register left, |
| 288 Register right) { |
| 289 if (!ArgsInRegistersSupported()) { |
| 290 // Pass arguments on the stack. |
| 291 __ push(left); |
| 292 __ push(right); |
| 293 } else { |
| 294 // The calling convention with registers is left in edx and right in eax. |
| 295 Register left_arg = edx; |
| 296 Register right_arg = eax; |
| 297 if (!(left.is(left_arg) && right.is(right_arg))) { |
| 298 if (left.is(right_arg) && right.is(left_arg)) { |
| 299 if (IsOperationCommutative()) { |
| 300 SetArgsReversed(); |
| 301 } else { |
| 302 __ xchg(left, right); |
| 303 } |
| 304 } else if (left.is(left_arg)) { |
| 305 __ mov(right_arg, right); |
| 306 } else if (right.is(right_arg)) { |
| 307 __ mov(left_arg, left); |
| 308 } else if (left.is(right_arg)) { |
| 309 if (IsOperationCommutative()) { |
| 310 __ mov(left_arg, right); |
| 311 SetArgsReversed(); |
| 312 } else { |
| 313 // Order of moves important to avoid destroying left argument. |
| 314 __ mov(left_arg, left); |
| 315 __ mov(right_arg, right); |
| 316 } |
| 317 } else if (right.is(left_arg)) { |
| 318 if (IsOperationCommutative()) { |
| 319 __ mov(right_arg, left); |
| 320 SetArgsReversed(); |
| 321 } else { |
| 322 // Order of moves important to avoid destroying right argument. |
| 323 __ mov(right_arg, right); |
| 324 __ mov(left_arg, left); |
| 325 } |
| 326 } else { |
| 327 // Order of moves is not important. |
| 328 __ mov(left_arg, left); |
| 329 __ mov(right_arg, right); |
| 330 } |
| 331 } |
| 332 |
| 333 // Update flags to indicate that arguments are in registers. |
| 334 SetArgsInRegisters(); |
| 335 __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
| 336 } |
| 337 |
| 338 // Call the stub. |
| 339 __ CallStub(this); |
| 340 } |
| 341 |
| 342 |
| 343 void GenericBinaryOpStub::GenerateCall( |
| 344 MacroAssembler* masm, |
| 345 Register left, |
| 346 Smi* right) { |
| 347 if (!ArgsInRegistersSupported()) { |
| 348 // Pass arguments on the stack. |
| 349 __ push(left); |
| 350 __ push(Immediate(right)); |
| 351 } else { |
| 352 // The calling convention with registers is left in edx and right in eax. |
| 353 Register left_arg = edx; |
| 354 Register right_arg = eax; |
| 355 if (left.is(left_arg)) { |
| 356 __ mov(right_arg, Immediate(right)); |
| 357 } else if (left.is(right_arg) && IsOperationCommutative()) { |
| 358 __ mov(left_arg, Immediate(right)); |
| 359 SetArgsReversed(); |
| 360 } else { |
| 361 // For non-commutative operations, left and right_arg might be |
| 362 // the same register. Therefore, the order of the moves is |
| 363 // important here in order to not overwrite left before moving |
| 364 // it to left_arg. |
| 365 __ mov(left_arg, left); |
| 366 __ mov(right_arg, Immediate(right)); |
| 367 } |
| 368 |
| 369 // Update flags to indicate that arguments are in registers. |
| 370 SetArgsInRegisters(); |
| 371 __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
| 372 } |
| 373 |
| 374 // Call the stub. |
| 375 __ CallStub(this); |
| 376 } |
| 377 |
| 378 |
| 379 void GenericBinaryOpStub::GenerateCall( |
| 380 MacroAssembler* masm, |
| 381 Smi* left, |
| 382 Register right) { |
| 383 if (!ArgsInRegistersSupported()) { |
| 384 // Pass arguments on the stack. |
| 385 __ push(Immediate(left)); |
| 386 __ push(right); |
| 387 } else { |
| 388 // The calling convention with registers is left in edx and right in eax. |
| 389 Register left_arg = edx; |
| 390 Register right_arg = eax; |
| 391 if (right.is(right_arg)) { |
| 392 __ mov(left_arg, Immediate(left)); |
| 393 } else if (right.is(left_arg) && IsOperationCommutative()) { |
| 394 __ mov(right_arg, Immediate(left)); |
| 395 SetArgsReversed(); |
| 396 } else { |
| 397 // For non-commutative operations, right and left_arg might be |
| 398 // the same register. Therefore, the order of the moves is |
| 399 // important here in order to not overwrite right before moving |
| 400 // it to right_arg. |
| 401 __ mov(right_arg, right); |
| 402 __ mov(left_arg, Immediate(left)); |
| 403 } |
| 404 // Update flags to indicate that arguments are in registers. |
| 405 SetArgsInRegisters(); |
| 406 __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
| 407 } |
| 408 |
| 409 // Call the stub. |
| 410 __ CallStub(this); |
| 411 } |
| 412 |
| 413 |
| 414 class FloatingPointHelper : public AllStatic { |
| 415 public: |
| 416 |
| 417 enum ArgLocation { |
| 418 ARGS_ON_STACK, |
| 419 ARGS_IN_REGISTERS |
| 420 }; |
| 421 |
| 422 // Code pattern for loading a floating point value. Input value must |
| 423 // be either a smi or a heap number object (fp value). Requirements: |
| 424 // operand in register number. Returns operand as floating point number |
| 425 // on FPU stack. |
| 426 static void LoadFloatOperand(MacroAssembler* masm, Register number); |
| 427 |
| 428 // Code pattern for loading floating point values. Input values must |
| 429 // be either smi or heap number objects (fp values). Requirements: |
| 430 // operand_1 on TOS+1 or in edx, operand_2 on TOS+2 or in eax. |
| 431 // Returns operands as floating point numbers on FPU stack. |
| 432 static void LoadFloatOperands(MacroAssembler* masm, |
| 433 Register scratch, |
| 434 ArgLocation arg_location = ARGS_ON_STACK); |
| 435 |
| 436 // Similar to LoadFloatOperand but assumes that both operands are smis. |
| 437 // Expects operands in edx, eax. |
| 438 static void LoadFloatSmis(MacroAssembler* masm, Register scratch); |
| 439 |
| 440 // Test if operands are smi or number objects (fp). Requirements: |
| 441 // operand_1 in eax, operand_2 in edx; falls through on float |
| 442 // operands, jumps to the non_float label otherwise. |
| 443 static void CheckFloatOperands(MacroAssembler* masm, |
| 444 Label* non_float, |
| 445 Register scratch); |
| 446 |
| 447 // Takes the operands in edx and eax and loads them as integers in eax |
| 448 // and ecx. |
| 449 static void LoadAsIntegers(MacroAssembler* masm, |
| 450 TypeInfo type_info, |
| 451 bool use_sse3, |
| 452 Label* operand_conversion_failure); |
| 453 static void LoadNumbersAsIntegers(MacroAssembler* masm, |
| 454 TypeInfo type_info, |
| 455 bool use_sse3, |
| 456 Label* operand_conversion_failure); |
| 457 static void LoadUnknownsAsIntegers(MacroAssembler* masm, |
| 458 bool use_sse3, |
| 459 Label* operand_conversion_failure); |
| 460 |
| 461 // Test if operands are smis or heap numbers and load them |
| 462 // into xmm0 and xmm1 if they are. Operands are in edx and eax. |
| 463 // Leaves operands unchanged. |
| 464 static void LoadSSE2Operands(MacroAssembler* masm); |
| 465 |
| 466 // Test if operands are numbers (smi or HeapNumber objects), and load |
| 467 // them into xmm0 and xmm1 if they are. Jump to label not_numbers if |
| 468 // either operand is not a number. Operands are in edx and eax. |
| 469 // Leaves operands unchanged. |
| 470 static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers); |
| 471 |
| 472 // Similar to LoadSSE2Operands but assumes that both operands are smis. |
| 473 // Expects operands in edx, eax. |
| 474 static void LoadSSE2Smis(MacroAssembler* masm, Register scratch); |
| 475 }; |
| 476 |
| 477 |
| 478 void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) { |
| 479 // 1. Move arguments into edx, eax except for DIV and MOD, which need the |
| 480 // dividend in eax and edx free for the division. Use eax, ebx for those. |
| 481 Comment load_comment(masm, "-- Load arguments"); |
| 482 Register left = edx; |
| 483 Register right = eax; |
| 484 if (op_ == Token::DIV || op_ == Token::MOD) { |
| 485 left = eax; |
| 486 right = ebx; |
| 487 if (HasArgsInRegisters()) { |
| 488 __ mov(ebx, eax); |
| 489 __ mov(eax, edx); |
| 490 } |
| 491 } |
| 492 if (!HasArgsInRegisters()) { |
| 493 __ mov(right, Operand(esp, 1 * kPointerSize)); |
| 494 __ mov(left, Operand(esp, 2 * kPointerSize)); |
| 495 } |
| 496 |
| 497 if (static_operands_type_.IsSmi()) { |
| 498 if (FLAG_debug_code) { |
| 499 __ AbortIfNotSmi(left); |
| 500 __ AbortIfNotSmi(right); |
| 501 } |
| 502 if (op_ == Token::BIT_OR) { |
| 503 __ or_(right, Operand(left)); |
| 504 GenerateReturn(masm); |
| 505 return; |
| 506 } else if (op_ == Token::BIT_AND) { |
| 507 __ and_(right, Operand(left)); |
| 508 GenerateReturn(masm); |
| 509 return; |
| 510 } else if (op_ == Token::BIT_XOR) { |
| 511 __ xor_(right, Operand(left)); |
| 512 GenerateReturn(masm); |
| 513 return; |
| 514 } |
| 515 } |
| 516 |
| 517 // 2. Prepare the smi check of both operands by oring them together. |
| 518 Comment smi_check_comment(masm, "-- Smi check arguments"); |
| 519 Label not_smis; |
| 520 Register combined = ecx; |
| 521 ASSERT(!left.is(combined) && !right.is(combined)); |
| 522 switch (op_) { |
| 523 case Token::BIT_OR: |
| 524 // Perform the operation into eax and smi check the result. Preserve |
| 525 // eax in case the result is not a smi. |
| 526 ASSERT(!left.is(ecx) && !right.is(ecx)); |
| 527 __ mov(ecx, right); |
| 528 __ or_(right, Operand(left)); // Bitwise or is commutative. |
| 529 combined = right; |
| 530 break; |
| 531 |
| 532 case Token::BIT_XOR: |
| 533 case Token::BIT_AND: |
| 534 case Token::ADD: |
| 535 case Token::SUB: |
| 536 case Token::MUL: |
| 537 case Token::DIV: |
| 538 case Token::MOD: |
| 539 __ mov(combined, right); |
| 540 __ or_(combined, Operand(left)); |
| 541 break; |
| 542 |
| 543 case Token::SHL: |
| 544 case Token::SAR: |
| 545 case Token::SHR: |
| 546 // Move the right operand into ecx for the shift operation, use eax |
| 547 // for the smi check register. |
| 548 ASSERT(!left.is(ecx) && !right.is(ecx)); |
| 549 __ mov(ecx, right); |
| 550 __ or_(right, Operand(left)); |
| 551 combined = right; |
| 552 break; |
| 553 |
| 554 default: |
| 555 break; |
| 556 } |
| 557 |
| 558 // 3. Perform the smi check of the operands. |
| 559 STATIC_ASSERT(kSmiTag == 0); // Adjust zero check if not the case. |
| 560 __ test(combined, Immediate(kSmiTagMask)); |
| 561 __ j(not_zero, ¬_smis, not_taken); |
| 562 |
| 563 // 4. Operands are both smis, perform the operation leaving the result in |
| 564 // eax and check the result if necessary. |
| 565 Comment perform_smi(masm, "-- Perform smi operation"); |
| 566 Label use_fp_on_smis; |
| 567 switch (op_) { |
| 568 case Token::BIT_OR: |
| 569 // Nothing to do. |
| 570 break; |
| 571 |
| 572 case Token::BIT_XOR: |
| 573 ASSERT(right.is(eax)); |
| 574 __ xor_(right, Operand(left)); // Bitwise xor is commutative. |
| 575 break; |
| 576 |
| 577 case Token::BIT_AND: |
| 578 ASSERT(right.is(eax)); |
| 579 __ and_(right, Operand(left)); // Bitwise and is commutative. |
| 580 break; |
| 581 |
| 582 case Token::SHL: |
| 583 // Remove tags from operands (but keep sign). |
| 584 __ SmiUntag(left); |
| 585 __ SmiUntag(ecx); |
| 586 // Perform the operation. |
| 587 __ shl_cl(left); |
| 588 // Check that the *signed* result fits in a smi. |
| 589 __ cmp(left, 0xc0000000); |
| 590 __ j(sign, &use_fp_on_smis, not_taken); |
| 591 // Tag the result and store it in register eax. |
| 592 __ SmiTag(left); |
| 593 __ mov(eax, left); |
| 594 break; |
| 595 |
| 596 case Token::SAR: |
| 597 // Remove tags from operands (but keep sign). |
| 598 __ SmiUntag(left); |
| 599 __ SmiUntag(ecx); |
| 600 // Perform the operation. |
| 601 __ sar_cl(left); |
| 602 // Tag the result and store it in register eax. |
| 603 __ SmiTag(left); |
| 604 __ mov(eax, left); |
| 605 break; |
| 606 |
| 607 case Token::SHR: |
| 608 // Remove tags from operands (but keep sign). |
| 609 __ SmiUntag(left); |
| 610 __ SmiUntag(ecx); |
| 611 // Perform the operation. |
| 612 __ shr_cl(left); |
| 613 // Check that the *unsigned* result fits in a smi. |
| 614 // Neither of the two high-order bits can be set: |
| 615 // - 0x80000000: high bit would be lost when smi tagging. |
| 616 // - 0x40000000: this number would convert to negative when |
| 617 // Smi tagging these two cases can only happen with shifts |
| 618 // by 0 or 1 when handed a valid smi. |
| 619 __ test(left, Immediate(0xc0000000)); |
| 620 __ j(not_zero, slow, not_taken); |
| 621 // Tag the result and store it in register eax. |
| 622 __ SmiTag(left); |
| 623 __ mov(eax, left); |
| 624 break; |
| 625 |
| 626 case Token::ADD: |
| 627 ASSERT(right.is(eax)); |
| 628 __ add(right, Operand(left)); // Addition is commutative. |
| 629 __ j(overflow, &use_fp_on_smis, not_taken); |
| 630 break; |
| 631 |
| 632 case Token::SUB: |
| 633 __ sub(left, Operand(right)); |
| 634 __ j(overflow, &use_fp_on_smis, not_taken); |
| 635 __ mov(eax, left); |
| 636 break; |
| 637 |
| 638 case Token::MUL: |
| 639 // If the smi tag is 0 we can just leave the tag on one operand. |
| 640 STATIC_ASSERT(kSmiTag == 0); // Adjust code below if not the case. |
| 641 // We can't revert the multiplication if the result is not a smi |
| 642 // so save the right operand. |
| 643 __ mov(ebx, right); |
| 644 // Remove tag from one of the operands (but keep sign). |
| 645 __ SmiUntag(right); |
| 646 // Do multiplication. |
| 647 __ imul(right, Operand(left)); // Multiplication is commutative. |
| 648 __ j(overflow, &use_fp_on_smis, not_taken); |
| 649 // Check for negative zero result. Use combined = left | right. |
| 650 __ NegativeZeroTest(right, combined, &use_fp_on_smis); |
| 651 break; |
| 652 |
| 653 case Token::DIV: |
| 654 // We can't revert the division if the result is not a smi so |
| 655 // save the left operand. |
| 656 __ mov(edi, left); |
| 657 // Check for 0 divisor. |
| 658 __ test(right, Operand(right)); |
| 659 __ j(zero, &use_fp_on_smis, not_taken); |
| 660 // Sign extend left into edx:eax. |
| 661 ASSERT(left.is(eax)); |
| 662 __ cdq(); |
| 663 // Divide edx:eax by right. |
| 664 __ idiv(right); |
| 665 // Check for the corner case of dividing the most negative smi by |
| 666 // -1. We cannot use the overflow flag, since it is not set by idiv |
| 667 // instruction. |
| 668 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); |
| 669 __ cmp(eax, 0x40000000); |
| 670 __ j(equal, &use_fp_on_smis); |
| 671 // Check for negative zero result. Use combined = left | right. |
| 672 __ NegativeZeroTest(eax, combined, &use_fp_on_smis); |
| 673 // Check that the remainder is zero. |
| 674 __ test(edx, Operand(edx)); |
| 675 __ j(not_zero, &use_fp_on_smis); |
| 676 // Tag the result and store it in register eax. |
| 677 __ SmiTag(eax); |
| 678 break; |
| 679 |
| 680 case Token::MOD: |
| 681 // Check for 0 divisor. |
| 682 __ test(right, Operand(right)); |
| 683 __ j(zero, ¬_smis, not_taken); |
| 684 |
| 685 // Sign extend left into edx:eax. |
| 686 ASSERT(left.is(eax)); |
| 687 __ cdq(); |
| 688 // Divide edx:eax by right. |
| 689 __ idiv(right); |
| 690 // Check for negative zero result. Use combined = left | right. |
| 691 __ NegativeZeroTest(edx, combined, slow); |
| 692 // Move remainder to register eax. |
| 693 __ mov(eax, edx); |
| 694 break; |
| 695 |
| 696 default: |
| 697 UNREACHABLE(); |
| 698 } |
| 699 |
| 700 // 5. Emit return of result in eax. |
| 701 GenerateReturn(masm); |
| 702 |
| 703 // 6. For some operations emit inline code to perform floating point |
| 704 // operations on known smis (e.g., if the result of the operation |
| 705 // overflowed the smi range). |
| 706 switch (op_) { |
| 707 case Token::SHL: { |
| 708 Comment perform_float(masm, "-- Perform float operation on smis"); |
| 709 __ bind(&use_fp_on_smis); |
| 710 // Result we want is in left == edx, so we can put the allocated heap |
| 711 // number in eax. |
| 712 __ AllocateHeapNumber(eax, ecx, ebx, slow); |
| 713 // Store the result in the HeapNumber and return. |
| 714 if (CpuFeatures::IsSupported(SSE2)) { |
| 715 CpuFeatures::Scope use_sse2(SSE2); |
| 716 __ cvtsi2sd(xmm0, Operand(left)); |
| 717 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| 718 } else { |
| 719 // It's OK to overwrite the right argument on the stack because we |
| 720 // are about to return. |
| 721 __ mov(Operand(esp, 1 * kPointerSize), left); |
| 722 __ fild_s(Operand(esp, 1 * kPointerSize)); |
| 723 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| 724 } |
| 725 GenerateReturn(masm); |
| 726 break; |
| 727 } |
| 728 |
| 729 case Token::ADD: |
| 730 case Token::SUB: |
| 731 case Token::MUL: |
| 732 case Token::DIV: { |
| 733 Comment perform_float(masm, "-- Perform float operation on smis"); |
| 734 __ bind(&use_fp_on_smis); |
| 735 // Restore arguments to edx, eax. |
| 736 switch (op_) { |
| 737 case Token::ADD: |
| 738 // Revert right = right + left. |
| 739 __ sub(right, Operand(left)); |
| 740 break; |
| 741 case Token::SUB: |
| 742 // Revert left = left - right. |
| 743 __ add(left, Operand(right)); |
| 744 break; |
| 745 case Token::MUL: |
| 746 // Right was clobbered but a copy is in ebx. |
| 747 __ mov(right, ebx); |
| 748 break; |
| 749 case Token::DIV: |
| 750 // Left was clobbered but a copy is in edi. Right is in ebx for |
| 751 // division. |
| 752 __ mov(edx, edi); |
| 753 __ mov(eax, right); |
| 754 break; |
| 755 default: UNREACHABLE(); |
| 756 break; |
| 757 } |
| 758 __ AllocateHeapNumber(ecx, ebx, no_reg, slow); |
| 759 if (CpuFeatures::IsSupported(SSE2)) { |
| 760 CpuFeatures::Scope use_sse2(SSE2); |
| 761 FloatingPointHelper::LoadSSE2Smis(masm, ebx); |
| 762 switch (op_) { |
| 763 case Token::ADD: __ addsd(xmm0, xmm1); break; |
| 764 case Token::SUB: __ subsd(xmm0, xmm1); break; |
| 765 case Token::MUL: __ mulsd(xmm0, xmm1); break; |
| 766 case Token::DIV: __ divsd(xmm0, xmm1); break; |
| 767 default: UNREACHABLE(); |
| 768 } |
| 769 __ movdbl(FieldOperand(ecx, HeapNumber::kValueOffset), xmm0); |
| 770 } else { // SSE2 not available, use FPU. |
| 771 FloatingPointHelper::LoadFloatSmis(masm, ebx); |
| 772 switch (op_) { |
| 773 case Token::ADD: __ faddp(1); break; |
| 774 case Token::SUB: __ fsubp(1); break; |
| 775 case Token::MUL: __ fmulp(1); break; |
| 776 case Token::DIV: __ fdivp(1); break; |
| 777 default: UNREACHABLE(); |
| 778 } |
| 779 __ fstp_d(FieldOperand(ecx, HeapNumber::kValueOffset)); |
| 780 } |
| 781 __ mov(eax, ecx); |
| 782 GenerateReturn(masm); |
| 783 break; |
| 784 } |
| 785 |
| 786 default: |
| 787 break; |
| 788 } |
| 789 |
| 790 // 7. Non-smi operands, fall out to the non-smi code with the operands in |
| 791 // edx and eax. |
| 792 Comment done_comment(masm, "-- Enter non-smi code"); |
| 793 __ bind(¬_smis); |
| 794 switch (op_) { |
| 795 case Token::BIT_OR: |
| 796 case Token::SHL: |
| 797 case Token::SAR: |
| 798 case Token::SHR: |
| 799 // Right operand is saved in ecx and eax was destroyed by the smi |
| 800 // check. |
| 801 __ mov(eax, ecx); |
| 802 break; |
| 803 |
| 804 case Token::DIV: |
| 805 case Token::MOD: |
| 806 // Operands are in eax, ebx at this point. |
| 807 __ mov(edx, eax); |
| 808 __ mov(eax, ebx); |
| 809 break; |
| 810 |
| 811 default: |
| 812 break; |
| 813 } |
| 814 } |
| 815 |
| 816 |
| 817 void GenericBinaryOpStub::Generate(MacroAssembler* masm) { |
| 818 Label call_runtime; |
| 819 |
| 820 __ IncrementCounter(&Counters::generic_binary_stub_calls, 1); |
| 821 |
| 822 // Generate fast case smi code if requested. This flag is set when the fast |
| 823 // case smi code is not generated by the caller. Generating it here will speed |
| 824 // up common operations. |
| 825 if (ShouldGenerateSmiCode()) { |
| 826 GenerateSmiCode(masm, &call_runtime); |
| 827 } else if (op_ != Token::MOD) { // MOD goes straight to runtime. |
| 828 if (!HasArgsInRegisters()) { |
| 829 GenerateLoadArguments(masm); |
| 830 } |
| 831 } |
| 832 |
| 833 // Floating point case. |
| 834 if (ShouldGenerateFPCode()) { |
| 835 switch (op_) { |
| 836 case Token::ADD: |
| 837 case Token::SUB: |
| 838 case Token::MUL: |
| 839 case Token::DIV: { |
| 840 if (runtime_operands_type_ == BinaryOpIC::DEFAULT && |
| 841 HasSmiCodeInStub()) { |
| 842 // Execution reaches this point when the first non-smi argument occurs |
| 843 // (and only if smi code is generated). This is the right moment to |
| 844 // patch to HEAP_NUMBERS state. The transition is attempted only for |
| 845 // the four basic operations. The stub stays in the DEFAULT state |
| 846 // forever for all other operations (also if smi code is skipped). |
| 847 GenerateTypeTransition(masm); |
| 848 break; |
| 849 } |
| 850 |
| 851 Label not_floats; |
| 852 if (CpuFeatures::IsSupported(SSE2)) { |
| 853 CpuFeatures::Scope use_sse2(SSE2); |
| 854 if (static_operands_type_.IsNumber()) { |
| 855 if (FLAG_debug_code) { |
| 856 // Assert at runtime that inputs are only numbers. |
| 857 __ AbortIfNotNumber(edx); |
| 858 __ AbortIfNotNumber(eax); |
| 859 } |
| 860 if (static_operands_type_.IsSmi()) { |
| 861 if (FLAG_debug_code) { |
| 862 __ AbortIfNotSmi(edx); |
| 863 __ AbortIfNotSmi(eax); |
| 864 } |
| 865 FloatingPointHelper::LoadSSE2Smis(masm, ecx); |
| 866 } else { |
| 867 FloatingPointHelper::LoadSSE2Operands(masm); |
| 868 } |
| 869 } else { |
| 870 FloatingPointHelper::LoadSSE2Operands(masm, &call_runtime); |
| 871 } |
| 872 |
| 873 switch (op_) { |
| 874 case Token::ADD: __ addsd(xmm0, xmm1); break; |
| 875 case Token::SUB: __ subsd(xmm0, xmm1); break; |
| 876 case Token::MUL: __ mulsd(xmm0, xmm1); break; |
| 877 case Token::DIV: __ divsd(xmm0, xmm1); break; |
| 878 default: UNREACHABLE(); |
| 879 } |
| 880 GenerateHeapResultAllocation(masm, &call_runtime); |
| 881 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| 882 GenerateReturn(masm); |
| 883 } else { // SSE2 not available, use FPU. |
| 884 if (static_operands_type_.IsNumber()) { |
| 885 if (FLAG_debug_code) { |
| 886 // Assert at runtime that inputs are only numbers. |
| 887 __ AbortIfNotNumber(edx); |
| 888 __ AbortIfNotNumber(eax); |
| 889 } |
| 890 } else { |
| 891 FloatingPointHelper::CheckFloatOperands(masm, &call_runtime, ebx); |
| 892 } |
| 893 FloatingPointHelper::LoadFloatOperands( |
| 894 masm, |
| 895 ecx, |
| 896 FloatingPointHelper::ARGS_IN_REGISTERS); |
| 897 switch (op_) { |
| 898 case Token::ADD: __ faddp(1); break; |
| 899 case Token::SUB: __ fsubp(1); break; |
| 900 case Token::MUL: __ fmulp(1); break; |
| 901 case Token::DIV: __ fdivp(1); break; |
| 902 default: UNREACHABLE(); |
| 903 } |
| 904 Label after_alloc_failure; |
| 905 GenerateHeapResultAllocation(masm, &after_alloc_failure); |
| 906 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| 907 GenerateReturn(masm); |
| 908 __ bind(&after_alloc_failure); |
| 909 __ ffree(); |
| 910 __ jmp(&call_runtime); |
| 911 } |
| 912 __ bind(¬_floats); |
| 913 if (runtime_operands_type_ == BinaryOpIC::DEFAULT && |
| 914 !HasSmiCodeInStub()) { |
| 915 // Execution reaches this point when the first non-number argument |
| 916 // occurs (and only if smi code is skipped from the stub, otherwise |
| 917 // the patching has already been done earlier in this case branch). |
| 918 // Try patching to STRINGS for ADD operation. |
| 919 if (op_ == Token::ADD) { |
| 920 GenerateTypeTransition(masm); |
| 921 } |
| 922 } |
| 923 break; |
| 924 } |
| 925 case Token::MOD: { |
| 926 // For MOD we go directly to runtime in the non-smi case. |
| 927 break; |
| 928 } |
| 929 case Token::BIT_OR: |
| 930 case Token::BIT_AND: |
| 931 case Token::BIT_XOR: |
| 932 case Token::SAR: |
| 933 case Token::SHL: |
| 934 case Token::SHR: { |
| 935 Label non_smi_result; |
| 936 FloatingPointHelper::LoadAsIntegers(masm, |
| 937 static_operands_type_, |
| 938 use_sse3_, |
| 939 &call_runtime); |
| 940 switch (op_) { |
| 941 case Token::BIT_OR: __ or_(eax, Operand(ecx)); break; |
| 942 case Token::BIT_AND: __ and_(eax, Operand(ecx)); break; |
| 943 case Token::BIT_XOR: __ xor_(eax, Operand(ecx)); break; |
| 944 case Token::SAR: __ sar_cl(eax); break; |
| 945 case Token::SHL: __ shl_cl(eax); break; |
| 946 case Token::SHR: __ shr_cl(eax); break; |
| 947 default: UNREACHABLE(); |
| 948 } |
| 949 if (op_ == Token::SHR) { |
| 950 // Check if result is non-negative and fits in a smi. |
| 951 __ test(eax, Immediate(0xc0000000)); |
| 952 __ j(not_zero, &call_runtime); |
| 953 } else { |
| 954 // Check if result fits in a smi. |
| 955 __ cmp(eax, 0xc0000000); |
| 956 __ j(negative, &non_smi_result); |
| 957 } |
| 958 // Tag smi result and return. |
| 959 __ SmiTag(eax); |
| 960 GenerateReturn(masm); |
| 961 |
| 962 // All ops except SHR return a signed int32 that we load in |
| 963 // a HeapNumber. |
| 964 if (op_ != Token::SHR) { |
| 965 __ bind(&non_smi_result); |
| 966 // Allocate a heap number if needed. |
| 967 __ mov(ebx, Operand(eax)); // ebx: result |
| 968 Label skip_allocation; |
| 969 switch (mode_) { |
| 970 case OVERWRITE_LEFT: |
| 971 case OVERWRITE_RIGHT: |
| 972 // If the operand was an object, we skip the |
| 973 // allocation of a heap number. |
| 974 __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ? |
| 975 1 * kPointerSize : 2 * kPointerSize)); |
| 976 __ test(eax, Immediate(kSmiTagMask)); |
| 977 __ j(not_zero, &skip_allocation, not_taken); |
| 978 // Fall through! |
| 979 case NO_OVERWRITE: |
| 980 __ AllocateHeapNumber(eax, ecx, edx, &call_runtime); |
| 981 __ bind(&skip_allocation); |
| 982 break; |
| 983 default: UNREACHABLE(); |
| 984 } |
| 985 // Store the result in the HeapNumber and return. |
| 986 if (CpuFeatures::IsSupported(SSE2)) { |
| 987 CpuFeatures::Scope use_sse2(SSE2); |
| 988 __ cvtsi2sd(xmm0, Operand(ebx)); |
| 989 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| 990 } else { |
| 991 __ mov(Operand(esp, 1 * kPointerSize), ebx); |
| 992 __ fild_s(Operand(esp, 1 * kPointerSize)); |
| 993 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| 994 } |
| 995 GenerateReturn(masm); |
| 996 } |
| 997 break; |
| 998 } |
| 999 default: UNREACHABLE(); break; |
| 1000 } |
| 1001 } |
| 1002 |
| 1003 // If all else fails, use the runtime system to get the correct |
| 1004 // result. If arguments was passed in registers now place them on the |
| 1005 // stack in the correct order below the return address. |
| 1006 __ bind(&call_runtime); |
| 1007 if (HasArgsInRegisters()) { |
| 1008 GenerateRegisterArgsPush(masm); |
| 1009 } |
| 1010 |
| 1011 switch (op_) { |
| 1012 case Token::ADD: { |
| 1013 // Test for string arguments before calling runtime. |
| 1014 Label not_strings, not_string1, string1, string1_smi2; |
| 1015 |
| 1016 // If this stub has already generated FP-specific code then the arguments |
| 1017 // are already in edx, eax |
| 1018 if (!ShouldGenerateFPCode() && !HasArgsInRegisters()) { |
| 1019 GenerateLoadArguments(masm); |
| 1020 } |
| 1021 |
| 1022 // Registers containing left and right operands respectively. |
| 1023 Register lhs, rhs; |
| 1024 if (HasArgsReversed()) { |
| 1025 lhs = eax; |
| 1026 rhs = edx; |
| 1027 } else { |
| 1028 lhs = edx; |
| 1029 rhs = eax; |
| 1030 } |
| 1031 |
| 1032 // Test if first argument is a string. |
| 1033 __ test(lhs, Immediate(kSmiTagMask)); |
| 1034 __ j(zero, ¬_string1); |
| 1035 __ CmpObjectType(lhs, FIRST_NONSTRING_TYPE, ecx); |
| 1036 __ j(above_equal, ¬_string1); |
| 1037 |
| 1038 // First argument is a string, test second. |
| 1039 __ test(rhs, Immediate(kSmiTagMask)); |
| 1040 __ j(zero, &string1_smi2); |
| 1041 __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, ecx); |
| 1042 __ j(above_equal, &string1); |
| 1043 |
| 1044 // First and second argument are strings. Jump to the string add stub. |
| 1045 StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB); |
| 1046 __ TailCallStub(&string_add_stub); |
| 1047 |
| 1048 __ bind(&string1_smi2); |
| 1049 // First argument is a string, second is a smi. Try to lookup the number |
| 1050 // string for the smi in the number string cache. |
| 1051 NumberToStringStub::GenerateLookupNumberStringCache( |
| 1052 masm, rhs, edi, ebx, ecx, true, &string1); |
| 1053 |
| 1054 // Replace second argument on stack and tailcall string add stub to make |
| 1055 // the result. |
| 1056 __ mov(Operand(esp, 1 * kPointerSize), edi); |
| 1057 __ TailCallStub(&string_add_stub); |
| 1058 |
| 1059 // Only first argument is a string. |
| 1060 __ bind(&string1); |
| 1061 __ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_FUNCTION); |
| 1062 |
| 1063 // First argument was not a string, test second. |
| 1064 __ bind(¬_string1); |
| 1065 __ test(rhs, Immediate(kSmiTagMask)); |
| 1066 __ j(zero, ¬_strings); |
| 1067 __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, ecx); |
| 1068 __ j(above_equal, ¬_strings); |
| 1069 |
| 1070 // Only second argument is a string. |
| 1071 __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_FUNCTION); |
| 1072 |
| 1073 __ bind(¬_strings); |
| 1074 // Neither argument is a string. |
| 1075 __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); |
| 1076 break; |
| 1077 } |
| 1078 case Token::SUB: |
| 1079 __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); |
| 1080 break; |
| 1081 case Token::MUL: |
| 1082 __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); |
| 1083 break; |
| 1084 case Token::DIV: |
| 1085 __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); |
| 1086 break; |
| 1087 case Token::MOD: |
| 1088 __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); |
| 1089 break; |
| 1090 case Token::BIT_OR: |
| 1091 __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); |
| 1092 break; |
| 1093 case Token::BIT_AND: |
| 1094 __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); |
| 1095 break; |
| 1096 case Token::BIT_XOR: |
| 1097 __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); |
| 1098 break; |
| 1099 case Token::SAR: |
| 1100 __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); |
| 1101 break; |
| 1102 case Token::SHL: |
| 1103 __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); |
| 1104 break; |
| 1105 case Token::SHR: |
| 1106 __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); |
| 1107 break; |
| 1108 default: |
| 1109 UNREACHABLE(); |
| 1110 } |
| 1111 } |
| 1112 |
| 1113 |
| 1114 void GenericBinaryOpStub::GenerateHeapResultAllocation(MacroAssembler* masm, |
| 1115 Label* alloc_failure) { |
| 1116 Label skip_allocation; |
| 1117 OverwriteMode mode = mode_; |
| 1118 if (HasArgsReversed()) { |
| 1119 if (mode == OVERWRITE_RIGHT) { |
| 1120 mode = OVERWRITE_LEFT; |
| 1121 } else if (mode == OVERWRITE_LEFT) { |
| 1122 mode = OVERWRITE_RIGHT; |
| 1123 } |
| 1124 } |
| 1125 switch (mode) { |
| 1126 case OVERWRITE_LEFT: { |
| 1127 // If the argument in edx is already an object, we skip the |
| 1128 // allocation of a heap number. |
| 1129 __ test(edx, Immediate(kSmiTagMask)); |
| 1130 __ j(not_zero, &skip_allocation, not_taken); |
| 1131 // Allocate a heap number for the result. Keep eax and edx intact |
| 1132 // for the possible runtime call. |
| 1133 __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure); |
| 1134 // Now edx can be overwritten losing one of the arguments as we are |
| 1135 // now done and will not need it any more. |
| 1136 __ mov(edx, Operand(ebx)); |
| 1137 __ bind(&skip_allocation); |
| 1138 // Use object in edx as a result holder |
| 1139 __ mov(eax, Operand(edx)); |
| 1140 break; |
| 1141 } |
| 1142 case OVERWRITE_RIGHT: |
| 1143 // If the argument in eax is already an object, we skip the |
| 1144 // allocation of a heap number. |
| 1145 __ test(eax, Immediate(kSmiTagMask)); |
| 1146 __ j(not_zero, &skip_allocation, not_taken); |
| 1147 // Fall through! |
| 1148 case NO_OVERWRITE: |
| 1149 // Allocate a heap number for the result. Keep eax and edx intact |
| 1150 // for the possible runtime call. |
| 1151 __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure); |
| 1152 // Now eax can be overwritten losing one of the arguments as we are |
| 1153 // now done and will not need it any more. |
| 1154 __ mov(eax, ebx); |
| 1155 __ bind(&skip_allocation); |
| 1156 break; |
| 1157 default: UNREACHABLE(); |
| 1158 } |
| 1159 } |
| 1160 |
| 1161 |
| 1162 void GenericBinaryOpStub::GenerateLoadArguments(MacroAssembler* masm) { |
| 1163 // If arguments are not passed in registers read them from the stack. |
| 1164 ASSERT(!HasArgsInRegisters()); |
| 1165 __ mov(eax, Operand(esp, 1 * kPointerSize)); |
| 1166 __ mov(edx, Operand(esp, 2 * kPointerSize)); |
| 1167 } |
| 1168 |
| 1169 |
| 1170 void GenericBinaryOpStub::GenerateReturn(MacroAssembler* masm) { |
| 1171 // If arguments are not passed in registers remove them from the stack before |
| 1172 // returning. |
| 1173 if (!HasArgsInRegisters()) { |
| 1174 __ ret(2 * kPointerSize); // Remove both operands |
| 1175 } else { |
| 1176 __ ret(0); |
| 1177 } |
| 1178 } |
| 1179 |
| 1180 |
| 1181 void GenericBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) { |
| 1182 ASSERT(HasArgsInRegisters()); |
| 1183 __ pop(ecx); |
| 1184 if (HasArgsReversed()) { |
| 1185 __ push(eax); |
| 1186 __ push(edx); |
| 1187 } else { |
| 1188 __ push(edx); |
| 1189 __ push(eax); |
| 1190 } |
| 1191 __ push(ecx); |
| 1192 } |
| 1193 |
| 1194 |
| 1195 void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { |
| 1196 // Ensure the operands are on the stack. |
| 1197 if (HasArgsInRegisters()) { |
| 1198 GenerateRegisterArgsPush(masm); |
| 1199 } |
| 1200 |
| 1201 __ pop(ecx); // Save return address. |
| 1202 |
| 1203 // Left and right arguments are now on top. |
| 1204 // Push this stub's key. Although the operation and the type info are |
| 1205 // encoded into the key, the encoding is opaque, so push them too. |
| 1206 __ push(Immediate(Smi::FromInt(MinorKey()))); |
| 1207 __ push(Immediate(Smi::FromInt(op_))); |
| 1208 __ push(Immediate(Smi::FromInt(runtime_operands_type_))); |
| 1209 |
| 1210 __ push(ecx); // Push return address. |
| 1211 |
| 1212 // Patch the caller to an appropriate specialized stub and return the |
| 1213 // operation result to the caller of the stub. |
| 1214 __ TailCallExternalReference( |
| 1215 ExternalReference(IC_Utility(IC::kBinaryOp_Patch)), |
| 1216 5, |
| 1217 1); |
| 1218 } |
| 1219 |
| 1220 |
| 1221 Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) { |
| 1222 GenericBinaryOpStub stub(key, type_info); |
| 1223 return stub.GetCode(); |
| 1224 } |
| 1225 |
| 1226 |
| 1227 void TranscendentalCacheStub::Generate(MacroAssembler* masm) { |
| 1228 // Input on stack: |
| 1229 // esp[4]: argument (should be number). |
| 1230 // esp[0]: return address. |
| 1231 // Test that eax is a number. |
| 1232 Label runtime_call; |
| 1233 Label runtime_call_clear_stack; |
| 1234 Label input_not_smi; |
| 1235 Label loaded; |
| 1236 __ mov(eax, Operand(esp, kPointerSize)); |
| 1237 __ test(eax, Immediate(kSmiTagMask)); |
| 1238 __ j(not_zero, &input_not_smi); |
| 1239 // Input is a smi. Untag and load it onto the FPU stack. |
| 1240 // Then load the low and high words of the double into ebx, edx. |
| 1241 STATIC_ASSERT(kSmiTagSize == 1); |
| 1242 __ sar(eax, 1); |
| 1243 __ sub(Operand(esp), Immediate(2 * kPointerSize)); |
| 1244 __ mov(Operand(esp, 0), eax); |
| 1245 __ fild_s(Operand(esp, 0)); |
| 1246 __ fst_d(Operand(esp, 0)); |
| 1247 __ pop(edx); |
| 1248 __ pop(ebx); |
| 1249 __ jmp(&loaded); |
| 1250 __ bind(&input_not_smi); |
| 1251 // Check if input is a HeapNumber. |
| 1252 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
| 1253 __ cmp(Operand(ebx), Immediate(Factory::heap_number_map())); |
| 1254 __ j(not_equal, &runtime_call); |
| 1255 // Input is a HeapNumber. Push it on the FPU stack and load its |
| 1256 // low and high words into ebx, edx. |
| 1257 __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| 1258 __ mov(edx, FieldOperand(eax, HeapNumber::kExponentOffset)); |
| 1259 __ mov(ebx, FieldOperand(eax, HeapNumber::kMantissaOffset)); |
| 1260 |
| 1261 __ bind(&loaded); |
| 1262 // ST[0] == double value |
| 1263 // ebx = low 32 bits of double value |
| 1264 // edx = high 32 bits of double value |
| 1265 // Compute hash (the shifts are arithmetic): |
| 1266 // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1); |
| 1267 __ mov(ecx, ebx); |
| 1268 __ xor_(ecx, Operand(edx)); |
| 1269 __ mov(eax, ecx); |
| 1270 __ sar(eax, 16); |
| 1271 __ xor_(ecx, Operand(eax)); |
| 1272 __ mov(eax, ecx); |
| 1273 __ sar(eax, 8); |
| 1274 __ xor_(ecx, Operand(eax)); |
| 1275 ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize)); |
| 1276 __ and_(Operand(ecx), Immediate(TranscendentalCache::kCacheSize - 1)); |
| 1277 |
| 1278 // ST[0] == double value. |
| 1279 // ebx = low 32 bits of double value. |
| 1280 // edx = high 32 bits of double value. |
| 1281 // ecx = TranscendentalCache::hash(double value). |
| 1282 __ mov(eax, |
| 1283 Immediate(ExternalReference::transcendental_cache_array_address())); |
| 1284 // Eax points to cache array. |
| 1285 __ mov(eax, Operand(eax, type_ * sizeof(TranscendentalCache::caches_[0]))); |
| 1286 // Eax points to the cache for the type type_. |
| 1287 // If NULL, the cache hasn't been initialized yet, so go through runtime. |
| 1288 __ test(eax, Operand(eax)); |
| 1289 __ j(zero, &runtime_call_clear_stack); |
| 1290 #ifdef DEBUG |
| 1291 // Check that the layout of cache elements match expectations. |
| 1292 { TranscendentalCache::Element test_elem[2]; |
| 1293 char* elem_start = reinterpret_cast<char*>(&test_elem[0]); |
| 1294 char* elem2_start = reinterpret_cast<char*>(&test_elem[1]); |
| 1295 char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0])); |
| 1296 char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1])); |
| 1297 char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output)); |
| 1298 CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer. |
| 1299 CHECK_EQ(0, elem_in0 - elem_start); |
| 1300 CHECK_EQ(kIntSize, elem_in1 - elem_start); |
| 1301 CHECK_EQ(2 * kIntSize, elem_out - elem_start); |
| 1302 } |
| 1303 #endif |
| 1304 // Find the address of the ecx'th entry in the cache, i.e., &eax[ecx*12]. |
| 1305 __ lea(ecx, Operand(ecx, ecx, times_2, 0)); |
| 1306 __ lea(ecx, Operand(eax, ecx, times_4, 0)); |
| 1307 // Check if cache matches: Double value is stored in uint32_t[2] array. |
| 1308 Label cache_miss; |
| 1309 __ cmp(ebx, Operand(ecx, 0)); |
| 1310 __ j(not_equal, &cache_miss); |
| 1311 __ cmp(edx, Operand(ecx, kIntSize)); |
| 1312 __ j(not_equal, &cache_miss); |
| 1313 // Cache hit! |
| 1314 __ mov(eax, Operand(ecx, 2 * kIntSize)); |
| 1315 __ fstp(0); |
| 1316 __ ret(kPointerSize); |
| 1317 |
| 1318 __ bind(&cache_miss); |
| 1319 // Update cache with new value. |
| 1320 // We are short on registers, so use no_reg as scratch. |
| 1321 // This gives slightly larger code. |
| 1322 __ AllocateHeapNumber(eax, edi, no_reg, &runtime_call_clear_stack); |
| 1323 GenerateOperation(masm); |
| 1324 __ mov(Operand(ecx, 0), ebx); |
| 1325 __ mov(Operand(ecx, kIntSize), edx); |
| 1326 __ mov(Operand(ecx, 2 * kIntSize), eax); |
| 1327 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| 1328 __ ret(kPointerSize); |
| 1329 |
| 1330 __ bind(&runtime_call_clear_stack); |
| 1331 __ fstp(0); |
| 1332 __ bind(&runtime_call); |
| 1333 __ TailCallExternalReference(ExternalReference(RuntimeFunction()), 1, 1); |
| 1334 } |
| 1335 |
| 1336 |
| 1337 Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() { |
| 1338 switch (type_) { |
| 1339 // Add more cases when necessary. |
| 1340 case TranscendentalCache::SIN: return Runtime::kMath_sin; |
| 1341 case TranscendentalCache::COS: return Runtime::kMath_cos; |
| 1342 default: |
| 1343 UNIMPLEMENTED(); |
| 1344 return Runtime::kAbort; |
| 1345 } |
| 1346 } |
| 1347 |
| 1348 |
| 1349 void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm) { |
| 1350 // Only free register is edi. |
| 1351 Label done; |
| 1352 ASSERT(type_ == TranscendentalCache::SIN || |
| 1353 type_ == TranscendentalCache::COS); |
| 1354 // More transcendental types can be added later. |
| 1355 |
| 1356 // Both fsin and fcos require arguments in the range +/-2^63 and |
| 1357 // return NaN for infinities and NaN. They can share all code except |
| 1358 // the actual fsin/fcos operation. |
| 1359 Label in_range; |
| 1360 // If argument is outside the range -2^63..2^63, fsin/cos doesn't |
| 1361 // work. We must reduce it to the appropriate range. |
| 1362 __ mov(edi, edx); |
| 1363 __ and_(Operand(edi), Immediate(0x7ff00000)); // Exponent only. |
| 1364 int supported_exponent_limit = |
| 1365 (63 + HeapNumber::kExponentBias) << HeapNumber::kExponentShift; |
| 1366 __ cmp(Operand(edi), Immediate(supported_exponent_limit)); |
| 1367 __ j(below, &in_range, taken); |
| 1368 // Check for infinity and NaN. Both return NaN for sin. |
| 1369 __ cmp(Operand(edi), Immediate(0x7ff00000)); |
| 1370 Label non_nan_result; |
| 1371 __ j(not_equal, &non_nan_result, taken); |
| 1372 // Input is +/-Infinity or NaN. Result is NaN. |
| 1373 __ fstp(0); |
| 1374 // NaN is represented by 0x7ff8000000000000. |
| 1375 __ push(Immediate(0x7ff80000)); |
| 1376 __ push(Immediate(0)); |
| 1377 __ fld_d(Operand(esp, 0)); |
| 1378 __ add(Operand(esp), Immediate(2 * kPointerSize)); |
| 1379 __ jmp(&done); |
| 1380 |
| 1381 __ bind(&non_nan_result); |
| 1382 |
| 1383 // Use fpmod to restrict argument to the range +/-2*PI. |
| 1384 __ mov(edi, eax); // Save eax before using fnstsw_ax. |
| 1385 __ fldpi(); |
| 1386 __ fadd(0); |
| 1387 __ fld(1); |
| 1388 // FPU Stack: input, 2*pi, input. |
| 1389 { |
| 1390 Label no_exceptions; |
| 1391 __ fwait(); |
| 1392 __ fnstsw_ax(); |
| 1393 // Clear if Illegal Operand or Zero Division exceptions are set. |
| 1394 __ test(Operand(eax), Immediate(5)); |
| 1395 __ j(zero, &no_exceptions); |
| 1396 __ fnclex(); |
| 1397 __ bind(&no_exceptions); |
| 1398 } |
| 1399 |
| 1400 // Compute st(0) % st(1) |
| 1401 { |
| 1402 Label partial_remainder_loop; |
| 1403 __ bind(&partial_remainder_loop); |
| 1404 __ fprem1(); |
| 1405 __ fwait(); |
| 1406 __ fnstsw_ax(); |
| 1407 __ test(Operand(eax), Immediate(0x400 /* C2 */)); |
| 1408 // If C2 is set, computation only has partial result. Loop to |
| 1409 // continue computation. |
| 1410 __ j(not_zero, &partial_remainder_loop); |
| 1411 } |
| 1412 // FPU Stack: input, 2*pi, input % 2*pi |
| 1413 __ fstp(2); |
| 1414 __ fstp(0); |
| 1415 __ mov(eax, edi); // Restore eax (allocated HeapNumber pointer). |
| 1416 |
| 1417 // FPU Stack: input % 2*pi |
| 1418 __ bind(&in_range); |
| 1419 switch (type_) { |
| 1420 case TranscendentalCache::SIN: |
| 1421 __ fsin(); |
| 1422 break; |
| 1423 case TranscendentalCache::COS: |
| 1424 __ fcos(); |
| 1425 break; |
| 1426 default: |
| 1427 UNREACHABLE(); |
| 1428 } |
| 1429 __ bind(&done); |
| 1430 } |
| 1431 |
| 1432 |
| 1433 // Get the integer part of a heap number. Surprisingly, all this bit twiddling |
| 1434 // is faster than using the built-in instructions on floating point registers. |
| 1435 // Trashes edi and ebx. Dest is ecx. Source cannot be ecx or one of the |
| 1436 // trashed registers. |
| 1437 void IntegerConvert(MacroAssembler* masm, |
| 1438 Register source, |
| 1439 TypeInfo type_info, |
| 1440 bool use_sse3, |
| 1441 Label* conversion_failure) { |
| 1442 ASSERT(!source.is(ecx) && !source.is(edi) && !source.is(ebx)); |
| 1443 Label done, right_exponent, normal_exponent; |
| 1444 Register scratch = ebx; |
| 1445 Register scratch2 = edi; |
| 1446 if (type_info.IsInteger32() && CpuFeatures::IsEnabled(SSE2)) { |
| 1447 CpuFeatures::Scope scope(SSE2); |
| 1448 __ cvttsd2si(ecx, FieldOperand(source, HeapNumber::kValueOffset)); |
| 1449 return; |
| 1450 } |
| 1451 if (!type_info.IsInteger32() || !use_sse3) { |
| 1452 // Get exponent word. |
| 1453 __ mov(scratch, FieldOperand(source, HeapNumber::kExponentOffset)); |
| 1454 // Get exponent alone in scratch2. |
| 1455 __ mov(scratch2, scratch); |
| 1456 __ and_(scratch2, HeapNumber::kExponentMask); |
| 1457 } |
| 1458 if (use_sse3) { |
| 1459 CpuFeatures::Scope scope(SSE3); |
| 1460 if (!type_info.IsInteger32()) { |
| 1461 // Check whether the exponent is too big for a 64 bit signed integer. |
| 1462 static const uint32_t kTooBigExponent = |
| 1463 (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift; |
| 1464 __ cmp(Operand(scratch2), Immediate(kTooBigExponent)); |
| 1465 __ j(greater_equal, conversion_failure); |
| 1466 } |
| 1467 // Load x87 register with heap number. |
| 1468 __ fld_d(FieldOperand(source, HeapNumber::kValueOffset)); |
| 1469 // Reserve space for 64 bit answer. |
| 1470 __ sub(Operand(esp), Immediate(sizeof(uint64_t))); // Nolint. |
| 1471 // Do conversion, which cannot fail because we checked the exponent. |
| 1472 __ fisttp_d(Operand(esp, 0)); |
| 1473 __ mov(ecx, Operand(esp, 0)); // Load low word of answer into ecx. |
| 1474 __ add(Operand(esp), Immediate(sizeof(uint64_t))); // Nolint. |
| 1475 } else { |
| 1476 // Load ecx with zero. We use this either for the final shift or |
| 1477 // for the answer. |
| 1478 __ xor_(ecx, Operand(ecx)); |
| 1479 // Check whether the exponent matches a 32 bit signed int that cannot be |
| 1480 // represented by a Smi. A non-smi 32 bit integer is 1.xxx * 2^30 so the |
| 1481 // exponent is 30 (biased). This is the exponent that we are fastest at and |
| 1482 // also the highest exponent we can handle here. |
| 1483 const uint32_t non_smi_exponent = |
| 1484 (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; |
| 1485 __ cmp(Operand(scratch2), Immediate(non_smi_exponent)); |
| 1486 // If we have a match of the int32-but-not-Smi exponent then skip some |
| 1487 // logic. |
| 1488 __ j(equal, &right_exponent); |
| 1489 // If the exponent is higher than that then go to slow case. This catches |
| 1490 // numbers that don't fit in a signed int32, infinities and NaNs. |
| 1491 __ j(less, &normal_exponent); |
| 1492 |
| 1493 { |
| 1494 // Handle a big exponent. The only reason we have this code is that the |
| 1495 // >>> operator has a tendency to generate numbers with an exponent of 31. |
| 1496 const uint32_t big_non_smi_exponent = |
| 1497 (HeapNumber::kExponentBias + 31) << HeapNumber::kExponentShift; |
| 1498 __ cmp(Operand(scratch2), Immediate(big_non_smi_exponent)); |
| 1499 __ j(not_equal, conversion_failure); |
| 1500 // We have the big exponent, typically from >>>. This means the number is |
| 1501 // in the range 2^31 to 2^32 - 1. Get the top bits of the mantissa. |
| 1502 __ mov(scratch2, scratch); |
| 1503 __ and_(scratch2, HeapNumber::kMantissaMask); |
| 1504 // Put back the implicit 1. |
| 1505 __ or_(scratch2, 1 << HeapNumber::kExponentShift); |
| 1506 // Shift up the mantissa bits to take up the space the exponent used to |
| 1507 // take. We just orred in the implicit bit so that took care of one and |
| 1508 // we want to use the full unsigned range so we subtract 1 bit from the |
| 1509 // shift distance. |
| 1510 const int big_shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 1; |
| 1511 __ shl(scratch2, big_shift_distance); |
| 1512 // Get the second half of the double. |
| 1513 __ mov(ecx, FieldOperand(source, HeapNumber::kMantissaOffset)); |
| 1514 // Shift down 21 bits to get the most significant 11 bits or the low |
| 1515 // mantissa word. |
| 1516 __ shr(ecx, 32 - big_shift_distance); |
| 1517 __ or_(ecx, Operand(scratch2)); |
| 1518 // We have the answer in ecx, but we may need to negate it. |
| 1519 __ test(scratch, Operand(scratch)); |
| 1520 __ j(positive, &done); |
| 1521 __ neg(ecx); |
| 1522 __ jmp(&done); |
| 1523 } |
| 1524 |
| 1525 __ bind(&normal_exponent); |
| 1526 // Exponent word in scratch, exponent part of exponent word in scratch2. |
| 1527 // Zero in ecx. |
| 1528 // We know the exponent is smaller than 30 (biased). If it is less than |
| 1529 // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie |
| 1530 // it rounds to zero. |
| 1531 const uint32_t zero_exponent = |
| 1532 (HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift; |
| 1533 __ sub(Operand(scratch2), Immediate(zero_exponent)); |
| 1534 // ecx already has a Smi zero. |
| 1535 __ j(less, &done); |
| 1536 |
| 1537 // We have a shifted exponent between 0 and 30 in scratch2. |
| 1538 __ shr(scratch2, HeapNumber::kExponentShift); |
| 1539 __ mov(ecx, Immediate(30)); |
| 1540 __ sub(ecx, Operand(scratch2)); |
| 1541 |
| 1542 __ bind(&right_exponent); |
| 1543 // Here ecx is the shift, scratch is the exponent word. |
| 1544 // Get the top bits of the mantissa. |
| 1545 __ and_(scratch, HeapNumber::kMantissaMask); |
| 1546 // Put back the implicit 1. |
| 1547 __ or_(scratch, 1 << HeapNumber::kExponentShift); |
| 1548 // Shift up the mantissa bits to take up the space the exponent used to |
| 1549 // take. We have kExponentShift + 1 significant bits int he low end of the |
| 1550 // word. Shift them to the top bits. |
| 1551 const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; |
| 1552 __ shl(scratch, shift_distance); |
| 1553 // Get the second half of the double. For some exponents we don't |
| 1554 // actually need this because the bits get shifted out again, but |
| 1555 // it's probably slower to test than just to do it. |
| 1556 __ mov(scratch2, FieldOperand(source, HeapNumber::kMantissaOffset)); |
| 1557 // Shift down 22 bits to get the most significant 10 bits or the low |
| 1558 // mantissa word. |
| 1559 __ shr(scratch2, 32 - shift_distance); |
| 1560 __ or_(scratch2, Operand(scratch)); |
| 1561 // Move down according to the exponent. |
| 1562 __ shr_cl(scratch2); |
| 1563 // Now the unsigned answer is in scratch2. We need to move it to ecx and |
| 1564 // we may need to fix the sign. |
| 1565 Label negative; |
| 1566 __ xor_(ecx, Operand(ecx)); |
| 1567 __ cmp(ecx, FieldOperand(source, HeapNumber::kExponentOffset)); |
| 1568 __ j(greater, &negative); |
| 1569 __ mov(ecx, scratch2); |
| 1570 __ jmp(&done); |
| 1571 __ bind(&negative); |
| 1572 __ sub(ecx, Operand(scratch2)); |
| 1573 __ bind(&done); |
| 1574 } |
| 1575 } |
| 1576 |
| 1577 |
| 1578 // Input: edx, eax are the left and right objects of a bit op. |
| 1579 // Output: eax, ecx are left and right integers for a bit op. |
| 1580 void FloatingPointHelper::LoadNumbersAsIntegers(MacroAssembler* masm, |
| 1581 TypeInfo type_info, |
| 1582 bool use_sse3, |
| 1583 Label* conversion_failure) { |
| 1584 // Check float operands. |
| 1585 Label arg1_is_object, check_undefined_arg1; |
| 1586 Label arg2_is_object, check_undefined_arg2; |
| 1587 Label load_arg2, done; |
| 1588 |
| 1589 if (!type_info.IsDouble()) { |
| 1590 if (!type_info.IsSmi()) { |
| 1591 __ test(edx, Immediate(kSmiTagMask)); |
| 1592 __ j(not_zero, &arg1_is_object); |
| 1593 } else { |
| 1594 if (FLAG_debug_code) __ AbortIfNotSmi(edx); |
| 1595 } |
| 1596 __ SmiUntag(edx); |
| 1597 __ jmp(&load_arg2); |
| 1598 } |
| 1599 |
| 1600 __ bind(&arg1_is_object); |
| 1601 |
| 1602 // Get the untagged integer version of the edx heap number in ecx. |
| 1603 IntegerConvert(masm, edx, type_info, use_sse3, conversion_failure); |
| 1604 __ mov(edx, ecx); |
| 1605 |
| 1606 // Here edx has the untagged integer, eax has a Smi or a heap number. |
| 1607 __ bind(&load_arg2); |
| 1608 if (!type_info.IsDouble()) { |
| 1609 // Test if arg2 is a Smi. |
| 1610 if (!type_info.IsSmi()) { |
| 1611 __ test(eax, Immediate(kSmiTagMask)); |
| 1612 __ j(not_zero, &arg2_is_object); |
| 1613 } else { |
| 1614 if (FLAG_debug_code) __ AbortIfNotSmi(eax); |
| 1615 } |
| 1616 __ SmiUntag(eax); |
| 1617 __ mov(ecx, eax); |
| 1618 __ jmp(&done); |
| 1619 } |
| 1620 |
| 1621 __ bind(&arg2_is_object); |
| 1622 |
| 1623 // Get the untagged integer version of the eax heap number in ecx. |
| 1624 IntegerConvert(masm, eax, type_info, use_sse3, conversion_failure); |
| 1625 __ bind(&done); |
| 1626 __ mov(eax, edx); |
| 1627 } |
| 1628 |
| 1629 |
| 1630 // Input: edx, eax are the left and right objects of a bit op. |
| 1631 // Output: eax, ecx are left and right integers for a bit op. |
| 1632 void FloatingPointHelper::LoadUnknownsAsIntegers(MacroAssembler* masm, |
| 1633 bool use_sse3, |
| 1634 Label* conversion_failure) { |
| 1635 // Check float operands. |
| 1636 Label arg1_is_object, check_undefined_arg1; |
| 1637 Label arg2_is_object, check_undefined_arg2; |
| 1638 Label load_arg2, done; |
| 1639 |
| 1640 // Test if arg1 is a Smi. |
| 1641 __ test(edx, Immediate(kSmiTagMask)); |
| 1642 __ j(not_zero, &arg1_is_object); |
| 1643 |
| 1644 __ SmiUntag(edx); |
| 1645 __ jmp(&load_arg2); |
| 1646 |
| 1647 // If the argument is undefined it converts to zero (ECMA-262, section 9.5). |
| 1648 __ bind(&check_undefined_arg1); |
| 1649 __ cmp(edx, Factory::undefined_value()); |
| 1650 __ j(not_equal, conversion_failure); |
| 1651 __ mov(edx, Immediate(0)); |
| 1652 __ jmp(&load_arg2); |
| 1653 |
| 1654 __ bind(&arg1_is_object); |
| 1655 __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset)); |
| 1656 __ cmp(ebx, Factory::heap_number_map()); |
| 1657 __ j(not_equal, &check_undefined_arg1); |
| 1658 |
| 1659 // Get the untagged integer version of the edx heap number in ecx. |
| 1660 IntegerConvert(masm, |
| 1661 edx, |
| 1662 TypeInfo::Unknown(), |
| 1663 use_sse3, |
| 1664 conversion_failure); |
| 1665 __ mov(edx, ecx); |
| 1666 |
| 1667 // Here edx has the untagged integer, eax has a Smi or a heap number. |
| 1668 __ bind(&load_arg2); |
| 1669 |
| 1670 // Test if arg2 is a Smi. |
| 1671 __ test(eax, Immediate(kSmiTagMask)); |
| 1672 __ j(not_zero, &arg2_is_object); |
| 1673 |
| 1674 __ SmiUntag(eax); |
| 1675 __ mov(ecx, eax); |
| 1676 __ jmp(&done); |
| 1677 |
| 1678 // If the argument is undefined it converts to zero (ECMA-262, section 9.5). |
| 1679 __ bind(&check_undefined_arg2); |
| 1680 __ cmp(eax, Factory::undefined_value()); |
| 1681 __ j(not_equal, conversion_failure); |
| 1682 __ mov(ecx, Immediate(0)); |
| 1683 __ jmp(&done); |
| 1684 |
| 1685 __ bind(&arg2_is_object); |
| 1686 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
| 1687 __ cmp(ebx, Factory::heap_number_map()); |
| 1688 __ j(not_equal, &check_undefined_arg2); |
| 1689 |
| 1690 // Get the untagged integer version of the eax heap number in ecx. |
| 1691 IntegerConvert(masm, |
| 1692 eax, |
| 1693 TypeInfo::Unknown(), |
| 1694 use_sse3, |
| 1695 conversion_failure); |
| 1696 __ bind(&done); |
| 1697 __ mov(eax, edx); |
| 1698 } |
| 1699 |
| 1700 |
| 1701 void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm, |
| 1702 TypeInfo type_info, |
| 1703 bool use_sse3, |
| 1704 Label* conversion_failure) { |
| 1705 if (type_info.IsNumber()) { |
| 1706 LoadNumbersAsIntegers(masm, type_info, use_sse3, conversion_failure); |
| 1707 } else { |
| 1708 LoadUnknownsAsIntegers(masm, use_sse3, conversion_failure); |
| 1709 } |
| 1710 } |
| 1711 |
| 1712 |
| 1713 void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm, |
| 1714 Register number) { |
| 1715 Label load_smi, done; |
| 1716 |
| 1717 __ test(number, Immediate(kSmiTagMask)); |
| 1718 __ j(zero, &load_smi, not_taken); |
| 1719 __ fld_d(FieldOperand(number, HeapNumber::kValueOffset)); |
| 1720 __ jmp(&done); |
| 1721 |
| 1722 __ bind(&load_smi); |
| 1723 __ SmiUntag(number); |
| 1724 __ push(number); |
| 1725 __ fild_s(Operand(esp, 0)); |
| 1726 __ pop(number); |
| 1727 |
| 1728 __ bind(&done); |
| 1729 } |
| 1730 |
| 1731 |
| 1732 void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm) { |
| 1733 Label load_smi_edx, load_eax, load_smi_eax, done; |
| 1734 // Load operand in edx into xmm0. |
| 1735 __ test(edx, Immediate(kSmiTagMask)); |
| 1736 __ j(zero, &load_smi_edx, not_taken); // Argument in edx is a smi. |
| 1737 __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); |
| 1738 |
| 1739 __ bind(&load_eax); |
| 1740 // Load operand in eax into xmm1. |
| 1741 __ test(eax, Immediate(kSmiTagMask)); |
| 1742 __ j(zero, &load_smi_eax, not_taken); // Argument in eax is a smi. |
| 1743 __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); |
| 1744 __ jmp(&done); |
| 1745 |
| 1746 __ bind(&load_smi_edx); |
| 1747 __ SmiUntag(edx); // Untag smi before converting to float. |
| 1748 __ cvtsi2sd(xmm0, Operand(edx)); |
| 1749 __ SmiTag(edx); // Retag smi for heap number overwriting test. |
| 1750 __ jmp(&load_eax); |
| 1751 |
| 1752 __ bind(&load_smi_eax); |
| 1753 __ SmiUntag(eax); // Untag smi before converting to float. |
| 1754 __ cvtsi2sd(xmm1, Operand(eax)); |
| 1755 __ SmiTag(eax); // Retag smi for heap number overwriting test. |
| 1756 |
| 1757 __ bind(&done); |
| 1758 } |
| 1759 |
| 1760 |
| 1761 void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm, |
| 1762 Label* not_numbers) { |
| 1763 Label load_smi_edx, load_eax, load_smi_eax, load_float_eax, done; |
| 1764 // Load operand in edx into xmm0, or branch to not_numbers. |
| 1765 __ test(edx, Immediate(kSmiTagMask)); |
| 1766 __ j(zero, &load_smi_edx, not_taken); // Argument in edx is a smi. |
| 1767 __ cmp(FieldOperand(edx, HeapObject::kMapOffset), Factory::heap_number_map()); |
| 1768 __ j(not_equal, not_numbers); // Argument in edx is not a number. |
| 1769 __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); |
| 1770 __ bind(&load_eax); |
| 1771 // Load operand in eax into xmm1, or branch to not_numbers. |
| 1772 __ test(eax, Immediate(kSmiTagMask)); |
| 1773 __ j(zero, &load_smi_eax, not_taken); // Argument in eax is a smi. |
| 1774 __ cmp(FieldOperand(eax, HeapObject::kMapOffset), Factory::heap_number_map()); |
| 1775 __ j(equal, &load_float_eax); |
| 1776 __ jmp(not_numbers); // Argument in eax is not a number. |
| 1777 __ bind(&load_smi_edx); |
| 1778 __ SmiUntag(edx); // Untag smi before converting to float. |
| 1779 __ cvtsi2sd(xmm0, Operand(edx)); |
| 1780 __ SmiTag(edx); // Retag smi for heap number overwriting test. |
| 1781 __ jmp(&load_eax); |
| 1782 __ bind(&load_smi_eax); |
| 1783 __ SmiUntag(eax); // Untag smi before converting to float. |
| 1784 __ cvtsi2sd(xmm1, Operand(eax)); |
| 1785 __ SmiTag(eax); // Retag smi for heap number overwriting test. |
| 1786 __ jmp(&done); |
| 1787 __ bind(&load_float_eax); |
| 1788 __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); |
| 1789 __ bind(&done); |
| 1790 } |
| 1791 |
| 1792 |
| 1793 void FloatingPointHelper::LoadSSE2Smis(MacroAssembler* masm, |
| 1794 Register scratch) { |
| 1795 const Register left = edx; |
| 1796 const Register right = eax; |
| 1797 __ mov(scratch, left); |
| 1798 ASSERT(!scratch.is(right)); // We're about to clobber scratch. |
| 1799 __ SmiUntag(scratch); |
| 1800 __ cvtsi2sd(xmm0, Operand(scratch)); |
| 1801 |
| 1802 __ mov(scratch, right); |
| 1803 __ SmiUntag(scratch); |
| 1804 __ cvtsi2sd(xmm1, Operand(scratch)); |
| 1805 } |
| 1806 |
| 1807 |
| 1808 void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm, |
| 1809 Register scratch, |
| 1810 ArgLocation arg_location) { |
| 1811 Label load_smi_1, load_smi_2, done_load_1, done; |
| 1812 if (arg_location == ARGS_IN_REGISTERS) { |
| 1813 __ mov(scratch, edx); |
| 1814 } else { |
| 1815 __ mov(scratch, Operand(esp, 2 * kPointerSize)); |
| 1816 } |
| 1817 __ test(scratch, Immediate(kSmiTagMask)); |
| 1818 __ j(zero, &load_smi_1, not_taken); |
| 1819 __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset)); |
| 1820 __ bind(&done_load_1); |
| 1821 |
| 1822 if (arg_location == ARGS_IN_REGISTERS) { |
| 1823 __ mov(scratch, eax); |
| 1824 } else { |
| 1825 __ mov(scratch, Operand(esp, 1 * kPointerSize)); |
| 1826 } |
| 1827 __ test(scratch, Immediate(kSmiTagMask)); |
| 1828 __ j(zero, &load_smi_2, not_taken); |
| 1829 __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset)); |
| 1830 __ jmp(&done); |
| 1831 |
| 1832 __ bind(&load_smi_1); |
| 1833 __ SmiUntag(scratch); |
| 1834 __ push(scratch); |
| 1835 __ fild_s(Operand(esp, 0)); |
| 1836 __ pop(scratch); |
| 1837 __ jmp(&done_load_1); |
| 1838 |
| 1839 __ bind(&load_smi_2); |
| 1840 __ SmiUntag(scratch); |
| 1841 __ push(scratch); |
| 1842 __ fild_s(Operand(esp, 0)); |
| 1843 __ pop(scratch); |
| 1844 |
| 1845 __ bind(&done); |
| 1846 } |
| 1847 |
| 1848 |
| 1849 void FloatingPointHelper::LoadFloatSmis(MacroAssembler* masm, |
| 1850 Register scratch) { |
| 1851 const Register left = edx; |
| 1852 const Register right = eax; |
| 1853 __ mov(scratch, left); |
| 1854 ASSERT(!scratch.is(right)); // We're about to clobber scratch. |
| 1855 __ SmiUntag(scratch); |
| 1856 __ push(scratch); |
| 1857 __ fild_s(Operand(esp, 0)); |
| 1858 |
| 1859 __ mov(scratch, right); |
| 1860 __ SmiUntag(scratch); |
| 1861 __ mov(Operand(esp, 0), scratch); |
| 1862 __ fild_s(Operand(esp, 0)); |
| 1863 __ pop(scratch); |
| 1864 } |
| 1865 |
| 1866 |
| 1867 void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm, |
| 1868 Label* non_float, |
| 1869 Register scratch) { |
| 1870 Label test_other, done; |
| 1871 // Test if both operands are floats or smi -> scratch=k_is_float; |
| 1872 // Otherwise scratch = k_not_float. |
| 1873 __ test(edx, Immediate(kSmiTagMask)); |
| 1874 __ j(zero, &test_other, not_taken); // argument in edx is OK |
| 1875 __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset)); |
| 1876 __ cmp(scratch, Factory::heap_number_map()); |
| 1877 __ j(not_equal, non_float); // argument in edx is not a number -> NaN |
| 1878 |
| 1879 __ bind(&test_other); |
| 1880 __ test(eax, Immediate(kSmiTagMask)); |
| 1881 __ j(zero, &done); // argument in eax is OK |
| 1882 __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset)); |
| 1883 __ cmp(scratch, Factory::heap_number_map()); |
| 1884 __ j(not_equal, non_float); // argument in eax is not a number -> NaN |
| 1885 |
| 1886 // Fall-through: Both operands are numbers. |
| 1887 __ bind(&done); |
| 1888 } |
| 1889 |
| 1890 |
| 1891 void GenericUnaryOpStub::Generate(MacroAssembler* masm) { |
| 1892 Label slow, done; |
| 1893 |
| 1894 if (op_ == Token::SUB) { |
| 1895 // Check whether the value is a smi. |
| 1896 Label try_float; |
| 1897 __ test(eax, Immediate(kSmiTagMask)); |
| 1898 __ j(not_zero, &try_float, not_taken); |
| 1899 |
| 1900 if (negative_zero_ == kStrictNegativeZero) { |
| 1901 // Go slow case if the value of the expression is zero |
| 1902 // to make sure that we switch between 0 and -0. |
| 1903 __ test(eax, Operand(eax)); |
| 1904 __ j(zero, &slow, not_taken); |
| 1905 } |
| 1906 |
| 1907 // The value of the expression is a smi that is not zero. Try |
| 1908 // optimistic subtraction '0 - value'. |
| 1909 Label undo; |
| 1910 __ mov(edx, Operand(eax)); |
| 1911 __ Set(eax, Immediate(0)); |
| 1912 __ sub(eax, Operand(edx)); |
| 1913 __ j(no_overflow, &done, taken); |
| 1914 |
| 1915 // Restore eax and go slow case. |
| 1916 __ bind(&undo); |
| 1917 __ mov(eax, Operand(edx)); |
| 1918 __ jmp(&slow); |
| 1919 |
| 1920 // Try floating point case. |
| 1921 __ bind(&try_float); |
| 1922 __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); |
| 1923 __ cmp(edx, Factory::heap_number_map()); |
| 1924 __ j(not_equal, &slow); |
| 1925 if (overwrite_ == UNARY_OVERWRITE) { |
| 1926 __ mov(edx, FieldOperand(eax, HeapNumber::kExponentOffset)); |
| 1927 __ xor_(edx, HeapNumber::kSignMask); // Flip sign. |
| 1928 __ mov(FieldOperand(eax, HeapNumber::kExponentOffset), edx); |
| 1929 } else { |
| 1930 __ mov(edx, Operand(eax)); |
| 1931 // edx: operand |
| 1932 __ AllocateHeapNumber(eax, ebx, ecx, &undo); |
| 1933 // eax: allocated 'empty' number |
| 1934 __ mov(ecx, FieldOperand(edx, HeapNumber::kExponentOffset)); |
| 1935 __ xor_(ecx, HeapNumber::kSignMask); // Flip sign. |
| 1936 __ mov(FieldOperand(eax, HeapNumber::kExponentOffset), ecx); |
| 1937 __ mov(ecx, FieldOperand(edx, HeapNumber::kMantissaOffset)); |
| 1938 __ mov(FieldOperand(eax, HeapNumber::kMantissaOffset), ecx); |
| 1939 } |
| 1940 } else if (op_ == Token::BIT_NOT) { |
| 1941 // Check if the operand is a heap number. |
| 1942 __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); |
| 1943 __ cmp(edx, Factory::heap_number_map()); |
| 1944 __ j(not_equal, &slow, not_taken); |
| 1945 |
| 1946 // Convert the heap number in eax to an untagged integer in ecx. |
| 1947 IntegerConvert(masm, |
| 1948 eax, |
| 1949 TypeInfo::Unknown(), |
| 1950 CpuFeatures::IsSupported(SSE3), |
| 1951 &slow); |
| 1952 |
| 1953 // Do the bitwise operation and check if the result fits in a smi. |
| 1954 Label try_float; |
| 1955 __ not_(ecx); |
| 1956 __ cmp(ecx, 0xc0000000); |
| 1957 __ j(sign, &try_float, not_taken); |
| 1958 |
| 1959 // Tag the result as a smi and we're done. |
| 1960 STATIC_ASSERT(kSmiTagSize == 1); |
| 1961 __ lea(eax, Operand(ecx, times_2, kSmiTag)); |
| 1962 __ jmp(&done); |
| 1963 |
| 1964 // Try to store the result in a heap number. |
| 1965 __ bind(&try_float); |
| 1966 if (overwrite_ == UNARY_NO_OVERWRITE) { |
| 1967 // Allocate a fresh heap number, but don't overwrite eax until |
| 1968 // we're sure we can do it without going through the slow case |
| 1969 // that needs the value in eax. |
| 1970 __ AllocateHeapNumber(ebx, edx, edi, &slow); |
| 1971 __ mov(eax, Operand(ebx)); |
| 1972 } |
| 1973 if (CpuFeatures::IsSupported(SSE2)) { |
| 1974 CpuFeatures::Scope use_sse2(SSE2); |
| 1975 __ cvtsi2sd(xmm0, Operand(ecx)); |
| 1976 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| 1977 } else { |
| 1978 __ push(ecx); |
| 1979 __ fild_s(Operand(esp, 0)); |
| 1980 __ pop(ecx); |
| 1981 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| 1982 } |
| 1983 } else { |
| 1984 UNIMPLEMENTED(); |
| 1985 } |
| 1986 |
| 1987 // Return from the stub. |
| 1988 __ bind(&done); |
| 1989 __ StubReturn(1); |
| 1990 |
| 1991 // Handle the slow case by jumping to the JavaScript builtin. |
| 1992 __ bind(&slow); |
| 1993 __ pop(ecx); // pop return address. |
| 1994 __ push(eax); |
| 1995 __ push(ecx); // push return address |
| 1996 switch (op_) { |
| 1997 case Token::SUB: |
| 1998 __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION); |
| 1999 break; |
| 2000 case Token::BIT_NOT: |
| 2001 __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION); |
| 2002 break; |
| 2003 default: |
| 2004 UNREACHABLE(); |
| 2005 } |
| 2006 } |
| 2007 |
| 2008 |
| 2009 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { |
| 2010 // The key is in edx and the parameter count is in eax. |
| 2011 |
| 2012 // The displacement is used for skipping the frame pointer on the |
| 2013 // stack. It is the offset of the last parameter (if any) relative |
| 2014 // to the frame pointer. |
| 2015 static const int kDisplacement = 1 * kPointerSize; |
| 2016 |
| 2017 // Check that the key is a smi. |
| 2018 Label slow; |
| 2019 __ test(edx, Immediate(kSmiTagMask)); |
| 2020 __ j(not_zero, &slow, not_taken); |
| 2021 |
| 2022 // Check if the calling frame is an arguments adaptor frame. |
| 2023 Label adaptor; |
| 2024 __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); |
| 2025 __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset)); |
| 2026 __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| 2027 __ j(equal, &adaptor); |
| 2028 |
| 2029 // Check index against formal parameters count limit passed in |
| 2030 // through register eax. Use unsigned comparison to get negative |
| 2031 // check for free. |
| 2032 __ cmp(edx, Operand(eax)); |
| 2033 __ j(above_equal, &slow, not_taken); |
| 2034 |
| 2035 // Read the argument from the stack and return it. |
| 2036 STATIC_ASSERT(kSmiTagSize == 1); |
| 2037 STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these. |
| 2038 __ lea(ebx, Operand(ebp, eax, times_2, 0)); |
| 2039 __ neg(edx); |
| 2040 __ mov(eax, Operand(ebx, edx, times_2, kDisplacement)); |
| 2041 __ ret(0); |
| 2042 |
| 2043 // Arguments adaptor case: Check index against actual arguments |
| 2044 // limit found in the arguments adaptor frame. Use unsigned |
| 2045 // comparison to get negative check for free. |
| 2046 __ bind(&adaptor); |
| 2047 __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| 2048 __ cmp(edx, Operand(ecx)); |
| 2049 __ j(above_equal, &slow, not_taken); |
| 2050 |
| 2051 // Read the argument from the stack and return it. |
| 2052 STATIC_ASSERT(kSmiTagSize == 1); |
| 2053 STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these. |
| 2054 __ lea(ebx, Operand(ebx, ecx, times_2, 0)); |
| 2055 __ neg(edx); |
| 2056 __ mov(eax, Operand(ebx, edx, times_2, kDisplacement)); |
| 2057 __ ret(0); |
| 2058 |
| 2059 // Slow-case: Handle non-smi or out-of-bounds access to arguments |
| 2060 // by calling the runtime system. |
| 2061 __ bind(&slow); |
| 2062 __ pop(ebx); // Return address. |
| 2063 __ push(edx); |
| 2064 __ push(ebx); |
| 2065 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); |
| 2066 } |
| 2067 |
| 2068 |
| 2069 void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) { |
| 2070 // esp[0] : return address |
| 2071 // esp[4] : number of parameters |
| 2072 // esp[8] : receiver displacement |
| 2073 // esp[16] : function |
| 2074 |
| 2075 // The displacement is used for skipping the return address and the |
| 2076 // frame pointer on the stack. It is the offset of the last |
| 2077 // parameter (if any) relative to the frame pointer. |
| 2078 static const int kDisplacement = 2 * kPointerSize; |
| 2079 |
| 2080 // Check if the calling frame is an arguments adaptor frame. |
| 2081 Label adaptor_frame, try_allocate, runtime; |
| 2082 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); |
| 2083 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset)); |
| 2084 __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| 2085 __ j(equal, &adaptor_frame); |
| 2086 |
| 2087 // Get the length from the frame. |
| 2088 __ mov(ecx, Operand(esp, 1 * kPointerSize)); |
| 2089 __ jmp(&try_allocate); |
| 2090 |
| 2091 // Patch the arguments.length and the parameters pointer. |
| 2092 __ bind(&adaptor_frame); |
| 2093 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| 2094 __ mov(Operand(esp, 1 * kPointerSize), ecx); |
| 2095 __ lea(edx, Operand(edx, ecx, times_2, kDisplacement)); |
| 2096 __ mov(Operand(esp, 2 * kPointerSize), edx); |
| 2097 |
| 2098 // Try the new space allocation. Start out with computing the size of |
| 2099 // the arguments object and the elements array. |
| 2100 Label add_arguments_object; |
| 2101 __ bind(&try_allocate); |
| 2102 __ test(ecx, Operand(ecx)); |
| 2103 __ j(zero, &add_arguments_object); |
| 2104 __ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize)); |
| 2105 __ bind(&add_arguments_object); |
| 2106 __ add(Operand(ecx), Immediate(Heap::kArgumentsObjectSize)); |
| 2107 |
| 2108 // Do the allocation of both objects in one go. |
| 2109 __ AllocateInNewSpace(ecx, eax, edx, ebx, &runtime, TAG_OBJECT); |
| 2110 |
| 2111 // Get the arguments boilerplate from the current (global) context. |
| 2112 int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX); |
| 2113 __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| 2114 __ mov(edi, FieldOperand(edi, GlobalObject::kGlobalContextOffset)); |
| 2115 __ mov(edi, Operand(edi, offset)); |
| 2116 |
| 2117 // Copy the JS object part. |
| 2118 for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) { |
| 2119 __ mov(ebx, FieldOperand(edi, i)); |
| 2120 __ mov(FieldOperand(eax, i), ebx); |
| 2121 } |
| 2122 |
| 2123 // Setup the callee in-object property. |
| 2124 STATIC_ASSERT(Heap::arguments_callee_index == 0); |
| 2125 __ mov(ebx, Operand(esp, 3 * kPointerSize)); |
| 2126 __ mov(FieldOperand(eax, JSObject::kHeaderSize), ebx); |
| 2127 |
| 2128 // Get the length (smi tagged) and set that as an in-object property too. |
| 2129 STATIC_ASSERT(Heap::arguments_length_index == 1); |
| 2130 __ mov(ecx, Operand(esp, 1 * kPointerSize)); |
| 2131 __ mov(FieldOperand(eax, JSObject::kHeaderSize + kPointerSize), ecx); |
| 2132 |
| 2133 // If there are no actual arguments, we're done. |
| 2134 Label done; |
| 2135 __ test(ecx, Operand(ecx)); |
| 2136 __ j(zero, &done); |
| 2137 |
| 2138 // Get the parameters pointer from the stack. |
| 2139 __ mov(edx, Operand(esp, 2 * kPointerSize)); |
| 2140 |
| 2141 // Setup the elements pointer in the allocated arguments object and |
| 2142 // initialize the header in the elements fixed array. |
| 2143 __ lea(edi, Operand(eax, Heap::kArgumentsObjectSize)); |
| 2144 __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi); |
| 2145 __ mov(FieldOperand(edi, FixedArray::kMapOffset), |
| 2146 Immediate(Factory::fixed_array_map())); |
| 2147 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx); |
| 2148 // Untag the length for the loop below. |
| 2149 __ SmiUntag(ecx); |
| 2150 |
| 2151 // Copy the fixed array slots. |
| 2152 Label loop; |
| 2153 __ bind(&loop); |
| 2154 __ mov(ebx, Operand(edx, -1 * kPointerSize)); // Skip receiver. |
| 2155 __ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx); |
| 2156 __ add(Operand(edi), Immediate(kPointerSize)); |
| 2157 __ sub(Operand(edx), Immediate(kPointerSize)); |
| 2158 __ dec(ecx); |
| 2159 __ j(not_zero, &loop); |
| 2160 |
| 2161 // Return and remove the on-stack parameters. |
| 2162 __ bind(&done); |
| 2163 __ ret(3 * kPointerSize); |
| 2164 |
| 2165 // Do the runtime call to allocate the arguments object. |
| 2166 __ bind(&runtime); |
| 2167 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); |
| 2168 } |
| 2169 |
| 2170 |
| 2171 void RegExpExecStub::Generate(MacroAssembler* masm) { |
| 2172 // Just jump directly to runtime if native RegExp is not selected at compile |
| 2173 // time or if regexp entry in generated code is turned off runtime switch or |
| 2174 // at compilation. |
| 2175 #ifdef V8_INTERPRETED_REGEXP |
| 2176 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| 2177 #else // V8_INTERPRETED_REGEXP |
| 2178 if (!FLAG_regexp_entry_native) { |
| 2179 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| 2180 return; |
| 2181 } |
| 2182 |
| 2183 // Stack frame on entry. |
| 2184 // esp[0]: return address |
| 2185 // esp[4]: last_match_info (expected JSArray) |
| 2186 // esp[8]: previous index |
| 2187 // esp[12]: subject string |
| 2188 // esp[16]: JSRegExp object |
| 2189 |
| 2190 static const int kLastMatchInfoOffset = 1 * kPointerSize; |
| 2191 static const int kPreviousIndexOffset = 2 * kPointerSize; |
| 2192 static const int kSubjectOffset = 3 * kPointerSize; |
| 2193 static const int kJSRegExpOffset = 4 * kPointerSize; |
| 2194 |
| 2195 Label runtime, invoke_regexp; |
| 2196 |
| 2197 // Ensure that a RegExp stack is allocated. |
| 2198 ExternalReference address_of_regexp_stack_memory_address = |
| 2199 ExternalReference::address_of_regexp_stack_memory_address(); |
| 2200 ExternalReference address_of_regexp_stack_memory_size = |
| 2201 ExternalReference::address_of_regexp_stack_memory_size(); |
| 2202 __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size)); |
| 2203 __ test(ebx, Operand(ebx)); |
| 2204 __ j(zero, &runtime, not_taken); |
| 2205 |
| 2206 // Check that the first argument is a JSRegExp object. |
| 2207 __ mov(eax, Operand(esp, kJSRegExpOffset)); |
| 2208 STATIC_ASSERT(kSmiTag == 0); |
| 2209 __ test(eax, Immediate(kSmiTagMask)); |
| 2210 __ j(zero, &runtime); |
| 2211 __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx); |
| 2212 __ j(not_equal, &runtime); |
| 2213 // Check that the RegExp has been compiled (data contains a fixed array). |
| 2214 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset)); |
| 2215 if (FLAG_debug_code) { |
| 2216 __ test(ecx, Immediate(kSmiTagMask)); |
| 2217 __ Check(not_zero, "Unexpected type for RegExp data, FixedArray expected"); |
| 2218 __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx); |
| 2219 __ Check(equal, "Unexpected type for RegExp data, FixedArray expected"); |
| 2220 } |
| 2221 |
| 2222 // ecx: RegExp data (FixedArray) |
| 2223 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. |
| 2224 __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset)); |
| 2225 __ cmp(Operand(ebx), Immediate(Smi::FromInt(JSRegExp::IRREGEXP))); |
| 2226 __ j(not_equal, &runtime); |
| 2227 |
| 2228 // ecx: RegExp data (FixedArray) |
| 2229 // Check that the number of captures fit in the static offsets vector buffer. |
| 2230 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset)); |
| 2231 // Calculate number of capture registers (number_of_captures + 1) * 2. This |
| 2232 // uses the asumption that smis are 2 * their untagged value. |
| 2233 STATIC_ASSERT(kSmiTag == 0); |
| 2234 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
| 2235 __ add(Operand(edx), Immediate(2)); // edx was a smi. |
| 2236 // Check that the static offsets vector buffer is large enough. |
| 2237 __ cmp(edx, OffsetsVector::kStaticOffsetsVectorSize); |
| 2238 __ j(above, &runtime); |
| 2239 |
| 2240 // ecx: RegExp data (FixedArray) |
| 2241 // edx: Number of capture registers |
| 2242 // Check that the second argument is a string. |
| 2243 __ mov(eax, Operand(esp, kSubjectOffset)); |
| 2244 __ test(eax, Immediate(kSmiTagMask)); |
| 2245 __ j(zero, &runtime); |
| 2246 Condition is_string = masm->IsObjectStringType(eax, ebx, ebx); |
| 2247 __ j(NegateCondition(is_string), &runtime); |
| 2248 // Get the length of the string to ebx. |
| 2249 __ mov(ebx, FieldOperand(eax, String::kLengthOffset)); |
| 2250 |
| 2251 // ebx: Length of subject string as a smi |
| 2252 // ecx: RegExp data (FixedArray) |
| 2253 // edx: Number of capture registers |
| 2254 // Check that the third argument is a positive smi less than the subject |
| 2255 // string length. A negative value will be greater (unsigned comparison). |
| 2256 __ mov(eax, Operand(esp, kPreviousIndexOffset)); |
| 2257 __ test(eax, Immediate(kSmiTagMask)); |
| 2258 __ j(not_zero, &runtime); |
| 2259 __ cmp(eax, Operand(ebx)); |
| 2260 __ j(above_equal, &runtime); |
| 2261 |
| 2262 // ecx: RegExp data (FixedArray) |
| 2263 // edx: Number of capture registers |
| 2264 // Check that the fourth object is a JSArray object. |
| 2265 __ mov(eax, Operand(esp, kLastMatchInfoOffset)); |
| 2266 __ test(eax, Immediate(kSmiTagMask)); |
| 2267 __ j(zero, &runtime); |
| 2268 __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx); |
| 2269 __ j(not_equal, &runtime); |
| 2270 // Check that the JSArray is in fast case. |
| 2271 __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset)); |
| 2272 __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset)); |
| 2273 __ cmp(eax, Factory::fixed_array_map()); |
| 2274 __ j(not_equal, &runtime); |
| 2275 // Check that the last match info has space for the capture registers and the |
| 2276 // additional information. |
| 2277 __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset)); |
| 2278 __ SmiUntag(eax); |
| 2279 __ add(Operand(edx), Immediate(RegExpImpl::kLastMatchOverhead)); |
| 2280 __ cmp(edx, Operand(eax)); |
| 2281 __ j(greater, &runtime); |
| 2282 |
| 2283 // ecx: RegExp data (FixedArray) |
| 2284 // Check the representation and encoding of the subject string. |
| 2285 Label seq_ascii_string, seq_two_byte_string, check_code; |
| 2286 __ mov(eax, Operand(esp, kSubjectOffset)); |
| 2287 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
| 2288 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); |
| 2289 // First check for flat two byte string. |
| 2290 __ and_(ebx, |
| 2291 kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask); |
| 2292 STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0); |
| 2293 __ j(zero, &seq_two_byte_string); |
| 2294 // Any other flat string must be a flat ascii string. |
| 2295 __ test(Operand(ebx), |
| 2296 Immediate(kIsNotStringMask | kStringRepresentationMask)); |
| 2297 __ j(zero, &seq_ascii_string); |
| 2298 |
| 2299 // Check for flat cons string. |
| 2300 // A flat cons string is a cons string where the second part is the empty |
| 2301 // string. In that case the subject string is just the first part of the cons |
| 2302 // string. Also in this case the first part of the cons string is known to be |
| 2303 // a sequential string or an external string. |
| 2304 STATIC_ASSERT(kExternalStringTag != 0); |
| 2305 STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0); |
| 2306 __ test(Operand(ebx), |
| 2307 Immediate(kIsNotStringMask | kExternalStringTag)); |
| 2308 __ j(not_zero, &runtime); |
| 2309 // String is a cons string. |
| 2310 __ mov(edx, FieldOperand(eax, ConsString::kSecondOffset)); |
| 2311 __ cmp(Operand(edx), Factory::empty_string()); |
| 2312 __ j(not_equal, &runtime); |
| 2313 __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset)); |
| 2314 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
| 2315 // String is a cons string with empty second part. |
| 2316 // eax: first part of cons string. |
| 2317 // ebx: map of first part of cons string. |
| 2318 // Is first part a flat two byte string? |
| 2319 __ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset), |
| 2320 kStringRepresentationMask | kStringEncodingMask); |
| 2321 STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0); |
| 2322 __ j(zero, &seq_two_byte_string); |
| 2323 // Any other flat string must be ascii. |
| 2324 __ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset), |
| 2325 kStringRepresentationMask); |
| 2326 __ j(not_zero, &runtime); |
| 2327 |
| 2328 __ bind(&seq_ascii_string); |
| 2329 // eax: subject string (flat ascii) |
| 2330 // ecx: RegExp data (FixedArray) |
| 2331 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataAsciiCodeOffset)); |
| 2332 __ Set(edi, Immediate(1)); // Type is ascii. |
| 2333 __ jmp(&check_code); |
| 2334 |
| 2335 __ bind(&seq_two_byte_string); |
| 2336 // eax: subject string (flat two byte) |
| 2337 // ecx: RegExp data (FixedArray) |
| 2338 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset)); |
| 2339 __ Set(edi, Immediate(0)); // Type is two byte. |
| 2340 |
| 2341 __ bind(&check_code); |
| 2342 // Check that the irregexp code has been generated for the actual string |
| 2343 // encoding. If it has, the field contains a code object otherwise it contains |
| 2344 // the hole. |
| 2345 __ CmpObjectType(edx, CODE_TYPE, ebx); |
| 2346 __ j(not_equal, &runtime); |
| 2347 |
| 2348 // eax: subject string |
| 2349 // edx: code |
| 2350 // edi: encoding of subject string (1 if ascii, 0 if two_byte); |
| 2351 // Load used arguments before starting to push arguments for call to native |
| 2352 // RegExp code to avoid handling changing stack height. |
| 2353 __ mov(ebx, Operand(esp, kPreviousIndexOffset)); |
| 2354 __ SmiUntag(ebx); // Previous index from smi. |
| 2355 |
| 2356 // eax: subject string |
| 2357 // ebx: previous index |
| 2358 // edx: code |
| 2359 // edi: encoding of subject string (1 if ascii 0 if two_byte); |
| 2360 // All checks done. Now push arguments for native regexp code. |
| 2361 __ IncrementCounter(&Counters::regexp_entry_native, 1); |
| 2362 |
| 2363 static const int kRegExpExecuteArguments = 7; |
| 2364 __ PrepareCallCFunction(kRegExpExecuteArguments, ecx); |
| 2365 |
| 2366 // Argument 7: Indicate that this is a direct call from JavaScript. |
| 2367 __ mov(Operand(esp, 6 * kPointerSize), Immediate(1)); |
| 2368 |
| 2369 // Argument 6: Start (high end) of backtracking stack memory area. |
| 2370 __ mov(ecx, Operand::StaticVariable(address_of_regexp_stack_memory_address)); |
| 2371 __ add(ecx, Operand::StaticVariable(address_of_regexp_stack_memory_size)); |
| 2372 __ mov(Operand(esp, 5 * kPointerSize), ecx); |
| 2373 |
| 2374 // Argument 5: static offsets vector buffer. |
| 2375 __ mov(Operand(esp, 4 * kPointerSize), |
| 2376 Immediate(ExternalReference::address_of_static_offsets_vector())); |
| 2377 |
| 2378 // Argument 4: End of string data |
| 2379 // Argument 3: Start of string data |
| 2380 Label setup_two_byte, setup_rest; |
| 2381 __ test(edi, Operand(edi)); |
| 2382 __ mov(edi, FieldOperand(eax, String::kLengthOffset)); |
| 2383 __ j(zero, &setup_two_byte); |
| 2384 __ SmiUntag(edi); |
| 2385 __ lea(ecx, FieldOperand(eax, edi, times_1, SeqAsciiString::kHeaderSize)); |
| 2386 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4. |
| 2387 __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqAsciiString::kHeaderSize)); |
| 2388 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3. |
| 2389 __ jmp(&setup_rest); |
| 2390 |
| 2391 __ bind(&setup_two_byte); |
| 2392 STATIC_ASSERT(kSmiTag == 0); |
| 2393 STATIC_ASSERT(kSmiTagSize == 1); // edi is smi (powered by 2). |
| 2394 __ lea(ecx, FieldOperand(eax, edi, times_1, SeqTwoByteString::kHeaderSize)); |
| 2395 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4. |
| 2396 __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize)); |
| 2397 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3. |
| 2398 |
| 2399 __ bind(&setup_rest); |
| 2400 |
| 2401 // Argument 2: Previous index. |
| 2402 __ mov(Operand(esp, 1 * kPointerSize), ebx); |
| 2403 |
| 2404 // Argument 1: Subject string. |
| 2405 __ mov(Operand(esp, 0 * kPointerSize), eax); |
| 2406 |
| 2407 // Locate the code entry and call it. |
| 2408 __ add(Operand(edx), Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| 2409 __ CallCFunction(edx, kRegExpExecuteArguments); |
| 2410 |
| 2411 // Check the result. |
| 2412 Label success; |
| 2413 __ cmp(eax, NativeRegExpMacroAssembler::SUCCESS); |
| 2414 __ j(equal, &success, taken); |
| 2415 Label failure; |
| 2416 __ cmp(eax, NativeRegExpMacroAssembler::FAILURE); |
| 2417 __ j(equal, &failure, taken); |
| 2418 __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION); |
| 2419 // If not exception it can only be retry. Handle that in the runtime system. |
| 2420 __ j(not_equal, &runtime); |
| 2421 // Result must now be exception. If there is no pending exception already a |
| 2422 // stack overflow (on the backtrack stack) was detected in RegExp code but |
| 2423 // haven't created the exception yet. Handle that in the runtime system. |
| 2424 // TODO(592): Rerunning the RegExp to get the stack overflow exception. |
| 2425 ExternalReference pending_exception(Top::k_pending_exception_address); |
| 2426 __ mov(eax, |
| 2427 Operand::StaticVariable(ExternalReference::the_hole_value_location())); |
| 2428 __ cmp(eax, Operand::StaticVariable(pending_exception)); |
| 2429 __ j(equal, &runtime); |
| 2430 __ bind(&failure); |
| 2431 // For failure and exception return null. |
| 2432 __ mov(Operand(eax), Factory::null_value()); |
| 2433 __ ret(4 * kPointerSize); |
| 2434 |
| 2435 // Load RegExp data. |
| 2436 __ bind(&success); |
| 2437 __ mov(eax, Operand(esp, kJSRegExpOffset)); |
| 2438 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset)); |
| 2439 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset)); |
| 2440 // Calculate number of capture registers (number_of_captures + 1) * 2. |
| 2441 STATIC_ASSERT(kSmiTag == 0); |
| 2442 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
| 2443 __ add(Operand(edx), Immediate(2)); // edx was a smi. |
| 2444 |
| 2445 // edx: Number of capture registers |
| 2446 // Load last_match_info which is still known to be a fast case JSArray. |
| 2447 __ mov(eax, Operand(esp, kLastMatchInfoOffset)); |
| 2448 __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset)); |
| 2449 |
| 2450 // ebx: last_match_info backing store (FixedArray) |
| 2451 // edx: number of capture registers |
| 2452 // Store the capture count. |
| 2453 __ SmiTag(edx); // Number of capture registers to smi. |
| 2454 __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx); |
| 2455 __ SmiUntag(edx); // Number of capture registers back from smi. |
| 2456 // Store last subject and last input. |
| 2457 __ mov(eax, Operand(esp, kSubjectOffset)); |
| 2458 __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax); |
| 2459 __ mov(ecx, ebx); |
| 2460 __ RecordWrite(ecx, RegExpImpl::kLastSubjectOffset, eax, edi); |
| 2461 __ mov(eax, Operand(esp, kSubjectOffset)); |
| 2462 __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax); |
| 2463 __ mov(ecx, ebx); |
| 2464 __ RecordWrite(ecx, RegExpImpl::kLastInputOffset, eax, edi); |
| 2465 |
| 2466 // Get the static offsets vector filled by the native regexp code. |
| 2467 ExternalReference address_of_static_offsets_vector = |
| 2468 ExternalReference::address_of_static_offsets_vector(); |
| 2469 __ mov(ecx, Immediate(address_of_static_offsets_vector)); |
| 2470 |
| 2471 // ebx: last_match_info backing store (FixedArray) |
| 2472 // ecx: offsets vector |
| 2473 // edx: number of capture registers |
| 2474 Label next_capture, done; |
| 2475 // Capture register counter starts from number of capture registers and |
| 2476 // counts down until wraping after zero. |
| 2477 __ bind(&next_capture); |
| 2478 __ sub(Operand(edx), Immediate(1)); |
| 2479 __ j(negative, &done); |
| 2480 // Read the value from the static offsets vector buffer. |
| 2481 __ mov(edi, Operand(ecx, edx, times_int_size, 0)); |
| 2482 __ SmiTag(edi); |
| 2483 // Store the smi value in the last match info. |
| 2484 __ mov(FieldOperand(ebx, |
| 2485 edx, |
| 2486 times_pointer_size, |
| 2487 RegExpImpl::kFirstCaptureOffset), |
| 2488 edi); |
| 2489 __ jmp(&next_capture); |
| 2490 __ bind(&done); |
| 2491 |
| 2492 // Return last match info. |
| 2493 __ mov(eax, Operand(esp, kLastMatchInfoOffset)); |
| 2494 __ ret(4 * kPointerSize); |
| 2495 |
| 2496 // Do the runtime call to execute the regexp. |
| 2497 __ bind(&runtime); |
| 2498 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| 2499 #endif // V8_INTERPRETED_REGEXP |
| 2500 } |
| 2501 |
| 2502 |
| 2503 void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, |
| 2504 Register object, |
| 2505 Register result, |
| 2506 Register scratch1, |
| 2507 Register scratch2, |
| 2508 bool object_is_smi, |
| 2509 Label* not_found) { |
| 2510 // Use of registers. Register result is used as a temporary. |
| 2511 Register number_string_cache = result; |
| 2512 Register mask = scratch1; |
| 2513 Register scratch = scratch2; |
| 2514 |
| 2515 // Load the number string cache. |
| 2516 ExternalReference roots_address = ExternalReference::roots_address(); |
| 2517 __ mov(scratch, Immediate(Heap::kNumberStringCacheRootIndex)); |
| 2518 __ mov(number_string_cache, |
| 2519 Operand::StaticArray(scratch, times_pointer_size, roots_address)); |
| 2520 // Make the hash mask from the length of the number string cache. It |
| 2521 // contains two elements (number and string) for each cache entry. |
| 2522 __ mov(mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset)); |
| 2523 __ shr(mask, kSmiTagSize + 1); // Untag length and divide it by two. |
| 2524 __ sub(Operand(mask), Immediate(1)); // Make mask. |
| 2525 |
| 2526 // Calculate the entry in the number string cache. The hash value in the |
| 2527 // number string cache for smis is just the smi value, and the hash for |
| 2528 // doubles is the xor of the upper and lower words. See |
| 2529 // Heap::GetNumberStringCache. |
| 2530 Label smi_hash_calculated; |
| 2531 Label load_result_from_cache; |
| 2532 if (object_is_smi) { |
| 2533 __ mov(scratch, object); |
| 2534 __ SmiUntag(scratch); |
| 2535 } else { |
| 2536 Label not_smi, hash_calculated; |
| 2537 STATIC_ASSERT(kSmiTag == 0); |
| 2538 __ test(object, Immediate(kSmiTagMask)); |
| 2539 __ j(not_zero, ¬_smi); |
| 2540 __ mov(scratch, object); |
| 2541 __ SmiUntag(scratch); |
| 2542 __ jmp(&smi_hash_calculated); |
| 2543 __ bind(¬_smi); |
| 2544 __ cmp(FieldOperand(object, HeapObject::kMapOffset), |
| 2545 Factory::heap_number_map()); |
| 2546 __ j(not_equal, not_found); |
| 2547 STATIC_ASSERT(8 == kDoubleSize); |
| 2548 __ mov(scratch, FieldOperand(object, HeapNumber::kValueOffset)); |
| 2549 __ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4)); |
| 2550 // Object is heap number and hash is now in scratch. Calculate cache index. |
| 2551 __ and_(scratch, Operand(mask)); |
| 2552 Register index = scratch; |
| 2553 Register probe = mask; |
| 2554 __ mov(probe, |
| 2555 FieldOperand(number_string_cache, |
| 2556 index, |
| 2557 times_twice_pointer_size, |
| 2558 FixedArray::kHeaderSize)); |
| 2559 __ test(probe, Immediate(kSmiTagMask)); |
| 2560 __ j(zero, not_found); |
| 2561 if (CpuFeatures::IsSupported(SSE2)) { |
| 2562 CpuFeatures::Scope fscope(SSE2); |
| 2563 __ movdbl(xmm0, FieldOperand(object, HeapNumber::kValueOffset)); |
| 2564 __ movdbl(xmm1, FieldOperand(probe, HeapNumber::kValueOffset)); |
| 2565 __ ucomisd(xmm0, xmm1); |
| 2566 } else { |
| 2567 __ fld_d(FieldOperand(object, HeapNumber::kValueOffset)); |
| 2568 __ fld_d(FieldOperand(probe, HeapNumber::kValueOffset)); |
| 2569 __ FCmp(); |
| 2570 } |
| 2571 __ j(parity_even, not_found); // Bail out if NaN is involved. |
| 2572 __ j(not_equal, not_found); // The cache did not contain this value. |
| 2573 __ jmp(&load_result_from_cache); |
| 2574 } |
| 2575 |
| 2576 __ bind(&smi_hash_calculated); |
| 2577 // Object is smi and hash is now in scratch. Calculate cache index. |
| 2578 __ and_(scratch, Operand(mask)); |
| 2579 Register index = scratch; |
| 2580 // Check if the entry is the smi we are looking for. |
| 2581 __ cmp(object, |
| 2582 FieldOperand(number_string_cache, |
| 2583 index, |
| 2584 times_twice_pointer_size, |
| 2585 FixedArray::kHeaderSize)); |
| 2586 __ j(not_equal, not_found); |
| 2587 |
| 2588 // Get the result from the cache. |
| 2589 __ bind(&load_result_from_cache); |
| 2590 __ mov(result, |
| 2591 FieldOperand(number_string_cache, |
| 2592 index, |
| 2593 times_twice_pointer_size, |
| 2594 FixedArray::kHeaderSize + kPointerSize)); |
| 2595 __ IncrementCounter(&Counters::number_to_string_native, 1); |
| 2596 } |
| 2597 |
| 2598 |
| 2599 void NumberToStringStub::Generate(MacroAssembler* masm) { |
| 2600 Label runtime; |
| 2601 |
| 2602 __ mov(ebx, Operand(esp, kPointerSize)); |
| 2603 |
| 2604 // Generate code to lookup number in the number string cache. |
| 2605 GenerateLookupNumberStringCache(masm, ebx, eax, ecx, edx, false, &runtime); |
| 2606 __ ret(1 * kPointerSize); |
| 2607 |
| 2608 __ bind(&runtime); |
| 2609 // Handle number to string in the runtime system if not found in the cache. |
| 2610 __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1); |
| 2611 } |
| 2612 |
| 2613 |
| 2614 static int NegativeComparisonResult(Condition cc) { |
| 2615 ASSERT(cc != equal); |
| 2616 ASSERT((cc == less) || (cc == less_equal) |
| 2617 || (cc == greater) || (cc == greater_equal)); |
| 2618 return (cc == greater || cc == greater_equal) ? LESS : GREATER; |
| 2619 } |
| 2620 |
| 2621 void CompareStub::Generate(MacroAssembler* masm) { |
| 2622 ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); |
| 2623 |
| 2624 Label check_unequal_objects, done; |
| 2625 |
| 2626 // NOTICE! This code is only reached after a smi-fast-case check, so |
| 2627 // it is certain that at least one operand isn't a smi. |
| 2628 |
| 2629 // Identical objects can be compared fast, but there are some tricky cases |
| 2630 // for NaN and undefined. |
| 2631 { |
| 2632 Label not_identical; |
| 2633 __ cmp(eax, Operand(edx)); |
| 2634 __ j(not_equal, ¬_identical); |
| 2635 |
| 2636 if (cc_ != equal) { |
| 2637 // Check for undefined. undefined OP undefined is false even though |
| 2638 // undefined == undefined. |
| 2639 Label check_for_nan; |
| 2640 __ cmp(edx, Factory::undefined_value()); |
| 2641 __ j(not_equal, &check_for_nan); |
| 2642 __ Set(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc_)))); |
| 2643 __ ret(0); |
| 2644 __ bind(&check_for_nan); |
| 2645 } |
| 2646 |
| 2647 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), |
| 2648 // so we do the second best thing - test it ourselves. |
| 2649 // Note: if cc_ != equal, never_nan_nan_ is not used. |
| 2650 if (never_nan_nan_ && (cc_ == equal)) { |
| 2651 __ Set(eax, Immediate(Smi::FromInt(EQUAL))); |
| 2652 __ ret(0); |
| 2653 } else { |
| 2654 Label heap_number; |
| 2655 __ cmp(FieldOperand(edx, HeapObject::kMapOffset), |
| 2656 Immediate(Factory::heap_number_map())); |
| 2657 __ j(equal, &heap_number); |
| 2658 if (cc_ != equal) { |
| 2659 // Call runtime on identical JSObjects. Otherwise return equal. |
| 2660 __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx); |
| 2661 __ j(above_equal, ¬_identical); |
| 2662 } |
| 2663 __ Set(eax, Immediate(Smi::FromInt(EQUAL))); |
| 2664 __ ret(0); |
| 2665 |
| 2666 __ bind(&heap_number); |
| 2667 // It is a heap number, so return non-equal if it's NaN and equal if |
| 2668 // it's not NaN. |
| 2669 // The representation of NaN values has all exponent bits (52..62) set, |
| 2670 // and not all mantissa bits (0..51) clear. |
| 2671 // We only accept QNaNs, which have bit 51 set. |
| 2672 // Read top bits of double representation (second word of value). |
| 2673 |
| 2674 // Value is a QNaN if value & kQuietNaNMask == kQuietNaNMask, i.e., |
| 2675 // all bits in the mask are set. We only need to check the word |
| 2676 // that contains the exponent and high bit of the mantissa. |
| 2677 STATIC_ASSERT(((kQuietNaNHighBitsMask << 1) & 0x80000000u) != 0); |
| 2678 __ mov(edx, FieldOperand(edx, HeapNumber::kExponentOffset)); |
| 2679 __ xor_(eax, Operand(eax)); |
| 2680 // Shift value and mask so kQuietNaNHighBitsMask applies to topmost |
| 2681 // bits. |
| 2682 __ add(edx, Operand(edx)); |
| 2683 __ cmp(edx, kQuietNaNHighBitsMask << 1); |
| 2684 if (cc_ == equal) { |
| 2685 STATIC_ASSERT(EQUAL != 1); |
| 2686 __ setcc(above_equal, eax); |
| 2687 __ ret(0); |
| 2688 } else { |
| 2689 Label nan; |
| 2690 __ j(above_equal, &nan); |
| 2691 __ Set(eax, Immediate(Smi::FromInt(EQUAL))); |
| 2692 __ ret(0); |
| 2693 __ bind(&nan); |
| 2694 __ Set(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc_)))); |
| 2695 __ ret(0); |
| 2696 } |
| 2697 } |
| 2698 |
| 2699 __ bind(¬_identical); |
| 2700 } |
| 2701 |
| 2702 // Strict equality can quickly decide whether objects are equal. |
| 2703 // Non-strict object equality is slower, so it is handled later in the stub. |
| 2704 if (cc_ == equal && strict_) { |
| 2705 Label slow; // Fallthrough label. |
| 2706 Label not_smis; |
| 2707 // If we're doing a strict equality comparison, we don't have to do |
| 2708 // type conversion, so we generate code to do fast comparison for objects |
| 2709 // and oddballs. Non-smi numbers and strings still go through the usual |
| 2710 // slow-case code. |
| 2711 // If either is a Smi (we know that not both are), then they can only |
| 2712 // be equal if the other is a HeapNumber. If so, use the slow case. |
| 2713 STATIC_ASSERT(kSmiTag == 0); |
| 2714 ASSERT_EQ(0, Smi::FromInt(0)); |
| 2715 __ mov(ecx, Immediate(kSmiTagMask)); |
| 2716 __ and_(ecx, Operand(eax)); |
| 2717 __ test(ecx, Operand(edx)); |
| 2718 __ j(not_zero, ¬_smis); |
| 2719 // One operand is a smi. |
| 2720 |
| 2721 // Check whether the non-smi is a heap number. |
| 2722 STATIC_ASSERT(kSmiTagMask == 1); |
| 2723 // ecx still holds eax & kSmiTag, which is either zero or one. |
| 2724 __ sub(Operand(ecx), Immediate(0x01)); |
| 2725 __ mov(ebx, edx); |
| 2726 __ xor_(ebx, Operand(eax)); |
| 2727 __ and_(ebx, Operand(ecx)); // ebx holds either 0 or eax ^ edx. |
| 2728 __ xor_(ebx, Operand(eax)); |
| 2729 // if eax was smi, ebx is now edx, else eax. |
| 2730 |
| 2731 // Check if the non-smi operand is a heap number. |
| 2732 __ cmp(FieldOperand(ebx, HeapObject::kMapOffset), |
| 2733 Immediate(Factory::heap_number_map())); |
| 2734 // If heap number, handle it in the slow case. |
| 2735 __ j(equal, &slow); |
| 2736 // Return non-equal (ebx is not zero) |
| 2737 __ mov(eax, ebx); |
| 2738 __ ret(0); |
| 2739 |
| 2740 __ bind(¬_smis); |
| 2741 // If either operand is a JSObject or an oddball value, then they are not |
| 2742 // equal since their pointers are different |
| 2743 // There is no test for undetectability in strict equality. |
| 2744 |
| 2745 // Get the type of the first operand. |
| 2746 // If the first object is a JS object, we have done pointer comparison. |
| 2747 Label first_non_object; |
| 2748 STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
| 2749 __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx); |
| 2750 __ j(below, &first_non_object); |
| 2751 |
| 2752 // Return non-zero (eax is not zero) |
| 2753 Label return_not_equal; |
| 2754 STATIC_ASSERT(kHeapObjectTag != 0); |
| 2755 __ bind(&return_not_equal); |
| 2756 __ ret(0); |
| 2757 |
| 2758 __ bind(&first_non_object); |
| 2759 // Check for oddballs: true, false, null, undefined. |
| 2760 __ CmpInstanceType(ecx, ODDBALL_TYPE); |
| 2761 __ j(equal, &return_not_equal); |
| 2762 |
| 2763 __ CmpObjectType(edx, FIRST_JS_OBJECT_TYPE, ecx); |
| 2764 __ j(above_equal, &return_not_equal); |
| 2765 |
| 2766 // Check for oddballs: true, false, null, undefined. |
| 2767 __ CmpInstanceType(ecx, ODDBALL_TYPE); |
| 2768 __ j(equal, &return_not_equal); |
| 2769 |
| 2770 // Fall through to the general case. |
| 2771 __ bind(&slow); |
| 2772 } |
| 2773 |
| 2774 // Generate the number comparison code. |
| 2775 if (include_number_compare_) { |
| 2776 Label non_number_comparison; |
| 2777 Label unordered; |
| 2778 if (CpuFeatures::IsSupported(SSE2)) { |
| 2779 CpuFeatures::Scope use_sse2(SSE2); |
| 2780 CpuFeatures::Scope use_cmov(CMOV); |
| 2781 |
| 2782 FloatingPointHelper::LoadSSE2Operands(masm, &non_number_comparison); |
| 2783 __ ucomisd(xmm0, xmm1); |
| 2784 |
| 2785 // Don't base result on EFLAGS when a NaN is involved. |
| 2786 __ j(parity_even, &unordered, not_taken); |
| 2787 // Return a result of -1, 0, or 1, based on EFLAGS. |
| 2788 __ mov(eax, 0); // equal |
| 2789 __ mov(ecx, Immediate(Smi::FromInt(1))); |
| 2790 __ cmov(above, eax, Operand(ecx)); |
| 2791 __ mov(ecx, Immediate(Smi::FromInt(-1))); |
| 2792 __ cmov(below, eax, Operand(ecx)); |
| 2793 __ ret(0); |
| 2794 } else { |
| 2795 FloatingPointHelper::CheckFloatOperands( |
| 2796 masm, &non_number_comparison, ebx); |
| 2797 FloatingPointHelper::LoadFloatOperand(masm, eax); |
| 2798 FloatingPointHelper::LoadFloatOperand(masm, edx); |
| 2799 __ FCmp(); |
| 2800 |
| 2801 // Don't base result on EFLAGS when a NaN is involved. |
| 2802 __ j(parity_even, &unordered, not_taken); |
| 2803 |
| 2804 Label below_label, above_label; |
| 2805 // Return a result of -1, 0, or 1, based on EFLAGS. |
| 2806 __ j(below, &below_label, not_taken); |
| 2807 __ j(above, &above_label, not_taken); |
| 2808 |
| 2809 __ xor_(eax, Operand(eax)); |
| 2810 __ ret(0); |
| 2811 |
| 2812 __ bind(&below_label); |
| 2813 __ mov(eax, Immediate(Smi::FromInt(-1))); |
| 2814 __ ret(0); |
| 2815 |
| 2816 __ bind(&above_label); |
| 2817 __ mov(eax, Immediate(Smi::FromInt(1))); |
| 2818 __ ret(0); |
| 2819 } |
| 2820 |
| 2821 // If one of the numbers was NaN, then the result is always false. |
| 2822 // The cc is never not-equal. |
| 2823 __ bind(&unordered); |
| 2824 ASSERT(cc_ != not_equal); |
| 2825 if (cc_ == less || cc_ == less_equal) { |
| 2826 __ mov(eax, Immediate(Smi::FromInt(1))); |
| 2827 } else { |
| 2828 __ mov(eax, Immediate(Smi::FromInt(-1))); |
| 2829 } |
| 2830 __ ret(0); |
| 2831 |
| 2832 // The number comparison code did not provide a valid result. |
| 2833 __ bind(&non_number_comparison); |
| 2834 } |
| 2835 |
| 2836 // Fast negative check for symbol-to-symbol equality. |
| 2837 Label check_for_strings; |
| 2838 if (cc_ == equal) { |
| 2839 BranchIfNonSymbol(masm, &check_for_strings, eax, ecx); |
| 2840 BranchIfNonSymbol(masm, &check_for_strings, edx, ecx); |
| 2841 |
| 2842 // We've already checked for object identity, so if both operands |
| 2843 // are symbols they aren't equal. Register eax already holds a |
| 2844 // non-zero value, which indicates not equal, so just return. |
| 2845 __ ret(0); |
| 2846 } |
| 2847 |
| 2848 __ bind(&check_for_strings); |
| 2849 |
| 2850 __ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx, |
| 2851 &check_unequal_objects); |
| 2852 |
| 2853 // Inline comparison of ascii strings. |
| 2854 StringCompareStub::GenerateCompareFlatAsciiStrings(masm, |
| 2855 edx, |
| 2856 eax, |
| 2857 ecx, |
| 2858 ebx, |
| 2859 edi); |
| 2860 #ifdef DEBUG |
| 2861 __ Abort("Unexpected fall-through from string comparison"); |
| 2862 #endif |
| 2863 |
| 2864 __ bind(&check_unequal_objects); |
| 2865 if (cc_ == equal && !strict_) { |
| 2866 // Non-strict equality. Objects are unequal if |
| 2867 // they are both JSObjects and not undetectable, |
| 2868 // and their pointers are different. |
| 2869 Label not_both_objects; |
| 2870 Label return_unequal; |
| 2871 // At most one is a smi, so we can test for smi by adding the two. |
| 2872 // A smi plus a heap object has the low bit set, a heap object plus |
| 2873 // a heap object has the low bit clear. |
| 2874 STATIC_ASSERT(kSmiTag == 0); |
| 2875 STATIC_ASSERT(kSmiTagMask == 1); |
| 2876 __ lea(ecx, Operand(eax, edx, times_1, 0)); |
| 2877 __ test(ecx, Immediate(kSmiTagMask)); |
| 2878 __ j(not_zero, ¬_both_objects); |
| 2879 __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx); |
| 2880 __ j(below, ¬_both_objects); |
| 2881 __ CmpObjectType(edx, FIRST_JS_OBJECT_TYPE, ebx); |
| 2882 __ j(below, ¬_both_objects); |
| 2883 // We do not bail out after this point. Both are JSObjects, and |
| 2884 // they are equal if and only if both are undetectable. |
| 2885 // The and of the undetectable flags is 1 if and only if they are equal. |
| 2886 __ test_b(FieldOperand(ecx, Map::kBitFieldOffset), |
| 2887 1 << Map::kIsUndetectable); |
| 2888 __ j(zero, &return_unequal); |
| 2889 __ test_b(FieldOperand(ebx, Map::kBitFieldOffset), |
| 2890 1 << Map::kIsUndetectable); |
| 2891 __ j(zero, &return_unequal); |
| 2892 // The objects are both undetectable, so they both compare as the value |
| 2893 // undefined, and are equal. |
| 2894 __ Set(eax, Immediate(EQUAL)); |
| 2895 __ bind(&return_unequal); |
| 2896 // Return non-equal by returning the non-zero object pointer in eax, |
| 2897 // or return equal if we fell through to here. |
| 2898 __ ret(0); // rax, rdx were pushed |
| 2899 __ bind(¬_both_objects); |
| 2900 } |
| 2901 |
| 2902 // Push arguments below the return address. |
| 2903 __ pop(ecx); |
| 2904 __ push(edx); |
| 2905 __ push(eax); |
| 2906 |
| 2907 // Figure out which native to call and setup the arguments. |
| 2908 Builtins::JavaScript builtin; |
| 2909 if (cc_ == equal) { |
| 2910 builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; |
| 2911 } else { |
| 2912 builtin = Builtins::COMPARE; |
| 2913 __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc_)))); |
| 2914 } |
| 2915 |
| 2916 // Restore return address on the stack. |
| 2917 __ push(ecx); |
| 2918 |
| 2919 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) |
| 2920 // tagged as a small integer. |
| 2921 __ InvokeBuiltin(builtin, JUMP_FUNCTION); |
| 2922 } |
| 2923 |
| 2924 |
| 2925 void CompareStub::BranchIfNonSymbol(MacroAssembler* masm, |
| 2926 Label* label, |
| 2927 Register object, |
| 2928 Register scratch) { |
| 2929 __ test(object, Immediate(kSmiTagMask)); |
| 2930 __ j(zero, label); |
| 2931 __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset)); |
| 2932 __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); |
| 2933 __ and_(scratch, kIsSymbolMask | kIsNotStringMask); |
| 2934 __ cmp(scratch, kSymbolTag | kStringTag); |
| 2935 __ j(not_equal, label); |
| 2936 } |
| 2937 |
| 2938 |
| 2939 void StackCheckStub::Generate(MacroAssembler* masm) { |
| 2940 // Because builtins always remove the receiver from the stack, we |
| 2941 // have to fake one to avoid underflowing the stack. The receiver |
| 2942 // must be inserted below the return address on the stack so we |
| 2943 // temporarily store that in a register. |
| 2944 __ pop(eax); |
| 2945 __ push(Immediate(Smi::FromInt(0))); |
| 2946 __ push(eax); |
| 2947 |
| 2948 // Do tail-call to runtime routine. |
| 2949 __ TailCallRuntime(Runtime::kStackGuard, 1, 1); |
| 2950 } |
| 2951 |
| 2952 |
| 2953 void CallFunctionStub::Generate(MacroAssembler* masm) { |
| 2954 Label slow; |
| 2955 |
| 2956 // If the receiver might be a value (string, number or boolean) check for this |
| 2957 // and box it if it is. |
| 2958 if (ReceiverMightBeValue()) { |
| 2959 // Get the receiver from the stack. |
| 2960 // +1 ~ return address |
| 2961 Label receiver_is_value, receiver_is_js_object; |
| 2962 __ mov(eax, Operand(esp, (argc_ + 1) * kPointerSize)); |
| 2963 |
| 2964 // Check if receiver is a smi (which is a number value). |
| 2965 __ test(eax, Immediate(kSmiTagMask)); |
| 2966 __ j(zero, &receiver_is_value, not_taken); |
| 2967 |
| 2968 // Check if the receiver is a valid JS object. |
| 2969 __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, edi); |
| 2970 __ j(above_equal, &receiver_is_js_object); |
| 2971 |
| 2972 // Call the runtime to box the value. |
| 2973 __ bind(&receiver_is_value); |
| 2974 __ EnterInternalFrame(); |
| 2975 __ push(eax); |
| 2976 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); |
| 2977 __ LeaveInternalFrame(); |
| 2978 __ mov(Operand(esp, (argc_ + 1) * kPointerSize), eax); |
| 2979 |
| 2980 __ bind(&receiver_is_js_object); |
| 2981 } |
| 2982 |
| 2983 // Get the function to call from the stack. |
| 2984 // +2 ~ receiver, return address |
| 2985 __ mov(edi, Operand(esp, (argc_ + 2) * kPointerSize)); |
| 2986 |
| 2987 // Check that the function really is a JavaScript function. |
| 2988 __ test(edi, Immediate(kSmiTagMask)); |
| 2989 __ j(zero, &slow, not_taken); |
| 2990 // Goto slow case if we do not have a function. |
| 2991 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); |
| 2992 __ j(not_equal, &slow, not_taken); |
| 2993 |
| 2994 // Fast-case: Just invoke the function. |
| 2995 ParameterCount actual(argc_); |
| 2996 __ InvokeFunction(edi, actual, JUMP_FUNCTION); |
| 2997 |
| 2998 // Slow-case: Non-function called. |
| 2999 __ bind(&slow); |
| 3000 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead |
| 3001 // of the original receiver from the call site). |
| 3002 __ mov(Operand(esp, (argc_ + 1) * kPointerSize), edi); |
| 3003 __ Set(eax, Immediate(argc_)); |
| 3004 __ Set(ebx, Immediate(0)); |
| 3005 __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION); |
| 3006 Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)); |
| 3007 __ jmp(adaptor, RelocInfo::CODE_TARGET); |
| 3008 } |
| 3009 |
| 3010 |
| 3011 void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) { |
| 3012 // eax holds the exception. |
| 3013 |
| 3014 // Adjust this code if not the case. |
| 3015 STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); |
| 3016 |
| 3017 // Drop the sp to the top of the handler. |
| 3018 ExternalReference handler_address(Top::k_handler_address); |
| 3019 __ mov(esp, Operand::StaticVariable(handler_address)); |
| 3020 |
| 3021 // Restore next handler and frame pointer, discard handler state. |
| 3022 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| 3023 __ pop(Operand::StaticVariable(handler_address)); |
| 3024 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize); |
| 3025 __ pop(ebp); |
| 3026 __ pop(edx); // Remove state. |
| 3027 |
| 3028 // Before returning we restore the context from the frame pointer if |
| 3029 // not NULL. The frame pointer is NULL in the exception handler of |
| 3030 // a JS entry frame. |
| 3031 __ xor_(esi, Operand(esi)); // Tentatively set context pointer to NULL. |
| 3032 Label skip; |
| 3033 __ cmp(ebp, 0); |
| 3034 __ j(equal, &skip, not_taken); |
| 3035 __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); |
| 3036 __ bind(&skip); |
| 3037 |
| 3038 STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); |
| 3039 __ ret(0); |
| 3040 } |
| 3041 |
| 3042 |
| 3043 // If true, a Handle<T> passed by value is passed and returned by |
| 3044 // using the location_ field directly. If false, it is passed and |
| 3045 // returned as a pointer to a handle. |
| 3046 #ifdef USING_BSD_ABI |
| 3047 static const bool kPassHandlesDirectly = true; |
| 3048 #else |
| 3049 static const bool kPassHandlesDirectly = false; |
| 3050 #endif |
| 3051 |
| 3052 |
| 3053 void ApiGetterEntryStub::Generate(MacroAssembler* masm) { |
| 3054 Label empty_handle; |
| 3055 Label prologue; |
| 3056 Label promote_scheduled_exception; |
| 3057 __ EnterApiExitFrame(ExitFrame::MODE_NORMAL, kStackSpace, kArgc); |
| 3058 STATIC_ASSERT(kArgc == 4); |
| 3059 if (kPassHandlesDirectly) { |
| 3060 // When handles as passed directly we don't have to allocate extra |
| 3061 // space for and pass an out parameter. |
| 3062 __ mov(Operand(esp, 0 * kPointerSize), ebx); // name. |
| 3063 __ mov(Operand(esp, 1 * kPointerSize), eax); // arguments pointer. |
| 3064 } else { |
| 3065 // The function expects three arguments to be passed but we allocate |
| 3066 // four to get space for the output cell. The argument slots are filled |
| 3067 // as follows: |
| 3068 // |
| 3069 // 3: output cell |
| 3070 // 2: arguments pointer |
| 3071 // 1: name |
| 3072 // 0: pointer to the output cell |
| 3073 // |
| 3074 // Note that this is one more "argument" than the function expects |
| 3075 // so the out cell will have to be popped explicitly after returning |
| 3076 // from the function. |
| 3077 __ mov(Operand(esp, 1 * kPointerSize), ebx); // name. |
| 3078 __ mov(Operand(esp, 2 * kPointerSize), eax); // arguments pointer. |
| 3079 __ mov(ebx, esp); |
| 3080 __ add(Operand(ebx), Immediate(3 * kPointerSize)); |
| 3081 __ mov(Operand(esp, 0 * kPointerSize), ebx); // output |
| 3082 __ mov(Operand(esp, 3 * kPointerSize), Immediate(0)); // out cell. |
| 3083 } |
| 3084 // Call the api function! |
| 3085 __ call(fun()->address(), RelocInfo::RUNTIME_ENTRY); |
| 3086 // Check if the function scheduled an exception. |
| 3087 ExternalReference scheduled_exception_address = |
| 3088 ExternalReference::scheduled_exception_address(); |
| 3089 __ cmp(Operand::StaticVariable(scheduled_exception_address), |
| 3090 Immediate(Factory::the_hole_value())); |
| 3091 __ j(not_equal, &promote_scheduled_exception, not_taken); |
| 3092 if (!kPassHandlesDirectly) { |
| 3093 // The returned value is a pointer to the handle holding the result. |
| 3094 // Dereference this to get to the location. |
| 3095 __ mov(eax, Operand(eax, 0)); |
| 3096 } |
| 3097 // Check if the result handle holds 0. |
| 3098 __ test(eax, Operand(eax)); |
| 3099 __ j(zero, &empty_handle, not_taken); |
| 3100 // It was non-zero. Dereference to get the result value. |
| 3101 __ mov(eax, Operand(eax, 0)); |
| 3102 __ bind(&prologue); |
| 3103 __ LeaveExitFrame(ExitFrame::MODE_NORMAL); |
| 3104 __ ret(0); |
| 3105 __ bind(&promote_scheduled_exception); |
| 3106 __ TailCallRuntime(Runtime::kPromoteScheduledException, 0, 1); |
| 3107 __ bind(&empty_handle); |
| 3108 // It was zero; the result is undefined. |
| 3109 __ mov(eax, Factory::undefined_value()); |
| 3110 __ jmp(&prologue); |
| 3111 } |
| 3112 |
| 3113 |
| 3114 void CEntryStub::GenerateCore(MacroAssembler* masm, |
| 3115 Label* throw_normal_exception, |
| 3116 Label* throw_termination_exception, |
| 3117 Label* throw_out_of_memory_exception, |
| 3118 bool do_gc, |
| 3119 bool always_allocate_scope, |
| 3120 int /* alignment_skew */) { |
| 3121 // eax: result parameter for PerformGC, if any |
| 3122 // ebx: pointer to C function (C callee-saved) |
| 3123 // ebp: frame pointer (restored after C call) |
| 3124 // esp: stack pointer (restored after C call) |
| 3125 // edi: number of arguments including receiver (C callee-saved) |
| 3126 // esi: pointer to the first argument (C callee-saved) |
| 3127 |
| 3128 // Result returned in eax, or eax+edx if result_size_ is 2. |
| 3129 |
| 3130 // Check stack alignment. |
| 3131 if (FLAG_debug_code) { |
| 3132 __ CheckStackAlignment(); |
| 3133 } |
| 3134 |
| 3135 if (do_gc) { |
| 3136 // Pass failure code returned from last attempt as first argument to |
| 3137 // PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the |
| 3138 // stack alignment is known to be correct. This function takes one argument |
| 3139 // which is passed on the stack, and we know that the stack has been |
| 3140 // prepared to pass at least one argument. |
| 3141 __ mov(Operand(esp, 0 * kPointerSize), eax); // Result. |
| 3142 __ call(FUNCTION_ADDR(Runtime::PerformGC), RelocInfo::RUNTIME_ENTRY); |
| 3143 } |
| 3144 |
| 3145 ExternalReference scope_depth = |
| 3146 ExternalReference::heap_always_allocate_scope_depth(); |
| 3147 if (always_allocate_scope) { |
| 3148 __ inc(Operand::StaticVariable(scope_depth)); |
| 3149 } |
| 3150 |
| 3151 // Call C function. |
| 3152 __ mov(Operand(esp, 0 * kPointerSize), edi); // argc. |
| 3153 __ mov(Operand(esp, 1 * kPointerSize), esi); // argv. |
| 3154 __ call(Operand(ebx)); |
| 3155 // Result is in eax or edx:eax - do not destroy these registers! |
| 3156 |
| 3157 if (always_allocate_scope) { |
| 3158 __ dec(Operand::StaticVariable(scope_depth)); |
| 3159 } |
| 3160 |
| 3161 // Make sure we're not trying to return 'the hole' from the runtime |
| 3162 // call as this may lead to crashes in the IC code later. |
| 3163 if (FLAG_debug_code) { |
| 3164 Label okay; |
| 3165 __ cmp(eax, Factory::the_hole_value()); |
| 3166 __ j(not_equal, &okay); |
| 3167 __ int3(); |
| 3168 __ bind(&okay); |
| 3169 } |
| 3170 |
| 3171 // Check for failure result. |
| 3172 Label failure_returned; |
| 3173 STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); |
| 3174 __ lea(ecx, Operand(eax, 1)); |
| 3175 // Lower 2 bits of ecx are 0 iff eax has failure tag. |
| 3176 __ test(ecx, Immediate(kFailureTagMask)); |
| 3177 __ j(zero, &failure_returned, not_taken); |
| 3178 |
| 3179 // Exit the JavaScript to C++ exit frame. |
| 3180 __ LeaveExitFrame(mode_); |
| 3181 __ ret(0); |
| 3182 |
| 3183 // Handling of failure. |
| 3184 __ bind(&failure_returned); |
| 3185 |
| 3186 Label retry; |
| 3187 // If the returned exception is RETRY_AFTER_GC continue at retry label |
| 3188 STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0); |
| 3189 __ test(eax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); |
| 3190 __ j(zero, &retry, taken); |
| 3191 |
| 3192 // Special handling of out of memory exceptions. |
| 3193 __ cmp(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException())); |
| 3194 __ j(equal, throw_out_of_memory_exception); |
| 3195 |
| 3196 // Retrieve the pending exception and clear the variable. |
| 3197 ExternalReference pending_exception_address(Top::k_pending_exception_address); |
| 3198 __ mov(eax, Operand::StaticVariable(pending_exception_address)); |
| 3199 __ mov(edx, |
| 3200 Operand::StaticVariable(ExternalReference::the_hole_value_location())); |
| 3201 __ mov(Operand::StaticVariable(pending_exception_address), edx); |
| 3202 |
| 3203 // Special handling of termination exceptions which are uncatchable |
| 3204 // by javascript code. |
| 3205 __ cmp(eax, Factory::termination_exception()); |
| 3206 __ j(equal, throw_termination_exception); |
| 3207 |
| 3208 // Handle normal exception. |
| 3209 __ jmp(throw_normal_exception); |
| 3210 |
| 3211 // Retry. |
| 3212 __ bind(&retry); |
| 3213 } |
| 3214 |
| 3215 |
| 3216 void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm, |
| 3217 UncatchableExceptionType type) { |
| 3218 // Adjust this code if not the case. |
| 3219 STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); |
| 3220 |
| 3221 // Drop sp to the top stack handler. |
| 3222 ExternalReference handler_address(Top::k_handler_address); |
| 3223 __ mov(esp, Operand::StaticVariable(handler_address)); |
| 3224 |
| 3225 // Unwind the handlers until the ENTRY handler is found. |
| 3226 Label loop, done; |
| 3227 __ bind(&loop); |
| 3228 // Load the type of the current stack handler. |
| 3229 const int kStateOffset = StackHandlerConstants::kStateOffset; |
| 3230 __ cmp(Operand(esp, kStateOffset), Immediate(StackHandler::ENTRY)); |
| 3231 __ j(equal, &done); |
| 3232 // Fetch the next handler in the list. |
| 3233 const int kNextOffset = StackHandlerConstants::kNextOffset; |
| 3234 __ mov(esp, Operand(esp, kNextOffset)); |
| 3235 __ jmp(&loop); |
| 3236 __ bind(&done); |
| 3237 |
| 3238 // Set the top handler address to next handler past the current ENTRY handler. |
| 3239 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| 3240 __ pop(Operand::StaticVariable(handler_address)); |
| 3241 |
| 3242 if (type == OUT_OF_MEMORY) { |
| 3243 // Set external caught exception to false. |
| 3244 ExternalReference external_caught(Top::k_external_caught_exception_address); |
| 3245 __ mov(eax, false); |
| 3246 __ mov(Operand::StaticVariable(external_caught), eax); |
| 3247 |
| 3248 // Set pending exception and eax to out of memory exception. |
| 3249 ExternalReference pending_exception(Top::k_pending_exception_address); |
| 3250 __ mov(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException())); |
| 3251 __ mov(Operand::StaticVariable(pending_exception), eax); |
| 3252 } |
| 3253 |
| 3254 // Clear the context pointer. |
| 3255 __ xor_(esi, Operand(esi)); |
| 3256 |
| 3257 // Restore fp from handler and discard handler state. |
| 3258 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize); |
| 3259 __ pop(ebp); |
| 3260 __ pop(edx); // State. |
| 3261 |
| 3262 STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); |
| 3263 __ ret(0); |
| 3264 } |
| 3265 |
| 3266 |
| 3267 void CEntryStub::Generate(MacroAssembler* masm) { |
| 3268 // eax: number of arguments including receiver |
| 3269 // ebx: pointer to C function (C callee-saved) |
| 3270 // ebp: frame pointer (restored after C call) |
| 3271 // esp: stack pointer (restored after C call) |
| 3272 // esi: current context (C callee-saved) |
| 3273 // edi: JS function of the caller (C callee-saved) |
| 3274 |
| 3275 // NOTE: Invocations of builtins may return failure objects instead |
| 3276 // of a proper result. The builtin entry handles this by performing |
| 3277 // a garbage collection and retrying the builtin (twice). |
| 3278 |
| 3279 // Enter the exit frame that transitions from JavaScript to C++. |
| 3280 __ EnterExitFrame(mode_); |
| 3281 |
| 3282 // eax: result parameter for PerformGC, if any (setup below) |
| 3283 // ebx: pointer to builtin function (C callee-saved) |
| 3284 // ebp: frame pointer (restored after C call) |
| 3285 // esp: stack pointer (restored after C call) |
| 3286 // edi: number of arguments including receiver (C callee-saved) |
| 3287 // esi: argv pointer (C callee-saved) |
| 3288 |
| 3289 Label throw_normal_exception; |
| 3290 Label throw_termination_exception; |
| 3291 Label throw_out_of_memory_exception; |
| 3292 |
| 3293 // Call into the runtime system. |
| 3294 GenerateCore(masm, |
| 3295 &throw_normal_exception, |
| 3296 &throw_termination_exception, |
| 3297 &throw_out_of_memory_exception, |
| 3298 false, |
| 3299 false); |
| 3300 |
| 3301 // Do space-specific GC and retry runtime call. |
| 3302 GenerateCore(masm, |
| 3303 &throw_normal_exception, |
| 3304 &throw_termination_exception, |
| 3305 &throw_out_of_memory_exception, |
| 3306 true, |
| 3307 false); |
| 3308 |
| 3309 // Do full GC and retry runtime call one final time. |
| 3310 Failure* failure = Failure::InternalError(); |
| 3311 __ mov(eax, Immediate(reinterpret_cast<int32_t>(failure))); |
| 3312 GenerateCore(masm, |
| 3313 &throw_normal_exception, |
| 3314 &throw_termination_exception, |
| 3315 &throw_out_of_memory_exception, |
| 3316 true, |
| 3317 true); |
| 3318 |
| 3319 __ bind(&throw_out_of_memory_exception); |
| 3320 GenerateThrowUncatchable(masm, OUT_OF_MEMORY); |
| 3321 |
| 3322 __ bind(&throw_termination_exception); |
| 3323 GenerateThrowUncatchable(masm, TERMINATION); |
| 3324 |
| 3325 __ bind(&throw_normal_exception); |
| 3326 GenerateThrowTOS(masm); |
| 3327 } |
| 3328 |
| 3329 |
| 3330 void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { |
| 3331 Label invoke, exit; |
| 3332 #ifdef ENABLE_LOGGING_AND_PROFILING |
| 3333 Label not_outermost_js, not_outermost_js_2; |
| 3334 #endif |
| 3335 |
| 3336 // Setup frame. |
| 3337 __ push(ebp); |
| 3338 __ mov(ebp, Operand(esp)); |
| 3339 |
| 3340 // Push marker in two places. |
| 3341 int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; |
| 3342 __ push(Immediate(Smi::FromInt(marker))); // context slot |
| 3343 __ push(Immediate(Smi::FromInt(marker))); // function slot |
| 3344 // Save callee-saved registers (C calling conventions). |
| 3345 __ push(edi); |
| 3346 __ push(esi); |
| 3347 __ push(ebx); |
| 3348 |
| 3349 // Save copies of the top frame descriptor on the stack. |
| 3350 ExternalReference c_entry_fp(Top::k_c_entry_fp_address); |
| 3351 __ push(Operand::StaticVariable(c_entry_fp)); |
| 3352 |
| 3353 #ifdef ENABLE_LOGGING_AND_PROFILING |
| 3354 // If this is the outermost JS call, set js_entry_sp value. |
| 3355 ExternalReference js_entry_sp(Top::k_js_entry_sp_address); |
| 3356 __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0)); |
| 3357 __ j(not_equal, ¬_outermost_js); |
| 3358 __ mov(Operand::StaticVariable(js_entry_sp), ebp); |
| 3359 __ bind(¬_outermost_js); |
| 3360 #endif |
| 3361 |
| 3362 // Call a faked try-block that does the invoke. |
| 3363 __ call(&invoke); |
| 3364 |
| 3365 // Caught exception: Store result (exception) in the pending |
| 3366 // exception field in the JSEnv and return a failure sentinel. |
| 3367 ExternalReference pending_exception(Top::k_pending_exception_address); |
| 3368 __ mov(Operand::StaticVariable(pending_exception), eax); |
| 3369 __ mov(eax, reinterpret_cast<int32_t>(Failure::Exception())); |
| 3370 __ jmp(&exit); |
| 3371 |
| 3372 // Invoke: Link this frame into the handler chain. |
| 3373 __ bind(&invoke); |
| 3374 __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER); |
| 3375 |
| 3376 // Clear any pending exceptions. |
| 3377 __ mov(edx, |
| 3378 Operand::StaticVariable(ExternalReference::the_hole_value_location())); |
| 3379 __ mov(Operand::StaticVariable(pending_exception), edx); |
| 3380 |
| 3381 // Fake a receiver (NULL). |
| 3382 __ push(Immediate(0)); // receiver |
| 3383 |
| 3384 // Invoke the function by calling through JS entry trampoline |
| 3385 // builtin and pop the faked function when we return. Notice that we |
| 3386 // cannot store a reference to the trampoline code directly in this |
| 3387 // stub, because the builtin stubs may not have been generated yet. |
| 3388 if (is_construct) { |
| 3389 ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline); |
| 3390 __ mov(edx, Immediate(construct_entry)); |
| 3391 } else { |
| 3392 ExternalReference entry(Builtins::JSEntryTrampoline); |
| 3393 __ mov(edx, Immediate(entry)); |
| 3394 } |
| 3395 __ mov(edx, Operand(edx, 0)); // deref address |
| 3396 __ lea(edx, FieldOperand(edx, Code::kHeaderSize)); |
| 3397 __ call(Operand(edx)); |
| 3398 |
| 3399 // Unlink this frame from the handler chain. |
| 3400 __ pop(Operand::StaticVariable(ExternalReference(Top::k_handler_address))); |
| 3401 // Pop next_sp. |
| 3402 __ add(Operand(esp), Immediate(StackHandlerConstants::kSize - kPointerSize)); |
| 3403 |
| 3404 #ifdef ENABLE_LOGGING_AND_PROFILING |
| 3405 // If current EBP value is the same as js_entry_sp value, it means that |
| 3406 // the current function is the outermost. |
| 3407 __ cmp(ebp, Operand::StaticVariable(js_entry_sp)); |
| 3408 __ j(not_equal, ¬_outermost_js_2); |
| 3409 __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0)); |
| 3410 __ bind(¬_outermost_js_2); |
| 3411 #endif |
| 3412 |
| 3413 // Restore the top frame descriptor from the stack. |
| 3414 __ bind(&exit); |
| 3415 __ pop(Operand::StaticVariable(ExternalReference(Top::k_c_entry_fp_address))); |
| 3416 |
| 3417 // Restore callee-saved registers (C calling conventions). |
| 3418 __ pop(ebx); |
| 3419 __ pop(esi); |
| 3420 __ pop(edi); |
| 3421 __ add(Operand(esp), Immediate(2 * kPointerSize)); // remove markers |
| 3422 |
| 3423 // Restore frame pointer and return. |
| 3424 __ pop(ebp); |
| 3425 __ ret(0); |
| 3426 } |
| 3427 |
| 3428 |
| 3429 void InstanceofStub::Generate(MacroAssembler* masm) { |
| 3430 // Get the object - go slow case if it's a smi. |
| 3431 Label slow; |
| 3432 __ mov(eax, Operand(esp, 2 * kPointerSize)); // 2 ~ return address, function |
| 3433 __ test(eax, Immediate(kSmiTagMask)); |
| 3434 __ j(zero, &slow, not_taken); |
| 3435 |
| 3436 // Check that the left hand is a JS object. |
| 3437 __ IsObjectJSObjectType(eax, eax, edx, &slow); |
| 3438 |
| 3439 // Get the prototype of the function. |
| 3440 __ mov(edx, Operand(esp, 1 * kPointerSize)); // 1 ~ return address |
| 3441 // edx is function, eax is map. |
| 3442 |
| 3443 // Look up the function and the map in the instanceof cache. |
| 3444 Label miss; |
| 3445 ExternalReference roots_address = ExternalReference::roots_address(); |
| 3446 __ mov(ecx, Immediate(Heap::kInstanceofCacheFunctionRootIndex)); |
| 3447 __ cmp(edx, Operand::StaticArray(ecx, times_pointer_size, roots_address)); |
| 3448 __ j(not_equal, &miss); |
| 3449 __ mov(ecx, Immediate(Heap::kInstanceofCacheMapRootIndex)); |
| 3450 __ cmp(eax, Operand::StaticArray(ecx, times_pointer_size, roots_address)); |
| 3451 __ j(not_equal, &miss); |
| 3452 __ mov(ecx, Immediate(Heap::kInstanceofCacheAnswerRootIndex)); |
| 3453 __ mov(eax, Operand::StaticArray(ecx, times_pointer_size, roots_address)); |
| 3454 __ ret(2 * kPointerSize); |
| 3455 |
| 3456 __ bind(&miss); |
| 3457 __ TryGetFunctionPrototype(edx, ebx, ecx, &slow); |
| 3458 |
| 3459 // Check that the function prototype is a JS object. |
| 3460 __ test(ebx, Immediate(kSmiTagMask)); |
| 3461 __ j(zero, &slow, not_taken); |
| 3462 __ IsObjectJSObjectType(ebx, ecx, ecx, &slow); |
| 3463 |
| 3464 // Register mapping: |
| 3465 // eax is object map. |
| 3466 // edx is function. |
| 3467 // ebx is function prototype. |
| 3468 __ mov(ecx, Immediate(Heap::kInstanceofCacheMapRootIndex)); |
| 3469 __ mov(Operand::StaticArray(ecx, times_pointer_size, roots_address), eax); |
| 3470 __ mov(ecx, Immediate(Heap::kInstanceofCacheFunctionRootIndex)); |
| 3471 __ mov(Operand::StaticArray(ecx, times_pointer_size, roots_address), edx); |
| 3472 |
| 3473 __ mov(ecx, FieldOperand(eax, Map::kPrototypeOffset)); |
| 3474 |
| 3475 // Loop through the prototype chain looking for the function prototype. |
| 3476 Label loop, is_instance, is_not_instance; |
| 3477 __ bind(&loop); |
| 3478 __ cmp(ecx, Operand(ebx)); |
| 3479 __ j(equal, &is_instance); |
| 3480 __ cmp(Operand(ecx), Immediate(Factory::null_value())); |
| 3481 __ j(equal, &is_not_instance); |
| 3482 __ mov(ecx, FieldOperand(ecx, HeapObject::kMapOffset)); |
| 3483 __ mov(ecx, FieldOperand(ecx, Map::kPrototypeOffset)); |
| 3484 __ jmp(&loop); |
| 3485 |
| 3486 __ bind(&is_instance); |
| 3487 __ Set(eax, Immediate(0)); |
| 3488 __ mov(ecx, Immediate(Heap::kInstanceofCacheAnswerRootIndex)); |
| 3489 __ mov(Operand::StaticArray(ecx, times_pointer_size, roots_address), eax); |
| 3490 __ ret(2 * kPointerSize); |
| 3491 |
| 3492 __ bind(&is_not_instance); |
| 3493 __ Set(eax, Immediate(Smi::FromInt(1))); |
| 3494 __ mov(ecx, Immediate(Heap::kInstanceofCacheAnswerRootIndex)); |
| 3495 __ mov(Operand::StaticArray(ecx, times_pointer_size, roots_address), eax); |
| 3496 __ ret(2 * kPointerSize); |
| 3497 |
| 3498 // Slow-case: Go through the JavaScript implementation. |
| 3499 __ bind(&slow); |
| 3500 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); |
| 3501 } |
| 3502 |
| 3503 |
| 3504 int CompareStub::MinorKey() { |
| 3505 // Encode the three parameters in a unique 16 bit value. To avoid duplicate |
| 3506 // stubs the never NaN NaN condition is only taken into account if the |
| 3507 // condition is equals. |
| 3508 ASSERT(static_cast<unsigned>(cc_) < (1 << 12)); |
| 3509 ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); |
| 3510 return ConditionField::encode(static_cast<unsigned>(cc_)) |
| 3511 | RegisterField::encode(false) // lhs_ and rhs_ are not used |
| 3512 | StrictField::encode(strict_) |
| 3513 | NeverNanNanField::encode(cc_ == equal ? never_nan_nan_ : false) |
| 3514 | IncludeNumberCompareField::encode(include_number_compare_); |
| 3515 } |
| 3516 |
| 3517 |
| 3518 // Unfortunately you have to run without snapshots to see most of these |
| 3519 // names in the profile since most compare stubs end up in the snapshot. |
| 3520 const char* CompareStub::GetName() { |
| 3521 ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); |
| 3522 |
| 3523 if (name_ != NULL) return name_; |
| 3524 const int kMaxNameLength = 100; |
| 3525 name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength); |
| 3526 if (name_ == NULL) return "OOM"; |
| 3527 |
| 3528 const char* cc_name; |
| 3529 switch (cc_) { |
| 3530 case less: cc_name = "LT"; break; |
| 3531 case greater: cc_name = "GT"; break; |
| 3532 case less_equal: cc_name = "LE"; break; |
| 3533 case greater_equal: cc_name = "GE"; break; |
| 3534 case equal: cc_name = "EQ"; break; |
| 3535 case not_equal: cc_name = "NE"; break; |
| 3536 default: cc_name = "UnknownCondition"; break; |
| 3537 } |
| 3538 |
| 3539 const char* strict_name = ""; |
| 3540 if (strict_ && (cc_ == equal || cc_ == not_equal)) { |
| 3541 strict_name = "_STRICT"; |
| 3542 } |
| 3543 |
| 3544 const char* never_nan_nan_name = ""; |
| 3545 if (never_nan_nan_ && (cc_ == equal || cc_ == not_equal)) { |
| 3546 never_nan_nan_name = "_NO_NAN"; |
| 3547 } |
| 3548 |
| 3549 const char* include_number_compare_name = ""; |
| 3550 if (!include_number_compare_) { |
| 3551 include_number_compare_name = "_NO_NUMBER"; |
| 3552 } |
| 3553 |
| 3554 OS::SNPrintF(Vector<char>(name_, kMaxNameLength), |
| 3555 "CompareStub_%s%s%s%s", |
| 3556 cc_name, |
| 3557 strict_name, |
| 3558 never_nan_nan_name, |
| 3559 include_number_compare_name); |
| 3560 return name_; |
| 3561 } |
| 3562 |
| 3563 |
| 3564 // ------------------------------------------------------------------------- |
| 3565 // StringCharCodeAtGenerator |
| 3566 |
| 3567 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { |
| 3568 Label flat_string; |
| 3569 Label ascii_string; |
| 3570 Label got_char_code; |
| 3571 |
| 3572 // If the receiver is a smi trigger the non-string case. |
| 3573 STATIC_ASSERT(kSmiTag == 0); |
| 3574 __ test(object_, Immediate(kSmiTagMask)); |
| 3575 __ j(zero, receiver_not_string_); |
| 3576 |
| 3577 // Fetch the instance type of the receiver into result register. |
| 3578 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset)); |
| 3579 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); |
| 3580 // If the receiver is not a string trigger the non-string case. |
| 3581 __ test(result_, Immediate(kIsNotStringMask)); |
| 3582 __ j(not_zero, receiver_not_string_); |
| 3583 |
| 3584 // If the index is non-smi trigger the non-smi case. |
| 3585 STATIC_ASSERT(kSmiTag == 0); |
| 3586 __ test(index_, Immediate(kSmiTagMask)); |
| 3587 __ j(not_zero, &index_not_smi_); |
| 3588 |
| 3589 // Put smi-tagged index into scratch register. |
| 3590 __ mov(scratch_, index_); |
| 3591 __ bind(&got_smi_index_); |
| 3592 |
| 3593 // Check for index out of range. |
| 3594 __ cmp(scratch_, FieldOperand(object_, String::kLengthOffset)); |
| 3595 __ j(above_equal, index_out_of_range_); |
| 3596 |
| 3597 // We need special handling for non-flat strings. |
| 3598 STATIC_ASSERT(kSeqStringTag == 0); |
| 3599 __ test(result_, Immediate(kStringRepresentationMask)); |
| 3600 __ j(zero, &flat_string); |
| 3601 |
| 3602 // Handle non-flat strings. |
| 3603 __ test(result_, Immediate(kIsConsStringMask)); |
| 3604 __ j(zero, &call_runtime_); |
| 3605 |
| 3606 // ConsString. |
| 3607 // Check whether the right hand side is the empty string (i.e. if |
| 3608 // this is really a flat string in a cons string). If that is not |
| 3609 // the case we would rather go to the runtime system now to flatten |
| 3610 // the string. |
| 3611 __ cmp(FieldOperand(object_, ConsString::kSecondOffset), |
| 3612 Immediate(Factory::empty_string())); |
| 3613 __ j(not_equal, &call_runtime_); |
| 3614 // Get the first of the two strings and load its instance type. |
| 3615 __ mov(object_, FieldOperand(object_, ConsString::kFirstOffset)); |
| 3616 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset)); |
| 3617 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); |
| 3618 // If the first cons component is also non-flat, then go to runtime. |
| 3619 STATIC_ASSERT(kSeqStringTag == 0); |
| 3620 __ test(result_, Immediate(kStringRepresentationMask)); |
| 3621 __ j(not_zero, &call_runtime_); |
| 3622 |
| 3623 // Check for 1-byte or 2-byte string. |
| 3624 __ bind(&flat_string); |
| 3625 STATIC_ASSERT(kAsciiStringTag != 0); |
| 3626 __ test(result_, Immediate(kStringEncodingMask)); |
| 3627 __ j(not_zero, &ascii_string); |
| 3628 |
| 3629 // 2-byte string. |
| 3630 // Load the 2-byte character code into the result register. |
| 3631 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); |
| 3632 __ movzx_w(result_, FieldOperand(object_, |
| 3633 scratch_, times_1, // Scratch is smi-tagged. |
| 3634 SeqTwoByteString::kHeaderSize)); |
| 3635 __ jmp(&got_char_code); |
| 3636 |
| 3637 // ASCII string. |
| 3638 // Load the byte into the result register. |
| 3639 __ bind(&ascii_string); |
| 3640 __ SmiUntag(scratch_); |
| 3641 __ movzx_b(result_, FieldOperand(object_, |
| 3642 scratch_, times_1, |
| 3643 SeqAsciiString::kHeaderSize)); |
| 3644 __ bind(&got_char_code); |
| 3645 __ SmiTag(result_); |
| 3646 __ bind(&exit_); |
| 3647 } |
| 3648 |
| 3649 |
| 3650 void StringCharCodeAtGenerator::GenerateSlow( |
| 3651 MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
| 3652 __ Abort("Unexpected fallthrough to CharCodeAt slow case"); |
| 3653 |
| 3654 // Index is not a smi. |
| 3655 __ bind(&index_not_smi_); |
| 3656 // If index is a heap number, try converting it to an integer. |
| 3657 __ CheckMap(index_, Factory::heap_number_map(), index_not_number_, true); |
| 3658 call_helper.BeforeCall(masm); |
| 3659 __ push(object_); |
| 3660 __ push(index_); |
| 3661 __ push(index_); // Consumed by runtime conversion function. |
| 3662 if (index_flags_ == STRING_INDEX_IS_NUMBER) { |
| 3663 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); |
| 3664 } else { |
| 3665 ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); |
| 3666 // NumberToSmi discards numbers that are not exact integers. |
| 3667 __ CallRuntime(Runtime::kNumberToSmi, 1); |
| 3668 } |
| 3669 if (!scratch_.is(eax)) { |
| 3670 // Save the conversion result before the pop instructions below |
| 3671 // have a chance to overwrite it. |
| 3672 __ mov(scratch_, eax); |
| 3673 } |
| 3674 __ pop(index_); |
| 3675 __ pop(object_); |
| 3676 // Reload the instance type. |
| 3677 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset)); |
| 3678 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); |
| 3679 call_helper.AfterCall(masm); |
| 3680 // If index is still not a smi, it must be out of range. |
| 3681 STATIC_ASSERT(kSmiTag == 0); |
| 3682 __ test(scratch_, Immediate(kSmiTagMask)); |
| 3683 __ j(not_zero, index_out_of_range_); |
| 3684 // Otherwise, return to the fast path. |
| 3685 __ jmp(&got_smi_index_); |
| 3686 |
| 3687 // Call runtime. We get here when the receiver is a string and the |
| 3688 // index is a number, but the code of getting the actual character |
| 3689 // is too complex (e.g., when the string needs to be flattened). |
| 3690 __ bind(&call_runtime_); |
| 3691 call_helper.BeforeCall(masm); |
| 3692 __ push(object_); |
| 3693 __ push(index_); |
| 3694 __ CallRuntime(Runtime::kStringCharCodeAt, 2); |
| 3695 if (!result_.is(eax)) { |
| 3696 __ mov(result_, eax); |
| 3697 } |
| 3698 call_helper.AfterCall(masm); |
| 3699 __ jmp(&exit_); |
| 3700 |
| 3701 __ Abort("Unexpected fallthrough from CharCodeAt slow case"); |
| 3702 } |
| 3703 |
| 3704 |
| 3705 // ------------------------------------------------------------------------- |
| 3706 // StringCharFromCodeGenerator |
| 3707 |
| 3708 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { |
| 3709 // Fast case of Heap::LookupSingleCharacterStringFromCode. |
| 3710 STATIC_ASSERT(kSmiTag == 0); |
| 3711 STATIC_ASSERT(kSmiShiftSize == 0); |
| 3712 ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1)); |
| 3713 __ test(code_, |
| 3714 Immediate(kSmiTagMask | |
| 3715 ((~String::kMaxAsciiCharCode) << kSmiTagSize))); |
| 3716 __ j(not_zero, &slow_case_, not_taken); |
| 3717 |
| 3718 __ Set(result_, Immediate(Factory::single_character_string_cache())); |
| 3719 STATIC_ASSERT(kSmiTag == 0); |
| 3720 STATIC_ASSERT(kSmiTagSize == 1); |
| 3721 STATIC_ASSERT(kSmiShiftSize == 0); |
| 3722 // At this point code register contains smi tagged ascii char code. |
| 3723 __ mov(result_, FieldOperand(result_, |
| 3724 code_, times_half_pointer_size, |
| 3725 FixedArray::kHeaderSize)); |
| 3726 __ cmp(result_, Factory::undefined_value()); |
| 3727 __ j(equal, &slow_case_, not_taken); |
| 3728 __ bind(&exit_); |
| 3729 } |
| 3730 |
| 3731 |
| 3732 void StringCharFromCodeGenerator::GenerateSlow( |
| 3733 MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
| 3734 __ Abort("Unexpected fallthrough to CharFromCode slow case"); |
| 3735 |
| 3736 __ bind(&slow_case_); |
| 3737 call_helper.BeforeCall(masm); |
| 3738 __ push(code_); |
| 3739 __ CallRuntime(Runtime::kCharFromCode, 1); |
| 3740 if (!result_.is(eax)) { |
| 3741 __ mov(result_, eax); |
| 3742 } |
| 3743 call_helper.AfterCall(masm); |
| 3744 __ jmp(&exit_); |
| 3745 |
| 3746 __ Abort("Unexpected fallthrough from CharFromCode slow case"); |
| 3747 } |
| 3748 |
| 3749 |
| 3750 // ------------------------------------------------------------------------- |
| 3751 // StringCharAtGenerator |
| 3752 |
| 3753 void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) { |
| 3754 char_code_at_generator_.GenerateFast(masm); |
| 3755 char_from_code_generator_.GenerateFast(masm); |
| 3756 } |
| 3757 |
| 3758 |
| 3759 void StringCharAtGenerator::GenerateSlow( |
| 3760 MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
| 3761 char_code_at_generator_.GenerateSlow(masm, call_helper); |
| 3762 char_from_code_generator_.GenerateSlow(masm, call_helper); |
| 3763 } |
| 3764 |
| 3765 |
| 3766 void StringAddStub::Generate(MacroAssembler* masm) { |
| 3767 Label string_add_runtime; |
| 3768 |
| 3769 // Load the two arguments. |
| 3770 __ mov(eax, Operand(esp, 2 * kPointerSize)); // First argument. |
| 3771 __ mov(edx, Operand(esp, 1 * kPointerSize)); // Second argument. |
| 3772 |
| 3773 // Make sure that both arguments are strings if not known in advance. |
| 3774 if (string_check_) { |
| 3775 __ test(eax, Immediate(kSmiTagMask)); |
| 3776 __ j(zero, &string_add_runtime); |
| 3777 __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, ebx); |
| 3778 __ j(above_equal, &string_add_runtime); |
| 3779 |
| 3780 // First argument is a a string, test second. |
| 3781 __ test(edx, Immediate(kSmiTagMask)); |
| 3782 __ j(zero, &string_add_runtime); |
| 3783 __ CmpObjectType(edx, FIRST_NONSTRING_TYPE, ebx); |
| 3784 __ j(above_equal, &string_add_runtime); |
| 3785 } |
| 3786 |
| 3787 // Both arguments are strings. |
| 3788 // eax: first string |
| 3789 // edx: second string |
| 3790 // Check if either of the strings are empty. In that case return the other. |
| 3791 Label second_not_zero_length, both_not_zero_length; |
| 3792 __ mov(ecx, FieldOperand(edx, String::kLengthOffset)); |
| 3793 STATIC_ASSERT(kSmiTag == 0); |
| 3794 __ test(ecx, Operand(ecx)); |
| 3795 __ j(not_zero, &second_not_zero_length); |
| 3796 // Second string is empty, result is first string which is already in eax. |
| 3797 __ IncrementCounter(&Counters::string_add_native, 1); |
| 3798 __ ret(2 * kPointerSize); |
| 3799 __ bind(&second_not_zero_length); |
| 3800 __ mov(ebx, FieldOperand(eax, String::kLengthOffset)); |
| 3801 STATIC_ASSERT(kSmiTag == 0); |
| 3802 __ test(ebx, Operand(ebx)); |
| 3803 __ j(not_zero, &both_not_zero_length); |
| 3804 // First string is empty, result is second string which is in edx. |
| 3805 __ mov(eax, edx); |
| 3806 __ IncrementCounter(&Counters::string_add_native, 1); |
| 3807 __ ret(2 * kPointerSize); |
| 3808 |
| 3809 // Both strings are non-empty. |
| 3810 // eax: first string |
| 3811 // ebx: length of first string as a smi |
| 3812 // ecx: length of second string as a smi |
| 3813 // edx: second string |
| 3814 // Look at the length of the result of adding the two strings. |
| 3815 Label string_add_flat_result, longer_than_two; |
| 3816 __ bind(&both_not_zero_length); |
| 3817 __ add(ebx, Operand(ecx)); |
| 3818 STATIC_ASSERT(Smi::kMaxValue == String::kMaxLength); |
| 3819 // Handle exceptionally long strings in the runtime system. |
| 3820 __ j(overflow, &string_add_runtime); |
| 3821 // Use the runtime system when adding two one character strings, as it |
| 3822 // contains optimizations for this specific case using the symbol table. |
| 3823 __ cmp(Operand(ebx), Immediate(Smi::FromInt(2))); |
| 3824 __ j(not_equal, &longer_than_two); |
| 3825 |
| 3826 // Check that both strings are non-external ascii strings. |
| 3827 __ JumpIfNotBothSequentialAsciiStrings(eax, edx, ebx, ecx, |
| 3828 &string_add_runtime); |
| 3829 |
| 3830 // Get the two characters forming the sub string. |
| 3831 __ movzx_b(ebx, FieldOperand(eax, SeqAsciiString::kHeaderSize)); |
| 3832 __ movzx_b(ecx, FieldOperand(edx, SeqAsciiString::kHeaderSize)); |
| 3833 |
| 3834 // Try to lookup two character string in symbol table. If it is not found |
| 3835 // just allocate a new one. |
| 3836 Label make_two_character_string, make_flat_ascii_string; |
| 3837 StringHelper::GenerateTwoCharacterSymbolTableProbe( |
| 3838 masm, ebx, ecx, eax, edx, edi, &make_two_character_string); |
| 3839 __ IncrementCounter(&Counters::string_add_native, 1); |
| 3840 __ ret(2 * kPointerSize); |
| 3841 |
| 3842 __ bind(&make_two_character_string); |
| 3843 __ Set(ebx, Immediate(Smi::FromInt(2))); |
| 3844 __ jmp(&make_flat_ascii_string); |
| 3845 |
| 3846 __ bind(&longer_than_two); |
| 3847 // Check if resulting string will be flat. |
| 3848 __ cmp(Operand(ebx), Immediate(Smi::FromInt(String::kMinNonFlatLength))); |
| 3849 __ j(below, &string_add_flat_result); |
| 3850 |
| 3851 // If result is not supposed to be flat allocate a cons string object. If both |
| 3852 // strings are ascii the result is an ascii cons string. |
| 3853 Label non_ascii, allocated, ascii_data; |
| 3854 __ mov(edi, FieldOperand(eax, HeapObject::kMapOffset)); |
| 3855 __ movzx_b(ecx, FieldOperand(edi, Map::kInstanceTypeOffset)); |
| 3856 __ mov(edi, FieldOperand(edx, HeapObject::kMapOffset)); |
| 3857 __ movzx_b(edi, FieldOperand(edi, Map::kInstanceTypeOffset)); |
| 3858 __ and_(ecx, Operand(edi)); |
| 3859 STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag); |
| 3860 __ test(ecx, Immediate(kAsciiStringTag)); |
| 3861 __ j(zero, &non_ascii); |
| 3862 __ bind(&ascii_data); |
| 3863 // Allocate an acsii cons string. |
| 3864 __ AllocateAsciiConsString(ecx, edi, no_reg, &string_add_runtime); |
| 3865 __ bind(&allocated); |
| 3866 // Fill the fields of the cons string. |
| 3867 if (FLAG_debug_code) __ AbortIfNotSmi(ebx); |
| 3868 __ mov(FieldOperand(ecx, ConsString::kLengthOffset), ebx); |
| 3869 __ mov(FieldOperand(ecx, ConsString::kHashFieldOffset), |
| 3870 Immediate(String::kEmptyHashField)); |
| 3871 __ mov(FieldOperand(ecx, ConsString::kFirstOffset), eax); |
| 3872 __ mov(FieldOperand(ecx, ConsString::kSecondOffset), edx); |
| 3873 __ mov(eax, ecx); |
| 3874 __ IncrementCounter(&Counters::string_add_native, 1); |
| 3875 __ ret(2 * kPointerSize); |
| 3876 __ bind(&non_ascii); |
| 3877 // At least one of the strings is two-byte. Check whether it happens |
| 3878 // to contain only ascii characters. |
| 3879 // ecx: first instance type AND second instance type. |
| 3880 // edi: second instance type. |
| 3881 __ test(ecx, Immediate(kAsciiDataHintMask)); |
| 3882 __ j(not_zero, &ascii_data); |
| 3883 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); |
| 3884 __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); |
| 3885 __ xor_(edi, Operand(ecx)); |
| 3886 STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0); |
| 3887 __ and_(edi, kAsciiStringTag | kAsciiDataHintTag); |
| 3888 __ cmp(edi, kAsciiStringTag | kAsciiDataHintTag); |
| 3889 __ j(equal, &ascii_data); |
| 3890 // Allocate a two byte cons string. |
| 3891 __ AllocateConsString(ecx, edi, no_reg, &string_add_runtime); |
| 3892 __ jmp(&allocated); |
| 3893 |
| 3894 // Handle creating a flat result. First check that both strings are not |
| 3895 // external strings. |
| 3896 // eax: first string |
| 3897 // ebx: length of resulting flat string as a smi |
| 3898 // edx: second string |
| 3899 __ bind(&string_add_flat_result); |
| 3900 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); |
| 3901 __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); |
| 3902 __ and_(ecx, kStringRepresentationMask); |
| 3903 __ cmp(ecx, kExternalStringTag); |
| 3904 __ j(equal, &string_add_runtime); |
| 3905 __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); |
| 3906 __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); |
| 3907 __ and_(ecx, kStringRepresentationMask); |
| 3908 __ cmp(ecx, kExternalStringTag); |
| 3909 __ j(equal, &string_add_runtime); |
| 3910 // Now check if both strings are ascii strings. |
| 3911 // eax: first string |
| 3912 // ebx: length of resulting flat string as a smi |
| 3913 // edx: second string |
| 3914 Label non_ascii_string_add_flat_result; |
| 3915 STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag); |
| 3916 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); |
| 3917 __ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag); |
| 3918 __ j(zero, &non_ascii_string_add_flat_result); |
| 3919 __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); |
| 3920 __ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag); |
| 3921 __ j(zero, &string_add_runtime); |
| 3922 |
| 3923 __ bind(&make_flat_ascii_string); |
| 3924 // Both strings are ascii strings. As they are short they are both flat. |
| 3925 // ebx: length of resulting flat string as a smi |
| 3926 __ SmiUntag(ebx); |
| 3927 __ AllocateAsciiString(eax, ebx, ecx, edx, edi, &string_add_runtime); |
| 3928 // eax: result string |
| 3929 __ mov(ecx, eax); |
| 3930 // Locate first character of result. |
| 3931 __ add(Operand(ecx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| 3932 // Load first argument and locate first character. |
| 3933 __ mov(edx, Operand(esp, 2 * kPointerSize)); |
| 3934 __ mov(edi, FieldOperand(edx, String::kLengthOffset)); |
| 3935 __ SmiUntag(edi); |
| 3936 __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| 3937 // eax: result string |
| 3938 // ecx: first character of result |
| 3939 // edx: first char of first argument |
| 3940 // edi: length of first argument |
| 3941 StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, true); |
| 3942 // Load second argument and locate first character. |
| 3943 __ mov(edx, Operand(esp, 1 * kPointerSize)); |
| 3944 __ mov(edi, FieldOperand(edx, String::kLengthOffset)); |
| 3945 __ SmiUntag(edi); |
| 3946 __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| 3947 // eax: result string |
| 3948 // ecx: next character of result |
| 3949 // edx: first char of second argument |
| 3950 // edi: length of second argument |
| 3951 StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, true); |
| 3952 __ IncrementCounter(&Counters::string_add_native, 1); |
| 3953 __ ret(2 * kPointerSize); |
| 3954 |
| 3955 // Handle creating a flat two byte result. |
| 3956 // eax: first string - known to be two byte |
| 3957 // ebx: length of resulting flat string as a smi |
| 3958 // edx: second string |
| 3959 __ bind(&non_ascii_string_add_flat_result); |
| 3960 __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); |
| 3961 __ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag); |
| 3962 __ j(not_zero, &string_add_runtime); |
| 3963 // Both strings are two byte strings. As they are short they are both |
| 3964 // flat. |
| 3965 __ SmiUntag(ebx); |
| 3966 __ AllocateTwoByteString(eax, ebx, ecx, edx, edi, &string_add_runtime); |
| 3967 // eax: result string |
| 3968 __ mov(ecx, eax); |
| 3969 // Locate first character of result. |
| 3970 __ add(Operand(ecx), |
| 3971 Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| 3972 // Load first argument and locate first character. |
| 3973 __ mov(edx, Operand(esp, 2 * kPointerSize)); |
| 3974 __ mov(edi, FieldOperand(edx, String::kLengthOffset)); |
| 3975 __ SmiUntag(edi); |
| 3976 __ add(Operand(edx), |
| 3977 Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| 3978 // eax: result string |
| 3979 // ecx: first character of result |
| 3980 // edx: first char of first argument |
| 3981 // edi: length of first argument |
| 3982 StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, false); |
| 3983 // Load second argument and locate first character. |
| 3984 __ mov(edx, Operand(esp, 1 * kPointerSize)); |
| 3985 __ mov(edi, FieldOperand(edx, String::kLengthOffset)); |
| 3986 __ SmiUntag(edi); |
| 3987 __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| 3988 // eax: result string |
| 3989 // ecx: next character of result |
| 3990 // edx: first char of second argument |
| 3991 // edi: length of second argument |
| 3992 StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, false); |
| 3993 __ IncrementCounter(&Counters::string_add_native, 1); |
| 3994 __ ret(2 * kPointerSize); |
| 3995 |
| 3996 // Just jump to runtime to add the two strings. |
| 3997 __ bind(&string_add_runtime); |
| 3998 __ TailCallRuntime(Runtime::kStringAdd, 2, 1); |
| 3999 } |
| 4000 |
| 4001 |
| 4002 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, |
| 4003 Register dest, |
| 4004 Register src, |
| 4005 Register count, |
| 4006 Register scratch, |
| 4007 bool ascii) { |
| 4008 Label loop; |
| 4009 __ bind(&loop); |
| 4010 // This loop just copies one character at a time, as it is only used for very |
| 4011 // short strings. |
| 4012 if (ascii) { |
| 4013 __ mov_b(scratch, Operand(src, 0)); |
| 4014 __ mov_b(Operand(dest, 0), scratch); |
| 4015 __ add(Operand(src), Immediate(1)); |
| 4016 __ add(Operand(dest), Immediate(1)); |
| 4017 } else { |
| 4018 __ mov_w(scratch, Operand(src, 0)); |
| 4019 __ mov_w(Operand(dest, 0), scratch); |
| 4020 __ add(Operand(src), Immediate(2)); |
| 4021 __ add(Operand(dest), Immediate(2)); |
| 4022 } |
| 4023 __ sub(Operand(count), Immediate(1)); |
| 4024 __ j(not_zero, &loop); |
| 4025 } |
| 4026 |
| 4027 |
| 4028 void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm, |
| 4029 Register dest, |
| 4030 Register src, |
| 4031 Register count, |
| 4032 Register scratch, |
| 4033 bool ascii) { |
| 4034 // Copy characters using rep movs of doublewords. |
| 4035 // The destination is aligned on a 4 byte boundary because we are |
| 4036 // copying to the beginning of a newly allocated string. |
| 4037 ASSERT(dest.is(edi)); // rep movs destination |
| 4038 ASSERT(src.is(esi)); // rep movs source |
| 4039 ASSERT(count.is(ecx)); // rep movs count |
| 4040 ASSERT(!scratch.is(dest)); |
| 4041 ASSERT(!scratch.is(src)); |
| 4042 ASSERT(!scratch.is(count)); |
| 4043 |
| 4044 // Nothing to do for zero characters. |
| 4045 Label done; |
| 4046 __ test(count, Operand(count)); |
| 4047 __ j(zero, &done); |
| 4048 |
| 4049 // Make count the number of bytes to copy. |
| 4050 if (!ascii) { |
| 4051 __ shl(count, 1); |
| 4052 } |
| 4053 |
| 4054 // Don't enter the rep movs if there are less than 4 bytes to copy. |
| 4055 Label last_bytes; |
| 4056 __ test(count, Immediate(~3)); |
| 4057 __ j(zero, &last_bytes); |
| 4058 |
| 4059 // Copy from edi to esi using rep movs instruction. |
| 4060 __ mov(scratch, count); |
| 4061 __ sar(count, 2); // Number of doublewords to copy. |
| 4062 __ cld(); |
| 4063 __ rep_movs(); |
| 4064 |
| 4065 // Find number of bytes left. |
| 4066 __ mov(count, scratch); |
| 4067 __ and_(count, 3); |
| 4068 |
| 4069 // Check if there are more bytes to copy. |
| 4070 __ bind(&last_bytes); |
| 4071 __ test(count, Operand(count)); |
| 4072 __ j(zero, &done); |
| 4073 |
| 4074 // Copy remaining characters. |
| 4075 Label loop; |
| 4076 __ bind(&loop); |
| 4077 __ mov_b(scratch, Operand(src, 0)); |
| 4078 __ mov_b(Operand(dest, 0), scratch); |
| 4079 __ add(Operand(src), Immediate(1)); |
| 4080 __ add(Operand(dest), Immediate(1)); |
| 4081 __ sub(Operand(count), Immediate(1)); |
| 4082 __ j(not_zero, &loop); |
| 4083 |
| 4084 __ bind(&done); |
| 4085 } |
| 4086 |
| 4087 |
| 4088 void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, |
| 4089 Register c1, |
| 4090 Register c2, |
| 4091 Register scratch1, |
| 4092 Register scratch2, |
| 4093 Register scratch3, |
| 4094 Label* not_found) { |
| 4095 // Register scratch3 is the general scratch register in this function. |
| 4096 Register scratch = scratch3; |
| 4097 |
| 4098 // Make sure that both characters are not digits as such strings has a |
| 4099 // different hash algorithm. Don't try to look for these in the symbol table. |
| 4100 Label not_array_index; |
| 4101 __ mov(scratch, c1); |
| 4102 __ sub(Operand(scratch), Immediate(static_cast<int>('0'))); |
| 4103 __ cmp(Operand(scratch), Immediate(static_cast<int>('9' - '0'))); |
| 4104 __ j(above, ¬_array_index); |
| 4105 __ mov(scratch, c2); |
| 4106 __ sub(Operand(scratch), Immediate(static_cast<int>('0'))); |
| 4107 __ cmp(Operand(scratch), Immediate(static_cast<int>('9' - '0'))); |
| 4108 __ j(below_equal, not_found); |
| 4109 |
| 4110 __ bind(¬_array_index); |
| 4111 // Calculate the two character string hash. |
| 4112 Register hash = scratch1; |
| 4113 GenerateHashInit(masm, hash, c1, scratch); |
| 4114 GenerateHashAddCharacter(masm, hash, c2, scratch); |
| 4115 GenerateHashGetHash(masm, hash, scratch); |
| 4116 |
| 4117 // Collect the two characters in a register. |
| 4118 Register chars = c1; |
| 4119 __ shl(c2, kBitsPerByte); |
| 4120 __ or_(chars, Operand(c2)); |
| 4121 |
| 4122 // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
| 4123 // hash: hash of two character string. |
| 4124 |
| 4125 // Load the symbol table. |
| 4126 Register symbol_table = c2; |
| 4127 ExternalReference roots_address = ExternalReference::roots_address(); |
| 4128 __ mov(scratch, Immediate(Heap::kSymbolTableRootIndex)); |
| 4129 __ mov(symbol_table, |
| 4130 Operand::StaticArray(scratch, times_pointer_size, roots_address)); |
| 4131 |
| 4132 // Calculate capacity mask from the symbol table capacity. |
| 4133 Register mask = scratch2; |
| 4134 __ mov(mask, FieldOperand(symbol_table, SymbolTable::kCapacityOffset)); |
| 4135 __ SmiUntag(mask); |
| 4136 __ sub(Operand(mask), Immediate(1)); |
| 4137 |
| 4138 // Registers |
| 4139 // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
| 4140 // hash: hash of two character string |
| 4141 // symbol_table: symbol table |
| 4142 // mask: capacity mask |
| 4143 // scratch: - |
| 4144 |
| 4145 // Perform a number of probes in the symbol table. |
| 4146 static const int kProbes = 4; |
| 4147 Label found_in_symbol_table; |
| 4148 Label next_probe[kProbes], next_probe_pop_mask[kProbes]; |
| 4149 for (int i = 0; i < kProbes; i++) { |
| 4150 // Calculate entry in symbol table. |
| 4151 __ mov(scratch, hash); |
| 4152 if (i > 0) { |
| 4153 __ add(Operand(scratch), Immediate(SymbolTable::GetProbeOffset(i))); |
| 4154 } |
| 4155 __ and_(scratch, Operand(mask)); |
| 4156 |
| 4157 // Load the entry from the symbol table. |
| 4158 Register candidate = scratch; // Scratch register contains candidate. |
| 4159 STATIC_ASSERT(SymbolTable::kEntrySize == 1); |
| 4160 __ mov(candidate, |
| 4161 FieldOperand(symbol_table, |
| 4162 scratch, |
| 4163 times_pointer_size, |
| 4164 SymbolTable::kElementsStartOffset)); |
| 4165 |
| 4166 // If entry is undefined no string with this hash can be found. |
| 4167 __ cmp(candidate, Factory::undefined_value()); |
| 4168 __ j(equal, not_found); |
| 4169 |
| 4170 // If length is not 2 the string is not a candidate. |
| 4171 __ cmp(FieldOperand(candidate, String::kLengthOffset), |
| 4172 Immediate(Smi::FromInt(2))); |
| 4173 __ j(not_equal, &next_probe[i]); |
| 4174 |
| 4175 // As we are out of registers save the mask on the stack and use that |
| 4176 // register as a temporary. |
| 4177 __ push(mask); |
| 4178 Register temp = mask; |
| 4179 |
| 4180 // Check that the candidate is a non-external ascii string. |
| 4181 __ mov(temp, FieldOperand(candidate, HeapObject::kMapOffset)); |
| 4182 __ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset)); |
| 4183 __ JumpIfInstanceTypeIsNotSequentialAscii( |
| 4184 temp, temp, &next_probe_pop_mask[i]); |
| 4185 |
| 4186 // Check if the two characters match. |
| 4187 __ mov(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize)); |
| 4188 __ and_(temp, 0x0000ffff); |
| 4189 __ cmp(chars, Operand(temp)); |
| 4190 __ j(equal, &found_in_symbol_table); |
| 4191 __ bind(&next_probe_pop_mask[i]); |
| 4192 __ pop(mask); |
| 4193 __ bind(&next_probe[i]); |
| 4194 } |
| 4195 |
| 4196 // No matching 2 character string found by probing. |
| 4197 __ jmp(not_found); |
| 4198 |
| 4199 // Scratch register contains result when we fall through to here. |
| 4200 Register result = scratch; |
| 4201 __ bind(&found_in_symbol_table); |
| 4202 __ pop(mask); // Pop saved mask from the stack. |
| 4203 if (!result.is(eax)) { |
| 4204 __ mov(eax, result); |
| 4205 } |
| 4206 } |
| 4207 |
| 4208 |
| 4209 void StringHelper::GenerateHashInit(MacroAssembler* masm, |
| 4210 Register hash, |
| 4211 Register character, |
| 4212 Register scratch) { |
| 4213 // hash = character + (character << 10); |
| 4214 __ mov(hash, character); |
| 4215 __ shl(hash, 10); |
| 4216 __ add(hash, Operand(character)); |
| 4217 // hash ^= hash >> 6; |
| 4218 __ mov(scratch, hash); |
| 4219 __ sar(scratch, 6); |
| 4220 __ xor_(hash, Operand(scratch)); |
| 4221 } |
| 4222 |
| 4223 |
| 4224 void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, |
| 4225 Register hash, |
| 4226 Register character, |
| 4227 Register scratch) { |
| 4228 // hash += character; |
| 4229 __ add(hash, Operand(character)); |
| 4230 // hash += hash << 10; |
| 4231 __ mov(scratch, hash); |
| 4232 __ shl(scratch, 10); |
| 4233 __ add(hash, Operand(scratch)); |
| 4234 // hash ^= hash >> 6; |
| 4235 __ mov(scratch, hash); |
| 4236 __ sar(scratch, 6); |
| 4237 __ xor_(hash, Operand(scratch)); |
| 4238 } |
| 4239 |
| 4240 |
| 4241 void StringHelper::GenerateHashGetHash(MacroAssembler* masm, |
| 4242 Register hash, |
| 4243 Register scratch) { |
| 4244 // hash += hash << 3; |
| 4245 __ mov(scratch, hash); |
| 4246 __ shl(scratch, 3); |
| 4247 __ add(hash, Operand(scratch)); |
| 4248 // hash ^= hash >> 11; |
| 4249 __ mov(scratch, hash); |
| 4250 __ sar(scratch, 11); |
| 4251 __ xor_(hash, Operand(scratch)); |
| 4252 // hash += hash << 15; |
| 4253 __ mov(scratch, hash); |
| 4254 __ shl(scratch, 15); |
| 4255 __ add(hash, Operand(scratch)); |
| 4256 |
| 4257 // if (hash == 0) hash = 27; |
| 4258 Label hash_not_zero; |
| 4259 __ test(hash, Operand(hash)); |
| 4260 __ j(not_zero, &hash_not_zero); |
| 4261 __ mov(hash, Immediate(27)); |
| 4262 __ bind(&hash_not_zero); |
| 4263 } |
| 4264 |
| 4265 |
| 4266 void SubStringStub::Generate(MacroAssembler* masm) { |
| 4267 Label runtime; |
| 4268 |
| 4269 // Stack frame on entry. |
| 4270 // esp[0]: return address |
| 4271 // esp[4]: to |
| 4272 // esp[8]: from |
| 4273 // esp[12]: string |
| 4274 |
| 4275 // Make sure first argument is a string. |
| 4276 __ mov(eax, Operand(esp, 3 * kPointerSize)); |
| 4277 STATIC_ASSERT(kSmiTag == 0); |
| 4278 __ test(eax, Immediate(kSmiTagMask)); |
| 4279 __ j(zero, &runtime); |
| 4280 Condition is_string = masm->IsObjectStringType(eax, ebx, ebx); |
| 4281 __ j(NegateCondition(is_string), &runtime); |
| 4282 |
| 4283 // eax: string |
| 4284 // ebx: instance type |
| 4285 |
| 4286 // Calculate length of sub string using the smi values. |
| 4287 Label result_longer_than_two; |
| 4288 __ mov(ecx, Operand(esp, 1 * kPointerSize)); // To index. |
| 4289 __ test(ecx, Immediate(kSmiTagMask)); |
| 4290 __ j(not_zero, &runtime); |
| 4291 __ mov(edx, Operand(esp, 2 * kPointerSize)); // From index. |
| 4292 __ test(edx, Immediate(kSmiTagMask)); |
| 4293 __ j(not_zero, &runtime); |
| 4294 __ sub(ecx, Operand(edx)); |
| 4295 __ cmp(ecx, FieldOperand(eax, String::kLengthOffset)); |
| 4296 Label return_eax; |
| 4297 __ j(equal, &return_eax); |
| 4298 // Special handling of sub-strings of length 1 and 2. One character strings |
| 4299 // are handled in the runtime system (looked up in the single character |
| 4300 // cache). Two character strings are looked for in the symbol cache. |
| 4301 __ SmiUntag(ecx); // Result length is no longer smi. |
| 4302 __ cmp(ecx, 2); |
| 4303 __ j(greater, &result_longer_than_two); |
| 4304 __ j(less, &runtime); |
| 4305 |
| 4306 // Sub string of length 2 requested. |
| 4307 // eax: string |
| 4308 // ebx: instance type |
| 4309 // ecx: sub string length (value is 2) |
| 4310 // edx: from index (smi) |
| 4311 __ JumpIfInstanceTypeIsNotSequentialAscii(ebx, ebx, &runtime); |
| 4312 |
| 4313 // Get the two characters forming the sub string. |
| 4314 __ SmiUntag(edx); // From index is no longer smi. |
| 4315 __ movzx_b(ebx, FieldOperand(eax, edx, times_1, SeqAsciiString::kHeaderSize)); |
| 4316 __ movzx_b(ecx, |
| 4317 FieldOperand(eax, edx, times_1, SeqAsciiString::kHeaderSize + 1)); |
| 4318 |
| 4319 // Try to lookup two character string in symbol table. |
| 4320 Label make_two_character_string; |
| 4321 StringHelper::GenerateTwoCharacterSymbolTableProbe( |
| 4322 masm, ebx, ecx, eax, edx, edi, &make_two_character_string); |
| 4323 __ ret(3 * kPointerSize); |
| 4324 |
| 4325 __ bind(&make_two_character_string); |
| 4326 // Setup registers for allocating the two character string. |
| 4327 __ mov(eax, Operand(esp, 3 * kPointerSize)); |
| 4328 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
| 4329 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); |
| 4330 __ Set(ecx, Immediate(2)); |
| 4331 |
| 4332 __ bind(&result_longer_than_two); |
| 4333 // eax: string |
| 4334 // ebx: instance type |
| 4335 // ecx: result string length |
| 4336 // Check for flat ascii string |
| 4337 Label non_ascii_flat; |
| 4338 __ JumpIfInstanceTypeIsNotSequentialAscii(ebx, ebx, &non_ascii_flat); |
| 4339 |
| 4340 // Allocate the result. |
| 4341 __ AllocateAsciiString(eax, ecx, ebx, edx, edi, &runtime); |
| 4342 |
| 4343 // eax: result string |
| 4344 // ecx: result string length |
| 4345 __ mov(edx, esi); // esi used by following code. |
| 4346 // Locate first character of result. |
| 4347 __ mov(edi, eax); |
| 4348 __ add(Operand(edi), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| 4349 // Load string argument and locate character of sub string start. |
| 4350 __ mov(esi, Operand(esp, 3 * kPointerSize)); |
| 4351 __ add(Operand(esi), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| 4352 __ mov(ebx, Operand(esp, 2 * kPointerSize)); // from |
| 4353 __ SmiUntag(ebx); |
| 4354 __ add(esi, Operand(ebx)); |
| 4355 |
| 4356 // eax: result string |
| 4357 // ecx: result length |
| 4358 // edx: original value of esi |
| 4359 // edi: first character of result |
| 4360 // esi: character of sub string start |
| 4361 StringHelper::GenerateCopyCharactersREP(masm, edi, esi, ecx, ebx, true); |
| 4362 __ mov(esi, edx); // Restore esi. |
| 4363 __ IncrementCounter(&Counters::sub_string_native, 1); |
| 4364 __ ret(3 * kPointerSize); |
| 4365 |
| 4366 __ bind(&non_ascii_flat); |
| 4367 // eax: string |
| 4368 // ebx: instance type & kStringRepresentationMask | kStringEncodingMask |
| 4369 // ecx: result string length |
| 4370 // Check for flat two byte string |
| 4371 __ cmp(ebx, kSeqStringTag | kTwoByteStringTag); |
| 4372 __ j(not_equal, &runtime); |
| 4373 |
| 4374 // Allocate the result. |
| 4375 __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime); |
| 4376 |
| 4377 // eax: result string |
| 4378 // ecx: result string length |
| 4379 __ mov(edx, esi); // esi used by following code. |
| 4380 // Locate first character of result. |
| 4381 __ mov(edi, eax); |
| 4382 __ add(Operand(edi), |
| 4383 Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| 4384 // Load string argument and locate character of sub string start. |
| 4385 __ mov(esi, Operand(esp, 3 * kPointerSize)); |
| 4386 __ add(Operand(esi), |
| 4387 Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| 4388 __ mov(ebx, Operand(esp, 2 * kPointerSize)); // from |
| 4389 // As from is a smi it is 2 times the value which matches the size of a two |
| 4390 // byte character. |
| 4391 STATIC_ASSERT(kSmiTag == 0); |
| 4392 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
| 4393 __ add(esi, Operand(ebx)); |
| 4394 |
| 4395 // eax: result string |
| 4396 // ecx: result length |
| 4397 // edx: original value of esi |
| 4398 // edi: first character of result |
| 4399 // esi: character of sub string start |
| 4400 StringHelper::GenerateCopyCharactersREP(masm, edi, esi, ecx, ebx, false); |
| 4401 __ mov(esi, edx); // Restore esi. |
| 4402 |
| 4403 __ bind(&return_eax); |
| 4404 __ IncrementCounter(&Counters::sub_string_native, 1); |
| 4405 __ ret(3 * kPointerSize); |
| 4406 |
| 4407 // Just jump to runtime to create the sub string. |
| 4408 __ bind(&runtime); |
| 4409 __ TailCallRuntime(Runtime::kSubString, 3, 1); |
| 4410 } |
| 4411 |
| 4412 |
| 4413 void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, |
| 4414 Register left, |
| 4415 Register right, |
| 4416 Register scratch1, |
| 4417 Register scratch2, |
| 4418 Register scratch3) { |
| 4419 Label result_not_equal; |
| 4420 Label result_greater; |
| 4421 Label compare_lengths; |
| 4422 |
| 4423 __ IncrementCounter(&Counters::string_compare_native, 1); |
| 4424 |
| 4425 // Find minimum length. |
| 4426 Label left_shorter; |
| 4427 __ mov(scratch1, FieldOperand(left, String::kLengthOffset)); |
| 4428 __ mov(scratch3, scratch1); |
| 4429 __ sub(scratch3, FieldOperand(right, String::kLengthOffset)); |
| 4430 |
| 4431 Register length_delta = scratch3; |
| 4432 |
| 4433 __ j(less_equal, &left_shorter); |
| 4434 // Right string is shorter. Change scratch1 to be length of right string. |
| 4435 __ sub(scratch1, Operand(length_delta)); |
| 4436 __ bind(&left_shorter); |
| 4437 |
| 4438 Register min_length = scratch1; |
| 4439 |
| 4440 // If either length is zero, just compare lengths. |
| 4441 __ test(min_length, Operand(min_length)); |
| 4442 __ j(zero, &compare_lengths); |
| 4443 |
| 4444 // Change index to run from -min_length to -1 by adding min_length |
| 4445 // to string start. This means that loop ends when index reaches zero, |
| 4446 // which doesn't need an additional compare. |
| 4447 __ SmiUntag(min_length); |
| 4448 __ lea(left, |
| 4449 FieldOperand(left, |
| 4450 min_length, times_1, |
| 4451 SeqAsciiString::kHeaderSize)); |
| 4452 __ lea(right, |
| 4453 FieldOperand(right, |
| 4454 min_length, times_1, |
| 4455 SeqAsciiString::kHeaderSize)); |
| 4456 __ neg(min_length); |
| 4457 |
| 4458 Register index = min_length; // index = -min_length; |
| 4459 |
| 4460 { |
| 4461 // Compare loop. |
| 4462 Label loop; |
| 4463 __ bind(&loop); |
| 4464 // Compare characters. |
| 4465 __ mov_b(scratch2, Operand(left, index, times_1, 0)); |
| 4466 __ cmpb(scratch2, Operand(right, index, times_1, 0)); |
| 4467 __ j(not_equal, &result_not_equal); |
| 4468 __ add(Operand(index), Immediate(1)); |
| 4469 __ j(not_zero, &loop); |
| 4470 } |
| 4471 |
| 4472 // Compare lengths - strings up to min-length are equal. |
| 4473 __ bind(&compare_lengths); |
| 4474 __ test(length_delta, Operand(length_delta)); |
| 4475 __ j(not_zero, &result_not_equal); |
| 4476 |
| 4477 // Result is EQUAL. |
| 4478 STATIC_ASSERT(EQUAL == 0); |
| 4479 STATIC_ASSERT(kSmiTag == 0); |
| 4480 __ Set(eax, Immediate(Smi::FromInt(EQUAL))); |
| 4481 __ ret(0); |
| 4482 |
| 4483 __ bind(&result_not_equal); |
| 4484 __ j(greater, &result_greater); |
| 4485 |
| 4486 // Result is LESS. |
| 4487 __ Set(eax, Immediate(Smi::FromInt(LESS))); |
| 4488 __ ret(0); |
| 4489 |
| 4490 // Result is GREATER. |
| 4491 __ bind(&result_greater); |
| 4492 __ Set(eax, Immediate(Smi::FromInt(GREATER))); |
| 4493 __ ret(0); |
| 4494 } |
| 4495 |
| 4496 |
| 4497 void StringCompareStub::Generate(MacroAssembler* masm) { |
| 4498 Label runtime; |
| 4499 |
| 4500 // Stack frame on entry. |
| 4501 // esp[0]: return address |
| 4502 // esp[4]: right string |
| 4503 // esp[8]: left string |
| 4504 |
| 4505 __ mov(edx, Operand(esp, 2 * kPointerSize)); // left |
| 4506 __ mov(eax, Operand(esp, 1 * kPointerSize)); // right |
| 4507 |
| 4508 Label not_same; |
| 4509 __ cmp(edx, Operand(eax)); |
| 4510 __ j(not_equal, ¬_same); |
| 4511 STATIC_ASSERT(EQUAL == 0); |
| 4512 STATIC_ASSERT(kSmiTag == 0); |
| 4513 __ Set(eax, Immediate(Smi::FromInt(EQUAL))); |
| 4514 __ IncrementCounter(&Counters::string_compare_native, 1); |
| 4515 __ ret(2 * kPointerSize); |
| 4516 |
| 4517 __ bind(¬_same); |
| 4518 |
| 4519 // Check that both objects are sequential ascii strings. |
| 4520 __ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx, &runtime); |
| 4521 |
| 4522 // Compare flat ascii strings. |
| 4523 // Drop arguments from the stack. |
| 4524 __ pop(ecx); |
| 4525 __ add(Operand(esp), Immediate(2 * kPointerSize)); |
| 4526 __ push(ecx); |
| 4527 GenerateCompareFlatAsciiStrings(masm, edx, eax, ecx, ebx, edi); |
| 4528 |
| 4529 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) |
| 4530 // tagged as a small integer. |
| 4531 __ bind(&runtime); |
| 4532 __ TailCallRuntime(Runtime::kStringCompare, 2, 1); |
| 4533 } |
| 4534 |
| 4535 #undef __ |
| 4536 |
| 4537 } } // namespace v8::internal |
| 4538 |
| 4539 #endif // V8_TARGET_ARCH_IA32 |
OLD | NEW |