| Index: src/ia32/codegen-ia32.cc
|
| ===================================================================
|
| --- src/ia32/codegen-ia32.cc (revision 5337)
|
| +++ src/ia32/codegen-ia32.cc (working copy)
|
| @@ -30,6 +30,7 @@
|
| #if defined(V8_TARGET_ARCH_IA32)
|
|
|
| #include "bootstrapper.h"
|
| +#include "code-stubs-ia32.h"
|
| #include "codegen-inl.h"
|
| #include "compiler.h"
|
| #include "debug.h"
|
| @@ -934,97 +935,6 @@
|
| }
|
|
|
|
|
| -class FloatingPointHelper : public AllStatic {
|
| - public:
|
| -
|
| - enum ArgLocation {
|
| - ARGS_ON_STACK,
|
| - ARGS_IN_REGISTERS
|
| - };
|
| -
|
| - // Code pattern for loading a floating point value. Input value must
|
| - // be either a smi or a heap number object (fp value). Requirements:
|
| - // operand in register number. Returns operand as floating point number
|
| - // on FPU stack.
|
| - static void LoadFloatOperand(MacroAssembler* masm, Register number);
|
| -
|
| - // Code pattern for loading floating point values. Input values must
|
| - // be either smi or heap number objects (fp values). Requirements:
|
| - // operand_1 on TOS+1 or in edx, operand_2 on TOS+2 or in eax.
|
| - // Returns operands as floating point numbers on FPU stack.
|
| - static void LoadFloatOperands(MacroAssembler* masm,
|
| - Register scratch,
|
| - ArgLocation arg_location = ARGS_ON_STACK);
|
| -
|
| - // Similar to LoadFloatOperand but assumes that both operands are smis.
|
| - // Expects operands in edx, eax.
|
| - static void LoadFloatSmis(MacroAssembler* masm, Register scratch);
|
| -
|
| - // Test if operands are smi or number objects (fp). Requirements:
|
| - // operand_1 in eax, operand_2 in edx; falls through on float
|
| - // operands, jumps to the non_float label otherwise.
|
| - static void CheckFloatOperands(MacroAssembler* masm,
|
| - Label* non_float,
|
| - Register scratch);
|
| -
|
| - // Takes the operands in edx and eax and loads them as integers in eax
|
| - // and ecx.
|
| - static void LoadAsIntegers(MacroAssembler* masm,
|
| - TypeInfo type_info,
|
| - bool use_sse3,
|
| - Label* operand_conversion_failure);
|
| - static void LoadNumbersAsIntegers(MacroAssembler* masm,
|
| - TypeInfo type_info,
|
| - bool use_sse3,
|
| - Label* operand_conversion_failure);
|
| - static void LoadUnknownsAsIntegers(MacroAssembler* masm,
|
| - bool use_sse3,
|
| - Label* operand_conversion_failure);
|
| -
|
| - // Test if operands are smis or heap numbers and load them
|
| - // into xmm0 and xmm1 if they are. Operands are in edx and eax.
|
| - // Leaves operands unchanged.
|
| - static void LoadSSE2Operands(MacroAssembler* masm);
|
| -
|
| - // Test if operands are numbers (smi or HeapNumber objects), and load
|
| - // them into xmm0 and xmm1 if they are. Jump to label not_numbers if
|
| - // either operand is not a number. Operands are in edx and eax.
|
| - // Leaves operands unchanged.
|
| - static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers);
|
| -
|
| - // Similar to LoadSSE2Operands but assumes that both operands are smis.
|
| - // Expects operands in edx, eax.
|
| - static void LoadSSE2Smis(MacroAssembler* masm, Register scratch);
|
| -};
|
| -
|
| -
|
| -const char* GenericBinaryOpStub::GetName() {
|
| - if (name_ != NULL) return name_;
|
| - const int kMaxNameLength = 100;
|
| - name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength);
|
| - if (name_ == NULL) return "OOM";
|
| - const char* op_name = Token::Name(op_);
|
| - const char* overwrite_name;
|
| - switch (mode_) {
|
| - case NO_OVERWRITE: overwrite_name = "Alloc"; break;
|
| - case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
|
| - case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
|
| - default: overwrite_name = "UnknownOverwrite"; break;
|
| - }
|
| -
|
| - OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
|
| - "GenericBinaryOpStub_%s_%s%s_%s%s_%s_%s",
|
| - op_name,
|
| - overwrite_name,
|
| - (flags_ & NO_SMI_CODE_IN_STUB) ? "_NoSmiInStub" : "",
|
| - args_in_registers_ ? "RegArgs" : "StackArgs",
|
| - args_reversed_ ? "_R" : "",
|
| - static_operands_type_.ToString(),
|
| - BinaryOpIC::GetName(runtime_operands_type_));
|
| - return name_;
|
| -}
|
| -
|
| -
|
| // Perform or call the specialized stub for a binary operation. Requires the
|
| // three registers left, right and dst to be distinct and spilled. This
|
| // deferred operation has up to three entry points: The main one calls the
|
| @@ -9880,352 +9790,6 @@
|
| }
|
|
|
|
|
| -void FastNewClosureStub::Generate(MacroAssembler* masm) {
|
| - // Create a new closure from the given function info in new
|
| - // space. Set the context to the current context in esi.
|
| - Label gc;
|
| - __ AllocateInNewSpace(JSFunction::kSize, eax, ebx, ecx, &gc, TAG_OBJECT);
|
| -
|
| - // Get the function info from the stack.
|
| - __ mov(edx, Operand(esp, 1 * kPointerSize));
|
| -
|
| - // Compute the function map in the current global context and set that
|
| - // as the map of the allocated object.
|
| - __ mov(ecx, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
|
| - __ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalContextOffset));
|
| - __ mov(ecx, Operand(ecx, Context::SlotOffset(Context::FUNCTION_MAP_INDEX)));
|
| - __ mov(FieldOperand(eax, JSObject::kMapOffset), ecx);
|
| -
|
| - // Initialize the rest of the function. We don't have to update the
|
| - // write barrier because the allocated object is in new space.
|
| - __ mov(ebx, Immediate(Factory::empty_fixed_array()));
|
| - __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ebx);
|
| - __ mov(FieldOperand(eax, JSObject::kElementsOffset), ebx);
|
| - __ mov(FieldOperand(eax, JSFunction::kPrototypeOrInitialMapOffset),
|
| - Immediate(Factory::the_hole_value()));
|
| - __ mov(FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset), edx);
|
| - __ mov(FieldOperand(eax, JSFunction::kContextOffset), esi);
|
| - __ mov(FieldOperand(eax, JSFunction::kLiteralsOffset), ebx);
|
| -
|
| - // Initialize the code pointer in the function to be the one
|
| - // found in the shared function info object.
|
| - __ mov(edx, FieldOperand(edx, SharedFunctionInfo::kCodeOffset));
|
| - __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
|
| - __ mov(FieldOperand(eax, JSFunction::kCodeEntryOffset), edx);
|
| -
|
| - // Return and remove the on-stack parameter.
|
| - __ ret(1 * kPointerSize);
|
| -
|
| - // Create a new closure through the slower runtime call.
|
| - __ bind(&gc);
|
| - __ pop(ecx); // Temporarily remove return address.
|
| - __ pop(edx);
|
| - __ push(esi);
|
| - __ push(edx);
|
| - __ push(ecx); // Restore return address.
|
| - __ TailCallRuntime(Runtime::kNewClosure, 2, 1);
|
| -}
|
| -
|
| -
|
| -void FastNewContextStub::Generate(MacroAssembler* masm) {
|
| - // Try to allocate the context in new space.
|
| - Label gc;
|
| - int length = slots_ + Context::MIN_CONTEXT_SLOTS;
|
| - __ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize,
|
| - eax, ebx, ecx, &gc, TAG_OBJECT);
|
| -
|
| - // Get the function from the stack.
|
| - __ mov(ecx, Operand(esp, 1 * kPointerSize));
|
| -
|
| - // Setup the object header.
|
| - __ mov(FieldOperand(eax, HeapObject::kMapOffset), Factory::context_map());
|
| - __ mov(FieldOperand(eax, Context::kLengthOffset),
|
| - Immediate(Smi::FromInt(length)));
|
| -
|
| - // Setup the fixed slots.
|
| - __ xor_(ebx, Operand(ebx)); // Set to NULL.
|
| - __ mov(Operand(eax, Context::SlotOffset(Context::CLOSURE_INDEX)), ecx);
|
| - __ mov(Operand(eax, Context::SlotOffset(Context::FCONTEXT_INDEX)), eax);
|
| - __ mov(Operand(eax, Context::SlotOffset(Context::PREVIOUS_INDEX)), ebx);
|
| - __ mov(Operand(eax, Context::SlotOffset(Context::EXTENSION_INDEX)), ebx);
|
| -
|
| - // Copy the global object from the surrounding context. We go through the
|
| - // context in the function (ecx) to match the allocation behavior we have
|
| - // in the runtime system (see Heap::AllocateFunctionContext).
|
| - __ mov(ebx, FieldOperand(ecx, JSFunction::kContextOffset));
|
| - __ mov(ebx, Operand(ebx, Context::SlotOffset(Context::GLOBAL_INDEX)));
|
| - __ mov(Operand(eax, Context::SlotOffset(Context::GLOBAL_INDEX)), ebx);
|
| -
|
| - // Initialize the rest of the slots to undefined.
|
| - __ mov(ebx, Factory::undefined_value());
|
| - for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
|
| - __ mov(Operand(eax, Context::SlotOffset(i)), ebx);
|
| - }
|
| -
|
| - // Return and remove the on-stack parameter.
|
| - __ mov(esi, Operand(eax));
|
| - __ ret(1 * kPointerSize);
|
| -
|
| - // Need to collect. Call into runtime system.
|
| - __ bind(&gc);
|
| - __ TailCallRuntime(Runtime::kNewContext, 1, 1);
|
| -}
|
| -
|
| -
|
| -void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
|
| - // Stack layout on entry:
|
| - //
|
| - // [esp + kPointerSize]: constant elements.
|
| - // [esp + (2 * kPointerSize)]: literal index.
|
| - // [esp + (3 * kPointerSize)]: literals array.
|
| -
|
| - // All sizes here are multiples of kPointerSize.
|
| - int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0;
|
| - int size = JSArray::kSize + elements_size;
|
| -
|
| - // Load boilerplate object into ecx and check if we need to create a
|
| - // boilerplate.
|
| - Label slow_case;
|
| - __ mov(ecx, Operand(esp, 3 * kPointerSize));
|
| - __ mov(eax, Operand(esp, 2 * kPointerSize));
|
| - STATIC_ASSERT(kPointerSize == 4);
|
| - STATIC_ASSERT(kSmiTagSize == 1);
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - __ mov(ecx, CodeGenerator::FixedArrayElementOperand(ecx, eax));
|
| - __ cmp(ecx, Factory::undefined_value());
|
| - __ j(equal, &slow_case);
|
| -
|
| - if (FLAG_debug_code) {
|
| - const char* message;
|
| - Handle<Map> expected_map;
|
| - if (mode_ == CLONE_ELEMENTS) {
|
| - message = "Expected (writable) fixed array";
|
| - expected_map = Factory::fixed_array_map();
|
| - } else {
|
| - ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS);
|
| - message = "Expected copy-on-write fixed array";
|
| - expected_map = Factory::fixed_cow_array_map();
|
| - }
|
| - __ push(ecx);
|
| - __ mov(ecx, FieldOperand(ecx, JSArray::kElementsOffset));
|
| - __ cmp(FieldOperand(ecx, HeapObject::kMapOffset), expected_map);
|
| - __ Assert(equal, message);
|
| - __ pop(ecx);
|
| - }
|
| -
|
| - // Allocate both the JS array and the elements array in one big
|
| - // allocation. This avoids multiple limit checks.
|
| - __ AllocateInNewSpace(size, eax, ebx, edx, &slow_case, TAG_OBJECT);
|
| -
|
| - // Copy the JS array part.
|
| - for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
|
| - if ((i != JSArray::kElementsOffset) || (length_ == 0)) {
|
| - __ mov(ebx, FieldOperand(ecx, i));
|
| - __ mov(FieldOperand(eax, i), ebx);
|
| - }
|
| - }
|
| -
|
| - if (length_ > 0) {
|
| - // Get hold of the elements array of the boilerplate and setup the
|
| - // elements pointer in the resulting object.
|
| - __ mov(ecx, FieldOperand(ecx, JSArray::kElementsOffset));
|
| - __ lea(edx, Operand(eax, JSArray::kSize));
|
| - __ mov(FieldOperand(eax, JSArray::kElementsOffset), edx);
|
| -
|
| - // Copy the elements array.
|
| - for (int i = 0; i < elements_size; i += kPointerSize) {
|
| - __ mov(ebx, FieldOperand(ecx, i));
|
| - __ mov(FieldOperand(edx, i), ebx);
|
| - }
|
| - }
|
| -
|
| - // Return and remove the on-stack parameters.
|
| - __ ret(3 * kPointerSize);
|
| -
|
| - __ bind(&slow_case);
|
| - __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
|
| -}
|
| -
|
| -
|
| -// NOTE: The stub does not handle the inlined cases (Smis, Booleans, undefined).
|
| -void ToBooleanStub::Generate(MacroAssembler* masm) {
|
| - Label false_result, true_result, not_string;
|
| - __ mov(eax, Operand(esp, 1 * kPointerSize));
|
| -
|
| - // 'null' => false.
|
| - __ cmp(eax, Factory::null_value());
|
| - __ j(equal, &false_result);
|
| -
|
| - // Get the map and type of the heap object.
|
| - __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset));
|
| - __ movzx_b(ecx, FieldOperand(edx, Map::kInstanceTypeOffset));
|
| -
|
| - // Undetectable => false.
|
| - __ test_b(FieldOperand(edx, Map::kBitFieldOffset),
|
| - 1 << Map::kIsUndetectable);
|
| - __ j(not_zero, &false_result);
|
| -
|
| - // JavaScript object => true.
|
| - __ CmpInstanceType(edx, FIRST_JS_OBJECT_TYPE);
|
| - __ j(above_equal, &true_result);
|
| -
|
| - // String value => false iff empty.
|
| - __ CmpInstanceType(edx, FIRST_NONSTRING_TYPE);
|
| - __ j(above_equal, ¬_string);
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - __ cmp(FieldOperand(eax, String::kLengthOffset), Immediate(0));
|
| - __ j(zero, &false_result);
|
| - __ jmp(&true_result);
|
| -
|
| - __ bind(¬_string);
|
| - // HeapNumber => false iff +0, -0, or NaN.
|
| - __ cmp(edx, Factory::heap_number_map());
|
| - __ j(not_equal, &true_result);
|
| - __ fldz();
|
| - __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset));
|
| - __ FCmp();
|
| - __ j(zero, &false_result);
|
| - // Fall through to |true_result|.
|
| -
|
| - // Return 1/0 for true/false in eax.
|
| - __ bind(&true_result);
|
| - __ mov(eax, 1);
|
| - __ ret(1 * kPointerSize);
|
| - __ bind(&false_result);
|
| - __ mov(eax, 0);
|
| - __ ret(1 * kPointerSize);
|
| -}
|
| -
|
| -
|
| -void GenericBinaryOpStub::GenerateCall(
|
| - MacroAssembler* masm,
|
| - Register left,
|
| - Register right) {
|
| - if (!ArgsInRegistersSupported()) {
|
| - // Pass arguments on the stack.
|
| - __ push(left);
|
| - __ push(right);
|
| - } else {
|
| - // The calling convention with registers is left in edx and right in eax.
|
| - Register left_arg = edx;
|
| - Register right_arg = eax;
|
| - if (!(left.is(left_arg) && right.is(right_arg))) {
|
| - if (left.is(right_arg) && right.is(left_arg)) {
|
| - if (IsOperationCommutative()) {
|
| - SetArgsReversed();
|
| - } else {
|
| - __ xchg(left, right);
|
| - }
|
| - } else if (left.is(left_arg)) {
|
| - __ mov(right_arg, right);
|
| - } else if (right.is(right_arg)) {
|
| - __ mov(left_arg, left);
|
| - } else if (left.is(right_arg)) {
|
| - if (IsOperationCommutative()) {
|
| - __ mov(left_arg, right);
|
| - SetArgsReversed();
|
| - } else {
|
| - // Order of moves important to avoid destroying left argument.
|
| - __ mov(left_arg, left);
|
| - __ mov(right_arg, right);
|
| - }
|
| - } else if (right.is(left_arg)) {
|
| - if (IsOperationCommutative()) {
|
| - __ mov(right_arg, left);
|
| - SetArgsReversed();
|
| - } else {
|
| - // Order of moves important to avoid destroying right argument.
|
| - __ mov(right_arg, right);
|
| - __ mov(left_arg, left);
|
| - }
|
| - } else {
|
| - // Order of moves is not important.
|
| - __ mov(left_arg, left);
|
| - __ mov(right_arg, right);
|
| - }
|
| - }
|
| -
|
| - // Update flags to indicate that arguments are in registers.
|
| - SetArgsInRegisters();
|
| - __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
|
| - }
|
| -
|
| - // Call the stub.
|
| - __ CallStub(this);
|
| -}
|
| -
|
| -
|
| -void GenericBinaryOpStub::GenerateCall(
|
| - MacroAssembler* masm,
|
| - Register left,
|
| - Smi* right) {
|
| - if (!ArgsInRegistersSupported()) {
|
| - // Pass arguments on the stack.
|
| - __ push(left);
|
| - __ push(Immediate(right));
|
| - } else {
|
| - // The calling convention with registers is left in edx and right in eax.
|
| - Register left_arg = edx;
|
| - Register right_arg = eax;
|
| - if (left.is(left_arg)) {
|
| - __ mov(right_arg, Immediate(right));
|
| - } else if (left.is(right_arg) && IsOperationCommutative()) {
|
| - __ mov(left_arg, Immediate(right));
|
| - SetArgsReversed();
|
| - } else {
|
| - // For non-commutative operations, left and right_arg might be
|
| - // the same register. Therefore, the order of the moves is
|
| - // important here in order to not overwrite left before moving
|
| - // it to left_arg.
|
| - __ mov(left_arg, left);
|
| - __ mov(right_arg, Immediate(right));
|
| - }
|
| -
|
| - // Update flags to indicate that arguments are in registers.
|
| - SetArgsInRegisters();
|
| - __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
|
| - }
|
| -
|
| - // Call the stub.
|
| - __ CallStub(this);
|
| -}
|
| -
|
| -
|
| -void GenericBinaryOpStub::GenerateCall(
|
| - MacroAssembler* masm,
|
| - Smi* left,
|
| - Register right) {
|
| - if (!ArgsInRegistersSupported()) {
|
| - // Pass arguments on the stack.
|
| - __ push(Immediate(left));
|
| - __ push(right);
|
| - } else {
|
| - // The calling convention with registers is left in edx and right in eax.
|
| - Register left_arg = edx;
|
| - Register right_arg = eax;
|
| - if (right.is(right_arg)) {
|
| - __ mov(left_arg, Immediate(left));
|
| - } else if (right.is(left_arg) && IsOperationCommutative()) {
|
| - __ mov(right_arg, Immediate(left));
|
| - SetArgsReversed();
|
| - } else {
|
| - // For non-commutative operations, right and left_arg might be
|
| - // the same register. Therefore, the order of the moves is
|
| - // important here in order to not overwrite right before moving
|
| - // it to right_arg.
|
| - __ mov(right_arg, right);
|
| - __ mov(left_arg, Immediate(left));
|
| - }
|
| - // Update flags to indicate that arguments are in registers.
|
| - SetArgsInRegisters();
|
| - __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
|
| - }
|
| -
|
| - // Call the stub.
|
| - __ CallStub(this);
|
| -}
|
| -
|
| -
|
| Result GenericBinaryOpStub::GenerateCall(MacroAssembler* masm,
|
| VirtualFrame* frame,
|
| Result* left,
|
| @@ -10241,4064 +9805,6 @@
|
| }
|
|
|
|
|
| -void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) {
|
| - // 1. Move arguments into edx, eax except for DIV and MOD, which need the
|
| - // dividend in eax and edx free for the division. Use eax, ebx for those.
|
| - Comment load_comment(masm, "-- Load arguments");
|
| - Register left = edx;
|
| - Register right = eax;
|
| - if (op_ == Token::DIV || op_ == Token::MOD) {
|
| - left = eax;
|
| - right = ebx;
|
| - if (HasArgsInRegisters()) {
|
| - __ mov(ebx, eax);
|
| - __ mov(eax, edx);
|
| - }
|
| - }
|
| - if (!HasArgsInRegisters()) {
|
| - __ mov(right, Operand(esp, 1 * kPointerSize));
|
| - __ mov(left, Operand(esp, 2 * kPointerSize));
|
| - }
|
| -
|
| - if (static_operands_type_.IsSmi()) {
|
| - if (FLAG_debug_code) {
|
| - __ AbortIfNotSmi(left);
|
| - __ AbortIfNotSmi(right);
|
| - }
|
| - if (op_ == Token::BIT_OR) {
|
| - __ or_(right, Operand(left));
|
| - GenerateReturn(masm);
|
| - return;
|
| - } else if (op_ == Token::BIT_AND) {
|
| - __ and_(right, Operand(left));
|
| - GenerateReturn(masm);
|
| - return;
|
| - } else if (op_ == Token::BIT_XOR) {
|
| - __ xor_(right, Operand(left));
|
| - GenerateReturn(masm);
|
| - return;
|
| - }
|
| - }
|
| -
|
| - // 2. Prepare the smi check of both operands by oring them together.
|
| - Comment smi_check_comment(masm, "-- Smi check arguments");
|
| - Label not_smis;
|
| - Register combined = ecx;
|
| - ASSERT(!left.is(combined) && !right.is(combined));
|
| - switch (op_) {
|
| - case Token::BIT_OR:
|
| - // Perform the operation into eax and smi check the result. Preserve
|
| - // eax in case the result is not a smi.
|
| - ASSERT(!left.is(ecx) && !right.is(ecx));
|
| - __ mov(ecx, right);
|
| - __ or_(right, Operand(left)); // Bitwise or is commutative.
|
| - combined = right;
|
| - break;
|
| -
|
| - case Token::BIT_XOR:
|
| - case Token::BIT_AND:
|
| - case Token::ADD:
|
| - case Token::SUB:
|
| - case Token::MUL:
|
| - case Token::DIV:
|
| - case Token::MOD:
|
| - __ mov(combined, right);
|
| - __ or_(combined, Operand(left));
|
| - break;
|
| -
|
| - case Token::SHL:
|
| - case Token::SAR:
|
| - case Token::SHR:
|
| - // Move the right operand into ecx for the shift operation, use eax
|
| - // for the smi check register.
|
| - ASSERT(!left.is(ecx) && !right.is(ecx));
|
| - __ mov(ecx, right);
|
| - __ or_(right, Operand(left));
|
| - combined = right;
|
| - break;
|
| -
|
| - default:
|
| - break;
|
| - }
|
| -
|
| - // 3. Perform the smi check of the operands.
|
| - STATIC_ASSERT(kSmiTag == 0); // Adjust zero check if not the case.
|
| - __ test(combined, Immediate(kSmiTagMask));
|
| - __ j(not_zero, ¬_smis, not_taken);
|
| -
|
| - // 4. Operands are both smis, perform the operation leaving the result in
|
| - // eax and check the result if necessary.
|
| - Comment perform_smi(masm, "-- Perform smi operation");
|
| - Label use_fp_on_smis;
|
| - switch (op_) {
|
| - case Token::BIT_OR:
|
| - // Nothing to do.
|
| - break;
|
| -
|
| - case Token::BIT_XOR:
|
| - ASSERT(right.is(eax));
|
| - __ xor_(right, Operand(left)); // Bitwise xor is commutative.
|
| - break;
|
| -
|
| - case Token::BIT_AND:
|
| - ASSERT(right.is(eax));
|
| - __ and_(right, Operand(left)); // Bitwise and is commutative.
|
| - break;
|
| -
|
| - case Token::SHL:
|
| - // Remove tags from operands (but keep sign).
|
| - __ SmiUntag(left);
|
| - __ SmiUntag(ecx);
|
| - // Perform the operation.
|
| - __ shl_cl(left);
|
| - // Check that the *signed* result fits in a smi.
|
| - __ cmp(left, 0xc0000000);
|
| - __ j(sign, &use_fp_on_smis, not_taken);
|
| - // Tag the result and store it in register eax.
|
| - __ SmiTag(left);
|
| - __ mov(eax, left);
|
| - break;
|
| -
|
| - case Token::SAR:
|
| - // Remove tags from operands (but keep sign).
|
| - __ SmiUntag(left);
|
| - __ SmiUntag(ecx);
|
| - // Perform the operation.
|
| - __ sar_cl(left);
|
| - // Tag the result and store it in register eax.
|
| - __ SmiTag(left);
|
| - __ mov(eax, left);
|
| - break;
|
| -
|
| - case Token::SHR:
|
| - // Remove tags from operands (but keep sign).
|
| - __ SmiUntag(left);
|
| - __ SmiUntag(ecx);
|
| - // Perform the operation.
|
| - __ shr_cl(left);
|
| - // Check that the *unsigned* result fits in a smi.
|
| - // Neither of the two high-order bits can be set:
|
| - // - 0x80000000: high bit would be lost when smi tagging.
|
| - // - 0x40000000: this number would convert to negative when
|
| - // Smi tagging these two cases can only happen with shifts
|
| - // by 0 or 1 when handed a valid smi.
|
| - __ test(left, Immediate(0xc0000000));
|
| - __ j(not_zero, slow, not_taken);
|
| - // Tag the result and store it in register eax.
|
| - __ SmiTag(left);
|
| - __ mov(eax, left);
|
| - break;
|
| -
|
| - case Token::ADD:
|
| - ASSERT(right.is(eax));
|
| - __ add(right, Operand(left)); // Addition is commutative.
|
| - __ j(overflow, &use_fp_on_smis, not_taken);
|
| - break;
|
| -
|
| - case Token::SUB:
|
| - __ sub(left, Operand(right));
|
| - __ j(overflow, &use_fp_on_smis, not_taken);
|
| - __ mov(eax, left);
|
| - break;
|
| -
|
| - case Token::MUL:
|
| - // If the smi tag is 0 we can just leave the tag on one operand.
|
| - STATIC_ASSERT(kSmiTag == 0); // Adjust code below if not the case.
|
| - // We can't revert the multiplication if the result is not a smi
|
| - // so save the right operand.
|
| - __ mov(ebx, right);
|
| - // Remove tag from one of the operands (but keep sign).
|
| - __ SmiUntag(right);
|
| - // Do multiplication.
|
| - __ imul(right, Operand(left)); // Multiplication is commutative.
|
| - __ j(overflow, &use_fp_on_smis, not_taken);
|
| - // Check for negative zero result. Use combined = left | right.
|
| - __ NegativeZeroTest(right, combined, &use_fp_on_smis);
|
| - break;
|
| -
|
| - case Token::DIV:
|
| - // We can't revert the division if the result is not a smi so
|
| - // save the left operand.
|
| - __ mov(edi, left);
|
| - // Check for 0 divisor.
|
| - __ test(right, Operand(right));
|
| - __ j(zero, &use_fp_on_smis, not_taken);
|
| - // Sign extend left into edx:eax.
|
| - ASSERT(left.is(eax));
|
| - __ cdq();
|
| - // Divide edx:eax by right.
|
| - __ idiv(right);
|
| - // Check for the corner case of dividing the most negative smi by
|
| - // -1. We cannot use the overflow flag, since it is not set by idiv
|
| - // instruction.
|
| - STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
|
| - __ cmp(eax, 0x40000000);
|
| - __ j(equal, &use_fp_on_smis);
|
| - // Check for negative zero result. Use combined = left | right.
|
| - __ NegativeZeroTest(eax, combined, &use_fp_on_smis);
|
| - // Check that the remainder is zero.
|
| - __ test(edx, Operand(edx));
|
| - __ j(not_zero, &use_fp_on_smis);
|
| - // Tag the result and store it in register eax.
|
| - __ SmiTag(eax);
|
| - break;
|
| -
|
| - case Token::MOD:
|
| - // Check for 0 divisor.
|
| - __ test(right, Operand(right));
|
| - __ j(zero, ¬_smis, not_taken);
|
| -
|
| - // Sign extend left into edx:eax.
|
| - ASSERT(left.is(eax));
|
| - __ cdq();
|
| - // Divide edx:eax by right.
|
| - __ idiv(right);
|
| - // Check for negative zero result. Use combined = left | right.
|
| - __ NegativeZeroTest(edx, combined, slow);
|
| - // Move remainder to register eax.
|
| - __ mov(eax, edx);
|
| - break;
|
| -
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| -
|
| - // 5. Emit return of result in eax.
|
| - GenerateReturn(masm);
|
| -
|
| - // 6. For some operations emit inline code to perform floating point
|
| - // operations on known smis (e.g., if the result of the operation
|
| - // overflowed the smi range).
|
| - switch (op_) {
|
| - case Token::SHL: {
|
| - Comment perform_float(masm, "-- Perform float operation on smis");
|
| - __ bind(&use_fp_on_smis);
|
| - // Result we want is in left == edx, so we can put the allocated heap
|
| - // number in eax.
|
| - __ AllocateHeapNumber(eax, ecx, ebx, slow);
|
| - // Store the result in the HeapNumber and return.
|
| - if (CpuFeatures::IsSupported(SSE2)) {
|
| - CpuFeatures::Scope use_sse2(SSE2);
|
| - __ cvtsi2sd(xmm0, Operand(left));
|
| - __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
|
| - } else {
|
| - // It's OK to overwrite the right argument on the stack because we
|
| - // are about to return.
|
| - __ mov(Operand(esp, 1 * kPointerSize), left);
|
| - __ fild_s(Operand(esp, 1 * kPointerSize));
|
| - __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
|
| - }
|
| - GenerateReturn(masm);
|
| - break;
|
| - }
|
| -
|
| - case Token::ADD:
|
| - case Token::SUB:
|
| - case Token::MUL:
|
| - case Token::DIV: {
|
| - Comment perform_float(masm, "-- Perform float operation on smis");
|
| - __ bind(&use_fp_on_smis);
|
| - // Restore arguments to edx, eax.
|
| - switch (op_) {
|
| - case Token::ADD:
|
| - // Revert right = right + left.
|
| - __ sub(right, Operand(left));
|
| - break;
|
| - case Token::SUB:
|
| - // Revert left = left - right.
|
| - __ add(left, Operand(right));
|
| - break;
|
| - case Token::MUL:
|
| - // Right was clobbered but a copy is in ebx.
|
| - __ mov(right, ebx);
|
| - break;
|
| - case Token::DIV:
|
| - // Left was clobbered but a copy is in edi. Right is in ebx for
|
| - // division.
|
| - __ mov(edx, edi);
|
| - __ mov(eax, right);
|
| - break;
|
| - default: UNREACHABLE();
|
| - break;
|
| - }
|
| - __ AllocateHeapNumber(ecx, ebx, no_reg, slow);
|
| - if (CpuFeatures::IsSupported(SSE2)) {
|
| - CpuFeatures::Scope use_sse2(SSE2);
|
| - FloatingPointHelper::LoadSSE2Smis(masm, ebx);
|
| - switch (op_) {
|
| - case Token::ADD: __ addsd(xmm0, xmm1); break;
|
| - case Token::SUB: __ subsd(xmm0, xmm1); break;
|
| - case Token::MUL: __ mulsd(xmm0, xmm1); break;
|
| - case Token::DIV: __ divsd(xmm0, xmm1); break;
|
| - default: UNREACHABLE();
|
| - }
|
| - __ movdbl(FieldOperand(ecx, HeapNumber::kValueOffset), xmm0);
|
| - } else { // SSE2 not available, use FPU.
|
| - FloatingPointHelper::LoadFloatSmis(masm, ebx);
|
| - switch (op_) {
|
| - case Token::ADD: __ faddp(1); break;
|
| - case Token::SUB: __ fsubp(1); break;
|
| - case Token::MUL: __ fmulp(1); break;
|
| - case Token::DIV: __ fdivp(1); break;
|
| - default: UNREACHABLE();
|
| - }
|
| - __ fstp_d(FieldOperand(ecx, HeapNumber::kValueOffset));
|
| - }
|
| - __ mov(eax, ecx);
|
| - GenerateReturn(masm);
|
| - break;
|
| - }
|
| -
|
| - default:
|
| - break;
|
| - }
|
| -
|
| - // 7. Non-smi operands, fall out to the non-smi code with the operands in
|
| - // edx and eax.
|
| - Comment done_comment(masm, "-- Enter non-smi code");
|
| - __ bind(¬_smis);
|
| - switch (op_) {
|
| - case Token::BIT_OR:
|
| - case Token::SHL:
|
| - case Token::SAR:
|
| - case Token::SHR:
|
| - // Right operand is saved in ecx and eax was destroyed by the smi
|
| - // check.
|
| - __ mov(eax, ecx);
|
| - break;
|
| -
|
| - case Token::DIV:
|
| - case Token::MOD:
|
| - // Operands are in eax, ebx at this point.
|
| - __ mov(edx, eax);
|
| - __ mov(eax, ebx);
|
| - break;
|
| -
|
| - default:
|
| - break;
|
| - }
|
| -}
|
| -
|
| -
|
| -void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
|
| - Label call_runtime;
|
| -
|
| - __ IncrementCounter(&Counters::generic_binary_stub_calls, 1);
|
| -
|
| - // Generate fast case smi code if requested. This flag is set when the fast
|
| - // case smi code is not generated by the caller. Generating it here will speed
|
| - // up common operations.
|
| - if (ShouldGenerateSmiCode()) {
|
| - GenerateSmiCode(masm, &call_runtime);
|
| - } else if (op_ != Token::MOD) { // MOD goes straight to runtime.
|
| - if (!HasArgsInRegisters()) {
|
| - GenerateLoadArguments(masm);
|
| - }
|
| - }
|
| -
|
| - // Floating point case.
|
| - if (ShouldGenerateFPCode()) {
|
| - switch (op_) {
|
| - case Token::ADD:
|
| - case Token::SUB:
|
| - case Token::MUL:
|
| - case Token::DIV: {
|
| - if (runtime_operands_type_ == BinaryOpIC::DEFAULT &&
|
| - HasSmiCodeInStub()) {
|
| - // Execution reaches this point when the first non-smi argument occurs
|
| - // (and only if smi code is generated). This is the right moment to
|
| - // patch to HEAP_NUMBERS state. The transition is attempted only for
|
| - // the four basic operations. The stub stays in the DEFAULT state
|
| - // forever for all other operations (also if smi code is skipped).
|
| - GenerateTypeTransition(masm);
|
| - break;
|
| - }
|
| -
|
| - Label not_floats;
|
| - if (CpuFeatures::IsSupported(SSE2)) {
|
| - CpuFeatures::Scope use_sse2(SSE2);
|
| - if (static_operands_type_.IsNumber()) {
|
| - if (FLAG_debug_code) {
|
| - // Assert at runtime that inputs are only numbers.
|
| - __ AbortIfNotNumber(edx);
|
| - __ AbortIfNotNumber(eax);
|
| - }
|
| - if (static_operands_type_.IsSmi()) {
|
| - if (FLAG_debug_code) {
|
| - __ AbortIfNotSmi(edx);
|
| - __ AbortIfNotSmi(eax);
|
| - }
|
| - FloatingPointHelper::LoadSSE2Smis(masm, ecx);
|
| - } else {
|
| - FloatingPointHelper::LoadSSE2Operands(masm);
|
| - }
|
| - } else {
|
| - FloatingPointHelper::LoadSSE2Operands(masm, &call_runtime);
|
| - }
|
| -
|
| - switch (op_) {
|
| - case Token::ADD: __ addsd(xmm0, xmm1); break;
|
| - case Token::SUB: __ subsd(xmm0, xmm1); break;
|
| - case Token::MUL: __ mulsd(xmm0, xmm1); break;
|
| - case Token::DIV: __ divsd(xmm0, xmm1); break;
|
| - default: UNREACHABLE();
|
| - }
|
| - GenerateHeapResultAllocation(masm, &call_runtime);
|
| - __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
|
| - GenerateReturn(masm);
|
| - } else { // SSE2 not available, use FPU.
|
| - if (static_operands_type_.IsNumber()) {
|
| - if (FLAG_debug_code) {
|
| - // Assert at runtime that inputs are only numbers.
|
| - __ AbortIfNotNumber(edx);
|
| - __ AbortIfNotNumber(eax);
|
| - }
|
| - } else {
|
| - FloatingPointHelper::CheckFloatOperands(masm, &call_runtime, ebx);
|
| - }
|
| - FloatingPointHelper::LoadFloatOperands(
|
| - masm,
|
| - ecx,
|
| - FloatingPointHelper::ARGS_IN_REGISTERS);
|
| - switch (op_) {
|
| - case Token::ADD: __ faddp(1); break;
|
| - case Token::SUB: __ fsubp(1); break;
|
| - case Token::MUL: __ fmulp(1); break;
|
| - case Token::DIV: __ fdivp(1); break;
|
| - default: UNREACHABLE();
|
| - }
|
| - Label after_alloc_failure;
|
| - GenerateHeapResultAllocation(masm, &after_alloc_failure);
|
| - __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
|
| - GenerateReturn(masm);
|
| - __ bind(&after_alloc_failure);
|
| - __ ffree();
|
| - __ jmp(&call_runtime);
|
| - }
|
| - __ bind(¬_floats);
|
| - if (runtime_operands_type_ == BinaryOpIC::DEFAULT &&
|
| - !HasSmiCodeInStub()) {
|
| - // Execution reaches this point when the first non-number argument
|
| - // occurs (and only if smi code is skipped from the stub, otherwise
|
| - // the patching has already been done earlier in this case branch).
|
| - // Try patching to STRINGS for ADD operation.
|
| - if (op_ == Token::ADD) {
|
| - GenerateTypeTransition(masm);
|
| - }
|
| - }
|
| - break;
|
| - }
|
| - case Token::MOD: {
|
| - // For MOD we go directly to runtime in the non-smi case.
|
| - break;
|
| - }
|
| - case Token::BIT_OR:
|
| - case Token::BIT_AND:
|
| - case Token::BIT_XOR:
|
| - case Token::SAR:
|
| - case Token::SHL:
|
| - case Token::SHR: {
|
| - Label non_smi_result;
|
| - FloatingPointHelper::LoadAsIntegers(masm,
|
| - static_operands_type_,
|
| - use_sse3_,
|
| - &call_runtime);
|
| - switch (op_) {
|
| - case Token::BIT_OR: __ or_(eax, Operand(ecx)); break;
|
| - case Token::BIT_AND: __ and_(eax, Operand(ecx)); break;
|
| - case Token::BIT_XOR: __ xor_(eax, Operand(ecx)); break;
|
| - case Token::SAR: __ sar_cl(eax); break;
|
| - case Token::SHL: __ shl_cl(eax); break;
|
| - case Token::SHR: __ shr_cl(eax); break;
|
| - default: UNREACHABLE();
|
| - }
|
| - if (op_ == Token::SHR) {
|
| - // Check if result is non-negative and fits in a smi.
|
| - __ test(eax, Immediate(0xc0000000));
|
| - __ j(not_zero, &call_runtime);
|
| - } else {
|
| - // Check if result fits in a smi.
|
| - __ cmp(eax, 0xc0000000);
|
| - __ j(negative, &non_smi_result);
|
| - }
|
| - // Tag smi result and return.
|
| - __ SmiTag(eax);
|
| - GenerateReturn(masm);
|
| -
|
| - // All ops except SHR return a signed int32 that we load in
|
| - // a HeapNumber.
|
| - if (op_ != Token::SHR) {
|
| - __ bind(&non_smi_result);
|
| - // Allocate a heap number if needed.
|
| - __ mov(ebx, Operand(eax)); // ebx: result
|
| - Label skip_allocation;
|
| - switch (mode_) {
|
| - case OVERWRITE_LEFT:
|
| - case OVERWRITE_RIGHT:
|
| - // If the operand was an object, we skip the
|
| - // allocation of a heap number.
|
| - __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ?
|
| - 1 * kPointerSize : 2 * kPointerSize));
|
| - __ test(eax, Immediate(kSmiTagMask));
|
| - __ j(not_zero, &skip_allocation, not_taken);
|
| - // Fall through!
|
| - case NO_OVERWRITE:
|
| - __ AllocateHeapNumber(eax, ecx, edx, &call_runtime);
|
| - __ bind(&skip_allocation);
|
| - break;
|
| - default: UNREACHABLE();
|
| - }
|
| - // Store the result in the HeapNumber and return.
|
| - if (CpuFeatures::IsSupported(SSE2)) {
|
| - CpuFeatures::Scope use_sse2(SSE2);
|
| - __ cvtsi2sd(xmm0, Operand(ebx));
|
| - __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
|
| - } else {
|
| - __ mov(Operand(esp, 1 * kPointerSize), ebx);
|
| - __ fild_s(Operand(esp, 1 * kPointerSize));
|
| - __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
|
| - }
|
| - GenerateReturn(masm);
|
| - }
|
| - break;
|
| - }
|
| - default: UNREACHABLE(); break;
|
| - }
|
| - }
|
| -
|
| - // If all else fails, use the runtime system to get the correct
|
| - // result. If arguments was passed in registers now place them on the
|
| - // stack in the correct order below the return address.
|
| - __ bind(&call_runtime);
|
| - if (HasArgsInRegisters()) {
|
| - GenerateRegisterArgsPush(masm);
|
| - }
|
| -
|
| - switch (op_) {
|
| - case Token::ADD: {
|
| - // Test for string arguments before calling runtime.
|
| - Label not_strings, not_string1, string1, string1_smi2;
|
| -
|
| - // If this stub has already generated FP-specific code then the arguments
|
| - // are already in edx, eax
|
| - if (!ShouldGenerateFPCode() && !HasArgsInRegisters()) {
|
| - GenerateLoadArguments(masm);
|
| - }
|
| -
|
| - // Registers containing left and right operands respectively.
|
| - Register lhs, rhs;
|
| - if (HasArgsReversed()) {
|
| - lhs = eax;
|
| - rhs = edx;
|
| - } else {
|
| - lhs = edx;
|
| - rhs = eax;
|
| - }
|
| -
|
| - // Test if first argument is a string.
|
| - __ test(lhs, Immediate(kSmiTagMask));
|
| - __ j(zero, ¬_string1);
|
| - __ CmpObjectType(lhs, FIRST_NONSTRING_TYPE, ecx);
|
| - __ j(above_equal, ¬_string1);
|
| -
|
| - // First argument is a string, test second.
|
| - __ test(rhs, Immediate(kSmiTagMask));
|
| - __ j(zero, &string1_smi2);
|
| - __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, ecx);
|
| - __ j(above_equal, &string1);
|
| -
|
| - // First and second argument are strings. Jump to the string add stub.
|
| - StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
|
| - __ TailCallStub(&string_add_stub);
|
| -
|
| - __ bind(&string1_smi2);
|
| - // First argument is a string, second is a smi. Try to lookup the number
|
| - // string for the smi in the number string cache.
|
| - NumberToStringStub::GenerateLookupNumberStringCache(
|
| - masm, rhs, edi, ebx, ecx, true, &string1);
|
| -
|
| - // Replace second argument on stack and tailcall string add stub to make
|
| - // the result.
|
| - __ mov(Operand(esp, 1 * kPointerSize), edi);
|
| - __ TailCallStub(&string_add_stub);
|
| -
|
| - // Only first argument is a string.
|
| - __ bind(&string1);
|
| - __ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_FUNCTION);
|
| -
|
| - // First argument was not a string, test second.
|
| - __ bind(¬_string1);
|
| - __ test(rhs, Immediate(kSmiTagMask));
|
| - __ j(zero, ¬_strings);
|
| - __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, ecx);
|
| - __ j(above_equal, ¬_strings);
|
| -
|
| - // Only second argument is a string.
|
| - __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_FUNCTION);
|
| -
|
| - __ bind(¬_strings);
|
| - // Neither argument is a string.
|
| - __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
|
| - break;
|
| - }
|
| - case Token::SUB:
|
| - __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
|
| - break;
|
| - case Token::MUL:
|
| - __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
|
| - break;
|
| - case Token::DIV:
|
| - __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
|
| - break;
|
| - case Token::MOD:
|
| - __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
|
| - break;
|
| - case Token::BIT_OR:
|
| - __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
|
| - break;
|
| - case Token::BIT_AND:
|
| - __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
|
| - break;
|
| - case Token::BIT_XOR:
|
| - __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
|
| - break;
|
| - case Token::SAR:
|
| - __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
|
| - break;
|
| - case Token::SHL:
|
| - __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
|
| - break;
|
| - case Token::SHR:
|
| - __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
|
| - break;
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| -}
|
| -
|
| -
|
| -void GenericBinaryOpStub::GenerateHeapResultAllocation(MacroAssembler* masm,
|
| - Label* alloc_failure) {
|
| - Label skip_allocation;
|
| - OverwriteMode mode = mode_;
|
| - if (HasArgsReversed()) {
|
| - if (mode == OVERWRITE_RIGHT) {
|
| - mode = OVERWRITE_LEFT;
|
| - } else if (mode == OVERWRITE_LEFT) {
|
| - mode = OVERWRITE_RIGHT;
|
| - }
|
| - }
|
| - switch (mode) {
|
| - case OVERWRITE_LEFT: {
|
| - // If the argument in edx is already an object, we skip the
|
| - // allocation of a heap number.
|
| - __ test(edx, Immediate(kSmiTagMask));
|
| - __ j(not_zero, &skip_allocation, not_taken);
|
| - // Allocate a heap number for the result. Keep eax and edx intact
|
| - // for the possible runtime call.
|
| - __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure);
|
| - // Now edx can be overwritten losing one of the arguments as we are
|
| - // now done and will not need it any more.
|
| - __ mov(edx, Operand(ebx));
|
| - __ bind(&skip_allocation);
|
| - // Use object in edx as a result holder
|
| - __ mov(eax, Operand(edx));
|
| - break;
|
| - }
|
| - case OVERWRITE_RIGHT:
|
| - // If the argument in eax is already an object, we skip the
|
| - // allocation of a heap number.
|
| - __ test(eax, Immediate(kSmiTagMask));
|
| - __ j(not_zero, &skip_allocation, not_taken);
|
| - // Fall through!
|
| - case NO_OVERWRITE:
|
| - // Allocate a heap number for the result. Keep eax and edx intact
|
| - // for the possible runtime call.
|
| - __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure);
|
| - // Now eax can be overwritten losing one of the arguments as we are
|
| - // now done and will not need it any more.
|
| - __ mov(eax, ebx);
|
| - __ bind(&skip_allocation);
|
| - break;
|
| - default: UNREACHABLE();
|
| - }
|
| -}
|
| -
|
| -
|
| -void GenericBinaryOpStub::GenerateLoadArguments(MacroAssembler* masm) {
|
| - // If arguments are not passed in registers read them from the stack.
|
| - ASSERT(!HasArgsInRegisters());
|
| - __ mov(eax, Operand(esp, 1 * kPointerSize));
|
| - __ mov(edx, Operand(esp, 2 * kPointerSize));
|
| -}
|
| -
|
| -
|
| -void GenericBinaryOpStub::GenerateReturn(MacroAssembler* masm) {
|
| - // If arguments are not passed in registers remove them from the stack before
|
| - // returning.
|
| - if (!HasArgsInRegisters()) {
|
| - __ ret(2 * kPointerSize); // Remove both operands
|
| - } else {
|
| - __ ret(0);
|
| - }
|
| -}
|
| -
|
| -
|
| -void GenericBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
|
| - ASSERT(HasArgsInRegisters());
|
| - __ pop(ecx);
|
| - if (HasArgsReversed()) {
|
| - __ push(eax);
|
| - __ push(edx);
|
| - } else {
|
| - __ push(edx);
|
| - __ push(eax);
|
| - }
|
| - __ push(ecx);
|
| -}
|
| -
|
| -
|
| -void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
|
| - // Ensure the operands are on the stack.
|
| - if (HasArgsInRegisters()) {
|
| - GenerateRegisterArgsPush(masm);
|
| - }
|
| -
|
| - __ pop(ecx); // Save return address.
|
| -
|
| - // Left and right arguments are now on top.
|
| - // Push this stub's key. Although the operation and the type info are
|
| - // encoded into the key, the encoding is opaque, so push them too.
|
| - __ push(Immediate(Smi::FromInt(MinorKey())));
|
| - __ push(Immediate(Smi::FromInt(op_)));
|
| - __ push(Immediate(Smi::FromInt(runtime_operands_type_)));
|
| -
|
| - __ push(ecx); // Push return address.
|
| -
|
| - // Patch the caller to an appropriate specialized stub and return the
|
| - // operation result to the caller of the stub.
|
| - __ TailCallExternalReference(
|
| - ExternalReference(IC_Utility(IC::kBinaryOp_Patch)),
|
| - 5,
|
| - 1);
|
| -}
|
| -
|
| -
|
| -Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) {
|
| - GenericBinaryOpStub stub(key, type_info);
|
| - return stub.GetCode();
|
| -}
|
| -
|
| -
|
| -void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
|
| - // Input on stack:
|
| - // esp[4]: argument (should be number).
|
| - // esp[0]: return address.
|
| - // Test that eax is a number.
|
| - Label runtime_call;
|
| - Label runtime_call_clear_stack;
|
| - Label input_not_smi;
|
| - Label loaded;
|
| - __ mov(eax, Operand(esp, kPointerSize));
|
| - __ test(eax, Immediate(kSmiTagMask));
|
| - __ j(not_zero, &input_not_smi);
|
| - // Input is a smi. Untag and load it onto the FPU stack.
|
| - // Then load the low and high words of the double into ebx, edx.
|
| - STATIC_ASSERT(kSmiTagSize == 1);
|
| - __ sar(eax, 1);
|
| - __ sub(Operand(esp), Immediate(2 * kPointerSize));
|
| - __ mov(Operand(esp, 0), eax);
|
| - __ fild_s(Operand(esp, 0));
|
| - __ fst_d(Operand(esp, 0));
|
| - __ pop(edx);
|
| - __ pop(ebx);
|
| - __ jmp(&loaded);
|
| - __ bind(&input_not_smi);
|
| - // Check if input is a HeapNumber.
|
| - __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
|
| - __ cmp(Operand(ebx), Immediate(Factory::heap_number_map()));
|
| - __ j(not_equal, &runtime_call);
|
| - // Input is a HeapNumber. Push it on the FPU stack and load its
|
| - // low and high words into ebx, edx.
|
| - __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset));
|
| - __ mov(edx, FieldOperand(eax, HeapNumber::kExponentOffset));
|
| - __ mov(ebx, FieldOperand(eax, HeapNumber::kMantissaOffset));
|
| -
|
| - __ bind(&loaded);
|
| - // ST[0] == double value
|
| - // ebx = low 32 bits of double value
|
| - // edx = high 32 bits of double value
|
| - // Compute hash (the shifts are arithmetic):
|
| - // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
|
| - __ mov(ecx, ebx);
|
| - __ xor_(ecx, Operand(edx));
|
| - __ mov(eax, ecx);
|
| - __ sar(eax, 16);
|
| - __ xor_(ecx, Operand(eax));
|
| - __ mov(eax, ecx);
|
| - __ sar(eax, 8);
|
| - __ xor_(ecx, Operand(eax));
|
| - ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize));
|
| - __ and_(Operand(ecx), Immediate(TranscendentalCache::kCacheSize - 1));
|
| -
|
| - // ST[0] == double value.
|
| - // ebx = low 32 bits of double value.
|
| - // edx = high 32 bits of double value.
|
| - // ecx = TranscendentalCache::hash(double value).
|
| - __ mov(eax,
|
| - Immediate(ExternalReference::transcendental_cache_array_address()));
|
| - // Eax points to cache array.
|
| - __ mov(eax, Operand(eax, type_ * sizeof(TranscendentalCache::caches_[0])));
|
| - // Eax points to the cache for the type type_.
|
| - // If NULL, the cache hasn't been initialized yet, so go through runtime.
|
| - __ test(eax, Operand(eax));
|
| - __ j(zero, &runtime_call_clear_stack);
|
| -#ifdef DEBUG
|
| - // Check that the layout of cache elements match expectations.
|
| - { TranscendentalCache::Element test_elem[2];
|
| - char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
|
| - char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
|
| - char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
|
| - char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
|
| - char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
|
| - CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer.
|
| - CHECK_EQ(0, elem_in0 - elem_start);
|
| - CHECK_EQ(kIntSize, elem_in1 - elem_start);
|
| - CHECK_EQ(2 * kIntSize, elem_out - elem_start);
|
| - }
|
| -#endif
|
| - // Find the address of the ecx'th entry in the cache, i.e., &eax[ecx*12].
|
| - __ lea(ecx, Operand(ecx, ecx, times_2, 0));
|
| - __ lea(ecx, Operand(eax, ecx, times_4, 0));
|
| - // Check if cache matches: Double value is stored in uint32_t[2] array.
|
| - Label cache_miss;
|
| - __ cmp(ebx, Operand(ecx, 0));
|
| - __ j(not_equal, &cache_miss);
|
| - __ cmp(edx, Operand(ecx, kIntSize));
|
| - __ j(not_equal, &cache_miss);
|
| - // Cache hit!
|
| - __ mov(eax, Operand(ecx, 2 * kIntSize));
|
| - __ fstp(0);
|
| - __ ret(kPointerSize);
|
| -
|
| - __ bind(&cache_miss);
|
| - // Update cache with new value.
|
| - // We are short on registers, so use no_reg as scratch.
|
| - // This gives slightly larger code.
|
| - __ AllocateHeapNumber(eax, edi, no_reg, &runtime_call_clear_stack);
|
| - GenerateOperation(masm);
|
| - __ mov(Operand(ecx, 0), ebx);
|
| - __ mov(Operand(ecx, kIntSize), edx);
|
| - __ mov(Operand(ecx, 2 * kIntSize), eax);
|
| - __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
|
| - __ ret(kPointerSize);
|
| -
|
| - __ bind(&runtime_call_clear_stack);
|
| - __ fstp(0);
|
| - __ bind(&runtime_call);
|
| - __ TailCallExternalReference(ExternalReference(RuntimeFunction()), 1, 1);
|
| -}
|
| -
|
| -
|
| -Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
|
| - switch (type_) {
|
| - // Add more cases when necessary.
|
| - case TranscendentalCache::SIN: return Runtime::kMath_sin;
|
| - case TranscendentalCache::COS: return Runtime::kMath_cos;
|
| - default:
|
| - UNIMPLEMENTED();
|
| - return Runtime::kAbort;
|
| - }
|
| -}
|
| -
|
| -
|
| -void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm) {
|
| - // Only free register is edi.
|
| - Label done;
|
| - ASSERT(type_ == TranscendentalCache::SIN ||
|
| - type_ == TranscendentalCache::COS);
|
| - // More transcendental types can be added later.
|
| -
|
| - // Both fsin and fcos require arguments in the range +/-2^63 and
|
| - // return NaN for infinities and NaN. They can share all code except
|
| - // the actual fsin/fcos operation.
|
| - Label in_range;
|
| - // If argument is outside the range -2^63..2^63, fsin/cos doesn't
|
| - // work. We must reduce it to the appropriate range.
|
| - __ mov(edi, edx);
|
| - __ and_(Operand(edi), Immediate(0x7ff00000)); // Exponent only.
|
| - int supported_exponent_limit =
|
| - (63 + HeapNumber::kExponentBias) << HeapNumber::kExponentShift;
|
| - __ cmp(Operand(edi), Immediate(supported_exponent_limit));
|
| - __ j(below, &in_range, taken);
|
| - // Check for infinity and NaN. Both return NaN for sin.
|
| - __ cmp(Operand(edi), Immediate(0x7ff00000));
|
| - Label non_nan_result;
|
| - __ j(not_equal, &non_nan_result, taken);
|
| - // Input is +/-Infinity or NaN. Result is NaN.
|
| - __ fstp(0);
|
| - // NaN is represented by 0x7ff8000000000000.
|
| - __ push(Immediate(0x7ff80000));
|
| - __ push(Immediate(0));
|
| - __ fld_d(Operand(esp, 0));
|
| - __ add(Operand(esp), Immediate(2 * kPointerSize));
|
| - __ jmp(&done);
|
| -
|
| - __ bind(&non_nan_result);
|
| -
|
| - // Use fpmod to restrict argument to the range +/-2*PI.
|
| - __ mov(edi, eax); // Save eax before using fnstsw_ax.
|
| - __ fldpi();
|
| - __ fadd(0);
|
| - __ fld(1);
|
| - // FPU Stack: input, 2*pi, input.
|
| - {
|
| - Label no_exceptions;
|
| - __ fwait();
|
| - __ fnstsw_ax();
|
| - // Clear if Illegal Operand or Zero Division exceptions are set.
|
| - __ test(Operand(eax), Immediate(5));
|
| - __ j(zero, &no_exceptions);
|
| - __ fnclex();
|
| - __ bind(&no_exceptions);
|
| - }
|
| -
|
| - // Compute st(0) % st(1)
|
| - {
|
| - Label partial_remainder_loop;
|
| - __ bind(&partial_remainder_loop);
|
| - __ fprem1();
|
| - __ fwait();
|
| - __ fnstsw_ax();
|
| - __ test(Operand(eax), Immediate(0x400 /* C2 */));
|
| - // If C2 is set, computation only has partial result. Loop to
|
| - // continue computation.
|
| - __ j(not_zero, &partial_remainder_loop);
|
| - }
|
| - // FPU Stack: input, 2*pi, input % 2*pi
|
| - __ fstp(2);
|
| - __ fstp(0);
|
| - __ mov(eax, edi); // Restore eax (allocated HeapNumber pointer).
|
| -
|
| - // FPU Stack: input % 2*pi
|
| - __ bind(&in_range);
|
| - switch (type_) {
|
| - case TranscendentalCache::SIN:
|
| - __ fsin();
|
| - break;
|
| - case TranscendentalCache::COS:
|
| - __ fcos();
|
| - break;
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| - __ bind(&done);
|
| -}
|
| -
|
| -
|
| -// Get the integer part of a heap number. Surprisingly, all this bit twiddling
|
| -// is faster than using the built-in instructions on floating point registers.
|
| -// Trashes edi and ebx. Dest is ecx. Source cannot be ecx or one of the
|
| -// trashed registers.
|
| -void IntegerConvert(MacroAssembler* masm,
|
| - Register source,
|
| - TypeInfo type_info,
|
| - bool use_sse3,
|
| - Label* conversion_failure) {
|
| - ASSERT(!source.is(ecx) && !source.is(edi) && !source.is(ebx));
|
| - Label done, right_exponent, normal_exponent;
|
| - Register scratch = ebx;
|
| - Register scratch2 = edi;
|
| - if (type_info.IsInteger32() && CpuFeatures::IsEnabled(SSE2)) {
|
| - CpuFeatures::Scope scope(SSE2);
|
| - __ cvttsd2si(ecx, FieldOperand(source, HeapNumber::kValueOffset));
|
| - return;
|
| - }
|
| - if (!type_info.IsInteger32() || !use_sse3) {
|
| - // Get exponent word.
|
| - __ mov(scratch, FieldOperand(source, HeapNumber::kExponentOffset));
|
| - // Get exponent alone in scratch2.
|
| - __ mov(scratch2, scratch);
|
| - __ and_(scratch2, HeapNumber::kExponentMask);
|
| - }
|
| - if (use_sse3) {
|
| - CpuFeatures::Scope scope(SSE3);
|
| - if (!type_info.IsInteger32()) {
|
| - // Check whether the exponent is too big for a 64 bit signed integer.
|
| - static const uint32_t kTooBigExponent =
|
| - (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift;
|
| - __ cmp(Operand(scratch2), Immediate(kTooBigExponent));
|
| - __ j(greater_equal, conversion_failure);
|
| - }
|
| - // Load x87 register with heap number.
|
| - __ fld_d(FieldOperand(source, HeapNumber::kValueOffset));
|
| - // Reserve space for 64 bit answer.
|
| - __ sub(Operand(esp), Immediate(sizeof(uint64_t))); // Nolint.
|
| - // Do conversion, which cannot fail because we checked the exponent.
|
| - __ fisttp_d(Operand(esp, 0));
|
| - __ mov(ecx, Operand(esp, 0)); // Load low word of answer into ecx.
|
| - __ add(Operand(esp), Immediate(sizeof(uint64_t))); // Nolint.
|
| - } else {
|
| - // Load ecx with zero. We use this either for the final shift or
|
| - // for the answer.
|
| - __ xor_(ecx, Operand(ecx));
|
| - // Check whether the exponent matches a 32 bit signed int that cannot be
|
| - // represented by a Smi. A non-smi 32 bit integer is 1.xxx * 2^30 so the
|
| - // exponent is 30 (biased). This is the exponent that we are fastest at and
|
| - // also the highest exponent we can handle here.
|
| - const uint32_t non_smi_exponent =
|
| - (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
|
| - __ cmp(Operand(scratch2), Immediate(non_smi_exponent));
|
| - // If we have a match of the int32-but-not-Smi exponent then skip some
|
| - // logic.
|
| - __ j(equal, &right_exponent);
|
| - // If the exponent is higher than that then go to slow case. This catches
|
| - // numbers that don't fit in a signed int32, infinities and NaNs.
|
| - __ j(less, &normal_exponent);
|
| -
|
| - {
|
| - // Handle a big exponent. The only reason we have this code is that the
|
| - // >>> operator has a tendency to generate numbers with an exponent of 31.
|
| - const uint32_t big_non_smi_exponent =
|
| - (HeapNumber::kExponentBias + 31) << HeapNumber::kExponentShift;
|
| - __ cmp(Operand(scratch2), Immediate(big_non_smi_exponent));
|
| - __ j(not_equal, conversion_failure);
|
| - // We have the big exponent, typically from >>>. This means the number is
|
| - // in the range 2^31 to 2^32 - 1. Get the top bits of the mantissa.
|
| - __ mov(scratch2, scratch);
|
| - __ and_(scratch2, HeapNumber::kMantissaMask);
|
| - // Put back the implicit 1.
|
| - __ or_(scratch2, 1 << HeapNumber::kExponentShift);
|
| - // Shift up the mantissa bits to take up the space the exponent used to
|
| - // take. We just orred in the implicit bit so that took care of one and
|
| - // we want to use the full unsigned range so we subtract 1 bit from the
|
| - // shift distance.
|
| - const int big_shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 1;
|
| - __ shl(scratch2, big_shift_distance);
|
| - // Get the second half of the double.
|
| - __ mov(ecx, FieldOperand(source, HeapNumber::kMantissaOffset));
|
| - // Shift down 21 bits to get the most significant 11 bits or the low
|
| - // mantissa word.
|
| - __ shr(ecx, 32 - big_shift_distance);
|
| - __ or_(ecx, Operand(scratch2));
|
| - // We have the answer in ecx, but we may need to negate it.
|
| - __ test(scratch, Operand(scratch));
|
| - __ j(positive, &done);
|
| - __ neg(ecx);
|
| - __ jmp(&done);
|
| - }
|
| -
|
| - __ bind(&normal_exponent);
|
| - // Exponent word in scratch, exponent part of exponent word in scratch2.
|
| - // Zero in ecx.
|
| - // We know the exponent is smaller than 30 (biased). If it is less than
|
| - // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie
|
| - // it rounds to zero.
|
| - const uint32_t zero_exponent =
|
| - (HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift;
|
| - __ sub(Operand(scratch2), Immediate(zero_exponent));
|
| - // ecx already has a Smi zero.
|
| - __ j(less, &done);
|
| -
|
| - // We have a shifted exponent between 0 and 30 in scratch2.
|
| - __ shr(scratch2, HeapNumber::kExponentShift);
|
| - __ mov(ecx, Immediate(30));
|
| - __ sub(ecx, Operand(scratch2));
|
| -
|
| - __ bind(&right_exponent);
|
| - // Here ecx is the shift, scratch is the exponent word.
|
| - // Get the top bits of the mantissa.
|
| - __ and_(scratch, HeapNumber::kMantissaMask);
|
| - // Put back the implicit 1.
|
| - __ or_(scratch, 1 << HeapNumber::kExponentShift);
|
| - // Shift up the mantissa bits to take up the space the exponent used to
|
| - // take. We have kExponentShift + 1 significant bits int he low end of the
|
| - // word. Shift them to the top bits.
|
| - const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
|
| - __ shl(scratch, shift_distance);
|
| - // Get the second half of the double. For some exponents we don't
|
| - // actually need this because the bits get shifted out again, but
|
| - // it's probably slower to test than just to do it.
|
| - __ mov(scratch2, FieldOperand(source, HeapNumber::kMantissaOffset));
|
| - // Shift down 22 bits to get the most significant 10 bits or the low
|
| - // mantissa word.
|
| - __ shr(scratch2, 32 - shift_distance);
|
| - __ or_(scratch2, Operand(scratch));
|
| - // Move down according to the exponent.
|
| - __ shr_cl(scratch2);
|
| - // Now the unsigned answer is in scratch2. We need to move it to ecx and
|
| - // we may need to fix the sign.
|
| - Label negative;
|
| - __ xor_(ecx, Operand(ecx));
|
| - __ cmp(ecx, FieldOperand(source, HeapNumber::kExponentOffset));
|
| - __ j(greater, &negative);
|
| - __ mov(ecx, scratch2);
|
| - __ jmp(&done);
|
| - __ bind(&negative);
|
| - __ sub(ecx, Operand(scratch2));
|
| - __ bind(&done);
|
| - }
|
| -}
|
| -
|
| -
|
| -// Input: edx, eax are the left and right objects of a bit op.
|
| -// Output: eax, ecx are left and right integers for a bit op.
|
| -void FloatingPointHelper::LoadNumbersAsIntegers(MacroAssembler* masm,
|
| - TypeInfo type_info,
|
| - bool use_sse3,
|
| - Label* conversion_failure) {
|
| - // Check float operands.
|
| - Label arg1_is_object, check_undefined_arg1;
|
| - Label arg2_is_object, check_undefined_arg2;
|
| - Label load_arg2, done;
|
| -
|
| - if (!type_info.IsDouble()) {
|
| - if (!type_info.IsSmi()) {
|
| - __ test(edx, Immediate(kSmiTagMask));
|
| - __ j(not_zero, &arg1_is_object);
|
| - } else {
|
| - if (FLAG_debug_code) __ AbortIfNotSmi(edx);
|
| - }
|
| - __ SmiUntag(edx);
|
| - __ jmp(&load_arg2);
|
| - }
|
| -
|
| - __ bind(&arg1_is_object);
|
| -
|
| - // Get the untagged integer version of the edx heap number in ecx.
|
| - IntegerConvert(masm, edx, type_info, use_sse3, conversion_failure);
|
| - __ mov(edx, ecx);
|
| -
|
| - // Here edx has the untagged integer, eax has a Smi or a heap number.
|
| - __ bind(&load_arg2);
|
| - if (!type_info.IsDouble()) {
|
| - // Test if arg2 is a Smi.
|
| - if (!type_info.IsSmi()) {
|
| - __ test(eax, Immediate(kSmiTagMask));
|
| - __ j(not_zero, &arg2_is_object);
|
| - } else {
|
| - if (FLAG_debug_code) __ AbortIfNotSmi(eax);
|
| - }
|
| - __ SmiUntag(eax);
|
| - __ mov(ecx, eax);
|
| - __ jmp(&done);
|
| - }
|
| -
|
| - __ bind(&arg2_is_object);
|
| -
|
| - // Get the untagged integer version of the eax heap number in ecx.
|
| - IntegerConvert(masm, eax, type_info, use_sse3, conversion_failure);
|
| - __ bind(&done);
|
| - __ mov(eax, edx);
|
| -}
|
| -
|
| -
|
| -// Input: edx, eax are the left and right objects of a bit op.
|
| -// Output: eax, ecx are left and right integers for a bit op.
|
| -void FloatingPointHelper::LoadUnknownsAsIntegers(MacroAssembler* masm,
|
| - bool use_sse3,
|
| - Label* conversion_failure) {
|
| - // Check float operands.
|
| - Label arg1_is_object, check_undefined_arg1;
|
| - Label arg2_is_object, check_undefined_arg2;
|
| - Label load_arg2, done;
|
| -
|
| - // Test if arg1 is a Smi.
|
| - __ test(edx, Immediate(kSmiTagMask));
|
| - __ j(not_zero, &arg1_is_object);
|
| -
|
| - __ SmiUntag(edx);
|
| - __ jmp(&load_arg2);
|
| -
|
| - // If the argument is undefined it converts to zero (ECMA-262, section 9.5).
|
| - __ bind(&check_undefined_arg1);
|
| - __ cmp(edx, Factory::undefined_value());
|
| - __ j(not_equal, conversion_failure);
|
| - __ mov(edx, Immediate(0));
|
| - __ jmp(&load_arg2);
|
| -
|
| - __ bind(&arg1_is_object);
|
| - __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
|
| - __ cmp(ebx, Factory::heap_number_map());
|
| - __ j(not_equal, &check_undefined_arg1);
|
| -
|
| - // Get the untagged integer version of the edx heap number in ecx.
|
| - IntegerConvert(masm,
|
| - edx,
|
| - TypeInfo::Unknown(),
|
| - use_sse3,
|
| - conversion_failure);
|
| - __ mov(edx, ecx);
|
| -
|
| - // Here edx has the untagged integer, eax has a Smi or a heap number.
|
| - __ bind(&load_arg2);
|
| -
|
| - // Test if arg2 is a Smi.
|
| - __ test(eax, Immediate(kSmiTagMask));
|
| - __ j(not_zero, &arg2_is_object);
|
| -
|
| - __ SmiUntag(eax);
|
| - __ mov(ecx, eax);
|
| - __ jmp(&done);
|
| -
|
| - // If the argument is undefined it converts to zero (ECMA-262, section 9.5).
|
| - __ bind(&check_undefined_arg2);
|
| - __ cmp(eax, Factory::undefined_value());
|
| - __ j(not_equal, conversion_failure);
|
| - __ mov(ecx, Immediate(0));
|
| - __ jmp(&done);
|
| -
|
| - __ bind(&arg2_is_object);
|
| - __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
|
| - __ cmp(ebx, Factory::heap_number_map());
|
| - __ j(not_equal, &check_undefined_arg2);
|
| -
|
| - // Get the untagged integer version of the eax heap number in ecx.
|
| - IntegerConvert(masm,
|
| - eax,
|
| - TypeInfo::Unknown(),
|
| - use_sse3,
|
| - conversion_failure);
|
| - __ bind(&done);
|
| - __ mov(eax, edx);
|
| -}
|
| -
|
| -
|
| -void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm,
|
| - TypeInfo type_info,
|
| - bool use_sse3,
|
| - Label* conversion_failure) {
|
| - if (type_info.IsNumber()) {
|
| - LoadNumbersAsIntegers(masm, type_info, use_sse3, conversion_failure);
|
| - } else {
|
| - LoadUnknownsAsIntegers(masm, use_sse3, conversion_failure);
|
| - }
|
| -}
|
| -
|
| -
|
| -void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
|
| - Register number) {
|
| - Label load_smi, done;
|
| -
|
| - __ test(number, Immediate(kSmiTagMask));
|
| - __ j(zero, &load_smi, not_taken);
|
| - __ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
|
| - __ jmp(&done);
|
| -
|
| - __ bind(&load_smi);
|
| - __ SmiUntag(number);
|
| - __ push(number);
|
| - __ fild_s(Operand(esp, 0));
|
| - __ pop(number);
|
| -
|
| - __ bind(&done);
|
| -}
|
| -
|
| -
|
| -void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm) {
|
| - Label load_smi_edx, load_eax, load_smi_eax, done;
|
| - // Load operand in edx into xmm0.
|
| - __ test(edx, Immediate(kSmiTagMask));
|
| - __ j(zero, &load_smi_edx, not_taken); // Argument in edx is a smi.
|
| - __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
|
| -
|
| - __ bind(&load_eax);
|
| - // Load operand in eax into xmm1.
|
| - __ test(eax, Immediate(kSmiTagMask));
|
| - __ j(zero, &load_smi_eax, not_taken); // Argument in eax is a smi.
|
| - __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
|
| - __ jmp(&done);
|
| -
|
| - __ bind(&load_smi_edx);
|
| - __ SmiUntag(edx); // Untag smi before converting to float.
|
| - __ cvtsi2sd(xmm0, Operand(edx));
|
| - __ SmiTag(edx); // Retag smi for heap number overwriting test.
|
| - __ jmp(&load_eax);
|
| -
|
| - __ bind(&load_smi_eax);
|
| - __ SmiUntag(eax); // Untag smi before converting to float.
|
| - __ cvtsi2sd(xmm1, Operand(eax));
|
| - __ SmiTag(eax); // Retag smi for heap number overwriting test.
|
| -
|
| - __ bind(&done);
|
| -}
|
| -
|
| -
|
| -void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm,
|
| - Label* not_numbers) {
|
| - Label load_smi_edx, load_eax, load_smi_eax, load_float_eax, done;
|
| - // Load operand in edx into xmm0, or branch to not_numbers.
|
| - __ test(edx, Immediate(kSmiTagMask));
|
| - __ j(zero, &load_smi_edx, not_taken); // Argument in edx is a smi.
|
| - __ cmp(FieldOperand(edx, HeapObject::kMapOffset), Factory::heap_number_map());
|
| - __ j(not_equal, not_numbers); // Argument in edx is not a number.
|
| - __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
|
| - __ bind(&load_eax);
|
| - // Load operand in eax into xmm1, or branch to not_numbers.
|
| - __ test(eax, Immediate(kSmiTagMask));
|
| - __ j(zero, &load_smi_eax, not_taken); // Argument in eax is a smi.
|
| - __ cmp(FieldOperand(eax, HeapObject::kMapOffset), Factory::heap_number_map());
|
| - __ j(equal, &load_float_eax);
|
| - __ jmp(not_numbers); // Argument in eax is not a number.
|
| - __ bind(&load_smi_edx);
|
| - __ SmiUntag(edx); // Untag smi before converting to float.
|
| - __ cvtsi2sd(xmm0, Operand(edx));
|
| - __ SmiTag(edx); // Retag smi for heap number overwriting test.
|
| - __ jmp(&load_eax);
|
| - __ bind(&load_smi_eax);
|
| - __ SmiUntag(eax); // Untag smi before converting to float.
|
| - __ cvtsi2sd(xmm1, Operand(eax));
|
| - __ SmiTag(eax); // Retag smi for heap number overwriting test.
|
| - __ jmp(&done);
|
| - __ bind(&load_float_eax);
|
| - __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
|
| - __ bind(&done);
|
| -}
|
| -
|
| -
|
| -void FloatingPointHelper::LoadSSE2Smis(MacroAssembler* masm,
|
| - Register scratch) {
|
| - const Register left = edx;
|
| - const Register right = eax;
|
| - __ mov(scratch, left);
|
| - ASSERT(!scratch.is(right)); // We're about to clobber scratch.
|
| - __ SmiUntag(scratch);
|
| - __ cvtsi2sd(xmm0, Operand(scratch));
|
| -
|
| - __ mov(scratch, right);
|
| - __ SmiUntag(scratch);
|
| - __ cvtsi2sd(xmm1, Operand(scratch));
|
| -}
|
| -
|
| -
|
| -void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm,
|
| - Register scratch,
|
| - ArgLocation arg_location) {
|
| - Label load_smi_1, load_smi_2, done_load_1, done;
|
| - if (arg_location == ARGS_IN_REGISTERS) {
|
| - __ mov(scratch, edx);
|
| - } else {
|
| - __ mov(scratch, Operand(esp, 2 * kPointerSize));
|
| - }
|
| - __ test(scratch, Immediate(kSmiTagMask));
|
| - __ j(zero, &load_smi_1, not_taken);
|
| - __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset));
|
| - __ bind(&done_load_1);
|
| -
|
| - if (arg_location == ARGS_IN_REGISTERS) {
|
| - __ mov(scratch, eax);
|
| - } else {
|
| - __ mov(scratch, Operand(esp, 1 * kPointerSize));
|
| - }
|
| - __ test(scratch, Immediate(kSmiTagMask));
|
| - __ j(zero, &load_smi_2, not_taken);
|
| - __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset));
|
| - __ jmp(&done);
|
| -
|
| - __ bind(&load_smi_1);
|
| - __ SmiUntag(scratch);
|
| - __ push(scratch);
|
| - __ fild_s(Operand(esp, 0));
|
| - __ pop(scratch);
|
| - __ jmp(&done_load_1);
|
| -
|
| - __ bind(&load_smi_2);
|
| - __ SmiUntag(scratch);
|
| - __ push(scratch);
|
| - __ fild_s(Operand(esp, 0));
|
| - __ pop(scratch);
|
| -
|
| - __ bind(&done);
|
| -}
|
| -
|
| -
|
| -void FloatingPointHelper::LoadFloatSmis(MacroAssembler* masm,
|
| - Register scratch) {
|
| - const Register left = edx;
|
| - const Register right = eax;
|
| - __ mov(scratch, left);
|
| - ASSERT(!scratch.is(right)); // We're about to clobber scratch.
|
| - __ SmiUntag(scratch);
|
| - __ push(scratch);
|
| - __ fild_s(Operand(esp, 0));
|
| -
|
| - __ mov(scratch, right);
|
| - __ SmiUntag(scratch);
|
| - __ mov(Operand(esp, 0), scratch);
|
| - __ fild_s(Operand(esp, 0));
|
| - __ pop(scratch);
|
| -}
|
| -
|
| -
|
| -void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
|
| - Label* non_float,
|
| - Register scratch) {
|
| - Label test_other, done;
|
| - // Test if both operands are floats or smi -> scratch=k_is_float;
|
| - // Otherwise scratch = k_not_float.
|
| - __ test(edx, Immediate(kSmiTagMask));
|
| - __ j(zero, &test_other, not_taken); // argument in edx is OK
|
| - __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
|
| - __ cmp(scratch, Factory::heap_number_map());
|
| - __ j(not_equal, non_float); // argument in edx is not a number -> NaN
|
| -
|
| - __ bind(&test_other);
|
| - __ test(eax, Immediate(kSmiTagMask));
|
| - __ j(zero, &done); // argument in eax is OK
|
| - __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
|
| - __ cmp(scratch, Factory::heap_number_map());
|
| - __ j(not_equal, non_float); // argument in eax is not a number -> NaN
|
| -
|
| - // Fall-through: Both operands are numbers.
|
| - __ bind(&done);
|
| -}
|
| -
|
| -
|
| -void GenericUnaryOpStub::Generate(MacroAssembler* masm) {
|
| - Label slow, done;
|
| -
|
| - if (op_ == Token::SUB) {
|
| - // Check whether the value is a smi.
|
| - Label try_float;
|
| - __ test(eax, Immediate(kSmiTagMask));
|
| - __ j(not_zero, &try_float, not_taken);
|
| -
|
| - if (negative_zero_ == kStrictNegativeZero) {
|
| - // Go slow case if the value of the expression is zero
|
| - // to make sure that we switch between 0 and -0.
|
| - __ test(eax, Operand(eax));
|
| - __ j(zero, &slow, not_taken);
|
| - }
|
| -
|
| - // The value of the expression is a smi that is not zero. Try
|
| - // optimistic subtraction '0 - value'.
|
| - Label undo;
|
| - __ mov(edx, Operand(eax));
|
| - __ Set(eax, Immediate(0));
|
| - __ sub(eax, Operand(edx));
|
| - __ j(no_overflow, &done, taken);
|
| -
|
| - // Restore eax and go slow case.
|
| - __ bind(&undo);
|
| - __ mov(eax, Operand(edx));
|
| - __ jmp(&slow);
|
| -
|
| - // Try floating point case.
|
| - __ bind(&try_float);
|
| - __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset));
|
| - __ cmp(edx, Factory::heap_number_map());
|
| - __ j(not_equal, &slow);
|
| - if (overwrite_ == UNARY_OVERWRITE) {
|
| - __ mov(edx, FieldOperand(eax, HeapNumber::kExponentOffset));
|
| - __ xor_(edx, HeapNumber::kSignMask); // Flip sign.
|
| - __ mov(FieldOperand(eax, HeapNumber::kExponentOffset), edx);
|
| - } else {
|
| - __ mov(edx, Operand(eax));
|
| - // edx: operand
|
| - __ AllocateHeapNumber(eax, ebx, ecx, &undo);
|
| - // eax: allocated 'empty' number
|
| - __ mov(ecx, FieldOperand(edx, HeapNumber::kExponentOffset));
|
| - __ xor_(ecx, HeapNumber::kSignMask); // Flip sign.
|
| - __ mov(FieldOperand(eax, HeapNumber::kExponentOffset), ecx);
|
| - __ mov(ecx, FieldOperand(edx, HeapNumber::kMantissaOffset));
|
| - __ mov(FieldOperand(eax, HeapNumber::kMantissaOffset), ecx);
|
| - }
|
| - } else if (op_ == Token::BIT_NOT) {
|
| - // Check if the operand is a heap number.
|
| - __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset));
|
| - __ cmp(edx, Factory::heap_number_map());
|
| - __ j(not_equal, &slow, not_taken);
|
| -
|
| - // Convert the heap number in eax to an untagged integer in ecx.
|
| - IntegerConvert(masm,
|
| - eax,
|
| - TypeInfo::Unknown(),
|
| - CpuFeatures::IsSupported(SSE3),
|
| - &slow);
|
| -
|
| - // Do the bitwise operation and check if the result fits in a smi.
|
| - Label try_float;
|
| - __ not_(ecx);
|
| - __ cmp(ecx, 0xc0000000);
|
| - __ j(sign, &try_float, not_taken);
|
| -
|
| - // Tag the result as a smi and we're done.
|
| - STATIC_ASSERT(kSmiTagSize == 1);
|
| - __ lea(eax, Operand(ecx, times_2, kSmiTag));
|
| - __ jmp(&done);
|
| -
|
| - // Try to store the result in a heap number.
|
| - __ bind(&try_float);
|
| - if (overwrite_ == UNARY_NO_OVERWRITE) {
|
| - // Allocate a fresh heap number, but don't overwrite eax until
|
| - // we're sure we can do it without going through the slow case
|
| - // that needs the value in eax.
|
| - __ AllocateHeapNumber(ebx, edx, edi, &slow);
|
| - __ mov(eax, Operand(ebx));
|
| - }
|
| - if (CpuFeatures::IsSupported(SSE2)) {
|
| - CpuFeatures::Scope use_sse2(SSE2);
|
| - __ cvtsi2sd(xmm0, Operand(ecx));
|
| - __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
|
| - } else {
|
| - __ push(ecx);
|
| - __ fild_s(Operand(esp, 0));
|
| - __ pop(ecx);
|
| - __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
|
| - }
|
| - } else {
|
| - UNIMPLEMENTED();
|
| - }
|
| -
|
| - // Return from the stub.
|
| - __ bind(&done);
|
| - __ StubReturn(1);
|
| -
|
| - // Handle the slow case by jumping to the JavaScript builtin.
|
| - __ bind(&slow);
|
| - __ pop(ecx); // pop return address.
|
| - __ push(eax);
|
| - __ push(ecx); // push return address
|
| - switch (op_) {
|
| - case Token::SUB:
|
| - __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
|
| - break;
|
| - case Token::BIT_NOT:
|
| - __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
|
| - break;
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| -}
|
| -
|
| -
|
| -void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
|
| - // The key is in edx and the parameter count is in eax.
|
| -
|
| - // The displacement is used for skipping the frame pointer on the
|
| - // stack. It is the offset of the last parameter (if any) relative
|
| - // to the frame pointer.
|
| - static const int kDisplacement = 1 * kPointerSize;
|
| -
|
| - // Check that the key is a smi.
|
| - Label slow;
|
| - __ test(edx, Immediate(kSmiTagMask));
|
| - __ j(not_zero, &slow, not_taken);
|
| -
|
| - // Check if the calling frame is an arguments adaptor frame.
|
| - Label adaptor;
|
| - __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
|
| - __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset));
|
| - __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
|
| - __ j(equal, &adaptor);
|
| -
|
| - // Check index against formal parameters count limit passed in
|
| - // through register eax. Use unsigned comparison to get negative
|
| - // check for free.
|
| - __ cmp(edx, Operand(eax));
|
| - __ j(above_equal, &slow, not_taken);
|
| -
|
| - // Read the argument from the stack and return it.
|
| - STATIC_ASSERT(kSmiTagSize == 1);
|
| - STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
|
| - __ lea(ebx, Operand(ebp, eax, times_2, 0));
|
| - __ neg(edx);
|
| - __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
|
| - __ ret(0);
|
| -
|
| - // Arguments adaptor case: Check index against actual arguments
|
| - // limit found in the arguments adaptor frame. Use unsigned
|
| - // comparison to get negative check for free.
|
| - __ bind(&adaptor);
|
| - __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
| - __ cmp(edx, Operand(ecx));
|
| - __ j(above_equal, &slow, not_taken);
|
| -
|
| - // Read the argument from the stack and return it.
|
| - STATIC_ASSERT(kSmiTagSize == 1);
|
| - STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
|
| - __ lea(ebx, Operand(ebx, ecx, times_2, 0));
|
| - __ neg(edx);
|
| - __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
|
| - __ ret(0);
|
| -
|
| - // Slow-case: Handle non-smi or out-of-bounds access to arguments
|
| - // by calling the runtime system.
|
| - __ bind(&slow);
|
| - __ pop(ebx); // Return address.
|
| - __ push(edx);
|
| - __ push(ebx);
|
| - __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
|
| -}
|
| -
|
| -
|
| -void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
|
| - // esp[0] : return address
|
| - // esp[4] : number of parameters
|
| - // esp[8] : receiver displacement
|
| - // esp[16] : function
|
| -
|
| - // The displacement is used for skipping the return address and the
|
| - // frame pointer on the stack. It is the offset of the last
|
| - // parameter (if any) relative to the frame pointer.
|
| - static const int kDisplacement = 2 * kPointerSize;
|
| -
|
| - // Check if the calling frame is an arguments adaptor frame.
|
| - Label adaptor_frame, try_allocate, runtime;
|
| - __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
|
| - __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
|
| - __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
|
| - __ j(equal, &adaptor_frame);
|
| -
|
| - // Get the length from the frame.
|
| - __ mov(ecx, Operand(esp, 1 * kPointerSize));
|
| - __ jmp(&try_allocate);
|
| -
|
| - // Patch the arguments.length and the parameters pointer.
|
| - __ bind(&adaptor_frame);
|
| - __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
| - __ mov(Operand(esp, 1 * kPointerSize), ecx);
|
| - __ lea(edx, Operand(edx, ecx, times_2, kDisplacement));
|
| - __ mov(Operand(esp, 2 * kPointerSize), edx);
|
| -
|
| - // Try the new space allocation. Start out with computing the size of
|
| - // the arguments object and the elements array.
|
| - Label add_arguments_object;
|
| - __ bind(&try_allocate);
|
| - __ test(ecx, Operand(ecx));
|
| - __ j(zero, &add_arguments_object);
|
| - __ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize));
|
| - __ bind(&add_arguments_object);
|
| - __ add(Operand(ecx), Immediate(Heap::kArgumentsObjectSize));
|
| -
|
| - // Do the allocation of both objects in one go.
|
| - __ AllocateInNewSpace(ecx, eax, edx, ebx, &runtime, TAG_OBJECT);
|
| -
|
| - // Get the arguments boilerplate from the current (global) context.
|
| - int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
|
| - __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
|
| - __ mov(edi, FieldOperand(edi, GlobalObject::kGlobalContextOffset));
|
| - __ mov(edi, Operand(edi, offset));
|
| -
|
| - // Copy the JS object part.
|
| - for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
|
| - __ mov(ebx, FieldOperand(edi, i));
|
| - __ mov(FieldOperand(eax, i), ebx);
|
| - }
|
| -
|
| - // Setup the callee in-object property.
|
| - STATIC_ASSERT(Heap::arguments_callee_index == 0);
|
| - __ mov(ebx, Operand(esp, 3 * kPointerSize));
|
| - __ mov(FieldOperand(eax, JSObject::kHeaderSize), ebx);
|
| -
|
| - // Get the length (smi tagged) and set that as an in-object property too.
|
| - STATIC_ASSERT(Heap::arguments_length_index == 1);
|
| - __ mov(ecx, Operand(esp, 1 * kPointerSize));
|
| - __ mov(FieldOperand(eax, JSObject::kHeaderSize + kPointerSize), ecx);
|
| -
|
| - // If there are no actual arguments, we're done.
|
| - Label done;
|
| - __ test(ecx, Operand(ecx));
|
| - __ j(zero, &done);
|
| -
|
| - // Get the parameters pointer from the stack.
|
| - __ mov(edx, Operand(esp, 2 * kPointerSize));
|
| -
|
| - // Setup the elements pointer in the allocated arguments object and
|
| - // initialize the header in the elements fixed array.
|
| - __ lea(edi, Operand(eax, Heap::kArgumentsObjectSize));
|
| - __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
|
| - __ mov(FieldOperand(edi, FixedArray::kMapOffset),
|
| - Immediate(Factory::fixed_array_map()));
|
| - __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
|
| - // Untag the length for the loop below.
|
| - __ SmiUntag(ecx);
|
| -
|
| - // Copy the fixed array slots.
|
| - Label loop;
|
| - __ bind(&loop);
|
| - __ mov(ebx, Operand(edx, -1 * kPointerSize)); // Skip receiver.
|
| - __ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx);
|
| - __ add(Operand(edi), Immediate(kPointerSize));
|
| - __ sub(Operand(edx), Immediate(kPointerSize));
|
| - __ dec(ecx);
|
| - __ j(not_zero, &loop);
|
| -
|
| - // Return and remove the on-stack parameters.
|
| - __ bind(&done);
|
| - __ ret(3 * kPointerSize);
|
| -
|
| - // Do the runtime call to allocate the arguments object.
|
| - __ bind(&runtime);
|
| - __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
|
| -}
|
| -
|
| -
|
| -void RegExpExecStub::Generate(MacroAssembler* masm) {
|
| - // Just jump directly to runtime if native RegExp is not selected at compile
|
| - // time or if regexp entry in generated code is turned off runtime switch or
|
| - // at compilation.
|
| -#ifdef V8_INTERPRETED_REGEXP
|
| - __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
|
| -#else // V8_INTERPRETED_REGEXP
|
| - if (!FLAG_regexp_entry_native) {
|
| - __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
|
| - return;
|
| - }
|
| -
|
| - // Stack frame on entry.
|
| - // esp[0]: return address
|
| - // esp[4]: last_match_info (expected JSArray)
|
| - // esp[8]: previous index
|
| - // esp[12]: subject string
|
| - // esp[16]: JSRegExp object
|
| -
|
| - static const int kLastMatchInfoOffset = 1 * kPointerSize;
|
| - static const int kPreviousIndexOffset = 2 * kPointerSize;
|
| - static const int kSubjectOffset = 3 * kPointerSize;
|
| - static const int kJSRegExpOffset = 4 * kPointerSize;
|
| -
|
| - Label runtime, invoke_regexp;
|
| -
|
| - // Ensure that a RegExp stack is allocated.
|
| - ExternalReference address_of_regexp_stack_memory_address =
|
| - ExternalReference::address_of_regexp_stack_memory_address();
|
| - ExternalReference address_of_regexp_stack_memory_size =
|
| - ExternalReference::address_of_regexp_stack_memory_size();
|
| - __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
|
| - __ test(ebx, Operand(ebx));
|
| - __ j(zero, &runtime, not_taken);
|
| -
|
| - // Check that the first argument is a JSRegExp object.
|
| - __ mov(eax, Operand(esp, kJSRegExpOffset));
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - __ test(eax, Immediate(kSmiTagMask));
|
| - __ j(zero, &runtime);
|
| - __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx);
|
| - __ j(not_equal, &runtime);
|
| - // Check that the RegExp has been compiled (data contains a fixed array).
|
| - __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
|
| - if (FLAG_debug_code) {
|
| - __ test(ecx, Immediate(kSmiTagMask));
|
| - __ Check(not_zero, "Unexpected type for RegExp data, FixedArray expected");
|
| - __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx);
|
| - __ Check(equal, "Unexpected type for RegExp data, FixedArray expected");
|
| - }
|
| -
|
| - // ecx: RegExp data (FixedArray)
|
| - // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
|
| - __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset));
|
| - __ cmp(Operand(ebx), Immediate(Smi::FromInt(JSRegExp::IRREGEXP)));
|
| - __ j(not_equal, &runtime);
|
| -
|
| - // ecx: RegExp data (FixedArray)
|
| - // Check that the number of captures fit in the static offsets vector buffer.
|
| - __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
|
| - // Calculate number of capture registers (number_of_captures + 1) * 2. This
|
| - // uses the asumption that smis are 2 * their untagged value.
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
|
| - __ add(Operand(edx), Immediate(2)); // edx was a smi.
|
| - // Check that the static offsets vector buffer is large enough.
|
| - __ cmp(edx, OffsetsVector::kStaticOffsetsVectorSize);
|
| - __ j(above, &runtime);
|
| -
|
| - // ecx: RegExp data (FixedArray)
|
| - // edx: Number of capture registers
|
| - // Check that the second argument is a string.
|
| - __ mov(eax, Operand(esp, kSubjectOffset));
|
| - __ test(eax, Immediate(kSmiTagMask));
|
| - __ j(zero, &runtime);
|
| - Condition is_string = masm->IsObjectStringType(eax, ebx, ebx);
|
| - __ j(NegateCondition(is_string), &runtime);
|
| - // Get the length of the string to ebx.
|
| - __ mov(ebx, FieldOperand(eax, String::kLengthOffset));
|
| -
|
| - // ebx: Length of subject string as a smi
|
| - // ecx: RegExp data (FixedArray)
|
| - // edx: Number of capture registers
|
| - // Check that the third argument is a positive smi less than the subject
|
| - // string length. A negative value will be greater (unsigned comparison).
|
| - __ mov(eax, Operand(esp, kPreviousIndexOffset));
|
| - __ test(eax, Immediate(kSmiTagMask));
|
| - __ j(not_zero, &runtime);
|
| - __ cmp(eax, Operand(ebx));
|
| - __ j(above_equal, &runtime);
|
| -
|
| - // ecx: RegExp data (FixedArray)
|
| - // edx: Number of capture registers
|
| - // Check that the fourth object is a JSArray object.
|
| - __ mov(eax, Operand(esp, kLastMatchInfoOffset));
|
| - __ test(eax, Immediate(kSmiTagMask));
|
| - __ j(zero, &runtime);
|
| - __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx);
|
| - __ j(not_equal, &runtime);
|
| - // Check that the JSArray is in fast case.
|
| - __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset));
|
| - __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset));
|
| - __ cmp(eax, Factory::fixed_array_map());
|
| - __ j(not_equal, &runtime);
|
| - // Check that the last match info has space for the capture registers and the
|
| - // additional information.
|
| - __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset));
|
| - __ SmiUntag(eax);
|
| - __ add(Operand(edx), Immediate(RegExpImpl::kLastMatchOverhead));
|
| - __ cmp(edx, Operand(eax));
|
| - __ j(greater, &runtime);
|
| -
|
| - // ecx: RegExp data (FixedArray)
|
| - // Check the representation and encoding of the subject string.
|
| - Label seq_ascii_string, seq_two_byte_string, check_code;
|
| - __ mov(eax, Operand(esp, kSubjectOffset));
|
| - __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
|
| - __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
|
| - // First check for flat two byte string.
|
| - __ and_(ebx,
|
| - kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask);
|
| - STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
|
| - __ j(zero, &seq_two_byte_string);
|
| - // Any other flat string must be a flat ascii string.
|
| - __ test(Operand(ebx),
|
| - Immediate(kIsNotStringMask | kStringRepresentationMask));
|
| - __ j(zero, &seq_ascii_string);
|
| -
|
| - // Check for flat cons string.
|
| - // A flat cons string is a cons string where the second part is the empty
|
| - // string. In that case the subject string is just the first part of the cons
|
| - // string. Also in this case the first part of the cons string is known to be
|
| - // a sequential string or an external string.
|
| - STATIC_ASSERT(kExternalStringTag != 0);
|
| - STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0);
|
| - __ test(Operand(ebx),
|
| - Immediate(kIsNotStringMask | kExternalStringTag));
|
| - __ j(not_zero, &runtime);
|
| - // String is a cons string.
|
| - __ mov(edx, FieldOperand(eax, ConsString::kSecondOffset));
|
| - __ cmp(Operand(edx), Factory::empty_string());
|
| - __ j(not_equal, &runtime);
|
| - __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset));
|
| - __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
|
| - // String is a cons string with empty second part.
|
| - // eax: first part of cons string.
|
| - // ebx: map of first part of cons string.
|
| - // Is first part a flat two byte string?
|
| - __ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset),
|
| - kStringRepresentationMask | kStringEncodingMask);
|
| - STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
|
| - __ j(zero, &seq_two_byte_string);
|
| - // Any other flat string must be ascii.
|
| - __ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset),
|
| - kStringRepresentationMask);
|
| - __ j(not_zero, &runtime);
|
| -
|
| - __ bind(&seq_ascii_string);
|
| - // eax: subject string (flat ascii)
|
| - // ecx: RegExp data (FixedArray)
|
| - __ mov(edx, FieldOperand(ecx, JSRegExp::kDataAsciiCodeOffset));
|
| - __ Set(edi, Immediate(1)); // Type is ascii.
|
| - __ jmp(&check_code);
|
| -
|
| - __ bind(&seq_two_byte_string);
|
| - // eax: subject string (flat two byte)
|
| - // ecx: RegExp data (FixedArray)
|
| - __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset));
|
| - __ Set(edi, Immediate(0)); // Type is two byte.
|
| -
|
| - __ bind(&check_code);
|
| - // Check that the irregexp code has been generated for the actual string
|
| - // encoding. If it has, the field contains a code object otherwise it contains
|
| - // the hole.
|
| - __ CmpObjectType(edx, CODE_TYPE, ebx);
|
| - __ j(not_equal, &runtime);
|
| -
|
| - // eax: subject string
|
| - // edx: code
|
| - // edi: encoding of subject string (1 if ascii, 0 if two_byte);
|
| - // Load used arguments before starting to push arguments for call to native
|
| - // RegExp code to avoid handling changing stack height.
|
| - __ mov(ebx, Operand(esp, kPreviousIndexOffset));
|
| - __ SmiUntag(ebx); // Previous index from smi.
|
| -
|
| - // eax: subject string
|
| - // ebx: previous index
|
| - // edx: code
|
| - // edi: encoding of subject string (1 if ascii 0 if two_byte);
|
| - // All checks done. Now push arguments for native regexp code.
|
| - __ IncrementCounter(&Counters::regexp_entry_native, 1);
|
| -
|
| - static const int kRegExpExecuteArguments = 7;
|
| - __ PrepareCallCFunction(kRegExpExecuteArguments, ecx);
|
| -
|
| - // Argument 7: Indicate that this is a direct call from JavaScript.
|
| - __ mov(Operand(esp, 6 * kPointerSize), Immediate(1));
|
| -
|
| - // Argument 6: Start (high end) of backtracking stack memory area.
|
| - __ mov(ecx, Operand::StaticVariable(address_of_regexp_stack_memory_address));
|
| - __ add(ecx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
|
| - __ mov(Operand(esp, 5 * kPointerSize), ecx);
|
| -
|
| - // Argument 5: static offsets vector buffer.
|
| - __ mov(Operand(esp, 4 * kPointerSize),
|
| - Immediate(ExternalReference::address_of_static_offsets_vector()));
|
| -
|
| - // Argument 4: End of string data
|
| - // Argument 3: Start of string data
|
| - Label setup_two_byte, setup_rest;
|
| - __ test(edi, Operand(edi));
|
| - __ mov(edi, FieldOperand(eax, String::kLengthOffset));
|
| - __ j(zero, &setup_two_byte);
|
| - __ SmiUntag(edi);
|
| - __ lea(ecx, FieldOperand(eax, edi, times_1, SeqAsciiString::kHeaderSize));
|
| - __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
|
| - __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqAsciiString::kHeaderSize));
|
| - __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
|
| - __ jmp(&setup_rest);
|
| -
|
| - __ bind(&setup_two_byte);
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - STATIC_ASSERT(kSmiTagSize == 1); // edi is smi (powered by 2).
|
| - __ lea(ecx, FieldOperand(eax, edi, times_1, SeqTwoByteString::kHeaderSize));
|
| - __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
|
| - __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize));
|
| - __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
|
| -
|
| - __ bind(&setup_rest);
|
| -
|
| - // Argument 2: Previous index.
|
| - __ mov(Operand(esp, 1 * kPointerSize), ebx);
|
| -
|
| - // Argument 1: Subject string.
|
| - __ mov(Operand(esp, 0 * kPointerSize), eax);
|
| -
|
| - // Locate the code entry and call it.
|
| - __ add(Operand(edx), Immediate(Code::kHeaderSize - kHeapObjectTag));
|
| - __ CallCFunction(edx, kRegExpExecuteArguments);
|
| -
|
| - // Check the result.
|
| - Label success;
|
| - __ cmp(eax, NativeRegExpMacroAssembler::SUCCESS);
|
| - __ j(equal, &success, taken);
|
| - Label failure;
|
| - __ cmp(eax, NativeRegExpMacroAssembler::FAILURE);
|
| - __ j(equal, &failure, taken);
|
| - __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION);
|
| - // If not exception it can only be retry. Handle that in the runtime system.
|
| - __ j(not_equal, &runtime);
|
| - // Result must now be exception. If there is no pending exception already a
|
| - // stack overflow (on the backtrack stack) was detected in RegExp code but
|
| - // haven't created the exception yet. Handle that in the runtime system.
|
| - // TODO(592): Rerunning the RegExp to get the stack overflow exception.
|
| - ExternalReference pending_exception(Top::k_pending_exception_address);
|
| - __ mov(eax,
|
| - Operand::StaticVariable(ExternalReference::the_hole_value_location()));
|
| - __ cmp(eax, Operand::StaticVariable(pending_exception));
|
| - __ j(equal, &runtime);
|
| - __ bind(&failure);
|
| - // For failure and exception return null.
|
| - __ mov(Operand(eax), Factory::null_value());
|
| - __ ret(4 * kPointerSize);
|
| -
|
| - // Load RegExp data.
|
| - __ bind(&success);
|
| - __ mov(eax, Operand(esp, kJSRegExpOffset));
|
| - __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
|
| - __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
|
| - // Calculate number of capture registers (number_of_captures + 1) * 2.
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
|
| - __ add(Operand(edx), Immediate(2)); // edx was a smi.
|
| -
|
| - // edx: Number of capture registers
|
| - // Load last_match_info which is still known to be a fast case JSArray.
|
| - __ mov(eax, Operand(esp, kLastMatchInfoOffset));
|
| - __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset));
|
| -
|
| - // ebx: last_match_info backing store (FixedArray)
|
| - // edx: number of capture registers
|
| - // Store the capture count.
|
| - __ SmiTag(edx); // Number of capture registers to smi.
|
| - __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx);
|
| - __ SmiUntag(edx); // Number of capture registers back from smi.
|
| - // Store last subject and last input.
|
| - __ mov(eax, Operand(esp, kSubjectOffset));
|
| - __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax);
|
| - __ mov(ecx, ebx);
|
| - __ RecordWrite(ecx, RegExpImpl::kLastSubjectOffset, eax, edi);
|
| - __ mov(eax, Operand(esp, kSubjectOffset));
|
| - __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax);
|
| - __ mov(ecx, ebx);
|
| - __ RecordWrite(ecx, RegExpImpl::kLastInputOffset, eax, edi);
|
| -
|
| - // Get the static offsets vector filled by the native regexp code.
|
| - ExternalReference address_of_static_offsets_vector =
|
| - ExternalReference::address_of_static_offsets_vector();
|
| - __ mov(ecx, Immediate(address_of_static_offsets_vector));
|
| -
|
| - // ebx: last_match_info backing store (FixedArray)
|
| - // ecx: offsets vector
|
| - // edx: number of capture registers
|
| - Label next_capture, done;
|
| - // Capture register counter starts from number of capture registers and
|
| - // counts down until wraping after zero.
|
| - __ bind(&next_capture);
|
| - __ sub(Operand(edx), Immediate(1));
|
| - __ j(negative, &done);
|
| - // Read the value from the static offsets vector buffer.
|
| - __ mov(edi, Operand(ecx, edx, times_int_size, 0));
|
| - __ SmiTag(edi);
|
| - // Store the smi value in the last match info.
|
| - __ mov(FieldOperand(ebx,
|
| - edx,
|
| - times_pointer_size,
|
| - RegExpImpl::kFirstCaptureOffset),
|
| - edi);
|
| - __ jmp(&next_capture);
|
| - __ bind(&done);
|
| -
|
| - // Return last match info.
|
| - __ mov(eax, Operand(esp, kLastMatchInfoOffset));
|
| - __ ret(4 * kPointerSize);
|
| -
|
| - // Do the runtime call to execute the regexp.
|
| - __ bind(&runtime);
|
| - __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
|
| -#endif // V8_INTERPRETED_REGEXP
|
| -}
|
| -
|
| -
|
| -void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
|
| - Register object,
|
| - Register result,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - bool object_is_smi,
|
| - Label* not_found) {
|
| - // Use of registers. Register result is used as a temporary.
|
| - Register number_string_cache = result;
|
| - Register mask = scratch1;
|
| - Register scratch = scratch2;
|
| -
|
| - // Load the number string cache.
|
| - ExternalReference roots_address = ExternalReference::roots_address();
|
| - __ mov(scratch, Immediate(Heap::kNumberStringCacheRootIndex));
|
| - __ mov(number_string_cache,
|
| - Operand::StaticArray(scratch, times_pointer_size, roots_address));
|
| - // Make the hash mask from the length of the number string cache. It
|
| - // contains two elements (number and string) for each cache entry.
|
| - __ mov(mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset));
|
| - __ shr(mask, kSmiTagSize + 1); // Untag length and divide it by two.
|
| - __ sub(Operand(mask), Immediate(1)); // Make mask.
|
| -
|
| - // Calculate the entry in the number string cache. The hash value in the
|
| - // number string cache for smis is just the smi value, and the hash for
|
| - // doubles is the xor of the upper and lower words. See
|
| - // Heap::GetNumberStringCache.
|
| - Label smi_hash_calculated;
|
| - Label load_result_from_cache;
|
| - if (object_is_smi) {
|
| - __ mov(scratch, object);
|
| - __ SmiUntag(scratch);
|
| - } else {
|
| - Label not_smi, hash_calculated;
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - __ test(object, Immediate(kSmiTagMask));
|
| - __ j(not_zero, ¬_smi);
|
| - __ mov(scratch, object);
|
| - __ SmiUntag(scratch);
|
| - __ jmp(&smi_hash_calculated);
|
| - __ bind(¬_smi);
|
| - __ cmp(FieldOperand(object, HeapObject::kMapOffset),
|
| - Factory::heap_number_map());
|
| - __ j(not_equal, not_found);
|
| - STATIC_ASSERT(8 == kDoubleSize);
|
| - __ mov(scratch, FieldOperand(object, HeapNumber::kValueOffset));
|
| - __ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
|
| - // Object is heap number and hash is now in scratch. Calculate cache index.
|
| - __ and_(scratch, Operand(mask));
|
| - Register index = scratch;
|
| - Register probe = mask;
|
| - __ mov(probe,
|
| - FieldOperand(number_string_cache,
|
| - index,
|
| - times_twice_pointer_size,
|
| - FixedArray::kHeaderSize));
|
| - __ test(probe, Immediate(kSmiTagMask));
|
| - __ j(zero, not_found);
|
| - if (CpuFeatures::IsSupported(SSE2)) {
|
| - CpuFeatures::Scope fscope(SSE2);
|
| - __ movdbl(xmm0, FieldOperand(object, HeapNumber::kValueOffset));
|
| - __ movdbl(xmm1, FieldOperand(probe, HeapNumber::kValueOffset));
|
| - __ ucomisd(xmm0, xmm1);
|
| - } else {
|
| - __ fld_d(FieldOperand(object, HeapNumber::kValueOffset));
|
| - __ fld_d(FieldOperand(probe, HeapNumber::kValueOffset));
|
| - __ FCmp();
|
| - }
|
| - __ j(parity_even, not_found); // Bail out if NaN is involved.
|
| - __ j(not_equal, not_found); // The cache did not contain this value.
|
| - __ jmp(&load_result_from_cache);
|
| - }
|
| -
|
| - __ bind(&smi_hash_calculated);
|
| - // Object is smi and hash is now in scratch. Calculate cache index.
|
| - __ and_(scratch, Operand(mask));
|
| - Register index = scratch;
|
| - // Check if the entry is the smi we are looking for.
|
| - __ cmp(object,
|
| - FieldOperand(number_string_cache,
|
| - index,
|
| - times_twice_pointer_size,
|
| - FixedArray::kHeaderSize));
|
| - __ j(not_equal, not_found);
|
| -
|
| - // Get the result from the cache.
|
| - __ bind(&load_result_from_cache);
|
| - __ mov(result,
|
| - FieldOperand(number_string_cache,
|
| - index,
|
| - times_twice_pointer_size,
|
| - FixedArray::kHeaderSize + kPointerSize));
|
| - __ IncrementCounter(&Counters::number_to_string_native, 1);
|
| -}
|
| -
|
| -
|
| -void NumberToStringStub::Generate(MacroAssembler* masm) {
|
| - Label runtime;
|
| -
|
| - __ mov(ebx, Operand(esp, kPointerSize));
|
| -
|
| - // Generate code to lookup number in the number string cache.
|
| - GenerateLookupNumberStringCache(masm, ebx, eax, ecx, edx, false, &runtime);
|
| - __ ret(1 * kPointerSize);
|
| -
|
| - __ bind(&runtime);
|
| - // Handle number to string in the runtime system if not found in the cache.
|
| - __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1);
|
| -}
|
| -
|
| -
|
| -static int NegativeComparisonResult(Condition cc) {
|
| - ASSERT(cc != equal);
|
| - ASSERT((cc == less) || (cc == less_equal)
|
| - || (cc == greater) || (cc == greater_equal));
|
| - return (cc == greater || cc == greater_equal) ? LESS : GREATER;
|
| -}
|
| -
|
| -
|
| -void CompareStub::Generate(MacroAssembler* masm) {
|
| - ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
|
| -
|
| - Label check_unequal_objects, done;
|
| -
|
| - // NOTICE! This code is only reached after a smi-fast-case check, so
|
| - // it is certain that at least one operand isn't a smi.
|
| -
|
| - // Identical objects can be compared fast, but there are some tricky cases
|
| - // for NaN and undefined.
|
| - {
|
| - Label not_identical;
|
| - __ cmp(eax, Operand(edx));
|
| - __ j(not_equal, ¬_identical);
|
| -
|
| - if (cc_ != equal) {
|
| - // Check for undefined. undefined OP undefined is false even though
|
| - // undefined == undefined.
|
| - Label check_for_nan;
|
| - __ cmp(edx, Factory::undefined_value());
|
| - __ j(not_equal, &check_for_nan);
|
| - __ Set(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc_))));
|
| - __ ret(0);
|
| - __ bind(&check_for_nan);
|
| - }
|
| -
|
| - // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
|
| - // so we do the second best thing - test it ourselves.
|
| - // Note: if cc_ != equal, never_nan_nan_ is not used.
|
| - if (never_nan_nan_ && (cc_ == equal)) {
|
| - __ Set(eax, Immediate(Smi::FromInt(EQUAL)));
|
| - __ ret(0);
|
| - } else {
|
| - Label heap_number;
|
| - __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
|
| - Immediate(Factory::heap_number_map()));
|
| - __ j(equal, &heap_number);
|
| - if (cc_ != equal) {
|
| - // Call runtime on identical JSObjects. Otherwise return equal.
|
| - __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx);
|
| - __ j(above_equal, ¬_identical);
|
| - }
|
| - __ Set(eax, Immediate(Smi::FromInt(EQUAL)));
|
| - __ ret(0);
|
| -
|
| - __ bind(&heap_number);
|
| - // It is a heap number, so return non-equal if it's NaN and equal if
|
| - // it's not NaN.
|
| - // The representation of NaN values has all exponent bits (52..62) set,
|
| - // and not all mantissa bits (0..51) clear.
|
| - // We only accept QNaNs, which have bit 51 set.
|
| - // Read top bits of double representation (second word of value).
|
| -
|
| - // Value is a QNaN if value & kQuietNaNMask == kQuietNaNMask, i.e.,
|
| - // all bits in the mask are set. We only need to check the word
|
| - // that contains the exponent and high bit of the mantissa.
|
| - STATIC_ASSERT(((kQuietNaNHighBitsMask << 1) & 0x80000000u) != 0);
|
| - __ mov(edx, FieldOperand(edx, HeapNumber::kExponentOffset));
|
| - __ xor_(eax, Operand(eax));
|
| - // Shift value and mask so kQuietNaNHighBitsMask applies to topmost
|
| - // bits.
|
| - __ add(edx, Operand(edx));
|
| - __ cmp(edx, kQuietNaNHighBitsMask << 1);
|
| - if (cc_ == equal) {
|
| - STATIC_ASSERT(EQUAL != 1);
|
| - __ setcc(above_equal, eax);
|
| - __ ret(0);
|
| - } else {
|
| - Label nan;
|
| - __ j(above_equal, &nan);
|
| - __ Set(eax, Immediate(Smi::FromInt(EQUAL)));
|
| - __ ret(0);
|
| - __ bind(&nan);
|
| - __ Set(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc_))));
|
| - __ ret(0);
|
| - }
|
| - }
|
| -
|
| - __ bind(¬_identical);
|
| - }
|
| -
|
| - // Strict equality can quickly decide whether objects are equal.
|
| - // Non-strict object equality is slower, so it is handled later in the stub.
|
| - if (cc_ == equal && strict_) {
|
| - Label slow; // Fallthrough label.
|
| - Label not_smis;
|
| - // If we're doing a strict equality comparison, we don't have to do
|
| - // type conversion, so we generate code to do fast comparison for objects
|
| - // and oddballs. Non-smi numbers and strings still go through the usual
|
| - // slow-case code.
|
| - // If either is a Smi (we know that not both are), then they can only
|
| - // be equal if the other is a HeapNumber. If so, use the slow case.
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - ASSERT_EQ(0, Smi::FromInt(0));
|
| - __ mov(ecx, Immediate(kSmiTagMask));
|
| - __ and_(ecx, Operand(eax));
|
| - __ test(ecx, Operand(edx));
|
| - __ j(not_zero, ¬_smis);
|
| - // One operand is a smi.
|
| -
|
| - // Check whether the non-smi is a heap number.
|
| - STATIC_ASSERT(kSmiTagMask == 1);
|
| - // ecx still holds eax & kSmiTag, which is either zero or one.
|
| - __ sub(Operand(ecx), Immediate(0x01));
|
| - __ mov(ebx, edx);
|
| - __ xor_(ebx, Operand(eax));
|
| - __ and_(ebx, Operand(ecx)); // ebx holds either 0 or eax ^ edx.
|
| - __ xor_(ebx, Operand(eax));
|
| - // if eax was smi, ebx is now edx, else eax.
|
| -
|
| - // Check if the non-smi operand is a heap number.
|
| - __ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
|
| - Immediate(Factory::heap_number_map()));
|
| - // If heap number, handle it in the slow case.
|
| - __ j(equal, &slow);
|
| - // Return non-equal (ebx is not zero)
|
| - __ mov(eax, ebx);
|
| - __ ret(0);
|
| -
|
| - __ bind(¬_smis);
|
| - // If either operand is a JSObject or an oddball value, then they are not
|
| - // equal since their pointers are different
|
| - // There is no test for undetectability in strict equality.
|
| -
|
| - // Get the type of the first operand.
|
| - // If the first object is a JS object, we have done pointer comparison.
|
| - Label first_non_object;
|
| - STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
|
| - __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx);
|
| - __ j(below, &first_non_object);
|
| -
|
| - // Return non-zero (eax is not zero)
|
| - Label return_not_equal;
|
| - STATIC_ASSERT(kHeapObjectTag != 0);
|
| - __ bind(&return_not_equal);
|
| - __ ret(0);
|
| -
|
| - __ bind(&first_non_object);
|
| - // Check for oddballs: true, false, null, undefined.
|
| - __ CmpInstanceType(ecx, ODDBALL_TYPE);
|
| - __ j(equal, &return_not_equal);
|
| -
|
| - __ CmpObjectType(edx, FIRST_JS_OBJECT_TYPE, ecx);
|
| - __ j(above_equal, &return_not_equal);
|
| -
|
| - // Check for oddballs: true, false, null, undefined.
|
| - __ CmpInstanceType(ecx, ODDBALL_TYPE);
|
| - __ j(equal, &return_not_equal);
|
| -
|
| - // Fall through to the general case.
|
| - __ bind(&slow);
|
| - }
|
| -
|
| - // Generate the number comparison code.
|
| - if (include_number_compare_) {
|
| - Label non_number_comparison;
|
| - Label unordered;
|
| - if (CpuFeatures::IsSupported(SSE2)) {
|
| - CpuFeatures::Scope use_sse2(SSE2);
|
| - CpuFeatures::Scope use_cmov(CMOV);
|
| -
|
| - FloatingPointHelper::LoadSSE2Operands(masm, &non_number_comparison);
|
| - __ ucomisd(xmm0, xmm1);
|
| -
|
| - // Don't base result on EFLAGS when a NaN is involved.
|
| - __ j(parity_even, &unordered, not_taken);
|
| - // Return a result of -1, 0, or 1, based on EFLAGS.
|
| - __ mov(eax, 0); // equal
|
| - __ mov(ecx, Immediate(Smi::FromInt(1)));
|
| - __ cmov(above, eax, Operand(ecx));
|
| - __ mov(ecx, Immediate(Smi::FromInt(-1)));
|
| - __ cmov(below, eax, Operand(ecx));
|
| - __ ret(0);
|
| - } else {
|
| - FloatingPointHelper::CheckFloatOperands(
|
| - masm, &non_number_comparison, ebx);
|
| - FloatingPointHelper::LoadFloatOperand(masm, eax);
|
| - FloatingPointHelper::LoadFloatOperand(masm, edx);
|
| - __ FCmp();
|
| -
|
| - // Don't base result on EFLAGS when a NaN is involved.
|
| - __ j(parity_even, &unordered, not_taken);
|
| -
|
| - Label below_label, above_label;
|
| - // Return a result of -1, 0, or 1, based on EFLAGS.
|
| - __ j(below, &below_label, not_taken);
|
| - __ j(above, &above_label, not_taken);
|
| -
|
| - __ xor_(eax, Operand(eax));
|
| - __ ret(0);
|
| -
|
| - __ bind(&below_label);
|
| - __ mov(eax, Immediate(Smi::FromInt(-1)));
|
| - __ ret(0);
|
| -
|
| - __ bind(&above_label);
|
| - __ mov(eax, Immediate(Smi::FromInt(1)));
|
| - __ ret(0);
|
| - }
|
| -
|
| - // If one of the numbers was NaN, then the result is always false.
|
| - // The cc is never not-equal.
|
| - __ bind(&unordered);
|
| - ASSERT(cc_ != not_equal);
|
| - if (cc_ == less || cc_ == less_equal) {
|
| - __ mov(eax, Immediate(Smi::FromInt(1)));
|
| - } else {
|
| - __ mov(eax, Immediate(Smi::FromInt(-1)));
|
| - }
|
| - __ ret(0);
|
| -
|
| - // The number comparison code did not provide a valid result.
|
| - __ bind(&non_number_comparison);
|
| - }
|
| -
|
| - // Fast negative check for symbol-to-symbol equality.
|
| - Label check_for_strings;
|
| - if (cc_ == equal) {
|
| - BranchIfNonSymbol(masm, &check_for_strings, eax, ecx);
|
| - BranchIfNonSymbol(masm, &check_for_strings, edx, ecx);
|
| -
|
| - // We've already checked for object identity, so if both operands
|
| - // are symbols they aren't equal. Register eax already holds a
|
| - // non-zero value, which indicates not equal, so just return.
|
| - __ ret(0);
|
| - }
|
| -
|
| - __ bind(&check_for_strings);
|
| -
|
| - __ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx,
|
| - &check_unequal_objects);
|
| -
|
| - // Inline comparison of ascii strings.
|
| - StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
|
| - edx,
|
| - eax,
|
| - ecx,
|
| - ebx,
|
| - edi);
|
| -#ifdef DEBUG
|
| - __ Abort("Unexpected fall-through from string comparison");
|
| -#endif
|
| -
|
| - __ bind(&check_unequal_objects);
|
| - if (cc_ == equal && !strict_) {
|
| - // Non-strict equality. Objects are unequal if
|
| - // they are both JSObjects and not undetectable,
|
| - // and their pointers are different.
|
| - Label not_both_objects;
|
| - Label return_unequal;
|
| - // At most one is a smi, so we can test for smi by adding the two.
|
| - // A smi plus a heap object has the low bit set, a heap object plus
|
| - // a heap object has the low bit clear.
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - STATIC_ASSERT(kSmiTagMask == 1);
|
| - __ lea(ecx, Operand(eax, edx, times_1, 0));
|
| - __ test(ecx, Immediate(kSmiTagMask));
|
| - __ j(not_zero, ¬_both_objects);
|
| - __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx);
|
| - __ j(below, ¬_both_objects);
|
| - __ CmpObjectType(edx, FIRST_JS_OBJECT_TYPE, ebx);
|
| - __ j(below, ¬_both_objects);
|
| - // We do not bail out after this point. Both are JSObjects, and
|
| - // they are equal if and only if both are undetectable.
|
| - // The and of the undetectable flags is 1 if and only if they are equal.
|
| - __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
|
| - 1 << Map::kIsUndetectable);
|
| - __ j(zero, &return_unequal);
|
| - __ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
|
| - 1 << Map::kIsUndetectable);
|
| - __ j(zero, &return_unequal);
|
| - // The objects are both undetectable, so they both compare as the value
|
| - // undefined, and are equal.
|
| - __ Set(eax, Immediate(EQUAL));
|
| - __ bind(&return_unequal);
|
| - // Return non-equal by returning the non-zero object pointer in eax,
|
| - // or return equal if we fell through to here.
|
| - __ ret(0); // rax, rdx were pushed
|
| - __ bind(¬_both_objects);
|
| - }
|
| -
|
| - // Push arguments below the return address.
|
| - __ pop(ecx);
|
| - __ push(edx);
|
| - __ push(eax);
|
| -
|
| - // Figure out which native to call and setup the arguments.
|
| - Builtins::JavaScript builtin;
|
| - if (cc_ == equal) {
|
| - builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
|
| - } else {
|
| - builtin = Builtins::COMPARE;
|
| - __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc_))));
|
| - }
|
| -
|
| - // Restore return address on the stack.
|
| - __ push(ecx);
|
| -
|
| - // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
|
| - // tagged as a small integer.
|
| - __ InvokeBuiltin(builtin, JUMP_FUNCTION);
|
| -}
|
| -
|
| -
|
| -void CompareStub::BranchIfNonSymbol(MacroAssembler* masm,
|
| - Label* label,
|
| - Register object,
|
| - Register scratch) {
|
| - __ test(object, Immediate(kSmiTagMask));
|
| - __ j(zero, label);
|
| - __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset));
|
| - __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
|
| - __ and_(scratch, kIsSymbolMask | kIsNotStringMask);
|
| - __ cmp(scratch, kSymbolTag | kStringTag);
|
| - __ j(not_equal, label);
|
| -}
|
| -
|
| -
|
| -void StackCheckStub::Generate(MacroAssembler* masm) {
|
| - // Because builtins always remove the receiver from the stack, we
|
| - // have to fake one to avoid underflowing the stack. The receiver
|
| - // must be inserted below the return address on the stack so we
|
| - // temporarily store that in a register.
|
| - __ pop(eax);
|
| - __ push(Immediate(Smi::FromInt(0)));
|
| - __ push(eax);
|
| -
|
| - // Do tail-call to runtime routine.
|
| - __ TailCallRuntime(Runtime::kStackGuard, 1, 1);
|
| -}
|
| -
|
| -
|
| -void CallFunctionStub::Generate(MacroAssembler* masm) {
|
| - Label slow;
|
| -
|
| - // If the receiver might be a value (string, number or boolean) check for this
|
| - // and box it if it is.
|
| - if (ReceiverMightBeValue()) {
|
| - // Get the receiver from the stack.
|
| - // +1 ~ return address
|
| - Label receiver_is_value, receiver_is_js_object;
|
| - __ mov(eax, Operand(esp, (argc_ + 1) * kPointerSize));
|
| -
|
| - // Check if receiver is a smi (which is a number value).
|
| - __ test(eax, Immediate(kSmiTagMask));
|
| - __ j(zero, &receiver_is_value, not_taken);
|
| -
|
| - // Check if the receiver is a valid JS object.
|
| - __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, edi);
|
| - __ j(above_equal, &receiver_is_js_object);
|
| -
|
| - // Call the runtime to box the value.
|
| - __ bind(&receiver_is_value);
|
| - __ EnterInternalFrame();
|
| - __ push(eax);
|
| - __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
|
| - __ LeaveInternalFrame();
|
| - __ mov(Operand(esp, (argc_ + 1) * kPointerSize), eax);
|
| -
|
| - __ bind(&receiver_is_js_object);
|
| - }
|
| -
|
| - // Get the function to call from the stack.
|
| - // +2 ~ receiver, return address
|
| - __ mov(edi, Operand(esp, (argc_ + 2) * kPointerSize));
|
| -
|
| - // Check that the function really is a JavaScript function.
|
| - __ test(edi, Immediate(kSmiTagMask));
|
| - __ j(zero, &slow, not_taken);
|
| - // Goto slow case if we do not have a function.
|
| - __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
|
| - __ j(not_equal, &slow, not_taken);
|
| -
|
| - // Fast-case: Just invoke the function.
|
| - ParameterCount actual(argc_);
|
| - __ InvokeFunction(edi, actual, JUMP_FUNCTION);
|
| -
|
| - // Slow-case: Non-function called.
|
| - __ bind(&slow);
|
| - // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
|
| - // of the original receiver from the call site).
|
| - __ mov(Operand(esp, (argc_ + 1) * kPointerSize), edi);
|
| - __ Set(eax, Immediate(argc_));
|
| - __ Set(ebx, Immediate(0));
|
| - __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
|
| - Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline));
|
| - __ jmp(adaptor, RelocInfo::CODE_TARGET);
|
| -}
|
| -
|
| -
|
| -void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
|
| - // eax holds the exception.
|
| -
|
| - // Adjust this code if not the case.
|
| - STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
|
| -
|
| - // Drop the sp to the top of the handler.
|
| - ExternalReference handler_address(Top::k_handler_address);
|
| - __ mov(esp, Operand::StaticVariable(handler_address));
|
| -
|
| - // Restore next handler and frame pointer, discard handler state.
|
| - STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
| - __ pop(Operand::StaticVariable(handler_address));
|
| - STATIC_ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize);
|
| - __ pop(ebp);
|
| - __ pop(edx); // Remove state.
|
| -
|
| - // Before returning we restore the context from the frame pointer if
|
| - // not NULL. The frame pointer is NULL in the exception handler of
|
| - // a JS entry frame.
|
| - __ xor_(esi, Operand(esi)); // Tentatively set context pointer to NULL.
|
| - Label skip;
|
| - __ cmp(ebp, 0);
|
| - __ j(equal, &skip, not_taken);
|
| - __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
|
| - __ bind(&skip);
|
| -
|
| - STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
|
| - __ ret(0);
|
| -}
|
| -
|
| -
|
| -// If true, a Handle<T> passed by value is passed and returned by
|
| -// using the location_ field directly. If false, it is passed and
|
| -// returned as a pointer to a handle.
|
| -#ifdef USING_BSD_ABI
|
| -static const bool kPassHandlesDirectly = true;
|
| -#else
|
| -static const bool kPassHandlesDirectly = false;
|
| -#endif
|
| -
|
| -
|
| -void ApiGetterEntryStub::Generate(MacroAssembler* masm) {
|
| - Label empty_handle;
|
| - Label prologue;
|
| - Label promote_scheduled_exception;
|
| - __ EnterApiExitFrame(ExitFrame::MODE_NORMAL, kStackSpace, kArgc);
|
| - STATIC_ASSERT(kArgc == 4);
|
| - if (kPassHandlesDirectly) {
|
| - // When handles as passed directly we don't have to allocate extra
|
| - // space for and pass an out parameter.
|
| - __ mov(Operand(esp, 0 * kPointerSize), ebx); // name.
|
| - __ mov(Operand(esp, 1 * kPointerSize), eax); // arguments pointer.
|
| - } else {
|
| - // The function expects three arguments to be passed but we allocate
|
| - // four to get space for the output cell. The argument slots are filled
|
| - // as follows:
|
| - //
|
| - // 3: output cell
|
| - // 2: arguments pointer
|
| - // 1: name
|
| - // 0: pointer to the output cell
|
| - //
|
| - // Note that this is one more "argument" than the function expects
|
| - // so the out cell will have to be popped explicitly after returning
|
| - // from the function.
|
| - __ mov(Operand(esp, 1 * kPointerSize), ebx); // name.
|
| - __ mov(Operand(esp, 2 * kPointerSize), eax); // arguments pointer.
|
| - __ mov(ebx, esp);
|
| - __ add(Operand(ebx), Immediate(3 * kPointerSize));
|
| - __ mov(Operand(esp, 0 * kPointerSize), ebx); // output
|
| - __ mov(Operand(esp, 3 * kPointerSize), Immediate(0)); // out cell.
|
| - }
|
| - // Call the api function!
|
| - __ call(fun()->address(), RelocInfo::RUNTIME_ENTRY);
|
| - // Check if the function scheduled an exception.
|
| - ExternalReference scheduled_exception_address =
|
| - ExternalReference::scheduled_exception_address();
|
| - __ cmp(Operand::StaticVariable(scheduled_exception_address),
|
| - Immediate(Factory::the_hole_value()));
|
| - __ j(not_equal, &promote_scheduled_exception, not_taken);
|
| - if (!kPassHandlesDirectly) {
|
| - // The returned value is a pointer to the handle holding the result.
|
| - // Dereference this to get to the location.
|
| - __ mov(eax, Operand(eax, 0));
|
| - }
|
| - // Check if the result handle holds 0.
|
| - __ test(eax, Operand(eax));
|
| - __ j(zero, &empty_handle, not_taken);
|
| - // It was non-zero. Dereference to get the result value.
|
| - __ mov(eax, Operand(eax, 0));
|
| - __ bind(&prologue);
|
| - __ LeaveExitFrame(ExitFrame::MODE_NORMAL);
|
| - __ ret(0);
|
| - __ bind(&promote_scheduled_exception);
|
| - __ TailCallRuntime(Runtime::kPromoteScheduledException, 0, 1);
|
| - __ bind(&empty_handle);
|
| - // It was zero; the result is undefined.
|
| - __ mov(eax, Factory::undefined_value());
|
| - __ jmp(&prologue);
|
| -}
|
| -
|
| -
|
| -void CEntryStub::GenerateCore(MacroAssembler* masm,
|
| - Label* throw_normal_exception,
|
| - Label* throw_termination_exception,
|
| - Label* throw_out_of_memory_exception,
|
| - bool do_gc,
|
| - bool always_allocate_scope,
|
| - int /* alignment_skew */) {
|
| - // eax: result parameter for PerformGC, if any
|
| - // ebx: pointer to C function (C callee-saved)
|
| - // ebp: frame pointer (restored after C call)
|
| - // esp: stack pointer (restored after C call)
|
| - // edi: number of arguments including receiver (C callee-saved)
|
| - // esi: pointer to the first argument (C callee-saved)
|
| -
|
| - // Result returned in eax, or eax+edx if result_size_ is 2.
|
| -
|
| - // Check stack alignment.
|
| - if (FLAG_debug_code) {
|
| - __ CheckStackAlignment();
|
| - }
|
| -
|
| - if (do_gc) {
|
| - // Pass failure code returned from last attempt as first argument to
|
| - // PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the
|
| - // stack alignment is known to be correct. This function takes one argument
|
| - // which is passed on the stack, and we know that the stack has been
|
| - // prepared to pass at least one argument.
|
| - __ mov(Operand(esp, 0 * kPointerSize), eax); // Result.
|
| - __ call(FUNCTION_ADDR(Runtime::PerformGC), RelocInfo::RUNTIME_ENTRY);
|
| - }
|
| -
|
| - ExternalReference scope_depth =
|
| - ExternalReference::heap_always_allocate_scope_depth();
|
| - if (always_allocate_scope) {
|
| - __ inc(Operand::StaticVariable(scope_depth));
|
| - }
|
| -
|
| - // Call C function.
|
| - __ mov(Operand(esp, 0 * kPointerSize), edi); // argc.
|
| - __ mov(Operand(esp, 1 * kPointerSize), esi); // argv.
|
| - __ call(Operand(ebx));
|
| - // Result is in eax or edx:eax - do not destroy these registers!
|
| -
|
| - if (always_allocate_scope) {
|
| - __ dec(Operand::StaticVariable(scope_depth));
|
| - }
|
| -
|
| - // Make sure we're not trying to return 'the hole' from the runtime
|
| - // call as this may lead to crashes in the IC code later.
|
| - if (FLAG_debug_code) {
|
| - Label okay;
|
| - __ cmp(eax, Factory::the_hole_value());
|
| - __ j(not_equal, &okay);
|
| - __ int3();
|
| - __ bind(&okay);
|
| - }
|
| -
|
| - // Check for failure result.
|
| - Label failure_returned;
|
| - STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
|
| - __ lea(ecx, Operand(eax, 1));
|
| - // Lower 2 bits of ecx are 0 iff eax has failure tag.
|
| - __ test(ecx, Immediate(kFailureTagMask));
|
| - __ j(zero, &failure_returned, not_taken);
|
| -
|
| - // Exit the JavaScript to C++ exit frame.
|
| - __ LeaveExitFrame(mode_);
|
| - __ ret(0);
|
| -
|
| - // Handling of failure.
|
| - __ bind(&failure_returned);
|
| -
|
| - Label retry;
|
| - // If the returned exception is RETRY_AFTER_GC continue at retry label
|
| - STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
|
| - __ test(eax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
|
| - __ j(zero, &retry, taken);
|
| -
|
| - // Special handling of out of memory exceptions.
|
| - __ cmp(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException()));
|
| - __ j(equal, throw_out_of_memory_exception);
|
| -
|
| - // Retrieve the pending exception and clear the variable.
|
| - ExternalReference pending_exception_address(Top::k_pending_exception_address);
|
| - __ mov(eax, Operand::StaticVariable(pending_exception_address));
|
| - __ mov(edx,
|
| - Operand::StaticVariable(ExternalReference::the_hole_value_location()));
|
| - __ mov(Operand::StaticVariable(pending_exception_address), edx);
|
| -
|
| - // Special handling of termination exceptions which are uncatchable
|
| - // by javascript code.
|
| - __ cmp(eax, Factory::termination_exception());
|
| - __ j(equal, throw_termination_exception);
|
| -
|
| - // Handle normal exception.
|
| - __ jmp(throw_normal_exception);
|
| -
|
| - // Retry.
|
| - __ bind(&retry);
|
| -}
|
| -
|
| -
|
| -void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
|
| - UncatchableExceptionType type) {
|
| - // Adjust this code if not the case.
|
| - STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
|
| -
|
| - // Drop sp to the top stack handler.
|
| - ExternalReference handler_address(Top::k_handler_address);
|
| - __ mov(esp, Operand::StaticVariable(handler_address));
|
| -
|
| - // Unwind the handlers until the ENTRY handler is found.
|
| - Label loop, done;
|
| - __ bind(&loop);
|
| - // Load the type of the current stack handler.
|
| - const int kStateOffset = StackHandlerConstants::kStateOffset;
|
| - __ cmp(Operand(esp, kStateOffset), Immediate(StackHandler::ENTRY));
|
| - __ j(equal, &done);
|
| - // Fetch the next handler in the list.
|
| - const int kNextOffset = StackHandlerConstants::kNextOffset;
|
| - __ mov(esp, Operand(esp, kNextOffset));
|
| - __ jmp(&loop);
|
| - __ bind(&done);
|
| -
|
| - // Set the top handler address to next handler past the current ENTRY handler.
|
| - STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
| - __ pop(Operand::StaticVariable(handler_address));
|
| -
|
| - if (type == OUT_OF_MEMORY) {
|
| - // Set external caught exception to false.
|
| - ExternalReference external_caught(Top::k_external_caught_exception_address);
|
| - __ mov(eax, false);
|
| - __ mov(Operand::StaticVariable(external_caught), eax);
|
| -
|
| - // Set pending exception and eax to out of memory exception.
|
| - ExternalReference pending_exception(Top::k_pending_exception_address);
|
| - __ mov(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException()));
|
| - __ mov(Operand::StaticVariable(pending_exception), eax);
|
| - }
|
| -
|
| - // Clear the context pointer.
|
| - __ xor_(esi, Operand(esi));
|
| -
|
| - // Restore fp from handler and discard handler state.
|
| - STATIC_ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize);
|
| - __ pop(ebp);
|
| - __ pop(edx); // State.
|
| -
|
| - STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
|
| - __ ret(0);
|
| -}
|
| -
|
| -
|
| -void CEntryStub::Generate(MacroAssembler* masm) {
|
| - // eax: number of arguments including receiver
|
| - // ebx: pointer to C function (C callee-saved)
|
| - // ebp: frame pointer (restored after C call)
|
| - // esp: stack pointer (restored after C call)
|
| - // esi: current context (C callee-saved)
|
| - // edi: JS function of the caller (C callee-saved)
|
| -
|
| - // NOTE: Invocations of builtins may return failure objects instead
|
| - // of a proper result. The builtin entry handles this by performing
|
| - // a garbage collection and retrying the builtin (twice).
|
| -
|
| - // Enter the exit frame that transitions from JavaScript to C++.
|
| - __ EnterExitFrame(mode_);
|
| -
|
| - // eax: result parameter for PerformGC, if any (setup below)
|
| - // ebx: pointer to builtin function (C callee-saved)
|
| - // ebp: frame pointer (restored after C call)
|
| - // esp: stack pointer (restored after C call)
|
| - // edi: number of arguments including receiver (C callee-saved)
|
| - // esi: argv pointer (C callee-saved)
|
| -
|
| - Label throw_normal_exception;
|
| - Label throw_termination_exception;
|
| - Label throw_out_of_memory_exception;
|
| -
|
| - // Call into the runtime system.
|
| - GenerateCore(masm,
|
| - &throw_normal_exception,
|
| - &throw_termination_exception,
|
| - &throw_out_of_memory_exception,
|
| - false,
|
| - false);
|
| -
|
| - // Do space-specific GC and retry runtime call.
|
| - GenerateCore(masm,
|
| - &throw_normal_exception,
|
| - &throw_termination_exception,
|
| - &throw_out_of_memory_exception,
|
| - true,
|
| - false);
|
| -
|
| - // Do full GC and retry runtime call one final time.
|
| - Failure* failure = Failure::InternalError();
|
| - __ mov(eax, Immediate(reinterpret_cast<int32_t>(failure)));
|
| - GenerateCore(masm,
|
| - &throw_normal_exception,
|
| - &throw_termination_exception,
|
| - &throw_out_of_memory_exception,
|
| - true,
|
| - true);
|
| -
|
| - __ bind(&throw_out_of_memory_exception);
|
| - GenerateThrowUncatchable(masm, OUT_OF_MEMORY);
|
| -
|
| - __ bind(&throw_termination_exception);
|
| - GenerateThrowUncatchable(masm, TERMINATION);
|
| -
|
| - __ bind(&throw_normal_exception);
|
| - GenerateThrowTOS(masm);
|
| -}
|
| -
|
| -
|
| -void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
|
| - Label invoke, exit;
|
| -#ifdef ENABLE_LOGGING_AND_PROFILING
|
| - Label not_outermost_js, not_outermost_js_2;
|
| -#endif
|
| -
|
| - // Setup frame.
|
| - __ push(ebp);
|
| - __ mov(ebp, Operand(esp));
|
| -
|
| - // Push marker in two places.
|
| - int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
|
| - __ push(Immediate(Smi::FromInt(marker))); // context slot
|
| - __ push(Immediate(Smi::FromInt(marker))); // function slot
|
| - // Save callee-saved registers (C calling conventions).
|
| - __ push(edi);
|
| - __ push(esi);
|
| - __ push(ebx);
|
| -
|
| - // Save copies of the top frame descriptor on the stack.
|
| - ExternalReference c_entry_fp(Top::k_c_entry_fp_address);
|
| - __ push(Operand::StaticVariable(c_entry_fp));
|
| -
|
| -#ifdef ENABLE_LOGGING_AND_PROFILING
|
| - // If this is the outermost JS call, set js_entry_sp value.
|
| - ExternalReference js_entry_sp(Top::k_js_entry_sp_address);
|
| - __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0));
|
| - __ j(not_equal, ¬_outermost_js);
|
| - __ mov(Operand::StaticVariable(js_entry_sp), ebp);
|
| - __ bind(¬_outermost_js);
|
| -#endif
|
| -
|
| - // Call a faked try-block that does the invoke.
|
| - __ call(&invoke);
|
| -
|
| - // Caught exception: Store result (exception) in the pending
|
| - // exception field in the JSEnv and return a failure sentinel.
|
| - ExternalReference pending_exception(Top::k_pending_exception_address);
|
| - __ mov(Operand::StaticVariable(pending_exception), eax);
|
| - __ mov(eax, reinterpret_cast<int32_t>(Failure::Exception()));
|
| - __ jmp(&exit);
|
| -
|
| - // Invoke: Link this frame into the handler chain.
|
| - __ bind(&invoke);
|
| - __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
|
| -
|
| - // Clear any pending exceptions.
|
| - __ mov(edx,
|
| - Operand::StaticVariable(ExternalReference::the_hole_value_location()));
|
| - __ mov(Operand::StaticVariable(pending_exception), edx);
|
| -
|
| - // Fake a receiver (NULL).
|
| - __ push(Immediate(0)); // receiver
|
| -
|
| - // Invoke the function by calling through JS entry trampoline
|
| - // builtin and pop the faked function when we return. Notice that we
|
| - // cannot store a reference to the trampoline code directly in this
|
| - // stub, because the builtin stubs may not have been generated yet.
|
| - if (is_construct) {
|
| - ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline);
|
| - __ mov(edx, Immediate(construct_entry));
|
| - } else {
|
| - ExternalReference entry(Builtins::JSEntryTrampoline);
|
| - __ mov(edx, Immediate(entry));
|
| - }
|
| - __ mov(edx, Operand(edx, 0)); // deref address
|
| - __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
|
| - __ call(Operand(edx));
|
| -
|
| - // Unlink this frame from the handler chain.
|
| - __ pop(Operand::StaticVariable(ExternalReference(Top::k_handler_address)));
|
| - // Pop next_sp.
|
| - __ add(Operand(esp), Immediate(StackHandlerConstants::kSize - kPointerSize));
|
| -
|
| -#ifdef ENABLE_LOGGING_AND_PROFILING
|
| - // If current EBP value is the same as js_entry_sp value, it means that
|
| - // the current function is the outermost.
|
| - __ cmp(ebp, Operand::StaticVariable(js_entry_sp));
|
| - __ j(not_equal, ¬_outermost_js_2);
|
| - __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0));
|
| - __ bind(¬_outermost_js_2);
|
| -#endif
|
| -
|
| - // Restore the top frame descriptor from the stack.
|
| - __ bind(&exit);
|
| - __ pop(Operand::StaticVariable(ExternalReference(Top::k_c_entry_fp_address)));
|
| -
|
| - // Restore callee-saved registers (C calling conventions).
|
| - __ pop(ebx);
|
| - __ pop(esi);
|
| - __ pop(edi);
|
| - __ add(Operand(esp), Immediate(2 * kPointerSize)); // remove markers
|
| -
|
| - // Restore frame pointer and return.
|
| - __ pop(ebp);
|
| - __ ret(0);
|
| -}
|
| -
|
| -
|
| -void InstanceofStub::Generate(MacroAssembler* masm) {
|
| - // Get the object - go slow case if it's a smi.
|
| - Label slow;
|
| - __ mov(eax, Operand(esp, 2 * kPointerSize)); // 2 ~ return address, function
|
| - __ test(eax, Immediate(kSmiTagMask));
|
| - __ j(zero, &slow, not_taken);
|
| -
|
| - // Check that the left hand is a JS object.
|
| - __ IsObjectJSObjectType(eax, eax, edx, &slow);
|
| -
|
| - // Get the prototype of the function.
|
| - __ mov(edx, Operand(esp, 1 * kPointerSize)); // 1 ~ return address
|
| - // edx is function, eax is map.
|
| -
|
| - // Look up the function and the map in the instanceof cache.
|
| - Label miss;
|
| - ExternalReference roots_address = ExternalReference::roots_address();
|
| - __ mov(ecx, Immediate(Heap::kInstanceofCacheFunctionRootIndex));
|
| - __ cmp(edx, Operand::StaticArray(ecx, times_pointer_size, roots_address));
|
| - __ j(not_equal, &miss);
|
| - __ mov(ecx, Immediate(Heap::kInstanceofCacheMapRootIndex));
|
| - __ cmp(eax, Operand::StaticArray(ecx, times_pointer_size, roots_address));
|
| - __ j(not_equal, &miss);
|
| - __ mov(ecx, Immediate(Heap::kInstanceofCacheAnswerRootIndex));
|
| - __ mov(eax, Operand::StaticArray(ecx, times_pointer_size, roots_address));
|
| - __ ret(2 * kPointerSize);
|
| -
|
| - __ bind(&miss);
|
| - __ TryGetFunctionPrototype(edx, ebx, ecx, &slow);
|
| -
|
| - // Check that the function prototype is a JS object.
|
| - __ test(ebx, Immediate(kSmiTagMask));
|
| - __ j(zero, &slow, not_taken);
|
| - __ IsObjectJSObjectType(ebx, ecx, ecx, &slow);
|
| -
|
| - // Register mapping:
|
| - // eax is object map.
|
| - // edx is function.
|
| - // ebx is function prototype.
|
| - __ mov(ecx, Immediate(Heap::kInstanceofCacheMapRootIndex));
|
| - __ mov(Operand::StaticArray(ecx, times_pointer_size, roots_address), eax);
|
| - __ mov(ecx, Immediate(Heap::kInstanceofCacheFunctionRootIndex));
|
| - __ mov(Operand::StaticArray(ecx, times_pointer_size, roots_address), edx);
|
| -
|
| - __ mov(ecx, FieldOperand(eax, Map::kPrototypeOffset));
|
| -
|
| - // Loop through the prototype chain looking for the function prototype.
|
| - Label loop, is_instance, is_not_instance;
|
| - __ bind(&loop);
|
| - __ cmp(ecx, Operand(ebx));
|
| - __ j(equal, &is_instance);
|
| - __ cmp(Operand(ecx), Immediate(Factory::null_value()));
|
| - __ j(equal, &is_not_instance);
|
| - __ mov(ecx, FieldOperand(ecx, HeapObject::kMapOffset));
|
| - __ mov(ecx, FieldOperand(ecx, Map::kPrototypeOffset));
|
| - __ jmp(&loop);
|
| -
|
| - __ bind(&is_instance);
|
| - __ Set(eax, Immediate(0));
|
| - __ mov(ecx, Immediate(Heap::kInstanceofCacheAnswerRootIndex));
|
| - __ mov(Operand::StaticArray(ecx, times_pointer_size, roots_address), eax);
|
| - __ ret(2 * kPointerSize);
|
| -
|
| - __ bind(&is_not_instance);
|
| - __ Set(eax, Immediate(Smi::FromInt(1)));
|
| - __ mov(ecx, Immediate(Heap::kInstanceofCacheAnswerRootIndex));
|
| - __ mov(Operand::StaticArray(ecx, times_pointer_size, roots_address), eax);
|
| - __ ret(2 * kPointerSize);
|
| -
|
| - // Slow-case: Go through the JavaScript implementation.
|
| - __ bind(&slow);
|
| - __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
|
| -}
|
| -
|
| -
|
| -int CompareStub::MinorKey() {
|
| - // Encode the three parameters in a unique 16 bit value. To avoid duplicate
|
| - // stubs the never NaN NaN condition is only taken into account if the
|
| - // condition is equals.
|
| - ASSERT(static_cast<unsigned>(cc_) < (1 << 12));
|
| - ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
|
| - return ConditionField::encode(static_cast<unsigned>(cc_))
|
| - | RegisterField::encode(false) // lhs_ and rhs_ are not used
|
| - | StrictField::encode(strict_)
|
| - | NeverNanNanField::encode(cc_ == equal ? never_nan_nan_ : false)
|
| - | IncludeNumberCompareField::encode(include_number_compare_);
|
| -}
|
| -
|
| -
|
| -// Unfortunately you have to run without snapshots to see most of these
|
| -// names in the profile since most compare stubs end up in the snapshot.
|
| -const char* CompareStub::GetName() {
|
| - ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
|
| -
|
| - if (name_ != NULL) return name_;
|
| - const int kMaxNameLength = 100;
|
| - name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength);
|
| - if (name_ == NULL) return "OOM";
|
| -
|
| - const char* cc_name;
|
| - switch (cc_) {
|
| - case less: cc_name = "LT"; break;
|
| - case greater: cc_name = "GT"; break;
|
| - case less_equal: cc_name = "LE"; break;
|
| - case greater_equal: cc_name = "GE"; break;
|
| - case equal: cc_name = "EQ"; break;
|
| - case not_equal: cc_name = "NE"; break;
|
| - default: cc_name = "UnknownCondition"; break;
|
| - }
|
| -
|
| - const char* strict_name = "";
|
| - if (strict_ && (cc_ == equal || cc_ == not_equal)) {
|
| - strict_name = "_STRICT";
|
| - }
|
| -
|
| - const char* never_nan_nan_name = "";
|
| - if (never_nan_nan_ && (cc_ == equal || cc_ == not_equal)) {
|
| - never_nan_nan_name = "_NO_NAN";
|
| - }
|
| -
|
| - const char* include_number_compare_name = "";
|
| - if (!include_number_compare_) {
|
| - include_number_compare_name = "_NO_NUMBER";
|
| - }
|
| -
|
| - OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
|
| - "CompareStub_%s%s%s%s",
|
| - cc_name,
|
| - strict_name,
|
| - never_nan_nan_name,
|
| - include_number_compare_name);
|
| - return name_;
|
| -}
|
| -
|
| -
|
| -// -------------------------------------------------------------------------
|
| -// StringCharCodeAtGenerator
|
| -
|
| -void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
|
| - Label flat_string;
|
| - Label ascii_string;
|
| - Label got_char_code;
|
| -
|
| - // If the receiver is a smi trigger the non-string case.
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - __ test(object_, Immediate(kSmiTagMask));
|
| - __ j(zero, receiver_not_string_);
|
| -
|
| - // Fetch the instance type of the receiver into result register.
|
| - __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
|
| - __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
|
| - // If the receiver is not a string trigger the non-string case.
|
| - __ test(result_, Immediate(kIsNotStringMask));
|
| - __ j(not_zero, receiver_not_string_);
|
| -
|
| - // If the index is non-smi trigger the non-smi case.
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - __ test(index_, Immediate(kSmiTagMask));
|
| - __ j(not_zero, &index_not_smi_);
|
| -
|
| - // Put smi-tagged index into scratch register.
|
| - __ mov(scratch_, index_);
|
| - __ bind(&got_smi_index_);
|
| -
|
| - // Check for index out of range.
|
| - __ cmp(scratch_, FieldOperand(object_, String::kLengthOffset));
|
| - __ j(above_equal, index_out_of_range_);
|
| -
|
| - // We need special handling for non-flat strings.
|
| - STATIC_ASSERT(kSeqStringTag == 0);
|
| - __ test(result_, Immediate(kStringRepresentationMask));
|
| - __ j(zero, &flat_string);
|
| -
|
| - // Handle non-flat strings.
|
| - __ test(result_, Immediate(kIsConsStringMask));
|
| - __ j(zero, &call_runtime_);
|
| -
|
| - // ConsString.
|
| - // Check whether the right hand side is the empty string (i.e. if
|
| - // this is really a flat string in a cons string). If that is not
|
| - // the case we would rather go to the runtime system now to flatten
|
| - // the string.
|
| - __ cmp(FieldOperand(object_, ConsString::kSecondOffset),
|
| - Immediate(Factory::empty_string()));
|
| - __ j(not_equal, &call_runtime_);
|
| - // Get the first of the two strings and load its instance type.
|
| - __ mov(object_, FieldOperand(object_, ConsString::kFirstOffset));
|
| - __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
|
| - __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
|
| - // If the first cons component is also non-flat, then go to runtime.
|
| - STATIC_ASSERT(kSeqStringTag == 0);
|
| - __ test(result_, Immediate(kStringRepresentationMask));
|
| - __ j(not_zero, &call_runtime_);
|
| -
|
| - // Check for 1-byte or 2-byte string.
|
| - __ bind(&flat_string);
|
| - STATIC_ASSERT(kAsciiStringTag != 0);
|
| - __ test(result_, Immediate(kStringEncodingMask));
|
| - __ j(not_zero, &ascii_string);
|
| -
|
| - // 2-byte string.
|
| - // Load the 2-byte character code into the result register.
|
| - STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
|
| - __ movzx_w(result_, FieldOperand(object_,
|
| - scratch_, times_1, // Scratch is smi-tagged.
|
| - SeqTwoByteString::kHeaderSize));
|
| - __ jmp(&got_char_code);
|
| -
|
| - // ASCII string.
|
| - // Load the byte into the result register.
|
| - __ bind(&ascii_string);
|
| - __ SmiUntag(scratch_);
|
| - __ movzx_b(result_, FieldOperand(object_,
|
| - scratch_, times_1,
|
| - SeqAsciiString::kHeaderSize));
|
| - __ bind(&got_char_code);
|
| - __ SmiTag(result_);
|
| - __ bind(&exit_);
|
| -}
|
| -
|
| -
|
| -void StringCharCodeAtGenerator::GenerateSlow(
|
| - MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
|
| - __ Abort("Unexpected fallthrough to CharCodeAt slow case");
|
| -
|
| - // Index is not a smi.
|
| - __ bind(&index_not_smi_);
|
| - // If index is a heap number, try converting it to an integer.
|
| - __ CheckMap(index_, Factory::heap_number_map(), index_not_number_, true);
|
| - call_helper.BeforeCall(masm);
|
| - __ push(object_);
|
| - __ push(index_);
|
| - __ push(index_); // Consumed by runtime conversion function.
|
| - if (index_flags_ == STRING_INDEX_IS_NUMBER) {
|
| - __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
|
| - } else {
|
| - ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
|
| - // NumberToSmi discards numbers that are not exact integers.
|
| - __ CallRuntime(Runtime::kNumberToSmi, 1);
|
| - }
|
| - if (!scratch_.is(eax)) {
|
| - // Save the conversion result before the pop instructions below
|
| - // have a chance to overwrite it.
|
| - __ mov(scratch_, eax);
|
| - }
|
| - __ pop(index_);
|
| - __ pop(object_);
|
| - // Reload the instance type.
|
| - __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
|
| - __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
|
| - call_helper.AfterCall(masm);
|
| - // If index is still not a smi, it must be out of range.
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - __ test(scratch_, Immediate(kSmiTagMask));
|
| - __ j(not_zero, index_out_of_range_);
|
| - // Otherwise, return to the fast path.
|
| - __ jmp(&got_smi_index_);
|
| -
|
| - // Call runtime. We get here when the receiver is a string and the
|
| - // index is a number, but the code of getting the actual character
|
| - // is too complex (e.g., when the string needs to be flattened).
|
| - __ bind(&call_runtime_);
|
| - call_helper.BeforeCall(masm);
|
| - __ push(object_);
|
| - __ push(index_);
|
| - __ CallRuntime(Runtime::kStringCharCodeAt, 2);
|
| - if (!result_.is(eax)) {
|
| - __ mov(result_, eax);
|
| - }
|
| - call_helper.AfterCall(masm);
|
| - __ jmp(&exit_);
|
| -
|
| - __ Abort("Unexpected fallthrough from CharCodeAt slow case");
|
| -}
|
| -
|
| -
|
| -// -------------------------------------------------------------------------
|
| -// StringCharFromCodeGenerator
|
| -
|
| -void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
|
| - // Fast case of Heap::LookupSingleCharacterStringFromCode.
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - STATIC_ASSERT(kSmiShiftSize == 0);
|
| - ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1));
|
| - __ test(code_,
|
| - Immediate(kSmiTagMask |
|
| - ((~String::kMaxAsciiCharCode) << kSmiTagSize)));
|
| - __ j(not_zero, &slow_case_, not_taken);
|
| -
|
| - __ Set(result_, Immediate(Factory::single_character_string_cache()));
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - STATIC_ASSERT(kSmiTagSize == 1);
|
| - STATIC_ASSERT(kSmiShiftSize == 0);
|
| - // At this point code register contains smi tagged ascii char code.
|
| - __ mov(result_, FieldOperand(result_,
|
| - code_, times_half_pointer_size,
|
| - FixedArray::kHeaderSize));
|
| - __ cmp(result_, Factory::undefined_value());
|
| - __ j(equal, &slow_case_, not_taken);
|
| - __ bind(&exit_);
|
| -}
|
| -
|
| -
|
| -void StringCharFromCodeGenerator::GenerateSlow(
|
| - MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
|
| - __ Abort("Unexpected fallthrough to CharFromCode slow case");
|
| -
|
| - __ bind(&slow_case_);
|
| - call_helper.BeforeCall(masm);
|
| - __ push(code_);
|
| - __ CallRuntime(Runtime::kCharFromCode, 1);
|
| - if (!result_.is(eax)) {
|
| - __ mov(result_, eax);
|
| - }
|
| - call_helper.AfterCall(masm);
|
| - __ jmp(&exit_);
|
| -
|
| - __ Abort("Unexpected fallthrough from CharFromCode slow case");
|
| -}
|
| -
|
| -
|
| -// -------------------------------------------------------------------------
|
| -// StringCharAtGenerator
|
| -
|
| -void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
|
| - char_code_at_generator_.GenerateFast(masm);
|
| - char_from_code_generator_.GenerateFast(masm);
|
| -}
|
| -
|
| -
|
| -void StringCharAtGenerator::GenerateSlow(
|
| - MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
|
| - char_code_at_generator_.GenerateSlow(masm, call_helper);
|
| - char_from_code_generator_.GenerateSlow(masm, call_helper);
|
| -}
|
| -
|
| -
|
| -void StringAddStub::Generate(MacroAssembler* masm) {
|
| - Label string_add_runtime;
|
| -
|
| - // Load the two arguments.
|
| - __ mov(eax, Operand(esp, 2 * kPointerSize)); // First argument.
|
| - __ mov(edx, Operand(esp, 1 * kPointerSize)); // Second argument.
|
| -
|
| - // Make sure that both arguments are strings if not known in advance.
|
| - if (string_check_) {
|
| - __ test(eax, Immediate(kSmiTagMask));
|
| - __ j(zero, &string_add_runtime);
|
| - __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, ebx);
|
| - __ j(above_equal, &string_add_runtime);
|
| -
|
| - // First argument is a a string, test second.
|
| - __ test(edx, Immediate(kSmiTagMask));
|
| - __ j(zero, &string_add_runtime);
|
| - __ CmpObjectType(edx, FIRST_NONSTRING_TYPE, ebx);
|
| - __ j(above_equal, &string_add_runtime);
|
| - }
|
| -
|
| - // Both arguments are strings.
|
| - // eax: first string
|
| - // edx: second string
|
| - // Check if either of the strings are empty. In that case return the other.
|
| - Label second_not_zero_length, both_not_zero_length;
|
| - __ mov(ecx, FieldOperand(edx, String::kLengthOffset));
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - __ test(ecx, Operand(ecx));
|
| - __ j(not_zero, &second_not_zero_length);
|
| - // Second string is empty, result is first string which is already in eax.
|
| - __ IncrementCounter(&Counters::string_add_native, 1);
|
| - __ ret(2 * kPointerSize);
|
| - __ bind(&second_not_zero_length);
|
| - __ mov(ebx, FieldOperand(eax, String::kLengthOffset));
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - __ test(ebx, Operand(ebx));
|
| - __ j(not_zero, &both_not_zero_length);
|
| - // First string is empty, result is second string which is in edx.
|
| - __ mov(eax, edx);
|
| - __ IncrementCounter(&Counters::string_add_native, 1);
|
| - __ ret(2 * kPointerSize);
|
| -
|
| - // Both strings are non-empty.
|
| - // eax: first string
|
| - // ebx: length of first string as a smi
|
| - // ecx: length of second string as a smi
|
| - // edx: second string
|
| - // Look at the length of the result of adding the two strings.
|
| - Label string_add_flat_result, longer_than_two;
|
| - __ bind(&both_not_zero_length);
|
| - __ add(ebx, Operand(ecx));
|
| - STATIC_ASSERT(Smi::kMaxValue == String::kMaxLength);
|
| - // Handle exceptionally long strings in the runtime system.
|
| - __ j(overflow, &string_add_runtime);
|
| - // Use the runtime system when adding two one character strings, as it
|
| - // contains optimizations for this specific case using the symbol table.
|
| - __ cmp(Operand(ebx), Immediate(Smi::FromInt(2)));
|
| - __ j(not_equal, &longer_than_two);
|
| -
|
| - // Check that both strings are non-external ascii strings.
|
| - __ JumpIfNotBothSequentialAsciiStrings(eax, edx, ebx, ecx,
|
| - &string_add_runtime);
|
| -
|
| - // Get the two characters forming the sub string.
|
| - __ movzx_b(ebx, FieldOperand(eax, SeqAsciiString::kHeaderSize));
|
| - __ movzx_b(ecx, FieldOperand(edx, SeqAsciiString::kHeaderSize));
|
| -
|
| - // Try to lookup two character string in symbol table. If it is not found
|
| - // just allocate a new one.
|
| - Label make_two_character_string, make_flat_ascii_string;
|
| - StringHelper::GenerateTwoCharacterSymbolTableProbe(
|
| - masm, ebx, ecx, eax, edx, edi, &make_two_character_string);
|
| - __ IncrementCounter(&Counters::string_add_native, 1);
|
| - __ ret(2 * kPointerSize);
|
| -
|
| - __ bind(&make_two_character_string);
|
| - __ Set(ebx, Immediate(Smi::FromInt(2)));
|
| - __ jmp(&make_flat_ascii_string);
|
| -
|
| - __ bind(&longer_than_two);
|
| - // Check if resulting string will be flat.
|
| - __ cmp(Operand(ebx), Immediate(Smi::FromInt(String::kMinNonFlatLength)));
|
| - __ j(below, &string_add_flat_result);
|
| -
|
| - // If result is not supposed to be flat allocate a cons string object. If both
|
| - // strings are ascii the result is an ascii cons string.
|
| - Label non_ascii, allocated, ascii_data;
|
| - __ mov(edi, FieldOperand(eax, HeapObject::kMapOffset));
|
| - __ movzx_b(ecx, FieldOperand(edi, Map::kInstanceTypeOffset));
|
| - __ mov(edi, FieldOperand(edx, HeapObject::kMapOffset));
|
| - __ movzx_b(edi, FieldOperand(edi, Map::kInstanceTypeOffset));
|
| - __ and_(ecx, Operand(edi));
|
| - STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag);
|
| - __ test(ecx, Immediate(kAsciiStringTag));
|
| - __ j(zero, &non_ascii);
|
| - __ bind(&ascii_data);
|
| - // Allocate an acsii cons string.
|
| - __ AllocateAsciiConsString(ecx, edi, no_reg, &string_add_runtime);
|
| - __ bind(&allocated);
|
| - // Fill the fields of the cons string.
|
| - if (FLAG_debug_code) __ AbortIfNotSmi(ebx);
|
| - __ mov(FieldOperand(ecx, ConsString::kLengthOffset), ebx);
|
| - __ mov(FieldOperand(ecx, ConsString::kHashFieldOffset),
|
| - Immediate(String::kEmptyHashField));
|
| - __ mov(FieldOperand(ecx, ConsString::kFirstOffset), eax);
|
| - __ mov(FieldOperand(ecx, ConsString::kSecondOffset), edx);
|
| - __ mov(eax, ecx);
|
| - __ IncrementCounter(&Counters::string_add_native, 1);
|
| - __ ret(2 * kPointerSize);
|
| - __ bind(&non_ascii);
|
| - // At least one of the strings is two-byte. Check whether it happens
|
| - // to contain only ascii characters.
|
| - // ecx: first instance type AND second instance type.
|
| - // edi: second instance type.
|
| - __ test(ecx, Immediate(kAsciiDataHintMask));
|
| - __ j(not_zero, &ascii_data);
|
| - __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
|
| - __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
|
| - __ xor_(edi, Operand(ecx));
|
| - STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
|
| - __ and_(edi, kAsciiStringTag | kAsciiDataHintTag);
|
| - __ cmp(edi, kAsciiStringTag | kAsciiDataHintTag);
|
| - __ j(equal, &ascii_data);
|
| - // Allocate a two byte cons string.
|
| - __ AllocateConsString(ecx, edi, no_reg, &string_add_runtime);
|
| - __ jmp(&allocated);
|
| -
|
| - // Handle creating a flat result. First check that both strings are not
|
| - // external strings.
|
| - // eax: first string
|
| - // ebx: length of resulting flat string as a smi
|
| - // edx: second string
|
| - __ bind(&string_add_flat_result);
|
| - __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
|
| - __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
|
| - __ and_(ecx, kStringRepresentationMask);
|
| - __ cmp(ecx, kExternalStringTag);
|
| - __ j(equal, &string_add_runtime);
|
| - __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
|
| - __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
|
| - __ and_(ecx, kStringRepresentationMask);
|
| - __ cmp(ecx, kExternalStringTag);
|
| - __ j(equal, &string_add_runtime);
|
| - // Now check if both strings are ascii strings.
|
| - // eax: first string
|
| - // ebx: length of resulting flat string as a smi
|
| - // edx: second string
|
| - Label non_ascii_string_add_flat_result;
|
| - STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag);
|
| - __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
|
| - __ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag);
|
| - __ j(zero, &non_ascii_string_add_flat_result);
|
| - __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
|
| - __ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag);
|
| - __ j(zero, &string_add_runtime);
|
| -
|
| - __ bind(&make_flat_ascii_string);
|
| - // Both strings are ascii strings. As they are short they are both flat.
|
| - // ebx: length of resulting flat string as a smi
|
| - __ SmiUntag(ebx);
|
| - __ AllocateAsciiString(eax, ebx, ecx, edx, edi, &string_add_runtime);
|
| - // eax: result string
|
| - __ mov(ecx, eax);
|
| - // Locate first character of result.
|
| - __ add(Operand(ecx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
|
| - // Load first argument and locate first character.
|
| - __ mov(edx, Operand(esp, 2 * kPointerSize));
|
| - __ mov(edi, FieldOperand(edx, String::kLengthOffset));
|
| - __ SmiUntag(edi);
|
| - __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
|
| - // eax: result string
|
| - // ecx: first character of result
|
| - // edx: first char of first argument
|
| - // edi: length of first argument
|
| - StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, true);
|
| - // Load second argument and locate first character.
|
| - __ mov(edx, Operand(esp, 1 * kPointerSize));
|
| - __ mov(edi, FieldOperand(edx, String::kLengthOffset));
|
| - __ SmiUntag(edi);
|
| - __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
|
| - // eax: result string
|
| - // ecx: next character of result
|
| - // edx: first char of second argument
|
| - // edi: length of second argument
|
| - StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, true);
|
| - __ IncrementCounter(&Counters::string_add_native, 1);
|
| - __ ret(2 * kPointerSize);
|
| -
|
| - // Handle creating a flat two byte result.
|
| - // eax: first string - known to be two byte
|
| - // ebx: length of resulting flat string as a smi
|
| - // edx: second string
|
| - __ bind(&non_ascii_string_add_flat_result);
|
| - __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
|
| - __ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag);
|
| - __ j(not_zero, &string_add_runtime);
|
| - // Both strings are two byte strings. As they are short they are both
|
| - // flat.
|
| - __ SmiUntag(ebx);
|
| - __ AllocateTwoByteString(eax, ebx, ecx, edx, edi, &string_add_runtime);
|
| - // eax: result string
|
| - __ mov(ecx, eax);
|
| - // Locate first character of result.
|
| - __ add(Operand(ecx),
|
| - Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
|
| - // Load first argument and locate first character.
|
| - __ mov(edx, Operand(esp, 2 * kPointerSize));
|
| - __ mov(edi, FieldOperand(edx, String::kLengthOffset));
|
| - __ SmiUntag(edi);
|
| - __ add(Operand(edx),
|
| - Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
|
| - // eax: result string
|
| - // ecx: first character of result
|
| - // edx: first char of first argument
|
| - // edi: length of first argument
|
| - StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, false);
|
| - // Load second argument and locate first character.
|
| - __ mov(edx, Operand(esp, 1 * kPointerSize));
|
| - __ mov(edi, FieldOperand(edx, String::kLengthOffset));
|
| - __ SmiUntag(edi);
|
| - __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
|
| - // eax: result string
|
| - // ecx: next character of result
|
| - // edx: first char of second argument
|
| - // edi: length of second argument
|
| - StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, false);
|
| - __ IncrementCounter(&Counters::string_add_native, 1);
|
| - __ ret(2 * kPointerSize);
|
| -
|
| - // Just jump to runtime to add the two strings.
|
| - __ bind(&string_add_runtime);
|
| - __ TailCallRuntime(Runtime::kStringAdd, 2, 1);
|
| -}
|
| -
|
| -
|
| -void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
|
| - Register dest,
|
| - Register src,
|
| - Register count,
|
| - Register scratch,
|
| - bool ascii) {
|
| - Label loop;
|
| - __ bind(&loop);
|
| - // This loop just copies one character at a time, as it is only used for very
|
| - // short strings.
|
| - if (ascii) {
|
| - __ mov_b(scratch, Operand(src, 0));
|
| - __ mov_b(Operand(dest, 0), scratch);
|
| - __ add(Operand(src), Immediate(1));
|
| - __ add(Operand(dest), Immediate(1));
|
| - } else {
|
| - __ mov_w(scratch, Operand(src, 0));
|
| - __ mov_w(Operand(dest, 0), scratch);
|
| - __ add(Operand(src), Immediate(2));
|
| - __ add(Operand(dest), Immediate(2));
|
| - }
|
| - __ sub(Operand(count), Immediate(1));
|
| - __ j(not_zero, &loop);
|
| -}
|
| -
|
| -
|
| -void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm,
|
| - Register dest,
|
| - Register src,
|
| - Register count,
|
| - Register scratch,
|
| - bool ascii) {
|
| - // Copy characters using rep movs of doublewords.
|
| - // The destination is aligned on a 4 byte boundary because we are
|
| - // copying to the beginning of a newly allocated string.
|
| - ASSERT(dest.is(edi)); // rep movs destination
|
| - ASSERT(src.is(esi)); // rep movs source
|
| - ASSERT(count.is(ecx)); // rep movs count
|
| - ASSERT(!scratch.is(dest));
|
| - ASSERT(!scratch.is(src));
|
| - ASSERT(!scratch.is(count));
|
| -
|
| - // Nothing to do for zero characters.
|
| - Label done;
|
| - __ test(count, Operand(count));
|
| - __ j(zero, &done);
|
| -
|
| - // Make count the number of bytes to copy.
|
| - if (!ascii) {
|
| - __ shl(count, 1);
|
| - }
|
| -
|
| - // Don't enter the rep movs if there are less than 4 bytes to copy.
|
| - Label last_bytes;
|
| - __ test(count, Immediate(~3));
|
| - __ j(zero, &last_bytes);
|
| -
|
| - // Copy from edi to esi using rep movs instruction.
|
| - __ mov(scratch, count);
|
| - __ sar(count, 2); // Number of doublewords to copy.
|
| - __ cld();
|
| - __ rep_movs();
|
| -
|
| - // Find number of bytes left.
|
| - __ mov(count, scratch);
|
| - __ and_(count, 3);
|
| -
|
| - // Check if there are more bytes to copy.
|
| - __ bind(&last_bytes);
|
| - __ test(count, Operand(count));
|
| - __ j(zero, &done);
|
| -
|
| - // Copy remaining characters.
|
| - Label loop;
|
| - __ bind(&loop);
|
| - __ mov_b(scratch, Operand(src, 0));
|
| - __ mov_b(Operand(dest, 0), scratch);
|
| - __ add(Operand(src), Immediate(1));
|
| - __ add(Operand(dest), Immediate(1));
|
| - __ sub(Operand(count), Immediate(1));
|
| - __ j(not_zero, &loop);
|
| -
|
| - __ bind(&done);
|
| -}
|
| -
|
| -
|
| -void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
|
| - Register c1,
|
| - Register c2,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3,
|
| - Label* not_found) {
|
| - // Register scratch3 is the general scratch register in this function.
|
| - Register scratch = scratch3;
|
| -
|
| - // Make sure that both characters are not digits as such strings has a
|
| - // different hash algorithm. Don't try to look for these in the symbol table.
|
| - Label not_array_index;
|
| - __ mov(scratch, c1);
|
| - __ sub(Operand(scratch), Immediate(static_cast<int>('0')));
|
| - __ cmp(Operand(scratch), Immediate(static_cast<int>('9' - '0')));
|
| - __ j(above, ¬_array_index);
|
| - __ mov(scratch, c2);
|
| - __ sub(Operand(scratch), Immediate(static_cast<int>('0')));
|
| - __ cmp(Operand(scratch), Immediate(static_cast<int>('9' - '0')));
|
| - __ j(below_equal, not_found);
|
| -
|
| - __ bind(¬_array_index);
|
| - // Calculate the two character string hash.
|
| - Register hash = scratch1;
|
| - GenerateHashInit(masm, hash, c1, scratch);
|
| - GenerateHashAddCharacter(masm, hash, c2, scratch);
|
| - GenerateHashGetHash(masm, hash, scratch);
|
| -
|
| - // Collect the two characters in a register.
|
| - Register chars = c1;
|
| - __ shl(c2, kBitsPerByte);
|
| - __ or_(chars, Operand(c2));
|
| -
|
| - // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
|
| - // hash: hash of two character string.
|
| -
|
| - // Load the symbol table.
|
| - Register symbol_table = c2;
|
| - ExternalReference roots_address = ExternalReference::roots_address();
|
| - __ mov(scratch, Immediate(Heap::kSymbolTableRootIndex));
|
| - __ mov(symbol_table,
|
| - Operand::StaticArray(scratch, times_pointer_size, roots_address));
|
| -
|
| - // Calculate capacity mask from the symbol table capacity.
|
| - Register mask = scratch2;
|
| - __ mov(mask, FieldOperand(symbol_table, SymbolTable::kCapacityOffset));
|
| - __ SmiUntag(mask);
|
| - __ sub(Operand(mask), Immediate(1));
|
| -
|
| - // Registers
|
| - // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
|
| - // hash: hash of two character string
|
| - // symbol_table: symbol table
|
| - // mask: capacity mask
|
| - // scratch: -
|
| -
|
| - // Perform a number of probes in the symbol table.
|
| - static const int kProbes = 4;
|
| - Label found_in_symbol_table;
|
| - Label next_probe[kProbes], next_probe_pop_mask[kProbes];
|
| - for (int i = 0; i < kProbes; i++) {
|
| - // Calculate entry in symbol table.
|
| - __ mov(scratch, hash);
|
| - if (i > 0) {
|
| - __ add(Operand(scratch), Immediate(SymbolTable::GetProbeOffset(i)));
|
| - }
|
| - __ and_(scratch, Operand(mask));
|
| -
|
| - // Load the entry from the symbol table.
|
| - Register candidate = scratch; // Scratch register contains candidate.
|
| - STATIC_ASSERT(SymbolTable::kEntrySize == 1);
|
| - __ mov(candidate,
|
| - FieldOperand(symbol_table,
|
| - scratch,
|
| - times_pointer_size,
|
| - SymbolTable::kElementsStartOffset));
|
| -
|
| - // If entry is undefined no string with this hash can be found.
|
| - __ cmp(candidate, Factory::undefined_value());
|
| - __ j(equal, not_found);
|
| -
|
| - // If length is not 2 the string is not a candidate.
|
| - __ cmp(FieldOperand(candidate, String::kLengthOffset),
|
| - Immediate(Smi::FromInt(2)));
|
| - __ j(not_equal, &next_probe[i]);
|
| -
|
| - // As we are out of registers save the mask on the stack and use that
|
| - // register as a temporary.
|
| - __ push(mask);
|
| - Register temp = mask;
|
| -
|
| - // Check that the candidate is a non-external ascii string.
|
| - __ mov(temp, FieldOperand(candidate, HeapObject::kMapOffset));
|
| - __ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset));
|
| - __ JumpIfInstanceTypeIsNotSequentialAscii(
|
| - temp, temp, &next_probe_pop_mask[i]);
|
| -
|
| - // Check if the two characters match.
|
| - __ mov(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize));
|
| - __ and_(temp, 0x0000ffff);
|
| - __ cmp(chars, Operand(temp));
|
| - __ j(equal, &found_in_symbol_table);
|
| - __ bind(&next_probe_pop_mask[i]);
|
| - __ pop(mask);
|
| - __ bind(&next_probe[i]);
|
| - }
|
| -
|
| - // No matching 2 character string found by probing.
|
| - __ jmp(not_found);
|
| -
|
| - // Scratch register contains result when we fall through to here.
|
| - Register result = scratch;
|
| - __ bind(&found_in_symbol_table);
|
| - __ pop(mask); // Pop saved mask from the stack.
|
| - if (!result.is(eax)) {
|
| - __ mov(eax, result);
|
| - }
|
| -}
|
| -
|
| -
|
| -void StringHelper::GenerateHashInit(MacroAssembler* masm,
|
| - Register hash,
|
| - Register character,
|
| - Register scratch) {
|
| - // hash = character + (character << 10);
|
| - __ mov(hash, character);
|
| - __ shl(hash, 10);
|
| - __ add(hash, Operand(character));
|
| - // hash ^= hash >> 6;
|
| - __ mov(scratch, hash);
|
| - __ sar(scratch, 6);
|
| - __ xor_(hash, Operand(scratch));
|
| -}
|
| -
|
| -
|
| -void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
|
| - Register hash,
|
| - Register character,
|
| - Register scratch) {
|
| - // hash += character;
|
| - __ add(hash, Operand(character));
|
| - // hash += hash << 10;
|
| - __ mov(scratch, hash);
|
| - __ shl(scratch, 10);
|
| - __ add(hash, Operand(scratch));
|
| - // hash ^= hash >> 6;
|
| - __ mov(scratch, hash);
|
| - __ sar(scratch, 6);
|
| - __ xor_(hash, Operand(scratch));
|
| -}
|
| -
|
| -
|
| -void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
|
| - Register hash,
|
| - Register scratch) {
|
| - // hash += hash << 3;
|
| - __ mov(scratch, hash);
|
| - __ shl(scratch, 3);
|
| - __ add(hash, Operand(scratch));
|
| - // hash ^= hash >> 11;
|
| - __ mov(scratch, hash);
|
| - __ sar(scratch, 11);
|
| - __ xor_(hash, Operand(scratch));
|
| - // hash += hash << 15;
|
| - __ mov(scratch, hash);
|
| - __ shl(scratch, 15);
|
| - __ add(hash, Operand(scratch));
|
| -
|
| - // if (hash == 0) hash = 27;
|
| - Label hash_not_zero;
|
| - __ test(hash, Operand(hash));
|
| - __ j(not_zero, &hash_not_zero);
|
| - __ mov(hash, Immediate(27));
|
| - __ bind(&hash_not_zero);
|
| -}
|
| -
|
| -
|
| -void SubStringStub::Generate(MacroAssembler* masm) {
|
| - Label runtime;
|
| -
|
| - // Stack frame on entry.
|
| - // esp[0]: return address
|
| - // esp[4]: to
|
| - // esp[8]: from
|
| - // esp[12]: string
|
| -
|
| - // Make sure first argument is a string.
|
| - __ mov(eax, Operand(esp, 3 * kPointerSize));
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - __ test(eax, Immediate(kSmiTagMask));
|
| - __ j(zero, &runtime);
|
| - Condition is_string = masm->IsObjectStringType(eax, ebx, ebx);
|
| - __ j(NegateCondition(is_string), &runtime);
|
| -
|
| - // eax: string
|
| - // ebx: instance type
|
| -
|
| - // Calculate length of sub string using the smi values.
|
| - Label result_longer_than_two;
|
| - __ mov(ecx, Operand(esp, 1 * kPointerSize)); // To index.
|
| - __ test(ecx, Immediate(kSmiTagMask));
|
| - __ j(not_zero, &runtime);
|
| - __ mov(edx, Operand(esp, 2 * kPointerSize)); // From index.
|
| - __ test(edx, Immediate(kSmiTagMask));
|
| - __ j(not_zero, &runtime);
|
| - __ sub(ecx, Operand(edx));
|
| - __ cmp(ecx, FieldOperand(eax, String::kLengthOffset));
|
| - Label return_eax;
|
| - __ j(equal, &return_eax);
|
| - // Special handling of sub-strings of length 1 and 2. One character strings
|
| - // are handled in the runtime system (looked up in the single character
|
| - // cache). Two character strings are looked for in the symbol cache.
|
| - __ SmiUntag(ecx); // Result length is no longer smi.
|
| - __ cmp(ecx, 2);
|
| - __ j(greater, &result_longer_than_two);
|
| - __ j(less, &runtime);
|
| -
|
| - // Sub string of length 2 requested.
|
| - // eax: string
|
| - // ebx: instance type
|
| - // ecx: sub string length (value is 2)
|
| - // edx: from index (smi)
|
| - __ JumpIfInstanceTypeIsNotSequentialAscii(ebx, ebx, &runtime);
|
| -
|
| - // Get the two characters forming the sub string.
|
| - __ SmiUntag(edx); // From index is no longer smi.
|
| - __ movzx_b(ebx, FieldOperand(eax, edx, times_1, SeqAsciiString::kHeaderSize));
|
| - __ movzx_b(ecx,
|
| - FieldOperand(eax, edx, times_1, SeqAsciiString::kHeaderSize + 1));
|
| -
|
| - // Try to lookup two character string in symbol table.
|
| - Label make_two_character_string;
|
| - StringHelper::GenerateTwoCharacterSymbolTableProbe(
|
| - masm, ebx, ecx, eax, edx, edi, &make_two_character_string);
|
| - __ ret(3 * kPointerSize);
|
| -
|
| - __ bind(&make_two_character_string);
|
| - // Setup registers for allocating the two character string.
|
| - __ mov(eax, Operand(esp, 3 * kPointerSize));
|
| - __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
|
| - __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
|
| - __ Set(ecx, Immediate(2));
|
| -
|
| - __ bind(&result_longer_than_two);
|
| - // eax: string
|
| - // ebx: instance type
|
| - // ecx: result string length
|
| - // Check for flat ascii string
|
| - Label non_ascii_flat;
|
| - __ JumpIfInstanceTypeIsNotSequentialAscii(ebx, ebx, &non_ascii_flat);
|
| -
|
| - // Allocate the result.
|
| - __ AllocateAsciiString(eax, ecx, ebx, edx, edi, &runtime);
|
| -
|
| - // eax: result string
|
| - // ecx: result string length
|
| - __ mov(edx, esi); // esi used by following code.
|
| - // Locate first character of result.
|
| - __ mov(edi, eax);
|
| - __ add(Operand(edi), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
|
| - // Load string argument and locate character of sub string start.
|
| - __ mov(esi, Operand(esp, 3 * kPointerSize));
|
| - __ add(Operand(esi), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
|
| - __ mov(ebx, Operand(esp, 2 * kPointerSize)); // from
|
| - __ SmiUntag(ebx);
|
| - __ add(esi, Operand(ebx));
|
| -
|
| - // eax: result string
|
| - // ecx: result length
|
| - // edx: original value of esi
|
| - // edi: first character of result
|
| - // esi: character of sub string start
|
| - StringHelper::GenerateCopyCharactersREP(masm, edi, esi, ecx, ebx, true);
|
| - __ mov(esi, edx); // Restore esi.
|
| - __ IncrementCounter(&Counters::sub_string_native, 1);
|
| - __ ret(3 * kPointerSize);
|
| -
|
| - __ bind(&non_ascii_flat);
|
| - // eax: string
|
| - // ebx: instance type & kStringRepresentationMask | kStringEncodingMask
|
| - // ecx: result string length
|
| - // Check for flat two byte string
|
| - __ cmp(ebx, kSeqStringTag | kTwoByteStringTag);
|
| - __ j(not_equal, &runtime);
|
| -
|
| - // Allocate the result.
|
| - __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime);
|
| -
|
| - // eax: result string
|
| - // ecx: result string length
|
| - __ mov(edx, esi); // esi used by following code.
|
| - // Locate first character of result.
|
| - __ mov(edi, eax);
|
| - __ add(Operand(edi),
|
| - Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
|
| - // Load string argument and locate character of sub string start.
|
| - __ mov(esi, Operand(esp, 3 * kPointerSize));
|
| - __ add(Operand(esi),
|
| - Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
|
| - __ mov(ebx, Operand(esp, 2 * kPointerSize)); // from
|
| - // As from is a smi it is 2 times the value which matches the size of a two
|
| - // byte character.
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
|
| - __ add(esi, Operand(ebx));
|
| -
|
| - // eax: result string
|
| - // ecx: result length
|
| - // edx: original value of esi
|
| - // edi: first character of result
|
| - // esi: character of sub string start
|
| - StringHelper::GenerateCopyCharactersREP(masm, edi, esi, ecx, ebx, false);
|
| - __ mov(esi, edx); // Restore esi.
|
| -
|
| - __ bind(&return_eax);
|
| - __ IncrementCounter(&Counters::sub_string_native, 1);
|
| - __ ret(3 * kPointerSize);
|
| -
|
| - // Just jump to runtime to create the sub string.
|
| - __ bind(&runtime);
|
| - __ TailCallRuntime(Runtime::kSubString, 3, 1);
|
| -}
|
| -
|
| -
|
| -void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
|
| - Register left,
|
| - Register right,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3) {
|
| - Label result_not_equal;
|
| - Label result_greater;
|
| - Label compare_lengths;
|
| -
|
| - __ IncrementCounter(&Counters::string_compare_native, 1);
|
| -
|
| - // Find minimum length.
|
| - Label left_shorter;
|
| - __ mov(scratch1, FieldOperand(left, String::kLengthOffset));
|
| - __ mov(scratch3, scratch1);
|
| - __ sub(scratch3, FieldOperand(right, String::kLengthOffset));
|
| -
|
| - Register length_delta = scratch3;
|
| -
|
| - __ j(less_equal, &left_shorter);
|
| - // Right string is shorter. Change scratch1 to be length of right string.
|
| - __ sub(scratch1, Operand(length_delta));
|
| - __ bind(&left_shorter);
|
| -
|
| - Register min_length = scratch1;
|
| -
|
| - // If either length is zero, just compare lengths.
|
| - __ test(min_length, Operand(min_length));
|
| - __ j(zero, &compare_lengths);
|
| -
|
| - // Change index to run from -min_length to -1 by adding min_length
|
| - // to string start. This means that loop ends when index reaches zero,
|
| - // which doesn't need an additional compare.
|
| - __ SmiUntag(min_length);
|
| - __ lea(left,
|
| - FieldOperand(left,
|
| - min_length, times_1,
|
| - SeqAsciiString::kHeaderSize));
|
| - __ lea(right,
|
| - FieldOperand(right,
|
| - min_length, times_1,
|
| - SeqAsciiString::kHeaderSize));
|
| - __ neg(min_length);
|
| -
|
| - Register index = min_length; // index = -min_length;
|
| -
|
| - {
|
| - // Compare loop.
|
| - Label loop;
|
| - __ bind(&loop);
|
| - // Compare characters.
|
| - __ mov_b(scratch2, Operand(left, index, times_1, 0));
|
| - __ cmpb(scratch2, Operand(right, index, times_1, 0));
|
| - __ j(not_equal, &result_not_equal);
|
| - __ add(Operand(index), Immediate(1));
|
| - __ j(not_zero, &loop);
|
| - }
|
| -
|
| - // Compare lengths - strings up to min-length are equal.
|
| - __ bind(&compare_lengths);
|
| - __ test(length_delta, Operand(length_delta));
|
| - __ j(not_zero, &result_not_equal);
|
| -
|
| - // Result is EQUAL.
|
| - STATIC_ASSERT(EQUAL == 0);
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - __ Set(eax, Immediate(Smi::FromInt(EQUAL)));
|
| - __ ret(0);
|
| -
|
| - __ bind(&result_not_equal);
|
| - __ j(greater, &result_greater);
|
| -
|
| - // Result is LESS.
|
| - __ Set(eax, Immediate(Smi::FromInt(LESS)));
|
| - __ ret(0);
|
| -
|
| - // Result is GREATER.
|
| - __ bind(&result_greater);
|
| - __ Set(eax, Immediate(Smi::FromInt(GREATER)));
|
| - __ ret(0);
|
| -}
|
| -
|
| -
|
| -void StringCompareStub::Generate(MacroAssembler* masm) {
|
| - Label runtime;
|
| -
|
| - // Stack frame on entry.
|
| - // esp[0]: return address
|
| - // esp[4]: right string
|
| - // esp[8]: left string
|
| -
|
| - __ mov(edx, Operand(esp, 2 * kPointerSize)); // left
|
| - __ mov(eax, Operand(esp, 1 * kPointerSize)); // right
|
| -
|
| - Label not_same;
|
| - __ cmp(edx, Operand(eax));
|
| - __ j(not_equal, ¬_same);
|
| - STATIC_ASSERT(EQUAL == 0);
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - __ Set(eax, Immediate(Smi::FromInt(EQUAL)));
|
| - __ IncrementCounter(&Counters::string_compare_native, 1);
|
| - __ ret(2 * kPointerSize);
|
| -
|
| - __ bind(¬_same);
|
| -
|
| - // Check that both objects are sequential ascii strings.
|
| - __ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx, &runtime);
|
| -
|
| - // Compare flat ascii strings.
|
| - // Drop arguments from the stack.
|
| - __ pop(ecx);
|
| - __ add(Operand(esp), Immediate(2 * kPointerSize));
|
| - __ push(ecx);
|
| - GenerateCompareFlatAsciiStrings(masm, edx, eax, ecx, ebx, edi);
|
| -
|
| - // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
|
| - // tagged as a small integer.
|
| - __ bind(&runtime);
|
| - __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
|
| -}
|
| -
|
| #undef __
|
|
|
| #define __ masm.
|
|
|