OLD | NEW |
1 // Copyright 2010 the V8 project authors. All rights reserved. | 1 // Copyright 2010 the V8 project authors. All rights reserved. |
2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
4 // met: | 4 // met: |
5 // | 5 // |
6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
(...skipping 12 matching lines...) Expand all Loading... |
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
27 | 27 |
28 #include "v8.h" | 28 #include "v8.h" |
29 | 29 |
30 #if defined(V8_TARGET_ARCH_IA32) | 30 #if defined(V8_TARGET_ARCH_IA32) |
31 | 31 |
32 #include "bootstrapper.h" | 32 #include "bootstrapper.h" |
| 33 #include "code-stubs-ia32.h" |
33 #include "codegen-inl.h" | 34 #include "codegen-inl.h" |
34 #include "compiler.h" | 35 #include "compiler.h" |
35 #include "debug.h" | 36 #include "debug.h" |
36 #include "ic-inl.h" | 37 #include "ic-inl.h" |
37 #include "parser.h" | 38 #include "parser.h" |
38 #include "regexp-macro-assembler.h" | 39 #include "regexp-macro-assembler.h" |
39 #include "register-allocator-inl.h" | 40 #include "register-allocator-inl.h" |
40 #include "scopes.h" | 41 #include "scopes.h" |
41 #include "virtual-frame-inl.h" | 42 #include "virtual-frame-inl.h" |
42 | 43 |
(...skipping 884 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
927 ToBooleanStub stub; | 928 ToBooleanStub stub; |
928 Result temp = frame_->CallStub(&stub, 1); | 929 Result temp = frame_->CallStub(&stub, 1); |
929 // Convert the result to a condition code. | 930 // Convert the result to a condition code. |
930 __ test(temp.reg(), Operand(temp.reg())); | 931 __ test(temp.reg(), Operand(temp.reg())); |
931 temp.Unuse(); | 932 temp.Unuse(); |
932 dest->Split(not_equal); | 933 dest->Split(not_equal); |
933 } | 934 } |
934 } | 935 } |
935 | 936 |
936 | 937 |
937 class FloatingPointHelper : public AllStatic { | |
938 public: | |
939 | |
940 enum ArgLocation { | |
941 ARGS_ON_STACK, | |
942 ARGS_IN_REGISTERS | |
943 }; | |
944 | |
945 // Code pattern for loading a floating point value. Input value must | |
946 // be either a smi or a heap number object (fp value). Requirements: | |
947 // operand in register number. Returns operand as floating point number | |
948 // on FPU stack. | |
949 static void LoadFloatOperand(MacroAssembler* masm, Register number); | |
950 | |
951 // Code pattern for loading floating point values. Input values must | |
952 // be either smi or heap number objects (fp values). Requirements: | |
953 // operand_1 on TOS+1 or in edx, operand_2 on TOS+2 or in eax. | |
954 // Returns operands as floating point numbers on FPU stack. | |
955 static void LoadFloatOperands(MacroAssembler* masm, | |
956 Register scratch, | |
957 ArgLocation arg_location = ARGS_ON_STACK); | |
958 | |
959 // Similar to LoadFloatOperand but assumes that both operands are smis. | |
960 // Expects operands in edx, eax. | |
961 static void LoadFloatSmis(MacroAssembler* masm, Register scratch); | |
962 | |
963 // Test if operands are smi or number objects (fp). Requirements: | |
964 // operand_1 in eax, operand_2 in edx; falls through on float | |
965 // operands, jumps to the non_float label otherwise. | |
966 static void CheckFloatOperands(MacroAssembler* masm, | |
967 Label* non_float, | |
968 Register scratch); | |
969 | |
970 // Takes the operands in edx and eax and loads them as integers in eax | |
971 // and ecx. | |
972 static void LoadAsIntegers(MacroAssembler* masm, | |
973 TypeInfo type_info, | |
974 bool use_sse3, | |
975 Label* operand_conversion_failure); | |
976 static void LoadNumbersAsIntegers(MacroAssembler* masm, | |
977 TypeInfo type_info, | |
978 bool use_sse3, | |
979 Label* operand_conversion_failure); | |
980 static void LoadUnknownsAsIntegers(MacroAssembler* masm, | |
981 bool use_sse3, | |
982 Label* operand_conversion_failure); | |
983 | |
984 // Test if operands are smis or heap numbers and load them | |
985 // into xmm0 and xmm1 if they are. Operands are in edx and eax. | |
986 // Leaves operands unchanged. | |
987 static void LoadSSE2Operands(MacroAssembler* masm); | |
988 | |
989 // Test if operands are numbers (smi or HeapNumber objects), and load | |
990 // them into xmm0 and xmm1 if they are. Jump to label not_numbers if | |
991 // either operand is not a number. Operands are in edx and eax. | |
992 // Leaves operands unchanged. | |
993 static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers); | |
994 | |
995 // Similar to LoadSSE2Operands but assumes that both operands are smis. | |
996 // Expects operands in edx, eax. | |
997 static void LoadSSE2Smis(MacroAssembler* masm, Register scratch); | |
998 }; | |
999 | |
1000 | |
1001 const char* GenericBinaryOpStub::GetName() { | |
1002 if (name_ != NULL) return name_; | |
1003 const int kMaxNameLength = 100; | |
1004 name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength); | |
1005 if (name_ == NULL) return "OOM"; | |
1006 const char* op_name = Token::Name(op_); | |
1007 const char* overwrite_name; | |
1008 switch (mode_) { | |
1009 case NO_OVERWRITE: overwrite_name = "Alloc"; break; | |
1010 case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; | |
1011 case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; | |
1012 default: overwrite_name = "UnknownOverwrite"; break; | |
1013 } | |
1014 | |
1015 OS::SNPrintF(Vector<char>(name_, kMaxNameLength), | |
1016 "GenericBinaryOpStub_%s_%s%s_%s%s_%s_%s", | |
1017 op_name, | |
1018 overwrite_name, | |
1019 (flags_ & NO_SMI_CODE_IN_STUB) ? "_NoSmiInStub" : "", | |
1020 args_in_registers_ ? "RegArgs" : "StackArgs", | |
1021 args_reversed_ ? "_R" : "", | |
1022 static_operands_type_.ToString(), | |
1023 BinaryOpIC::GetName(runtime_operands_type_)); | |
1024 return name_; | |
1025 } | |
1026 | |
1027 | |
1028 // Perform or call the specialized stub for a binary operation. Requires the | 938 // Perform or call the specialized stub for a binary operation. Requires the |
1029 // three registers left, right and dst to be distinct and spilled. This | 939 // three registers left, right and dst to be distinct and spilled. This |
1030 // deferred operation has up to three entry points: The main one calls the | 940 // deferred operation has up to three entry points: The main one calls the |
1031 // runtime system. The second is for when the result is a non-Smi. The | 941 // runtime system. The second is for when the result is a non-Smi. The |
1032 // third is for when at least one of the inputs is non-Smi and we have SSE2. | 942 // third is for when at least one of the inputs is non-Smi and we have SSE2. |
1033 class DeferredInlineBinaryOperation: public DeferredCode { | 943 class DeferredInlineBinaryOperation: public DeferredCode { |
1034 public: | 944 public: |
1035 DeferredInlineBinaryOperation(Token::Value op, | 945 DeferredInlineBinaryOperation(Token::Value op, |
1036 Register dst, | 946 Register dst, |
1037 Register left, | 947 Register left, |
(...skipping 8835 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
9873 break; | 9783 break; |
9874 } | 9784 } |
9875 | 9785 |
9876 case UNLOADED: | 9786 case UNLOADED: |
9877 case ILLEGAL: | 9787 case ILLEGAL: |
9878 UNREACHABLE(); | 9788 UNREACHABLE(); |
9879 } | 9789 } |
9880 } | 9790 } |
9881 | 9791 |
9882 | 9792 |
9883 void FastNewClosureStub::Generate(MacroAssembler* masm) { | |
9884 // Create a new closure from the given function info in new | |
9885 // space. Set the context to the current context in esi. | |
9886 Label gc; | |
9887 __ AllocateInNewSpace(JSFunction::kSize, eax, ebx, ecx, &gc, TAG_OBJECT); | |
9888 | |
9889 // Get the function info from the stack. | |
9890 __ mov(edx, Operand(esp, 1 * kPointerSize)); | |
9891 | |
9892 // Compute the function map in the current global context and set that | |
9893 // as the map of the allocated object. | |
9894 __ mov(ecx, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); | |
9895 __ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalContextOffset)); | |
9896 __ mov(ecx, Operand(ecx, Context::SlotOffset(Context::FUNCTION_MAP_INDEX))); | |
9897 __ mov(FieldOperand(eax, JSObject::kMapOffset), ecx); | |
9898 | |
9899 // Initialize the rest of the function. We don't have to update the | |
9900 // write barrier because the allocated object is in new space. | |
9901 __ mov(ebx, Immediate(Factory::empty_fixed_array())); | |
9902 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ebx); | |
9903 __ mov(FieldOperand(eax, JSObject::kElementsOffset), ebx); | |
9904 __ mov(FieldOperand(eax, JSFunction::kPrototypeOrInitialMapOffset), | |
9905 Immediate(Factory::the_hole_value())); | |
9906 __ mov(FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset), edx); | |
9907 __ mov(FieldOperand(eax, JSFunction::kContextOffset), esi); | |
9908 __ mov(FieldOperand(eax, JSFunction::kLiteralsOffset), ebx); | |
9909 | |
9910 // Initialize the code pointer in the function to be the one | |
9911 // found in the shared function info object. | |
9912 __ mov(edx, FieldOperand(edx, SharedFunctionInfo::kCodeOffset)); | |
9913 __ lea(edx, FieldOperand(edx, Code::kHeaderSize)); | |
9914 __ mov(FieldOperand(eax, JSFunction::kCodeEntryOffset), edx); | |
9915 | |
9916 // Return and remove the on-stack parameter. | |
9917 __ ret(1 * kPointerSize); | |
9918 | |
9919 // Create a new closure through the slower runtime call. | |
9920 __ bind(&gc); | |
9921 __ pop(ecx); // Temporarily remove return address. | |
9922 __ pop(edx); | |
9923 __ push(esi); | |
9924 __ push(edx); | |
9925 __ push(ecx); // Restore return address. | |
9926 __ TailCallRuntime(Runtime::kNewClosure, 2, 1); | |
9927 } | |
9928 | |
9929 | |
9930 void FastNewContextStub::Generate(MacroAssembler* masm) { | |
9931 // Try to allocate the context in new space. | |
9932 Label gc; | |
9933 int length = slots_ + Context::MIN_CONTEXT_SLOTS; | |
9934 __ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize, | |
9935 eax, ebx, ecx, &gc, TAG_OBJECT); | |
9936 | |
9937 // Get the function from the stack. | |
9938 __ mov(ecx, Operand(esp, 1 * kPointerSize)); | |
9939 | |
9940 // Setup the object header. | |
9941 __ mov(FieldOperand(eax, HeapObject::kMapOffset), Factory::context_map()); | |
9942 __ mov(FieldOperand(eax, Context::kLengthOffset), | |
9943 Immediate(Smi::FromInt(length))); | |
9944 | |
9945 // Setup the fixed slots. | |
9946 __ xor_(ebx, Operand(ebx)); // Set to NULL. | |
9947 __ mov(Operand(eax, Context::SlotOffset(Context::CLOSURE_INDEX)), ecx); | |
9948 __ mov(Operand(eax, Context::SlotOffset(Context::FCONTEXT_INDEX)), eax); | |
9949 __ mov(Operand(eax, Context::SlotOffset(Context::PREVIOUS_INDEX)), ebx); | |
9950 __ mov(Operand(eax, Context::SlotOffset(Context::EXTENSION_INDEX)), ebx); | |
9951 | |
9952 // Copy the global object from the surrounding context. We go through the | |
9953 // context in the function (ecx) to match the allocation behavior we have | |
9954 // in the runtime system (see Heap::AllocateFunctionContext). | |
9955 __ mov(ebx, FieldOperand(ecx, JSFunction::kContextOffset)); | |
9956 __ mov(ebx, Operand(ebx, Context::SlotOffset(Context::GLOBAL_INDEX))); | |
9957 __ mov(Operand(eax, Context::SlotOffset(Context::GLOBAL_INDEX)), ebx); | |
9958 | |
9959 // Initialize the rest of the slots to undefined. | |
9960 __ mov(ebx, Factory::undefined_value()); | |
9961 for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) { | |
9962 __ mov(Operand(eax, Context::SlotOffset(i)), ebx); | |
9963 } | |
9964 | |
9965 // Return and remove the on-stack parameter. | |
9966 __ mov(esi, Operand(eax)); | |
9967 __ ret(1 * kPointerSize); | |
9968 | |
9969 // Need to collect. Call into runtime system. | |
9970 __ bind(&gc); | |
9971 __ TailCallRuntime(Runtime::kNewContext, 1, 1); | |
9972 } | |
9973 | |
9974 | |
9975 void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { | |
9976 // Stack layout on entry: | |
9977 // | |
9978 // [esp + kPointerSize]: constant elements. | |
9979 // [esp + (2 * kPointerSize)]: literal index. | |
9980 // [esp + (3 * kPointerSize)]: literals array. | |
9981 | |
9982 // All sizes here are multiples of kPointerSize. | |
9983 int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0; | |
9984 int size = JSArray::kSize + elements_size; | |
9985 | |
9986 // Load boilerplate object into ecx and check if we need to create a | |
9987 // boilerplate. | |
9988 Label slow_case; | |
9989 __ mov(ecx, Operand(esp, 3 * kPointerSize)); | |
9990 __ mov(eax, Operand(esp, 2 * kPointerSize)); | |
9991 STATIC_ASSERT(kPointerSize == 4); | |
9992 STATIC_ASSERT(kSmiTagSize == 1); | |
9993 STATIC_ASSERT(kSmiTag == 0); | |
9994 __ mov(ecx, CodeGenerator::FixedArrayElementOperand(ecx, eax)); | |
9995 __ cmp(ecx, Factory::undefined_value()); | |
9996 __ j(equal, &slow_case); | |
9997 | |
9998 if (FLAG_debug_code) { | |
9999 const char* message; | |
10000 Handle<Map> expected_map; | |
10001 if (mode_ == CLONE_ELEMENTS) { | |
10002 message = "Expected (writable) fixed array"; | |
10003 expected_map = Factory::fixed_array_map(); | |
10004 } else { | |
10005 ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS); | |
10006 message = "Expected copy-on-write fixed array"; | |
10007 expected_map = Factory::fixed_cow_array_map(); | |
10008 } | |
10009 __ push(ecx); | |
10010 __ mov(ecx, FieldOperand(ecx, JSArray::kElementsOffset)); | |
10011 __ cmp(FieldOperand(ecx, HeapObject::kMapOffset), expected_map); | |
10012 __ Assert(equal, message); | |
10013 __ pop(ecx); | |
10014 } | |
10015 | |
10016 // Allocate both the JS array and the elements array in one big | |
10017 // allocation. This avoids multiple limit checks. | |
10018 __ AllocateInNewSpace(size, eax, ebx, edx, &slow_case, TAG_OBJECT); | |
10019 | |
10020 // Copy the JS array part. | |
10021 for (int i = 0; i < JSArray::kSize; i += kPointerSize) { | |
10022 if ((i != JSArray::kElementsOffset) || (length_ == 0)) { | |
10023 __ mov(ebx, FieldOperand(ecx, i)); | |
10024 __ mov(FieldOperand(eax, i), ebx); | |
10025 } | |
10026 } | |
10027 | |
10028 if (length_ > 0) { | |
10029 // Get hold of the elements array of the boilerplate and setup the | |
10030 // elements pointer in the resulting object. | |
10031 __ mov(ecx, FieldOperand(ecx, JSArray::kElementsOffset)); | |
10032 __ lea(edx, Operand(eax, JSArray::kSize)); | |
10033 __ mov(FieldOperand(eax, JSArray::kElementsOffset), edx); | |
10034 | |
10035 // Copy the elements array. | |
10036 for (int i = 0; i < elements_size; i += kPointerSize) { | |
10037 __ mov(ebx, FieldOperand(ecx, i)); | |
10038 __ mov(FieldOperand(edx, i), ebx); | |
10039 } | |
10040 } | |
10041 | |
10042 // Return and remove the on-stack parameters. | |
10043 __ ret(3 * kPointerSize); | |
10044 | |
10045 __ bind(&slow_case); | |
10046 __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1); | |
10047 } | |
10048 | |
10049 | |
10050 // NOTE: The stub does not handle the inlined cases (Smis, Booleans, undefined). | |
10051 void ToBooleanStub::Generate(MacroAssembler* masm) { | |
10052 Label false_result, true_result, not_string; | |
10053 __ mov(eax, Operand(esp, 1 * kPointerSize)); | |
10054 | |
10055 // 'null' => false. | |
10056 __ cmp(eax, Factory::null_value()); | |
10057 __ j(equal, &false_result); | |
10058 | |
10059 // Get the map and type of the heap object. | |
10060 __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); | |
10061 __ movzx_b(ecx, FieldOperand(edx, Map::kInstanceTypeOffset)); | |
10062 | |
10063 // Undetectable => false. | |
10064 __ test_b(FieldOperand(edx, Map::kBitFieldOffset), | |
10065 1 << Map::kIsUndetectable); | |
10066 __ j(not_zero, &false_result); | |
10067 | |
10068 // JavaScript object => true. | |
10069 __ CmpInstanceType(edx, FIRST_JS_OBJECT_TYPE); | |
10070 __ j(above_equal, &true_result); | |
10071 | |
10072 // String value => false iff empty. | |
10073 __ CmpInstanceType(edx, FIRST_NONSTRING_TYPE); | |
10074 __ j(above_equal, ¬_string); | |
10075 STATIC_ASSERT(kSmiTag == 0); | |
10076 __ cmp(FieldOperand(eax, String::kLengthOffset), Immediate(0)); | |
10077 __ j(zero, &false_result); | |
10078 __ jmp(&true_result); | |
10079 | |
10080 __ bind(¬_string); | |
10081 // HeapNumber => false iff +0, -0, or NaN. | |
10082 __ cmp(edx, Factory::heap_number_map()); | |
10083 __ j(not_equal, &true_result); | |
10084 __ fldz(); | |
10085 __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset)); | |
10086 __ FCmp(); | |
10087 __ j(zero, &false_result); | |
10088 // Fall through to |true_result|. | |
10089 | |
10090 // Return 1/0 for true/false in eax. | |
10091 __ bind(&true_result); | |
10092 __ mov(eax, 1); | |
10093 __ ret(1 * kPointerSize); | |
10094 __ bind(&false_result); | |
10095 __ mov(eax, 0); | |
10096 __ ret(1 * kPointerSize); | |
10097 } | |
10098 | |
10099 | |
10100 void GenericBinaryOpStub::GenerateCall( | |
10101 MacroAssembler* masm, | |
10102 Register left, | |
10103 Register right) { | |
10104 if (!ArgsInRegistersSupported()) { | |
10105 // Pass arguments on the stack. | |
10106 __ push(left); | |
10107 __ push(right); | |
10108 } else { | |
10109 // The calling convention with registers is left in edx and right in eax. | |
10110 Register left_arg = edx; | |
10111 Register right_arg = eax; | |
10112 if (!(left.is(left_arg) && right.is(right_arg))) { | |
10113 if (left.is(right_arg) && right.is(left_arg)) { | |
10114 if (IsOperationCommutative()) { | |
10115 SetArgsReversed(); | |
10116 } else { | |
10117 __ xchg(left, right); | |
10118 } | |
10119 } else if (left.is(left_arg)) { | |
10120 __ mov(right_arg, right); | |
10121 } else if (right.is(right_arg)) { | |
10122 __ mov(left_arg, left); | |
10123 } else if (left.is(right_arg)) { | |
10124 if (IsOperationCommutative()) { | |
10125 __ mov(left_arg, right); | |
10126 SetArgsReversed(); | |
10127 } else { | |
10128 // Order of moves important to avoid destroying left argument. | |
10129 __ mov(left_arg, left); | |
10130 __ mov(right_arg, right); | |
10131 } | |
10132 } else if (right.is(left_arg)) { | |
10133 if (IsOperationCommutative()) { | |
10134 __ mov(right_arg, left); | |
10135 SetArgsReversed(); | |
10136 } else { | |
10137 // Order of moves important to avoid destroying right argument. | |
10138 __ mov(right_arg, right); | |
10139 __ mov(left_arg, left); | |
10140 } | |
10141 } else { | |
10142 // Order of moves is not important. | |
10143 __ mov(left_arg, left); | |
10144 __ mov(right_arg, right); | |
10145 } | |
10146 } | |
10147 | |
10148 // Update flags to indicate that arguments are in registers. | |
10149 SetArgsInRegisters(); | |
10150 __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); | |
10151 } | |
10152 | |
10153 // Call the stub. | |
10154 __ CallStub(this); | |
10155 } | |
10156 | |
10157 | |
10158 void GenericBinaryOpStub::GenerateCall( | |
10159 MacroAssembler* masm, | |
10160 Register left, | |
10161 Smi* right) { | |
10162 if (!ArgsInRegistersSupported()) { | |
10163 // Pass arguments on the stack. | |
10164 __ push(left); | |
10165 __ push(Immediate(right)); | |
10166 } else { | |
10167 // The calling convention with registers is left in edx and right in eax. | |
10168 Register left_arg = edx; | |
10169 Register right_arg = eax; | |
10170 if (left.is(left_arg)) { | |
10171 __ mov(right_arg, Immediate(right)); | |
10172 } else if (left.is(right_arg) && IsOperationCommutative()) { | |
10173 __ mov(left_arg, Immediate(right)); | |
10174 SetArgsReversed(); | |
10175 } else { | |
10176 // For non-commutative operations, left and right_arg might be | |
10177 // the same register. Therefore, the order of the moves is | |
10178 // important here in order to not overwrite left before moving | |
10179 // it to left_arg. | |
10180 __ mov(left_arg, left); | |
10181 __ mov(right_arg, Immediate(right)); | |
10182 } | |
10183 | |
10184 // Update flags to indicate that arguments are in registers. | |
10185 SetArgsInRegisters(); | |
10186 __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); | |
10187 } | |
10188 | |
10189 // Call the stub. | |
10190 __ CallStub(this); | |
10191 } | |
10192 | |
10193 | |
10194 void GenericBinaryOpStub::GenerateCall( | |
10195 MacroAssembler* masm, | |
10196 Smi* left, | |
10197 Register right) { | |
10198 if (!ArgsInRegistersSupported()) { | |
10199 // Pass arguments on the stack. | |
10200 __ push(Immediate(left)); | |
10201 __ push(right); | |
10202 } else { | |
10203 // The calling convention with registers is left in edx and right in eax. | |
10204 Register left_arg = edx; | |
10205 Register right_arg = eax; | |
10206 if (right.is(right_arg)) { | |
10207 __ mov(left_arg, Immediate(left)); | |
10208 } else if (right.is(left_arg) && IsOperationCommutative()) { | |
10209 __ mov(right_arg, Immediate(left)); | |
10210 SetArgsReversed(); | |
10211 } else { | |
10212 // For non-commutative operations, right and left_arg might be | |
10213 // the same register. Therefore, the order of the moves is | |
10214 // important here in order to not overwrite right before moving | |
10215 // it to right_arg. | |
10216 __ mov(right_arg, right); | |
10217 __ mov(left_arg, Immediate(left)); | |
10218 } | |
10219 // Update flags to indicate that arguments are in registers. | |
10220 SetArgsInRegisters(); | |
10221 __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); | |
10222 } | |
10223 | |
10224 // Call the stub. | |
10225 __ CallStub(this); | |
10226 } | |
10227 | |
10228 | |
10229 Result GenericBinaryOpStub::GenerateCall(MacroAssembler* masm, | 9793 Result GenericBinaryOpStub::GenerateCall(MacroAssembler* masm, |
10230 VirtualFrame* frame, | 9794 VirtualFrame* frame, |
10231 Result* left, | 9795 Result* left, |
10232 Result* right) { | 9796 Result* right) { |
10233 if (ArgsInRegistersSupported()) { | 9797 if (ArgsInRegistersSupported()) { |
10234 SetArgsInRegisters(); | 9798 SetArgsInRegisters(); |
10235 return frame->CallStub(this, left, right); | 9799 return frame->CallStub(this, left, right); |
10236 } else { | 9800 } else { |
10237 frame->Push(left); | 9801 frame->Push(left); |
10238 frame->Push(right); | 9802 frame->Push(right); |
10239 return frame->CallStub(this, 2); | 9803 return frame->CallStub(this, 2); |
10240 } | 9804 } |
10241 } | 9805 } |
10242 | 9806 |
10243 | 9807 |
10244 void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) { | |
10245 // 1. Move arguments into edx, eax except for DIV and MOD, which need the | |
10246 // dividend in eax and edx free for the division. Use eax, ebx for those. | |
10247 Comment load_comment(masm, "-- Load arguments"); | |
10248 Register left = edx; | |
10249 Register right = eax; | |
10250 if (op_ == Token::DIV || op_ == Token::MOD) { | |
10251 left = eax; | |
10252 right = ebx; | |
10253 if (HasArgsInRegisters()) { | |
10254 __ mov(ebx, eax); | |
10255 __ mov(eax, edx); | |
10256 } | |
10257 } | |
10258 if (!HasArgsInRegisters()) { | |
10259 __ mov(right, Operand(esp, 1 * kPointerSize)); | |
10260 __ mov(left, Operand(esp, 2 * kPointerSize)); | |
10261 } | |
10262 | |
10263 if (static_operands_type_.IsSmi()) { | |
10264 if (FLAG_debug_code) { | |
10265 __ AbortIfNotSmi(left); | |
10266 __ AbortIfNotSmi(right); | |
10267 } | |
10268 if (op_ == Token::BIT_OR) { | |
10269 __ or_(right, Operand(left)); | |
10270 GenerateReturn(masm); | |
10271 return; | |
10272 } else if (op_ == Token::BIT_AND) { | |
10273 __ and_(right, Operand(left)); | |
10274 GenerateReturn(masm); | |
10275 return; | |
10276 } else if (op_ == Token::BIT_XOR) { | |
10277 __ xor_(right, Operand(left)); | |
10278 GenerateReturn(masm); | |
10279 return; | |
10280 } | |
10281 } | |
10282 | |
10283 // 2. Prepare the smi check of both operands by oring them together. | |
10284 Comment smi_check_comment(masm, "-- Smi check arguments"); | |
10285 Label not_smis; | |
10286 Register combined = ecx; | |
10287 ASSERT(!left.is(combined) && !right.is(combined)); | |
10288 switch (op_) { | |
10289 case Token::BIT_OR: | |
10290 // Perform the operation into eax and smi check the result. Preserve | |
10291 // eax in case the result is not a smi. | |
10292 ASSERT(!left.is(ecx) && !right.is(ecx)); | |
10293 __ mov(ecx, right); | |
10294 __ or_(right, Operand(left)); // Bitwise or is commutative. | |
10295 combined = right; | |
10296 break; | |
10297 | |
10298 case Token::BIT_XOR: | |
10299 case Token::BIT_AND: | |
10300 case Token::ADD: | |
10301 case Token::SUB: | |
10302 case Token::MUL: | |
10303 case Token::DIV: | |
10304 case Token::MOD: | |
10305 __ mov(combined, right); | |
10306 __ or_(combined, Operand(left)); | |
10307 break; | |
10308 | |
10309 case Token::SHL: | |
10310 case Token::SAR: | |
10311 case Token::SHR: | |
10312 // Move the right operand into ecx for the shift operation, use eax | |
10313 // for the smi check register. | |
10314 ASSERT(!left.is(ecx) && !right.is(ecx)); | |
10315 __ mov(ecx, right); | |
10316 __ or_(right, Operand(left)); | |
10317 combined = right; | |
10318 break; | |
10319 | |
10320 default: | |
10321 break; | |
10322 } | |
10323 | |
10324 // 3. Perform the smi check of the operands. | |
10325 STATIC_ASSERT(kSmiTag == 0); // Adjust zero check if not the case. | |
10326 __ test(combined, Immediate(kSmiTagMask)); | |
10327 __ j(not_zero, ¬_smis, not_taken); | |
10328 | |
10329 // 4. Operands are both smis, perform the operation leaving the result in | |
10330 // eax and check the result if necessary. | |
10331 Comment perform_smi(masm, "-- Perform smi operation"); | |
10332 Label use_fp_on_smis; | |
10333 switch (op_) { | |
10334 case Token::BIT_OR: | |
10335 // Nothing to do. | |
10336 break; | |
10337 | |
10338 case Token::BIT_XOR: | |
10339 ASSERT(right.is(eax)); | |
10340 __ xor_(right, Operand(left)); // Bitwise xor is commutative. | |
10341 break; | |
10342 | |
10343 case Token::BIT_AND: | |
10344 ASSERT(right.is(eax)); | |
10345 __ and_(right, Operand(left)); // Bitwise and is commutative. | |
10346 break; | |
10347 | |
10348 case Token::SHL: | |
10349 // Remove tags from operands (but keep sign). | |
10350 __ SmiUntag(left); | |
10351 __ SmiUntag(ecx); | |
10352 // Perform the operation. | |
10353 __ shl_cl(left); | |
10354 // Check that the *signed* result fits in a smi. | |
10355 __ cmp(left, 0xc0000000); | |
10356 __ j(sign, &use_fp_on_smis, not_taken); | |
10357 // Tag the result and store it in register eax. | |
10358 __ SmiTag(left); | |
10359 __ mov(eax, left); | |
10360 break; | |
10361 | |
10362 case Token::SAR: | |
10363 // Remove tags from operands (but keep sign). | |
10364 __ SmiUntag(left); | |
10365 __ SmiUntag(ecx); | |
10366 // Perform the operation. | |
10367 __ sar_cl(left); | |
10368 // Tag the result and store it in register eax. | |
10369 __ SmiTag(left); | |
10370 __ mov(eax, left); | |
10371 break; | |
10372 | |
10373 case Token::SHR: | |
10374 // Remove tags from operands (but keep sign). | |
10375 __ SmiUntag(left); | |
10376 __ SmiUntag(ecx); | |
10377 // Perform the operation. | |
10378 __ shr_cl(left); | |
10379 // Check that the *unsigned* result fits in a smi. | |
10380 // Neither of the two high-order bits can be set: | |
10381 // - 0x80000000: high bit would be lost when smi tagging. | |
10382 // - 0x40000000: this number would convert to negative when | |
10383 // Smi tagging these two cases can only happen with shifts | |
10384 // by 0 or 1 when handed a valid smi. | |
10385 __ test(left, Immediate(0xc0000000)); | |
10386 __ j(not_zero, slow, not_taken); | |
10387 // Tag the result and store it in register eax. | |
10388 __ SmiTag(left); | |
10389 __ mov(eax, left); | |
10390 break; | |
10391 | |
10392 case Token::ADD: | |
10393 ASSERT(right.is(eax)); | |
10394 __ add(right, Operand(left)); // Addition is commutative. | |
10395 __ j(overflow, &use_fp_on_smis, not_taken); | |
10396 break; | |
10397 | |
10398 case Token::SUB: | |
10399 __ sub(left, Operand(right)); | |
10400 __ j(overflow, &use_fp_on_smis, not_taken); | |
10401 __ mov(eax, left); | |
10402 break; | |
10403 | |
10404 case Token::MUL: | |
10405 // If the smi tag is 0 we can just leave the tag on one operand. | |
10406 STATIC_ASSERT(kSmiTag == 0); // Adjust code below if not the case. | |
10407 // We can't revert the multiplication if the result is not a smi | |
10408 // so save the right operand. | |
10409 __ mov(ebx, right); | |
10410 // Remove tag from one of the operands (but keep sign). | |
10411 __ SmiUntag(right); | |
10412 // Do multiplication. | |
10413 __ imul(right, Operand(left)); // Multiplication is commutative. | |
10414 __ j(overflow, &use_fp_on_smis, not_taken); | |
10415 // Check for negative zero result. Use combined = left | right. | |
10416 __ NegativeZeroTest(right, combined, &use_fp_on_smis); | |
10417 break; | |
10418 | |
10419 case Token::DIV: | |
10420 // We can't revert the division if the result is not a smi so | |
10421 // save the left operand. | |
10422 __ mov(edi, left); | |
10423 // Check for 0 divisor. | |
10424 __ test(right, Operand(right)); | |
10425 __ j(zero, &use_fp_on_smis, not_taken); | |
10426 // Sign extend left into edx:eax. | |
10427 ASSERT(left.is(eax)); | |
10428 __ cdq(); | |
10429 // Divide edx:eax by right. | |
10430 __ idiv(right); | |
10431 // Check for the corner case of dividing the most negative smi by | |
10432 // -1. We cannot use the overflow flag, since it is not set by idiv | |
10433 // instruction. | |
10434 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); | |
10435 __ cmp(eax, 0x40000000); | |
10436 __ j(equal, &use_fp_on_smis); | |
10437 // Check for negative zero result. Use combined = left | right. | |
10438 __ NegativeZeroTest(eax, combined, &use_fp_on_smis); | |
10439 // Check that the remainder is zero. | |
10440 __ test(edx, Operand(edx)); | |
10441 __ j(not_zero, &use_fp_on_smis); | |
10442 // Tag the result and store it in register eax. | |
10443 __ SmiTag(eax); | |
10444 break; | |
10445 | |
10446 case Token::MOD: | |
10447 // Check for 0 divisor. | |
10448 __ test(right, Operand(right)); | |
10449 __ j(zero, ¬_smis, not_taken); | |
10450 | |
10451 // Sign extend left into edx:eax. | |
10452 ASSERT(left.is(eax)); | |
10453 __ cdq(); | |
10454 // Divide edx:eax by right. | |
10455 __ idiv(right); | |
10456 // Check for negative zero result. Use combined = left | right. | |
10457 __ NegativeZeroTest(edx, combined, slow); | |
10458 // Move remainder to register eax. | |
10459 __ mov(eax, edx); | |
10460 break; | |
10461 | |
10462 default: | |
10463 UNREACHABLE(); | |
10464 } | |
10465 | |
10466 // 5. Emit return of result in eax. | |
10467 GenerateReturn(masm); | |
10468 | |
10469 // 6. For some operations emit inline code to perform floating point | |
10470 // operations on known smis (e.g., if the result of the operation | |
10471 // overflowed the smi range). | |
10472 switch (op_) { | |
10473 case Token::SHL: { | |
10474 Comment perform_float(masm, "-- Perform float operation on smis"); | |
10475 __ bind(&use_fp_on_smis); | |
10476 // Result we want is in left == edx, so we can put the allocated heap | |
10477 // number in eax. | |
10478 __ AllocateHeapNumber(eax, ecx, ebx, slow); | |
10479 // Store the result in the HeapNumber and return. | |
10480 if (CpuFeatures::IsSupported(SSE2)) { | |
10481 CpuFeatures::Scope use_sse2(SSE2); | |
10482 __ cvtsi2sd(xmm0, Operand(left)); | |
10483 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); | |
10484 } else { | |
10485 // It's OK to overwrite the right argument on the stack because we | |
10486 // are about to return. | |
10487 __ mov(Operand(esp, 1 * kPointerSize), left); | |
10488 __ fild_s(Operand(esp, 1 * kPointerSize)); | |
10489 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); | |
10490 } | |
10491 GenerateReturn(masm); | |
10492 break; | |
10493 } | |
10494 | |
10495 case Token::ADD: | |
10496 case Token::SUB: | |
10497 case Token::MUL: | |
10498 case Token::DIV: { | |
10499 Comment perform_float(masm, "-- Perform float operation on smis"); | |
10500 __ bind(&use_fp_on_smis); | |
10501 // Restore arguments to edx, eax. | |
10502 switch (op_) { | |
10503 case Token::ADD: | |
10504 // Revert right = right + left. | |
10505 __ sub(right, Operand(left)); | |
10506 break; | |
10507 case Token::SUB: | |
10508 // Revert left = left - right. | |
10509 __ add(left, Operand(right)); | |
10510 break; | |
10511 case Token::MUL: | |
10512 // Right was clobbered but a copy is in ebx. | |
10513 __ mov(right, ebx); | |
10514 break; | |
10515 case Token::DIV: | |
10516 // Left was clobbered but a copy is in edi. Right is in ebx for | |
10517 // division. | |
10518 __ mov(edx, edi); | |
10519 __ mov(eax, right); | |
10520 break; | |
10521 default: UNREACHABLE(); | |
10522 break; | |
10523 } | |
10524 __ AllocateHeapNumber(ecx, ebx, no_reg, slow); | |
10525 if (CpuFeatures::IsSupported(SSE2)) { | |
10526 CpuFeatures::Scope use_sse2(SSE2); | |
10527 FloatingPointHelper::LoadSSE2Smis(masm, ebx); | |
10528 switch (op_) { | |
10529 case Token::ADD: __ addsd(xmm0, xmm1); break; | |
10530 case Token::SUB: __ subsd(xmm0, xmm1); break; | |
10531 case Token::MUL: __ mulsd(xmm0, xmm1); break; | |
10532 case Token::DIV: __ divsd(xmm0, xmm1); break; | |
10533 default: UNREACHABLE(); | |
10534 } | |
10535 __ movdbl(FieldOperand(ecx, HeapNumber::kValueOffset), xmm0); | |
10536 } else { // SSE2 not available, use FPU. | |
10537 FloatingPointHelper::LoadFloatSmis(masm, ebx); | |
10538 switch (op_) { | |
10539 case Token::ADD: __ faddp(1); break; | |
10540 case Token::SUB: __ fsubp(1); break; | |
10541 case Token::MUL: __ fmulp(1); break; | |
10542 case Token::DIV: __ fdivp(1); break; | |
10543 default: UNREACHABLE(); | |
10544 } | |
10545 __ fstp_d(FieldOperand(ecx, HeapNumber::kValueOffset)); | |
10546 } | |
10547 __ mov(eax, ecx); | |
10548 GenerateReturn(masm); | |
10549 break; | |
10550 } | |
10551 | |
10552 default: | |
10553 break; | |
10554 } | |
10555 | |
10556 // 7. Non-smi operands, fall out to the non-smi code with the operands in | |
10557 // edx and eax. | |
10558 Comment done_comment(masm, "-- Enter non-smi code"); | |
10559 __ bind(¬_smis); | |
10560 switch (op_) { | |
10561 case Token::BIT_OR: | |
10562 case Token::SHL: | |
10563 case Token::SAR: | |
10564 case Token::SHR: | |
10565 // Right operand is saved in ecx and eax was destroyed by the smi | |
10566 // check. | |
10567 __ mov(eax, ecx); | |
10568 break; | |
10569 | |
10570 case Token::DIV: | |
10571 case Token::MOD: | |
10572 // Operands are in eax, ebx at this point. | |
10573 __ mov(edx, eax); | |
10574 __ mov(eax, ebx); | |
10575 break; | |
10576 | |
10577 default: | |
10578 break; | |
10579 } | |
10580 } | |
10581 | |
10582 | |
10583 void GenericBinaryOpStub::Generate(MacroAssembler* masm) { | |
10584 Label call_runtime; | |
10585 | |
10586 __ IncrementCounter(&Counters::generic_binary_stub_calls, 1); | |
10587 | |
10588 // Generate fast case smi code if requested. This flag is set when the fast | |
10589 // case smi code is not generated by the caller. Generating it here will speed | |
10590 // up common operations. | |
10591 if (ShouldGenerateSmiCode()) { | |
10592 GenerateSmiCode(masm, &call_runtime); | |
10593 } else if (op_ != Token::MOD) { // MOD goes straight to runtime. | |
10594 if (!HasArgsInRegisters()) { | |
10595 GenerateLoadArguments(masm); | |
10596 } | |
10597 } | |
10598 | |
10599 // Floating point case. | |
10600 if (ShouldGenerateFPCode()) { | |
10601 switch (op_) { | |
10602 case Token::ADD: | |
10603 case Token::SUB: | |
10604 case Token::MUL: | |
10605 case Token::DIV: { | |
10606 if (runtime_operands_type_ == BinaryOpIC::DEFAULT && | |
10607 HasSmiCodeInStub()) { | |
10608 // Execution reaches this point when the first non-smi argument occurs | |
10609 // (and only if smi code is generated). This is the right moment to | |
10610 // patch to HEAP_NUMBERS state. The transition is attempted only for | |
10611 // the four basic operations. The stub stays in the DEFAULT state | |
10612 // forever for all other operations (also if smi code is skipped). | |
10613 GenerateTypeTransition(masm); | |
10614 break; | |
10615 } | |
10616 | |
10617 Label not_floats; | |
10618 if (CpuFeatures::IsSupported(SSE2)) { | |
10619 CpuFeatures::Scope use_sse2(SSE2); | |
10620 if (static_operands_type_.IsNumber()) { | |
10621 if (FLAG_debug_code) { | |
10622 // Assert at runtime that inputs are only numbers. | |
10623 __ AbortIfNotNumber(edx); | |
10624 __ AbortIfNotNumber(eax); | |
10625 } | |
10626 if (static_operands_type_.IsSmi()) { | |
10627 if (FLAG_debug_code) { | |
10628 __ AbortIfNotSmi(edx); | |
10629 __ AbortIfNotSmi(eax); | |
10630 } | |
10631 FloatingPointHelper::LoadSSE2Smis(masm, ecx); | |
10632 } else { | |
10633 FloatingPointHelper::LoadSSE2Operands(masm); | |
10634 } | |
10635 } else { | |
10636 FloatingPointHelper::LoadSSE2Operands(masm, &call_runtime); | |
10637 } | |
10638 | |
10639 switch (op_) { | |
10640 case Token::ADD: __ addsd(xmm0, xmm1); break; | |
10641 case Token::SUB: __ subsd(xmm0, xmm1); break; | |
10642 case Token::MUL: __ mulsd(xmm0, xmm1); break; | |
10643 case Token::DIV: __ divsd(xmm0, xmm1); break; | |
10644 default: UNREACHABLE(); | |
10645 } | |
10646 GenerateHeapResultAllocation(masm, &call_runtime); | |
10647 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); | |
10648 GenerateReturn(masm); | |
10649 } else { // SSE2 not available, use FPU. | |
10650 if (static_operands_type_.IsNumber()) { | |
10651 if (FLAG_debug_code) { | |
10652 // Assert at runtime that inputs are only numbers. | |
10653 __ AbortIfNotNumber(edx); | |
10654 __ AbortIfNotNumber(eax); | |
10655 } | |
10656 } else { | |
10657 FloatingPointHelper::CheckFloatOperands(masm, &call_runtime, ebx); | |
10658 } | |
10659 FloatingPointHelper::LoadFloatOperands( | |
10660 masm, | |
10661 ecx, | |
10662 FloatingPointHelper::ARGS_IN_REGISTERS); | |
10663 switch (op_) { | |
10664 case Token::ADD: __ faddp(1); break; | |
10665 case Token::SUB: __ fsubp(1); break; | |
10666 case Token::MUL: __ fmulp(1); break; | |
10667 case Token::DIV: __ fdivp(1); break; | |
10668 default: UNREACHABLE(); | |
10669 } | |
10670 Label after_alloc_failure; | |
10671 GenerateHeapResultAllocation(masm, &after_alloc_failure); | |
10672 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); | |
10673 GenerateReturn(masm); | |
10674 __ bind(&after_alloc_failure); | |
10675 __ ffree(); | |
10676 __ jmp(&call_runtime); | |
10677 } | |
10678 __ bind(¬_floats); | |
10679 if (runtime_operands_type_ == BinaryOpIC::DEFAULT && | |
10680 !HasSmiCodeInStub()) { | |
10681 // Execution reaches this point when the first non-number argument | |
10682 // occurs (and only if smi code is skipped from the stub, otherwise | |
10683 // the patching has already been done earlier in this case branch). | |
10684 // Try patching to STRINGS for ADD operation. | |
10685 if (op_ == Token::ADD) { | |
10686 GenerateTypeTransition(masm); | |
10687 } | |
10688 } | |
10689 break; | |
10690 } | |
10691 case Token::MOD: { | |
10692 // For MOD we go directly to runtime in the non-smi case. | |
10693 break; | |
10694 } | |
10695 case Token::BIT_OR: | |
10696 case Token::BIT_AND: | |
10697 case Token::BIT_XOR: | |
10698 case Token::SAR: | |
10699 case Token::SHL: | |
10700 case Token::SHR: { | |
10701 Label non_smi_result; | |
10702 FloatingPointHelper::LoadAsIntegers(masm, | |
10703 static_operands_type_, | |
10704 use_sse3_, | |
10705 &call_runtime); | |
10706 switch (op_) { | |
10707 case Token::BIT_OR: __ or_(eax, Operand(ecx)); break; | |
10708 case Token::BIT_AND: __ and_(eax, Operand(ecx)); break; | |
10709 case Token::BIT_XOR: __ xor_(eax, Operand(ecx)); break; | |
10710 case Token::SAR: __ sar_cl(eax); break; | |
10711 case Token::SHL: __ shl_cl(eax); break; | |
10712 case Token::SHR: __ shr_cl(eax); break; | |
10713 default: UNREACHABLE(); | |
10714 } | |
10715 if (op_ == Token::SHR) { | |
10716 // Check if result is non-negative and fits in a smi. | |
10717 __ test(eax, Immediate(0xc0000000)); | |
10718 __ j(not_zero, &call_runtime); | |
10719 } else { | |
10720 // Check if result fits in a smi. | |
10721 __ cmp(eax, 0xc0000000); | |
10722 __ j(negative, &non_smi_result); | |
10723 } | |
10724 // Tag smi result and return. | |
10725 __ SmiTag(eax); | |
10726 GenerateReturn(masm); | |
10727 | |
10728 // All ops except SHR return a signed int32 that we load in | |
10729 // a HeapNumber. | |
10730 if (op_ != Token::SHR) { | |
10731 __ bind(&non_smi_result); | |
10732 // Allocate a heap number if needed. | |
10733 __ mov(ebx, Operand(eax)); // ebx: result | |
10734 Label skip_allocation; | |
10735 switch (mode_) { | |
10736 case OVERWRITE_LEFT: | |
10737 case OVERWRITE_RIGHT: | |
10738 // If the operand was an object, we skip the | |
10739 // allocation of a heap number. | |
10740 __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ? | |
10741 1 * kPointerSize : 2 * kPointerSize)); | |
10742 __ test(eax, Immediate(kSmiTagMask)); | |
10743 __ j(not_zero, &skip_allocation, not_taken); | |
10744 // Fall through! | |
10745 case NO_OVERWRITE: | |
10746 __ AllocateHeapNumber(eax, ecx, edx, &call_runtime); | |
10747 __ bind(&skip_allocation); | |
10748 break; | |
10749 default: UNREACHABLE(); | |
10750 } | |
10751 // Store the result in the HeapNumber and return. | |
10752 if (CpuFeatures::IsSupported(SSE2)) { | |
10753 CpuFeatures::Scope use_sse2(SSE2); | |
10754 __ cvtsi2sd(xmm0, Operand(ebx)); | |
10755 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); | |
10756 } else { | |
10757 __ mov(Operand(esp, 1 * kPointerSize), ebx); | |
10758 __ fild_s(Operand(esp, 1 * kPointerSize)); | |
10759 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); | |
10760 } | |
10761 GenerateReturn(masm); | |
10762 } | |
10763 break; | |
10764 } | |
10765 default: UNREACHABLE(); break; | |
10766 } | |
10767 } | |
10768 | |
10769 // If all else fails, use the runtime system to get the correct | |
10770 // result. If arguments was passed in registers now place them on the | |
10771 // stack in the correct order below the return address. | |
10772 __ bind(&call_runtime); | |
10773 if (HasArgsInRegisters()) { | |
10774 GenerateRegisterArgsPush(masm); | |
10775 } | |
10776 | |
10777 switch (op_) { | |
10778 case Token::ADD: { | |
10779 // Test for string arguments before calling runtime. | |
10780 Label not_strings, not_string1, string1, string1_smi2; | |
10781 | |
10782 // If this stub has already generated FP-specific code then the arguments | |
10783 // are already in edx, eax | |
10784 if (!ShouldGenerateFPCode() && !HasArgsInRegisters()) { | |
10785 GenerateLoadArguments(masm); | |
10786 } | |
10787 | |
10788 // Registers containing left and right operands respectively. | |
10789 Register lhs, rhs; | |
10790 if (HasArgsReversed()) { | |
10791 lhs = eax; | |
10792 rhs = edx; | |
10793 } else { | |
10794 lhs = edx; | |
10795 rhs = eax; | |
10796 } | |
10797 | |
10798 // Test if first argument is a string. | |
10799 __ test(lhs, Immediate(kSmiTagMask)); | |
10800 __ j(zero, ¬_string1); | |
10801 __ CmpObjectType(lhs, FIRST_NONSTRING_TYPE, ecx); | |
10802 __ j(above_equal, ¬_string1); | |
10803 | |
10804 // First argument is a string, test second. | |
10805 __ test(rhs, Immediate(kSmiTagMask)); | |
10806 __ j(zero, &string1_smi2); | |
10807 __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, ecx); | |
10808 __ j(above_equal, &string1); | |
10809 | |
10810 // First and second argument are strings. Jump to the string add stub. | |
10811 StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB); | |
10812 __ TailCallStub(&string_add_stub); | |
10813 | |
10814 __ bind(&string1_smi2); | |
10815 // First argument is a string, second is a smi. Try to lookup the number | |
10816 // string for the smi in the number string cache. | |
10817 NumberToStringStub::GenerateLookupNumberStringCache( | |
10818 masm, rhs, edi, ebx, ecx, true, &string1); | |
10819 | |
10820 // Replace second argument on stack and tailcall string add stub to make | |
10821 // the result. | |
10822 __ mov(Operand(esp, 1 * kPointerSize), edi); | |
10823 __ TailCallStub(&string_add_stub); | |
10824 | |
10825 // Only first argument is a string. | |
10826 __ bind(&string1); | |
10827 __ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_FUNCTION); | |
10828 | |
10829 // First argument was not a string, test second. | |
10830 __ bind(¬_string1); | |
10831 __ test(rhs, Immediate(kSmiTagMask)); | |
10832 __ j(zero, ¬_strings); | |
10833 __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, ecx); | |
10834 __ j(above_equal, ¬_strings); | |
10835 | |
10836 // Only second argument is a string. | |
10837 __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_FUNCTION); | |
10838 | |
10839 __ bind(¬_strings); | |
10840 // Neither argument is a string. | |
10841 __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); | |
10842 break; | |
10843 } | |
10844 case Token::SUB: | |
10845 __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); | |
10846 break; | |
10847 case Token::MUL: | |
10848 __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); | |
10849 break; | |
10850 case Token::DIV: | |
10851 __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); | |
10852 break; | |
10853 case Token::MOD: | |
10854 __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); | |
10855 break; | |
10856 case Token::BIT_OR: | |
10857 __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); | |
10858 break; | |
10859 case Token::BIT_AND: | |
10860 __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); | |
10861 break; | |
10862 case Token::BIT_XOR: | |
10863 __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); | |
10864 break; | |
10865 case Token::SAR: | |
10866 __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); | |
10867 break; | |
10868 case Token::SHL: | |
10869 __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); | |
10870 break; | |
10871 case Token::SHR: | |
10872 __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); | |
10873 break; | |
10874 default: | |
10875 UNREACHABLE(); | |
10876 } | |
10877 } | |
10878 | |
10879 | |
10880 void GenericBinaryOpStub::GenerateHeapResultAllocation(MacroAssembler* masm, | |
10881 Label* alloc_failure) { | |
10882 Label skip_allocation; | |
10883 OverwriteMode mode = mode_; | |
10884 if (HasArgsReversed()) { | |
10885 if (mode == OVERWRITE_RIGHT) { | |
10886 mode = OVERWRITE_LEFT; | |
10887 } else if (mode == OVERWRITE_LEFT) { | |
10888 mode = OVERWRITE_RIGHT; | |
10889 } | |
10890 } | |
10891 switch (mode) { | |
10892 case OVERWRITE_LEFT: { | |
10893 // If the argument in edx is already an object, we skip the | |
10894 // allocation of a heap number. | |
10895 __ test(edx, Immediate(kSmiTagMask)); | |
10896 __ j(not_zero, &skip_allocation, not_taken); | |
10897 // Allocate a heap number for the result. Keep eax and edx intact | |
10898 // for the possible runtime call. | |
10899 __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure); | |
10900 // Now edx can be overwritten losing one of the arguments as we are | |
10901 // now done and will not need it any more. | |
10902 __ mov(edx, Operand(ebx)); | |
10903 __ bind(&skip_allocation); | |
10904 // Use object in edx as a result holder | |
10905 __ mov(eax, Operand(edx)); | |
10906 break; | |
10907 } | |
10908 case OVERWRITE_RIGHT: | |
10909 // If the argument in eax is already an object, we skip the | |
10910 // allocation of a heap number. | |
10911 __ test(eax, Immediate(kSmiTagMask)); | |
10912 __ j(not_zero, &skip_allocation, not_taken); | |
10913 // Fall through! | |
10914 case NO_OVERWRITE: | |
10915 // Allocate a heap number for the result. Keep eax and edx intact | |
10916 // for the possible runtime call. | |
10917 __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure); | |
10918 // Now eax can be overwritten losing one of the arguments as we are | |
10919 // now done and will not need it any more. | |
10920 __ mov(eax, ebx); | |
10921 __ bind(&skip_allocation); | |
10922 break; | |
10923 default: UNREACHABLE(); | |
10924 } | |
10925 } | |
10926 | |
10927 | |
10928 void GenericBinaryOpStub::GenerateLoadArguments(MacroAssembler* masm) { | |
10929 // If arguments are not passed in registers read them from the stack. | |
10930 ASSERT(!HasArgsInRegisters()); | |
10931 __ mov(eax, Operand(esp, 1 * kPointerSize)); | |
10932 __ mov(edx, Operand(esp, 2 * kPointerSize)); | |
10933 } | |
10934 | |
10935 | |
10936 void GenericBinaryOpStub::GenerateReturn(MacroAssembler* masm) { | |
10937 // If arguments are not passed in registers remove them from the stack before | |
10938 // returning. | |
10939 if (!HasArgsInRegisters()) { | |
10940 __ ret(2 * kPointerSize); // Remove both operands | |
10941 } else { | |
10942 __ ret(0); | |
10943 } | |
10944 } | |
10945 | |
10946 | |
10947 void GenericBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) { | |
10948 ASSERT(HasArgsInRegisters()); | |
10949 __ pop(ecx); | |
10950 if (HasArgsReversed()) { | |
10951 __ push(eax); | |
10952 __ push(edx); | |
10953 } else { | |
10954 __ push(edx); | |
10955 __ push(eax); | |
10956 } | |
10957 __ push(ecx); | |
10958 } | |
10959 | |
10960 | |
10961 void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { | |
10962 // Ensure the operands are on the stack. | |
10963 if (HasArgsInRegisters()) { | |
10964 GenerateRegisterArgsPush(masm); | |
10965 } | |
10966 | |
10967 __ pop(ecx); // Save return address. | |
10968 | |
10969 // Left and right arguments are now on top. | |
10970 // Push this stub's key. Although the operation and the type info are | |
10971 // encoded into the key, the encoding is opaque, so push them too. | |
10972 __ push(Immediate(Smi::FromInt(MinorKey()))); | |
10973 __ push(Immediate(Smi::FromInt(op_))); | |
10974 __ push(Immediate(Smi::FromInt(runtime_operands_type_))); | |
10975 | |
10976 __ push(ecx); // Push return address. | |
10977 | |
10978 // Patch the caller to an appropriate specialized stub and return the | |
10979 // operation result to the caller of the stub. | |
10980 __ TailCallExternalReference( | |
10981 ExternalReference(IC_Utility(IC::kBinaryOp_Patch)), | |
10982 5, | |
10983 1); | |
10984 } | |
10985 | |
10986 | |
10987 Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) { | |
10988 GenericBinaryOpStub stub(key, type_info); | |
10989 return stub.GetCode(); | |
10990 } | |
10991 | |
10992 | |
10993 void TranscendentalCacheStub::Generate(MacroAssembler* masm) { | |
10994 // Input on stack: | |
10995 // esp[4]: argument (should be number). | |
10996 // esp[0]: return address. | |
10997 // Test that eax is a number. | |
10998 Label runtime_call; | |
10999 Label runtime_call_clear_stack; | |
11000 Label input_not_smi; | |
11001 Label loaded; | |
11002 __ mov(eax, Operand(esp, kPointerSize)); | |
11003 __ test(eax, Immediate(kSmiTagMask)); | |
11004 __ j(not_zero, &input_not_smi); | |
11005 // Input is a smi. Untag and load it onto the FPU stack. | |
11006 // Then load the low and high words of the double into ebx, edx. | |
11007 STATIC_ASSERT(kSmiTagSize == 1); | |
11008 __ sar(eax, 1); | |
11009 __ sub(Operand(esp), Immediate(2 * kPointerSize)); | |
11010 __ mov(Operand(esp, 0), eax); | |
11011 __ fild_s(Operand(esp, 0)); | |
11012 __ fst_d(Operand(esp, 0)); | |
11013 __ pop(edx); | |
11014 __ pop(ebx); | |
11015 __ jmp(&loaded); | |
11016 __ bind(&input_not_smi); | |
11017 // Check if input is a HeapNumber. | |
11018 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); | |
11019 __ cmp(Operand(ebx), Immediate(Factory::heap_number_map())); | |
11020 __ j(not_equal, &runtime_call); | |
11021 // Input is a HeapNumber. Push it on the FPU stack and load its | |
11022 // low and high words into ebx, edx. | |
11023 __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset)); | |
11024 __ mov(edx, FieldOperand(eax, HeapNumber::kExponentOffset)); | |
11025 __ mov(ebx, FieldOperand(eax, HeapNumber::kMantissaOffset)); | |
11026 | |
11027 __ bind(&loaded); | |
11028 // ST[0] == double value | |
11029 // ebx = low 32 bits of double value | |
11030 // edx = high 32 bits of double value | |
11031 // Compute hash (the shifts are arithmetic): | |
11032 // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1); | |
11033 __ mov(ecx, ebx); | |
11034 __ xor_(ecx, Operand(edx)); | |
11035 __ mov(eax, ecx); | |
11036 __ sar(eax, 16); | |
11037 __ xor_(ecx, Operand(eax)); | |
11038 __ mov(eax, ecx); | |
11039 __ sar(eax, 8); | |
11040 __ xor_(ecx, Operand(eax)); | |
11041 ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize)); | |
11042 __ and_(Operand(ecx), Immediate(TranscendentalCache::kCacheSize - 1)); | |
11043 | |
11044 // ST[0] == double value. | |
11045 // ebx = low 32 bits of double value. | |
11046 // edx = high 32 bits of double value. | |
11047 // ecx = TranscendentalCache::hash(double value). | |
11048 __ mov(eax, | |
11049 Immediate(ExternalReference::transcendental_cache_array_address())); | |
11050 // Eax points to cache array. | |
11051 __ mov(eax, Operand(eax, type_ * sizeof(TranscendentalCache::caches_[0]))); | |
11052 // Eax points to the cache for the type type_. | |
11053 // If NULL, the cache hasn't been initialized yet, so go through runtime. | |
11054 __ test(eax, Operand(eax)); | |
11055 __ j(zero, &runtime_call_clear_stack); | |
11056 #ifdef DEBUG | |
11057 // Check that the layout of cache elements match expectations. | |
11058 { TranscendentalCache::Element test_elem[2]; | |
11059 char* elem_start = reinterpret_cast<char*>(&test_elem[0]); | |
11060 char* elem2_start = reinterpret_cast<char*>(&test_elem[1]); | |
11061 char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0])); | |
11062 char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1])); | |
11063 char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output)); | |
11064 CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer. | |
11065 CHECK_EQ(0, elem_in0 - elem_start); | |
11066 CHECK_EQ(kIntSize, elem_in1 - elem_start); | |
11067 CHECK_EQ(2 * kIntSize, elem_out - elem_start); | |
11068 } | |
11069 #endif | |
11070 // Find the address of the ecx'th entry in the cache, i.e., &eax[ecx*12]. | |
11071 __ lea(ecx, Operand(ecx, ecx, times_2, 0)); | |
11072 __ lea(ecx, Operand(eax, ecx, times_4, 0)); | |
11073 // Check if cache matches: Double value is stored in uint32_t[2] array. | |
11074 Label cache_miss; | |
11075 __ cmp(ebx, Operand(ecx, 0)); | |
11076 __ j(not_equal, &cache_miss); | |
11077 __ cmp(edx, Operand(ecx, kIntSize)); | |
11078 __ j(not_equal, &cache_miss); | |
11079 // Cache hit! | |
11080 __ mov(eax, Operand(ecx, 2 * kIntSize)); | |
11081 __ fstp(0); | |
11082 __ ret(kPointerSize); | |
11083 | |
11084 __ bind(&cache_miss); | |
11085 // Update cache with new value. | |
11086 // We are short on registers, so use no_reg as scratch. | |
11087 // This gives slightly larger code. | |
11088 __ AllocateHeapNumber(eax, edi, no_reg, &runtime_call_clear_stack); | |
11089 GenerateOperation(masm); | |
11090 __ mov(Operand(ecx, 0), ebx); | |
11091 __ mov(Operand(ecx, kIntSize), edx); | |
11092 __ mov(Operand(ecx, 2 * kIntSize), eax); | |
11093 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); | |
11094 __ ret(kPointerSize); | |
11095 | |
11096 __ bind(&runtime_call_clear_stack); | |
11097 __ fstp(0); | |
11098 __ bind(&runtime_call); | |
11099 __ TailCallExternalReference(ExternalReference(RuntimeFunction()), 1, 1); | |
11100 } | |
11101 | |
11102 | |
11103 Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() { | |
11104 switch (type_) { | |
11105 // Add more cases when necessary. | |
11106 case TranscendentalCache::SIN: return Runtime::kMath_sin; | |
11107 case TranscendentalCache::COS: return Runtime::kMath_cos; | |
11108 default: | |
11109 UNIMPLEMENTED(); | |
11110 return Runtime::kAbort; | |
11111 } | |
11112 } | |
11113 | |
11114 | |
11115 void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm) { | |
11116 // Only free register is edi. | |
11117 Label done; | |
11118 ASSERT(type_ == TranscendentalCache::SIN || | |
11119 type_ == TranscendentalCache::COS); | |
11120 // More transcendental types can be added later. | |
11121 | |
11122 // Both fsin and fcos require arguments in the range +/-2^63 and | |
11123 // return NaN for infinities and NaN. They can share all code except | |
11124 // the actual fsin/fcos operation. | |
11125 Label in_range; | |
11126 // If argument is outside the range -2^63..2^63, fsin/cos doesn't | |
11127 // work. We must reduce it to the appropriate range. | |
11128 __ mov(edi, edx); | |
11129 __ and_(Operand(edi), Immediate(0x7ff00000)); // Exponent only. | |
11130 int supported_exponent_limit = | |
11131 (63 + HeapNumber::kExponentBias) << HeapNumber::kExponentShift; | |
11132 __ cmp(Operand(edi), Immediate(supported_exponent_limit)); | |
11133 __ j(below, &in_range, taken); | |
11134 // Check for infinity and NaN. Both return NaN for sin. | |
11135 __ cmp(Operand(edi), Immediate(0x7ff00000)); | |
11136 Label non_nan_result; | |
11137 __ j(not_equal, &non_nan_result, taken); | |
11138 // Input is +/-Infinity or NaN. Result is NaN. | |
11139 __ fstp(0); | |
11140 // NaN is represented by 0x7ff8000000000000. | |
11141 __ push(Immediate(0x7ff80000)); | |
11142 __ push(Immediate(0)); | |
11143 __ fld_d(Operand(esp, 0)); | |
11144 __ add(Operand(esp), Immediate(2 * kPointerSize)); | |
11145 __ jmp(&done); | |
11146 | |
11147 __ bind(&non_nan_result); | |
11148 | |
11149 // Use fpmod to restrict argument to the range +/-2*PI. | |
11150 __ mov(edi, eax); // Save eax before using fnstsw_ax. | |
11151 __ fldpi(); | |
11152 __ fadd(0); | |
11153 __ fld(1); | |
11154 // FPU Stack: input, 2*pi, input. | |
11155 { | |
11156 Label no_exceptions; | |
11157 __ fwait(); | |
11158 __ fnstsw_ax(); | |
11159 // Clear if Illegal Operand or Zero Division exceptions are set. | |
11160 __ test(Operand(eax), Immediate(5)); | |
11161 __ j(zero, &no_exceptions); | |
11162 __ fnclex(); | |
11163 __ bind(&no_exceptions); | |
11164 } | |
11165 | |
11166 // Compute st(0) % st(1) | |
11167 { | |
11168 Label partial_remainder_loop; | |
11169 __ bind(&partial_remainder_loop); | |
11170 __ fprem1(); | |
11171 __ fwait(); | |
11172 __ fnstsw_ax(); | |
11173 __ test(Operand(eax), Immediate(0x400 /* C2 */)); | |
11174 // If C2 is set, computation only has partial result. Loop to | |
11175 // continue computation. | |
11176 __ j(not_zero, &partial_remainder_loop); | |
11177 } | |
11178 // FPU Stack: input, 2*pi, input % 2*pi | |
11179 __ fstp(2); | |
11180 __ fstp(0); | |
11181 __ mov(eax, edi); // Restore eax (allocated HeapNumber pointer). | |
11182 | |
11183 // FPU Stack: input % 2*pi | |
11184 __ bind(&in_range); | |
11185 switch (type_) { | |
11186 case TranscendentalCache::SIN: | |
11187 __ fsin(); | |
11188 break; | |
11189 case TranscendentalCache::COS: | |
11190 __ fcos(); | |
11191 break; | |
11192 default: | |
11193 UNREACHABLE(); | |
11194 } | |
11195 __ bind(&done); | |
11196 } | |
11197 | |
11198 | |
11199 // Get the integer part of a heap number. Surprisingly, all this bit twiddling | |
11200 // is faster than using the built-in instructions on floating point registers. | |
11201 // Trashes edi and ebx. Dest is ecx. Source cannot be ecx or one of the | |
11202 // trashed registers. | |
11203 void IntegerConvert(MacroAssembler* masm, | |
11204 Register source, | |
11205 TypeInfo type_info, | |
11206 bool use_sse3, | |
11207 Label* conversion_failure) { | |
11208 ASSERT(!source.is(ecx) && !source.is(edi) && !source.is(ebx)); | |
11209 Label done, right_exponent, normal_exponent; | |
11210 Register scratch = ebx; | |
11211 Register scratch2 = edi; | |
11212 if (type_info.IsInteger32() && CpuFeatures::IsEnabled(SSE2)) { | |
11213 CpuFeatures::Scope scope(SSE2); | |
11214 __ cvttsd2si(ecx, FieldOperand(source, HeapNumber::kValueOffset)); | |
11215 return; | |
11216 } | |
11217 if (!type_info.IsInteger32() || !use_sse3) { | |
11218 // Get exponent word. | |
11219 __ mov(scratch, FieldOperand(source, HeapNumber::kExponentOffset)); | |
11220 // Get exponent alone in scratch2. | |
11221 __ mov(scratch2, scratch); | |
11222 __ and_(scratch2, HeapNumber::kExponentMask); | |
11223 } | |
11224 if (use_sse3) { | |
11225 CpuFeatures::Scope scope(SSE3); | |
11226 if (!type_info.IsInteger32()) { | |
11227 // Check whether the exponent is too big for a 64 bit signed integer. | |
11228 static const uint32_t kTooBigExponent = | |
11229 (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift; | |
11230 __ cmp(Operand(scratch2), Immediate(kTooBigExponent)); | |
11231 __ j(greater_equal, conversion_failure); | |
11232 } | |
11233 // Load x87 register with heap number. | |
11234 __ fld_d(FieldOperand(source, HeapNumber::kValueOffset)); | |
11235 // Reserve space for 64 bit answer. | |
11236 __ sub(Operand(esp), Immediate(sizeof(uint64_t))); // Nolint. | |
11237 // Do conversion, which cannot fail because we checked the exponent. | |
11238 __ fisttp_d(Operand(esp, 0)); | |
11239 __ mov(ecx, Operand(esp, 0)); // Load low word of answer into ecx. | |
11240 __ add(Operand(esp), Immediate(sizeof(uint64_t))); // Nolint. | |
11241 } else { | |
11242 // Load ecx with zero. We use this either for the final shift or | |
11243 // for the answer. | |
11244 __ xor_(ecx, Operand(ecx)); | |
11245 // Check whether the exponent matches a 32 bit signed int that cannot be | |
11246 // represented by a Smi. A non-smi 32 bit integer is 1.xxx * 2^30 so the | |
11247 // exponent is 30 (biased). This is the exponent that we are fastest at and | |
11248 // also the highest exponent we can handle here. | |
11249 const uint32_t non_smi_exponent = | |
11250 (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; | |
11251 __ cmp(Operand(scratch2), Immediate(non_smi_exponent)); | |
11252 // If we have a match of the int32-but-not-Smi exponent then skip some | |
11253 // logic. | |
11254 __ j(equal, &right_exponent); | |
11255 // If the exponent is higher than that then go to slow case. This catches | |
11256 // numbers that don't fit in a signed int32, infinities and NaNs. | |
11257 __ j(less, &normal_exponent); | |
11258 | |
11259 { | |
11260 // Handle a big exponent. The only reason we have this code is that the | |
11261 // >>> operator has a tendency to generate numbers with an exponent of 31. | |
11262 const uint32_t big_non_smi_exponent = | |
11263 (HeapNumber::kExponentBias + 31) << HeapNumber::kExponentShift; | |
11264 __ cmp(Operand(scratch2), Immediate(big_non_smi_exponent)); | |
11265 __ j(not_equal, conversion_failure); | |
11266 // We have the big exponent, typically from >>>. This means the number is | |
11267 // in the range 2^31 to 2^32 - 1. Get the top bits of the mantissa. | |
11268 __ mov(scratch2, scratch); | |
11269 __ and_(scratch2, HeapNumber::kMantissaMask); | |
11270 // Put back the implicit 1. | |
11271 __ or_(scratch2, 1 << HeapNumber::kExponentShift); | |
11272 // Shift up the mantissa bits to take up the space the exponent used to | |
11273 // take. We just orred in the implicit bit so that took care of one and | |
11274 // we want to use the full unsigned range so we subtract 1 bit from the | |
11275 // shift distance. | |
11276 const int big_shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 1; | |
11277 __ shl(scratch2, big_shift_distance); | |
11278 // Get the second half of the double. | |
11279 __ mov(ecx, FieldOperand(source, HeapNumber::kMantissaOffset)); | |
11280 // Shift down 21 bits to get the most significant 11 bits or the low | |
11281 // mantissa word. | |
11282 __ shr(ecx, 32 - big_shift_distance); | |
11283 __ or_(ecx, Operand(scratch2)); | |
11284 // We have the answer in ecx, but we may need to negate it. | |
11285 __ test(scratch, Operand(scratch)); | |
11286 __ j(positive, &done); | |
11287 __ neg(ecx); | |
11288 __ jmp(&done); | |
11289 } | |
11290 | |
11291 __ bind(&normal_exponent); | |
11292 // Exponent word in scratch, exponent part of exponent word in scratch2. | |
11293 // Zero in ecx. | |
11294 // We know the exponent is smaller than 30 (biased). If it is less than | |
11295 // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie | |
11296 // it rounds to zero. | |
11297 const uint32_t zero_exponent = | |
11298 (HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift; | |
11299 __ sub(Operand(scratch2), Immediate(zero_exponent)); | |
11300 // ecx already has a Smi zero. | |
11301 __ j(less, &done); | |
11302 | |
11303 // We have a shifted exponent between 0 and 30 in scratch2. | |
11304 __ shr(scratch2, HeapNumber::kExponentShift); | |
11305 __ mov(ecx, Immediate(30)); | |
11306 __ sub(ecx, Operand(scratch2)); | |
11307 | |
11308 __ bind(&right_exponent); | |
11309 // Here ecx is the shift, scratch is the exponent word. | |
11310 // Get the top bits of the mantissa. | |
11311 __ and_(scratch, HeapNumber::kMantissaMask); | |
11312 // Put back the implicit 1. | |
11313 __ or_(scratch, 1 << HeapNumber::kExponentShift); | |
11314 // Shift up the mantissa bits to take up the space the exponent used to | |
11315 // take. We have kExponentShift + 1 significant bits int he low end of the | |
11316 // word. Shift them to the top bits. | |
11317 const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; | |
11318 __ shl(scratch, shift_distance); | |
11319 // Get the second half of the double. For some exponents we don't | |
11320 // actually need this because the bits get shifted out again, but | |
11321 // it's probably slower to test than just to do it. | |
11322 __ mov(scratch2, FieldOperand(source, HeapNumber::kMantissaOffset)); | |
11323 // Shift down 22 bits to get the most significant 10 bits or the low | |
11324 // mantissa word. | |
11325 __ shr(scratch2, 32 - shift_distance); | |
11326 __ or_(scratch2, Operand(scratch)); | |
11327 // Move down according to the exponent. | |
11328 __ shr_cl(scratch2); | |
11329 // Now the unsigned answer is in scratch2. We need to move it to ecx and | |
11330 // we may need to fix the sign. | |
11331 Label negative; | |
11332 __ xor_(ecx, Operand(ecx)); | |
11333 __ cmp(ecx, FieldOperand(source, HeapNumber::kExponentOffset)); | |
11334 __ j(greater, &negative); | |
11335 __ mov(ecx, scratch2); | |
11336 __ jmp(&done); | |
11337 __ bind(&negative); | |
11338 __ sub(ecx, Operand(scratch2)); | |
11339 __ bind(&done); | |
11340 } | |
11341 } | |
11342 | |
11343 | |
11344 // Input: edx, eax are the left and right objects of a bit op. | |
11345 // Output: eax, ecx are left and right integers for a bit op. | |
11346 void FloatingPointHelper::LoadNumbersAsIntegers(MacroAssembler* masm, | |
11347 TypeInfo type_info, | |
11348 bool use_sse3, | |
11349 Label* conversion_failure) { | |
11350 // Check float operands. | |
11351 Label arg1_is_object, check_undefined_arg1; | |
11352 Label arg2_is_object, check_undefined_arg2; | |
11353 Label load_arg2, done; | |
11354 | |
11355 if (!type_info.IsDouble()) { | |
11356 if (!type_info.IsSmi()) { | |
11357 __ test(edx, Immediate(kSmiTagMask)); | |
11358 __ j(not_zero, &arg1_is_object); | |
11359 } else { | |
11360 if (FLAG_debug_code) __ AbortIfNotSmi(edx); | |
11361 } | |
11362 __ SmiUntag(edx); | |
11363 __ jmp(&load_arg2); | |
11364 } | |
11365 | |
11366 __ bind(&arg1_is_object); | |
11367 | |
11368 // Get the untagged integer version of the edx heap number in ecx. | |
11369 IntegerConvert(masm, edx, type_info, use_sse3, conversion_failure); | |
11370 __ mov(edx, ecx); | |
11371 | |
11372 // Here edx has the untagged integer, eax has a Smi or a heap number. | |
11373 __ bind(&load_arg2); | |
11374 if (!type_info.IsDouble()) { | |
11375 // Test if arg2 is a Smi. | |
11376 if (!type_info.IsSmi()) { | |
11377 __ test(eax, Immediate(kSmiTagMask)); | |
11378 __ j(not_zero, &arg2_is_object); | |
11379 } else { | |
11380 if (FLAG_debug_code) __ AbortIfNotSmi(eax); | |
11381 } | |
11382 __ SmiUntag(eax); | |
11383 __ mov(ecx, eax); | |
11384 __ jmp(&done); | |
11385 } | |
11386 | |
11387 __ bind(&arg2_is_object); | |
11388 | |
11389 // Get the untagged integer version of the eax heap number in ecx. | |
11390 IntegerConvert(masm, eax, type_info, use_sse3, conversion_failure); | |
11391 __ bind(&done); | |
11392 __ mov(eax, edx); | |
11393 } | |
11394 | |
11395 | |
11396 // Input: edx, eax are the left and right objects of a bit op. | |
11397 // Output: eax, ecx are left and right integers for a bit op. | |
11398 void FloatingPointHelper::LoadUnknownsAsIntegers(MacroAssembler* masm, | |
11399 bool use_sse3, | |
11400 Label* conversion_failure) { | |
11401 // Check float operands. | |
11402 Label arg1_is_object, check_undefined_arg1; | |
11403 Label arg2_is_object, check_undefined_arg2; | |
11404 Label load_arg2, done; | |
11405 | |
11406 // Test if arg1 is a Smi. | |
11407 __ test(edx, Immediate(kSmiTagMask)); | |
11408 __ j(not_zero, &arg1_is_object); | |
11409 | |
11410 __ SmiUntag(edx); | |
11411 __ jmp(&load_arg2); | |
11412 | |
11413 // If the argument is undefined it converts to zero (ECMA-262, section 9.5). | |
11414 __ bind(&check_undefined_arg1); | |
11415 __ cmp(edx, Factory::undefined_value()); | |
11416 __ j(not_equal, conversion_failure); | |
11417 __ mov(edx, Immediate(0)); | |
11418 __ jmp(&load_arg2); | |
11419 | |
11420 __ bind(&arg1_is_object); | |
11421 __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset)); | |
11422 __ cmp(ebx, Factory::heap_number_map()); | |
11423 __ j(not_equal, &check_undefined_arg1); | |
11424 | |
11425 // Get the untagged integer version of the edx heap number in ecx. | |
11426 IntegerConvert(masm, | |
11427 edx, | |
11428 TypeInfo::Unknown(), | |
11429 use_sse3, | |
11430 conversion_failure); | |
11431 __ mov(edx, ecx); | |
11432 | |
11433 // Here edx has the untagged integer, eax has a Smi or a heap number. | |
11434 __ bind(&load_arg2); | |
11435 | |
11436 // Test if arg2 is a Smi. | |
11437 __ test(eax, Immediate(kSmiTagMask)); | |
11438 __ j(not_zero, &arg2_is_object); | |
11439 | |
11440 __ SmiUntag(eax); | |
11441 __ mov(ecx, eax); | |
11442 __ jmp(&done); | |
11443 | |
11444 // If the argument is undefined it converts to zero (ECMA-262, section 9.5). | |
11445 __ bind(&check_undefined_arg2); | |
11446 __ cmp(eax, Factory::undefined_value()); | |
11447 __ j(not_equal, conversion_failure); | |
11448 __ mov(ecx, Immediate(0)); | |
11449 __ jmp(&done); | |
11450 | |
11451 __ bind(&arg2_is_object); | |
11452 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); | |
11453 __ cmp(ebx, Factory::heap_number_map()); | |
11454 __ j(not_equal, &check_undefined_arg2); | |
11455 | |
11456 // Get the untagged integer version of the eax heap number in ecx. | |
11457 IntegerConvert(masm, | |
11458 eax, | |
11459 TypeInfo::Unknown(), | |
11460 use_sse3, | |
11461 conversion_failure); | |
11462 __ bind(&done); | |
11463 __ mov(eax, edx); | |
11464 } | |
11465 | |
11466 | |
11467 void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm, | |
11468 TypeInfo type_info, | |
11469 bool use_sse3, | |
11470 Label* conversion_failure) { | |
11471 if (type_info.IsNumber()) { | |
11472 LoadNumbersAsIntegers(masm, type_info, use_sse3, conversion_failure); | |
11473 } else { | |
11474 LoadUnknownsAsIntegers(masm, use_sse3, conversion_failure); | |
11475 } | |
11476 } | |
11477 | |
11478 | |
11479 void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm, | |
11480 Register number) { | |
11481 Label load_smi, done; | |
11482 | |
11483 __ test(number, Immediate(kSmiTagMask)); | |
11484 __ j(zero, &load_smi, not_taken); | |
11485 __ fld_d(FieldOperand(number, HeapNumber::kValueOffset)); | |
11486 __ jmp(&done); | |
11487 | |
11488 __ bind(&load_smi); | |
11489 __ SmiUntag(number); | |
11490 __ push(number); | |
11491 __ fild_s(Operand(esp, 0)); | |
11492 __ pop(number); | |
11493 | |
11494 __ bind(&done); | |
11495 } | |
11496 | |
11497 | |
11498 void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm) { | |
11499 Label load_smi_edx, load_eax, load_smi_eax, done; | |
11500 // Load operand in edx into xmm0. | |
11501 __ test(edx, Immediate(kSmiTagMask)); | |
11502 __ j(zero, &load_smi_edx, not_taken); // Argument in edx is a smi. | |
11503 __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); | |
11504 | |
11505 __ bind(&load_eax); | |
11506 // Load operand in eax into xmm1. | |
11507 __ test(eax, Immediate(kSmiTagMask)); | |
11508 __ j(zero, &load_smi_eax, not_taken); // Argument in eax is a smi. | |
11509 __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); | |
11510 __ jmp(&done); | |
11511 | |
11512 __ bind(&load_smi_edx); | |
11513 __ SmiUntag(edx); // Untag smi before converting to float. | |
11514 __ cvtsi2sd(xmm0, Operand(edx)); | |
11515 __ SmiTag(edx); // Retag smi for heap number overwriting test. | |
11516 __ jmp(&load_eax); | |
11517 | |
11518 __ bind(&load_smi_eax); | |
11519 __ SmiUntag(eax); // Untag smi before converting to float. | |
11520 __ cvtsi2sd(xmm1, Operand(eax)); | |
11521 __ SmiTag(eax); // Retag smi for heap number overwriting test. | |
11522 | |
11523 __ bind(&done); | |
11524 } | |
11525 | |
11526 | |
11527 void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm, | |
11528 Label* not_numbers) { | |
11529 Label load_smi_edx, load_eax, load_smi_eax, load_float_eax, done; | |
11530 // Load operand in edx into xmm0, or branch to not_numbers. | |
11531 __ test(edx, Immediate(kSmiTagMask)); | |
11532 __ j(zero, &load_smi_edx, not_taken); // Argument in edx is a smi. | |
11533 __ cmp(FieldOperand(edx, HeapObject::kMapOffset), Factory::heap_number_map()); | |
11534 __ j(not_equal, not_numbers); // Argument in edx is not a number. | |
11535 __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); | |
11536 __ bind(&load_eax); | |
11537 // Load operand in eax into xmm1, or branch to not_numbers. | |
11538 __ test(eax, Immediate(kSmiTagMask)); | |
11539 __ j(zero, &load_smi_eax, not_taken); // Argument in eax is a smi. | |
11540 __ cmp(FieldOperand(eax, HeapObject::kMapOffset), Factory::heap_number_map()); | |
11541 __ j(equal, &load_float_eax); | |
11542 __ jmp(not_numbers); // Argument in eax is not a number. | |
11543 __ bind(&load_smi_edx); | |
11544 __ SmiUntag(edx); // Untag smi before converting to float. | |
11545 __ cvtsi2sd(xmm0, Operand(edx)); | |
11546 __ SmiTag(edx); // Retag smi for heap number overwriting test. | |
11547 __ jmp(&load_eax); | |
11548 __ bind(&load_smi_eax); | |
11549 __ SmiUntag(eax); // Untag smi before converting to float. | |
11550 __ cvtsi2sd(xmm1, Operand(eax)); | |
11551 __ SmiTag(eax); // Retag smi for heap number overwriting test. | |
11552 __ jmp(&done); | |
11553 __ bind(&load_float_eax); | |
11554 __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); | |
11555 __ bind(&done); | |
11556 } | |
11557 | |
11558 | |
11559 void FloatingPointHelper::LoadSSE2Smis(MacroAssembler* masm, | |
11560 Register scratch) { | |
11561 const Register left = edx; | |
11562 const Register right = eax; | |
11563 __ mov(scratch, left); | |
11564 ASSERT(!scratch.is(right)); // We're about to clobber scratch. | |
11565 __ SmiUntag(scratch); | |
11566 __ cvtsi2sd(xmm0, Operand(scratch)); | |
11567 | |
11568 __ mov(scratch, right); | |
11569 __ SmiUntag(scratch); | |
11570 __ cvtsi2sd(xmm1, Operand(scratch)); | |
11571 } | |
11572 | |
11573 | |
11574 void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm, | |
11575 Register scratch, | |
11576 ArgLocation arg_location) { | |
11577 Label load_smi_1, load_smi_2, done_load_1, done; | |
11578 if (arg_location == ARGS_IN_REGISTERS) { | |
11579 __ mov(scratch, edx); | |
11580 } else { | |
11581 __ mov(scratch, Operand(esp, 2 * kPointerSize)); | |
11582 } | |
11583 __ test(scratch, Immediate(kSmiTagMask)); | |
11584 __ j(zero, &load_smi_1, not_taken); | |
11585 __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset)); | |
11586 __ bind(&done_load_1); | |
11587 | |
11588 if (arg_location == ARGS_IN_REGISTERS) { | |
11589 __ mov(scratch, eax); | |
11590 } else { | |
11591 __ mov(scratch, Operand(esp, 1 * kPointerSize)); | |
11592 } | |
11593 __ test(scratch, Immediate(kSmiTagMask)); | |
11594 __ j(zero, &load_smi_2, not_taken); | |
11595 __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset)); | |
11596 __ jmp(&done); | |
11597 | |
11598 __ bind(&load_smi_1); | |
11599 __ SmiUntag(scratch); | |
11600 __ push(scratch); | |
11601 __ fild_s(Operand(esp, 0)); | |
11602 __ pop(scratch); | |
11603 __ jmp(&done_load_1); | |
11604 | |
11605 __ bind(&load_smi_2); | |
11606 __ SmiUntag(scratch); | |
11607 __ push(scratch); | |
11608 __ fild_s(Operand(esp, 0)); | |
11609 __ pop(scratch); | |
11610 | |
11611 __ bind(&done); | |
11612 } | |
11613 | |
11614 | |
11615 void FloatingPointHelper::LoadFloatSmis(MacroAssembler* masm, | |
11616 Register scratch) { | |
11617 const Register left = edx; | |
11618 const Register right = eax; | |
11619 __ mov(scratch, left); | |
11620 ASSERT(!scratch.is(right)); // We're about to clobber scratch. | |
11621 __ SmiUntag(scratch); | |
11622 __ push(scratch); | |
11623 __ fild_s(Operand(esp, 0)); | |
11624 | |
11625 __ mov(scratch, right); | |
11626 __ SmiUntag(scratch); | |
11627 __ mov(Operand(esp, 0), scratch); | |
11628 __ fild_s(Operand(esp, 0)); | |
11629 __ pop(scratch); | |
11630 } | |
11631 | |
11632 | |
11633 void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm, | |
11634 Label* non_float, | |
11635 Register scratch) { | |
11636 Label test_other, done; | |
11637 // Test if both operands are floats or smi -> scratch=k_is_float; | |
11638 // Otherwise scratch = k_not_float. | |
11639 __ test(edx, Immediate(kSmiTagMask)); | |
11640 __ j(zero, &test_other, not_taken); // argument in edx is OK | |
11641 __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset)); | |
11642 __ cmp(scratch, Factory::heap_number_map()); | |
11643 __ j(not_equal, non_float); // argument in edx is not a number -> NaN | |
11644 | |
11645 __ bind(&test_other); | |
11646 __ test(eax, Immediate(kSmiTagMask)); | |
11647 __ j(zero, &done); // argument in eax is OK | |
11648 __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset)); | |
11649 __ cmp(scratch, Factory::heap_number_map()); | |
11650 __ j(not_equal, non_float); // argument in eax is not a number -> NaN | |
11651 | |
11652 // Fall-through: Both operands are numbers. | |
11653 __ bind(&done); | |
11654 } | |
11655 | |
11656 | |
11657 void GenericUnaryOpStub::Generate(MacroAssembler* masm) { | |
11658 Label slow, done; | |
11659 | |
11660 if (op_ == Token::SUB) { | |
11661 // Check whether the value is a smi. | |
11662 Label try_float; | |
11663 __ test(eax, Immediate(kSmiTagMask)); | |
11664 __ j(not_zero, &try_float, not_taken); | |
11665 | |
11666 if (negative_zero_ == kStrictNegativeZero) { | |
11667 // Go slow case if the value of the expression is zero | |
11668 // to make sure that we switch between 0 and -0. | |
11669 __ test(eax, Operand(eax)); | |
11670 __ j(zero, &slow, not_taken); | |
11671 } | |
11672 | |
11673 // The value of the expression is a smi that is not zero. Try | |
11674 // optimistic subtraction '0 - value'. | |
11675 Label undo; | |
11676 __ mov(edx, Operand(eax)); | |
11677 __ Set(eax, Immediate(0)); | |
11678 __ sub(eax, Operand(edx)); | |
11679 __ j(no_overflow, &done, taken); | |
11680 | |
11681 // Restore eax and go slow case. | |
11682 __ bind(&undo); | |
11683 __ mov(eax, Operand(edx)); | |
11684 __ jmp(&slow); | |
11685 | |
11686 // Try floating point case. | |
11687 __ bind(&try_float); | |
11688 __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); | |
11689 __ cmp(edx, Factory::heap_number_map()); | |
11690 __ j(not_equal, &slow); | |
11691 if (overwrite_ == UNARY_OVERWRITE) { | |
11692 __ mov(edx, FieldOperand(eax, HeapNumber::kExponentOffset)); | |
11693 __ xor_(edx, HeapNumber::kSignMask); // Flip sign. | |
11694 __ mov(FieldOperand(eax, HeapNumber::kExponentOffset), edx); | |
11695 } else { | |
11696 __ mov(edx, Operand(eax)); | |
11697 // edx: operand | |
11698 __ AllocateHeapNumber(eax, ebx, ecx, &undo); | |
11699 // eax: allocated 'empty' number | |
11700 __ mov(ecx, FieldOperand(edx, HeapNumber::kExponentOffset)); | |
11701 __ xor_(ecx, HeapNumber::kSignMask); // Flip sign. | |
11702 __ mov(FieldOperand(eax, HeapNumber::kExponentOffset), ecx); | |
11703 __ mov(ecx, FieldOperand(edx, HeapNumber::kMantissaOffset)); | |
11704 __ mov(FieldOperand(eax, HeapNumber::kMantissaOffset), ecx); | |
11705 } | |
11706 } else if (op_ == Token::BIT_NOT) { | |
11707 // Check if the operand is a heap number. | |
11708 __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); | |
11709 __ cmp(edx, Factory::heap_number_map()); | |
11710 __ j(not_equal, &slow, not_taken); | |
11711 | |
11712 // Convert the heap number in eax to an untagged integer in ecx. | |
11713 IntegerConvert(masm, | |
11714 eax, | |
11715 TypeInfo::Unknown(), | |
11716 CpuFeatures::IsSupported(SSE3), | |
11717 &slow); | |
11718 | |
11719 // Do the bitwise operation and check if the result fits in a smi. | |
11720 Label try_float; | |
11721 __ not_(ecx); | |
11722 __ cmp(ecx, 0xc0000000); | |
11723 __ j(sign, &try_float, not_taken); | |
11724 | |
11725 // Tag the result as a smi and we're done. | |
11726 STATIC_ASSERT(kSmiTagSize == 1); | |
11727 __ lea(eax, Operand(ecx, times_2, kSmiTag)); | |
11728 __ jmp(&done); | |
11729 | |
11730 // Try to store the result in a heap number. | |
11731 __ bind(&try_float); | |
11732 if (overwrite_ == UNARY_NO_OVERWRITE) { | |
11733 // Allocate a fresh heap number, but don't overwrite eax until | |
11734 // we're sure we can do it without going through the slow case | |
11735 // that needs the value in eax. | |
11736 __ AllocateHeapNumber(ebx, edx, edi, &slow); | |
11737 __ mov(eax, Operand(ebx)); | |
11738 } | |
11739 if (CpuFeatures::IsSupported(SSE2)) { | |
11740 CpuFeatures::Scope use_sse2(SSE2); | |
11741 __ cvtsi2sd(xmm0, Operand(ecx)); | |
11742 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); | |
11743 } else { | |
11744 __ push(ecx); | |
11745 __ fild_s(Operand(esp, 0)); | |
11746 __ pop(ecx); | |
11747 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); | |
11748 } | |
11749 } else { | |
11750 UNIMPLEMENTED(); | |
11751 } | |
11752 | |
11753 // Return from the stub. | |
11754 __ bind(&done); | |
11755 __ StubReturn(1); | |
11756 | |
11757 // Handle the slow case by jumping to the JavaScript builtin. | |
11758 __ bind(&slow); | |
11759 __ pop(ecx); // pop return address. | |
11760 __ push(eax); | |
11761 __ push(ecx); // push return address | |
11762 switch (op_) { | |
11763 case Token::SUB: | |
11764 __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION); | |
11765 break; | |
11766 case Token::BIT_NOT: | |
11767 __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION); | |
11768 break; | |
11769 default: | |
11770 UNREACHABLE(); | |
11771 } | |
11772 } | |
11773 | |
11774 | |
11775 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { | |
11776 // The key is in edx and the parameter count is in eax. | |
11777 | |
11778 // The displacement is used for skipping the frame pointer on the | |
11779 // stack. It is the offset of the last parameter (if any) relative | |
11780 // to the frame pointer. | |
11781 static const int kDisplacement = 1 * kPointerSize; | |
11782 | |
11783 // Check that the key is a smi. | |
11784 Label slow; | |
11785 __ test(edx, Immediate(kSmiTagMask)); | |
11786 __ j(not_zero, &slow, not_taken); | |
11787 | |
11788 // Check if the calling frame is an arguments adaptor frame. | |
11789 Label adaptor; | |
11790 __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); | |
11791 __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset)); | |
11792 __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); | |
11793 __ j(equal, &adaptor); | |
11794 | |
11795 // Check index against formal parameters count limit passed in | |
11796 // through register eax. Use unsigned comparison to get negative | |
11797 // check for free. | |
11798 __ cmp(edx, Operand(eax)); | |
11799 __ j(above_equal, &slow, not_taken); | |
11800 | |
11801 // Read the argument from the stack and return it. | |
11802 STATIC_ASSERT(kSmiTagSize == 1); | |
11803 STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these. | |
11804 __ lea(ebx, Operand(ebp, eax, times_2, 0)); | |
11805 __ neg(edx); | |
11806 __ mov(eax, Operand(ebx, edx, times_2, kDisplacement)); | |
11807 __ ret(0); | |
11808 | |
11809 // Arguments adaptor case: Check index against actual arguments | |
11810 // limit found in the arguments adaptor frame. Use unsigned | |
11811 // comparison to get negative check for free. | |
11812 __ bind(&adaptor); | |
11813 __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset)); | |
11814 __ cmp(edx, Operand(ecx)); | |
11815 __ j(above_equal, &slow, not_taken); | |
11816 | |
11817 // Read the argument from the stack and return it. | |
11818 STATIC_ASSERT(kSmiTagSize == 1); | |
11819 STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these. | |
11820 __ lea(ebx, Operand(ebx, ecx, times_2, 0)); | |
11821 __ neg(edx); | |
11822 __ mov(eax, Operand(ebx, edx, times_2, kDisplacement)); | |
11823 __ ret(0); | |
11824 | |
11825 // Slow-case: Handle non-smi or out-of-bounds access to arguments | |
11826 // by calling the runtime system. | |
11827 __ bind(&slow); | |
11828 __ pop(ebx); // Return address. | |
11829 __ push(edx); | |
11830 __ push(ebx); | |
11831 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); | |
11832 } | |
11833 | |
11834 | |
11835 void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) { | |
11836 // esp[0] : return address | |
11837 // esp[4] : number of parameters | |
11838 // esp[8] : receiver displacement | |
11839 // esp[16] : function | |
11840 | |
11841 // The displacement is used for skipping the return address and the | |
11842 // frame pointer on the stack. It is the offset of the last | |
11843 // parameter (if any) relative to the frame pointer. | |
11844 static const int kDisplacement = 2 * kPointerSize; | |
11845 | |
11846 // Check if the calling frame is an arguments adaptor frame. | |
11847 Label adaptor_frame, try_allocate, runtime; | |
11848 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); | |
11849 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset)); | |
11850 __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); | |
11851 __ j(equal, &adaptor_frame); | |
11852 | |
11853 // Get the length from the frame. | |
11854 __ mov(ecx, Operand(esp, 1 * kPointerSize)); | |
11855 __ jmp(&try_allocate); | |
11856 | |
11857 // Patch the arguments.length and the parameters pointer. | |
11858 __ bind(&adaptor_frame); | |
11859 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); | |
11860 __ mov(Operand(esp, 1 * kPointerSize), ecx); | |
11861 __ lea(edx, Operand(edx, ecx, times_2, kDisplacement)); | |
11862 __ mov(Operand(esp, 2 * kPointerSize), edx); | |
11863 | |
11864 // Try the new space allocation. Start out with computing the size of | |
11865 // the arguments object and the elements array. | |
11866 Label add_arguments_object; | |
11867 __ bind(&try_allocate); | |
11868 __ test(ecx, Operand(ecx)); | |
11869 __ j(zero, &add_arguments_object); | |
11870 __ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize)); | |
11871 __ bind(&add_arguments_object); | |
11872 __ add(Operand(ecx), Immediate(Heap::kArgumentsObjectSize)); | |
11873 | |
11874 // Do the allocation of both objects in one go. | |
11875 __ AllocateInNewSpace(ecx, eax, edx, ebx, &runtime, TAG_OBJECT); | |
11876 | |
11877 // Get the arguments boilerplate from the current (global) context. | |
11878 int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX); | |
11879 __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); | |
11880 __ mov(edi, FieldOperand(edi, GlobalObject::kGlobalContextOffset)); | |
11881 __ mov(edi, Operand(edi, offset)); | |
11882 | |
11883 // Copy the JS object part. | |
11884 for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) { | |
11885 __ mov(ebx, FieldOperand(edi, i)); | |
11886 __ mov(FieldOperand(eax, i), ebx); | |
11887 } | |
11888 | |
11889 // Setup the callee in-object property. | |
11890 STATIC_ASSERT(Heap::arguments_callee_index == 0); | |
11891 __ mov(ebx, Operand(esp, 3 * kPointerSize)); | |
11892 __ mov(FieldOperand(eax, JSObject::kHeaderSize), ebx); | |
11893 | |
11894 // Get the length (smi tagged) and set that as an in-object property too. | |
11895 STATIC_ASSERT(Heap::arguments_length_index == 1); | |
11896 __ mov(ecx, Operand(esp, 1 * kPointerSize)); | |
11897 __ mov(FieldOperand(eax, JSObject::kHeaderSize + kPointerSize), ecx); | |
11898 | |
11899 // If there are no actual arguments, we're done. | |
11900 Label done; | |
11901 __ test(ecx, Operand(ecx)); | |
11902 __ j(zero, &done); | |
11903 | |
11904 // Get the parameters pointer from the stack. | |
11905 __ mov(edx, Operand(esp, 2 * kPointerSize)); | |
11906 | |
11907 // Setup the elements pointer in the allocated arguments object and | |
11908 // initialize the header in the elements fixed array. | |
11909 __ lea(edi, Operand(eax, Heap::kArgumentsObjectSize)); | |
11910 __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi); | |
11911 __ mov(FieldOperand(edi, FixedArray::kMapOffset), | |
11912 Immediate(Factory::fixed_array_map())); | |
11913 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx); | |
11914 // Untag the length for the loop below. | |
11915 __ SmiUntag(ecx); | |
11916 | |
11917 // Copy the fixed array slots. | |
11918 Label loop; | |
11919 __ bind(&loop); | |
11920 __ mov(ebx, Operand(edx, -1 * kPointerSize)); // Skip receiver. | |
11921 __ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx); | |
11922 __ add(Operand(edi), Immediate(kPointerSize)); | |
11923 __ sub(Operand(edx), Immediate(kPointerSize)); | |
11924 __ dec(ecx); | |
11925 __ j(not_zero, &loop); | |
11926 | |
11927 // Return and remove the on-stack parameters. | |
11928 __ bind(&done); | |
11929 __ ret(3 * kPointerSize); | |
11930 | |
11931 // Do the runtime call to allocate the arguments object. | |
11932 __ bind(&runtime); | |
11933 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); | |
11934 } | |
11935 | |
11936 | |
11937 void RegExpExecStub::Generate(MacroAssembler* masm) { | |
11938 // Just jump directly to runtime if native RegExp is not selected at compile | |
11939 // time or if regexp entry in generated code is turned off runtime switch or | |
11940 // at compilation. | |
11941 #ifdef V8_INTERPRETED_REGEXP | |
11942 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); | |
11943 #else // V8_INTERPRETED_REGEXP | |
11944 if (!FLAG_regexp_entry_native) { | |
11945 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); | |
11946 return; | |
11947 } | |
11948 | |
11949 // Stack frame on entry. | |
11950 // esp[0]: return address | |
11951 // esp[4]: last_match_info (expected JSArray) | |
11952 // esp[8]: previous index | |
11953 // esp[12]: subject string | |
11954 // esp[16]: JSRegExp object | |
11955 | |
11956 static const int kLastMatchInfoOffset = 1 * kPointerSize; | |
11957 static const int kPreviousIndexOffset = 2 * kPointerSize; | |
11958 static const int kSubjectOffset = 3 * kPointerSize; | |
11959 static const int kJSRegExpOffset = 4 * kPointerSize; | |
11960 | |
11961 Label runtime, invoke_regexp; | |
11962 | |
11963 // Ensure that a RegExp stack is allocated. | |
11964 ExternalReference address_of_regexp_stack_memory_address = | |
11965 ExternalReference::address_of_regexp_stack_memory_address(); | |
11966 ExternalReference address_of_regexp_stack_memory_size = | |
11967 ExternalReference::address_of_regexp_stack_memory_size(); | |
11968 __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size)); | |
11969 __ test(ebx, Operand(ebx)); | |
11970 __ j(zero, &runtime, not_taken); | |
11971 | |
11972 // Check that the first argument is a JSRegExp object. | |
11973 __ mov(eax, Operand(esp, kJSRegExpOffset)); | |
11974 STATIC_ASSERT(kSmiTag == 0); | |
11975 __ test(eax, Immediate(kSmiTagMask)); | |
11976 __ j(zero, &runtime); | |
11977 __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx); | |
11978 __ j(not_equal, &runtime); | |
11979 // Check that the RegExp has been compiled (data contains a fixed array). | |
11980 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset)); | |
11981 if (FLAG_debug_code) { | |
11982 __ test(ecx, Immediate(kSmiTagMask)); | |
11983 __ Check(not_zero, "Unexpected type for RegExp data, FixedArray expected"); | |
11984 __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx); | |
11985 __ Check(equal, "Unexpected type for RegExp data, FixedArray expected"); | |
11986 } | |
11987 | |
11988 // ecx: RegExp data (FixedArray) | |
11989 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. | |
11990 __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset)); | |
11991 __ cmp(Operand(ebx), Immediate(Smi::FromInt(JSRegExp::IRREGEXP))); | |
11992 __ j(not_equal, &runtime); | |
11993 | |
11994 // ecx: RegExp data (FixedArray) | |
11995 // Check that the number of captures fit in the static offsets vector buffer. | |
11996 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset)); | |
11997 // Calculate number of capture registers (number_of_captures + 1) * 2. This | |
11998 // uses the asumption that smis are 2 * their untagged value. | |
11999 STATIC_ASSERT(kSmiTag == 0); | |
12000 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); | |
12001 __ add(Operand(edx), Immediate(2)); // edx was a smi. | |
12002 // Check that the static offsets vector buffer is large enough. | |
12003 __ cmp(edx, OffsetsVector::kStaticOffsetsVectorSize); | |
12004 __ j(above, &runtime); | |
12005 | |
12006 // ecx: RegExp data (FixedArray) | |
12007 // edx: Number of capture registers | |
12008 // Check that the second argument is a string. | |
12009 __ mov(eax, Operand(esp, kSubjectOffset)); | |
12010 __ test(eax, Immediate(kSmiTagMask)); | |
12011 __ j(zero, &runtime); | |
12012 Condition is_string = masm->IsObjectStringType(eax, ebx, ebx); | |
12013 __ j(NegateCondition(is_string), &runtime); | |
12014 // Get the length of the string to ebx. | |
12015 __ mov(ebx, FieldOperand(eax, String::kLengthOffset)); | |
12016 | |
12017 // ebx: Length of subject string as a smi | |
12018 // ecx: RegExp data (FixedArray) | |
12019 // edx: Number of capture registers | |
12020 // Check that the third argument is a positive smi less than the subject | |
12021 // string length. A negative value will be greater (unsigned comparison). | |
12022 __ mov(eax, Operand(esp, kPreviousIndexOffset)); | |
12023 __ test(eax, Immediate(kSmiTagMask)); | |
12024 __ j(not_zero, &runtime); | |
12025 __ cmp(eax, Operand(ebx)); | |
12026 __ j(above_equal, &runtime); | |
12027 | |
12028 // ecx: RegExp data (FixedArray) | |
12029 // edx: Number of capture registers | |
12030 // Check that the fourth object is a JSArray object. | |
12031 __ mov(eax, Operand(esp, kLastMatchInfoOffset)); | |
12032 __ test(eax, Immediate(kSmiTagMask)); | |
12033 __ j(zero, &runtime); | |
12034 __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx); | |
12035 __ j(not_equal, &runtime); | |
12036 // Check that the JSArray is in fast case. | |
12037 __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset)); | |
12038 __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset)); | |
12039 __ cmp(eax, Factory::fixed_array_map()); | |
12040 __ j(not_equal, &runtime); | |
12041 // Check that the last match info has space for the capture registers and the | |
12042 // additional information. | |
12043 __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset)); | |
12044 __ SmiUntag(eax); | |
12045 __ add(Operand(edx), Immediate(RegExpImpl::kLastMatchOverhead)); | |
12046 __ cmp(edx, Operand(eax)); | |
12047 __ j(greater, &runtime); | |
12048 | |
12049 // ecx: RegExp data (FixedArray) | |
12050 // Check the representation and encoding of the subject string. | |
12051 Label seq_ascii_string, seq_two_byte_string, check_code; | |
12052 __ mov(eax, Operand(esp, kSubjectOffset)); | |
12053 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); | |
12054 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); | |
12055 // First check for flat two byte string. | |
12056 __ and_(ebx, | |
12057 kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask); | |
12058 STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0); | |
12059 __ j(zero, &seq_two_byte_string); | |
12060 // Any other flat string must be a flat ascii string. | |
12061 __ test(Operand(ebx), | |
12062 Immediate(kIsNotStringMask | kStringRepresentationMask)); | |
12063 __ j(zero, &seq_ascii_string); | |
12064 | |
12065 // Check for flat cons string. | |
12066 // A flat cons string is a cons string where the second part is the empty | |
12067 // string. In that case the subject string is just the first part of the cons | |
12068 // string. Also in this case the first part of the cons string is known to be | |
12069 // a sequential string or an external string. | |
12070 STATIC_ASSERT(kExternalStringTag != 0); | |
12071 STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0); | |
12072 __ test(Operand(ebx), | |
12073 Immediate(kIsNotStringMask | kExternalStringTag)); | |
12074 __ j(not_zero, &runtime); | |
12075 // String is a cons string. | |
12076 __ mov(edx, FieldOperand(eax, ConsString::kSecondOffset)); | |
12077 __ cmp(Operand(edx), Factory::empty_string()); | |
12078 __ j(not_equal, &runtime); | |
12079 __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset)); | |
12080 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); | |
12081 // String is a cons string with empty second part. | |
12082 // eax: first part of cons string. | |
12083 // ebx: map of first part of cons string. | |
12084 // Is first part a flat two byte string? | |
12085 __ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset), | |
12086 kStringRepresentationMask | kStringEncodingMask); | |
12087 STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0); | |
12088 __ j(zero, &seq_two_byte_string); | |
12089 // Any other flat string must be ascii. | |
12090 __ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset), | |
12091 kStringRepresentationMask); | |
12092 __ j(not_zero, &runtime); | |
12093 | |
12094 __ bind(&seq_ascii_string); | |
12095 // eax: subject string (flat ascii) | |
12096 // ecx: RegExp data (FixedArray) | |
12097 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataAsciiCodeOffset)); | |
12098 __ Set(edi, Immediate(1)); // Type is ascii. | |
12099 __ jmp(&check_code); | |
12100 | |
12101 __ bind(&seq_two_byte_string); | |
12102 // eax: subject string (flat two byte) | |
12103 // ecx: RegExp data (FixedArray) | |
12104 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset)); | |
12105 __ Set(edi, Immediate(0)); // Type is two byte. | |
12106 | |
12107 __ bind(&check_code); | |
12108 // Check that the irregexp code has been generated for the actual string | |
12109 // encoding. If it has, the field contains a code object otherwise it contains | |
12110 // the hole. | |
12111 __ CmpObjectType(edx, CODE_TYPE, ebx); | |
12112 __ j(not_equal, &runtime); | |
12113 | |
12114 // eax: subject string | |
12115 // edx: code | |
12116 // edi: encoding of subject string (1 if ascii, 0 if two_byte); | |
12117 // Load used arguments before starting to push arguments for call to native | |
12118 // RegExp code to avoid handling changing stack height. | |
12119 __ mov(ebx, Operand(esp, kPreviousIndexOffset)); | |
12120 __ SmiUntag(ebx); // Previous index from smi. | |
12121 | |
12122 // eax: subject string | |
12123 // ebx: previous index | |
12124 // edx: code | |
12125 // edi: encoding of subject string (1 if ascii 0 if two_byte); | |
12126 // All checks done. Now push arguments for native regexp code. | |
12127 __ IncrementCounter(&Counters::regexp_entry_native, 1); | |
12128 | |
12129 static const int kRegExpExecuteArguments = 7; | |
12130 __ PrepareCallCFunction(kRegExpExecuteArguments, ecx); | |
12131 | |
12132 // Argument 7: Indicate that this is a direct call from JavaScript. | |
12133 __ mov(Operand(esp, 6 * kPointerSize), Immediate(1)); | |
12134 | |
12135 // Argument 6: Start (high end) of backtracking stack memory area. | |
12136 __ mov(ecx, Operand::StaticVariable(address_of_regexp_stack_memory_address)); | |
12137 __ add(ecx, Operand::StaticVariable(address_of_regexp_stack_memory_size)); | |
12138 __ mov(Operand(esp, 5 * kPointerSize), ecx); | |
12139 | |
12140 // Argument 5: static offsets vector buffer. | |
12141 __ mov(Operand(esp, 4 * kPointerSize), | |
12142 Immediate(ExternalReference::address_of_static_offsets_vector())); | |
12143 | |
12144 // Argument 4: End of string data | |
12145 // Argument 3: Start of string data | |
12146 Label setup_two_byte, setup_rest; | |
12147 __ test(edi, Operand(edi)); | |
12148 __ mov(edi, FieldOperand(eax, String::kLengthOffset)); | |
12149 __ j(zero, &setup_two_byte); | |
12150 __ SmiUntag(edi); | |
12151 __ lea(ecx, FieldOperand(eax, edi, times_1, SeqAsciiString::kHeaderSize)); | |
12152 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4. | |
12153 __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqAsciiString::kHeaderSize)); | |
12154 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3. | |
12155 __ jmp(&setup_rest); | |
12156 | |
12157 __ bind(&setup_two_byte); | |
12158 STATIC_ASSERT(kSmiTag == 0); | |
12159 STATIC_ASSERT(kSmiTagSize == 1); // edi is smi (powered by 2). | |
12160 __ lea(ecx, FieldOperand(eax, edi, times_1, SeqTwoByteString::kHeaderSize)); | |
12161 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4. | |
12162 __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize)); | |
12163 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3. | |
12164 | |
12165 __ bind(&setup_rest); | |
12166 | |
12167 // Argument 2: Previous index. | |
12168 __ mov(Operand(esp, 1 * kPointerSize), ebx); | |
12169 | |
12170 // Argument 1: Subject string. | |
12171 __ mov(Operand(esp, 0 * kPointerSize), eax); | |
12172 | |
12173 // Locate the code entry and call it. | |
12174 __ add(Operand(edx), Immediate(Code::kHeaderSize - kHeapObjectTag)); | |
12175 __ CallCFunction(edx, kRegExpExecuteArguments); | |
12176 | |
12177 // Check the result. | |
12178 Label success; | |
12179 __ cmp(eax, NativeRegExpMacroAssembler::SUCCESS); | |
12180 __ j(equal, &success, taken); | |
12181 Label failure; | |
12182 __ cmp(eax, NativeRegExpMacroAssembler::FAILURE); | |
12183 __ j(equal, &failure, taken); | |
12184 __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION); | |
12185 // If not exception it can only be retry. Handle that in the runtime system. | |
12186 __ j(not_equal, &runtime); | |
12187 // Result must now be exception. If there is no pending exception already a | |
12188 // stack overflow (on the backtrack stack) was detected in RegExp code but | |
12189 // haven't created the exception yet. Handle that in the runtime system. | |
12190 // TODO(592): Rerunning the RegExp to get the stack overflow exception. | |
12191 ExternalReference pending_exception(Top::k_pending_exception_address); | |
12192 __ mov(eax, | |
12193 Operand::StaticVariable(ExternalReference::the_hole_value_location())); | |
12194 __ cmp(eax, Operand::StaticVariable(pending_exception)); | |
12195 __ j(equal, &runtime); | |
12196 __ bind(&failure); | |
12197 // For failure and exception return null. | |
12198 __ mov(Operand(eax), Factory::null_value()); | |
12199 __ ret(4 * kPointerSize); | |
12200 | |
12201 // Load RegExp data. | |
12202 __ bind(&success); | |
12203 __ mov(eax, Operand(esp, kJSRegExpOffset)); | |
12204 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset)); | |
12205 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset)); | |
12206 // Calculate number of capture registers (number_of_captures + 1) * 2. | |
12207 STATIC_ASSERT(kSmiTag == 0); | |
12208 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); | |
12209 __ add(Operand(edx), Immediate(2)); // edx was a smi. | |
12210 | |
12211 // edx: Number of capture registers | |
12212 // Load last_match_info which is still known to be a fast case JSArray. | |
12213 __ mov(eax, Operand(esp, kLastMatchInfoOffset)); | |
12214 __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset)); | |
12215 | |
12216 // ebx: last_match_info backing store (FixedArray) | |
12217 // edx: number of capture registers | |
12218 // Store the capture count. | |
12219 __ SmiTag(edx); // Number of capture registers to smi. | |
12220 __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx); | |
12221 __ SmiUntag(edx); // Number of capture registers back from smi. | |
12222 // Store last subject and last input. | |
12223 __ mov(eax, Operand(esp, kSubjectOffset)); | |
12224 __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax); | |
12225 __ mov(ecx, ebx); | |
12226 __ RecordWrite(ecx, RegExpImpl::kLastSubjectOffset, eax, edi); | |
12227 __ mov(eax, Operand(esp, kSubjectOffset)); | |
12228 __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax); | |
12229 __ mov(ecx, ebx); | |
12230 __ RecordWrite(ecx, RegExpImpl::kLastInputOffset, eax, edi); | |
12231 | |
12232 // Get the static offsets vector filled by the native regexp code. | |
12233 ExternalReference address_of_static_offsets_vector = | |
12234 ExternalReference::address_of_static_offsets_vector(); | |
12235 __ mov(ecx, Immediate(address_of_static_offsets_vector)); | |
12236 | |
12237 // ebx: last_match_info backing store (FixedArray) | |
12238 // ecx: offsets vector | |
12239 // edx: number of capture registers | |
12240 Label next_capture, done; | |
12241 // Capture register counter starts from number of capture registers and | |
12242 // counts down until wraping after zero. | |
12243 __ bind(&next_capture); | |
12244 __ sub(Operand(edx), Immediate(1)); | |
12245 __ j(negative, &done); | |
12246 // Read the value from the static offsets vector buffer. | |
12247 __ mov(edi, Operand(ecx, edx, times_int_size, 0)); | |
12248 __ SmiTag(edi); | |
12249 // Store the smi value in the last match info. | |
12250 __ mov(FieldOperand(ebx, | |
12251 edx, | |
12252 times_pointer_size, | |
12253 RegExpImpl::kFirstCaptureOffset), | |
12254 edi); | |
12255 __ jmp(&next_capture); | |
12256 __ bind(&done); | |
12257 | |
12258 // Return last match info. | |
12259 __ mov(eax, Operand(esp, kLastMatchInfoOffset)); | |
12260 __ ret(4 * kPointerSize); | |
12261 | |
12262 // Do the runtime call to execute the regexp. | |
12263 __ bind(&runtime); | |
12264 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); | |
12265 #endif // V8_INTERPRETED_REGEXP | |
12266 } | |
12267 | |
12268 | |
12269 void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, | |
12270 Register object, | |
12271 Register result, | |
12272 Register scratch1, | |
12273 Register scratch2, | |
12274 bool object_is_smi, | |
12275 Label* not_found) { | |
12276 // Use of registers. Register result is used as a temporary. | |
12277 Register number_string_cache = result; | |
12278 Register mask = scratch1; | |
12279 Register scratch = scratch2; | |
12280 | |
12281 // Load the number string cache. | |
12282 ExternalReference roots_address = ExternalReference::roots_address(); | |
12283 __ mov(scratch, Immediate(Heap::kNumberStringCacheRootIndex)); | |
12284 __ mov(number_string_cache, | |
12285 Operand::StaticArray(scratch, times_pointer_size, roots_address)); | |
12286 // Make the hash mask from the length of the number string cache. It | |
12287 // contains two elements (number and string) for each cache entry. | |
12288 __ mov(mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset)); | |
12289 __ shr(mask, kSmiTagSize + 1); // Untag length and divide it by two. | |
12290 __ sub(Operand(mask), Immediate(1)); // Make mask. | |
12291 | |
12292 // Calculate the entry in the number string cache. The hash value in the | |
12293 // number string cache for smis is just the smi value, and the hash for | |
12294 // doubles is the xor of the upper and lower words. See | |
12295 // Heap::GetNumberStringCache. | |
12296 Label smi_hash_calculated; | |
12297 Label load_result_from_cache; | |
12298 if (object_is_smi) { | |
12299 __ mov(scratch, object); | |
12300 __ SmiUntag(scratch); | |
12301 } else { | |
12302 Label not_smi, hash_calculated; | |
12303 STATIC_ASSERT(kSmiTag == 0); | |
12304 __ test(object, Immediate(kSmiTagMask)); | |
12305 __ j(not_zero, ¬_smi); | |
12306 __ mov(scratch, object); | |
12307 __ SmiUntag(scratch); | |
12308 __ jmp(&smi_hash_calculated); | |
12309 __ bind(¬_smi); | |
12310 __ cmp(FieldOperand(object, HeapObject::kMapOffset), | |
12311 Factory::heap_number_map()); | |
12312 __ j(not_equal, not_found); | |
12313 STATIC_ASSERT(8 == kDoubleSize); | |
12314 __ mov(scratch, FieldOperand(object, HeapNumber::kValueOffset)); | |
12315 __ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4)); | |
12316 // Object is heap number and hash is now in scratch. Calculate cache index. | |
12317 __ and_(scratch, Operand(mask)); | |
12318 Register index = scratch; | |
12319 Register probe = mask; | |
12320 __ mov(probe, | |
12321 FieldOperand(number_string_cache, | |
12322 index, | |
12323 times_twice_pointer_size, | |
12324 FixedArray::kHeaderSize)); | |
12325 __ test(probe, Immediate(kSmiTagMask)); | |
12326 __ j(zero, not_found); | |
12327 if (CpuFeatures::IsSupported(SSE2)) { | |
12328 CpuFeatures::Scope fscope(SSE2); | |
12329 __ movdbl(xmm0, FieldOperand(object, HeapNumber::kValueOffset)); | |
12330 __ movdbl(xmm1, FieldOperand(probe, HeapNumber::kValueOffset)); | |
12331 __ ucomisd(xmm0, xmm1); | |
12332 } else { | |
12333 __ fld_d(FieldOperand(object, HeapNumber::kValueOffset)); | |
12334 __ fld_d(FieldOperand(probe, HeapNumber::kValueOffset)); | |
12335 __ FCmp(); | |
12336 } | |
12337 __ j(parity_even, not_found); // Bail out if NaN is involved. | |
12338 __ j(not_equal, not_found); // The cache did not contain this value. | |
12339 __ jmp(&load_result_from_cache); | |
12340 } | |
12341 | |
12342 __ bind(&smi_hash_calculated); | |
12343 // Object is smi and hash is now in scratch. Calculate cache index. | |
12344 __ and_(scratch, Operand(mask)); | |
12345 Register index = scratch; | |
12346 // Check if the entry is the smi we are looking for. | |
12347 __ cmp(object, | |
12348 FieldOperand(number_string_cache, | |
12349 index, | |
12350 times_twice_pointer_size, | |
12351 FixedArray::kHeaderSize)); | |
12352 __ j(not_equal, not_found); | |
12353 | |
12354 // Get the result from the cache. | |
12355 __ bind(&load_result_from_cache); | |
12356 __ mov(result, | |
12357 FieldOperand(number_string_cache, | |
12358 index, | |
12359 times_twice_pointer_size, | |
12360 FixedArray::kHeaderSize + kPointerSize)); | |
12361 __ IncrementCounter(&Counters::number_to_string_native, 1); | |
12362 } | |
12363 | |
12364 | |
12365 void NumberToStringStub::Generate(MacroAssembler* masm) { | |
12366 Label runtime; | |
12367 | |
12368 __ mov(ebx, Operand(esp, kPointerSize)); | |
12369 | |
12370 // Generate code to lookup number in the number string cache. | |
12371 GenerateLookupNumberStringCache(masm, ebx, eax, ecx, edx, false, &runtime); | |
12372 __ ret(1 * kPointerSize); | |
12373 | |
12374 __ bind(&runtime); | |
12375 // Handle number to string in the runtime system if not found in the cache. | |
12376 __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1); | |
12377 } | |
12378 | |
12379 | |
12380 static int NegativeComparisonResult(Condition cc) { | |
12381 ASSERT(cc != equal); | |
12382 ASSERT((cc == less) || (cc == less_equal) | |
12383 || (cc == greater) || (cc == greater_equal)); | |
12384 return (cc == greater || cc == greater_equal) ? LESS : GREATER; | |
12385 } | |
12386 | |
12387 | |
12388 void CompareStub::Generate(MacroAssembler* masm) { | |
12389 ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); | |
12390 | |
12391 Label check_unequal_objects, done; | |
12392 | |
12393 // NOTICE! This code is only reached after a smi-fast-case check, so | |
12394 // it is certain that at least one operand isn't a smi. | |
12395 | |
12396 // Identical objects can be compared fast, but there are some tricky cases | |
12397 // for NaN and undefined. | |
12398 { | |
12399 Label not_identical; | |
12400 __ cmp(eax, Operand(edx)); | |
12401 __ j(not_equal, ¬_identical); | |
12402 | |
12403 if (cc_ != equal) { | |
12404 // Check for undefined. undefined OP undefined is false even though | |
12405 // undefined == undefined. | |
12406 Label check_for_nan; | |
12407 __ cmp(edx, Factory::undefined_value()); | |
12408 __ j(not_equal, &check_for_nan); | |
12409 __ Set(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc_)))); | |
12410 __ ret(0); | |
12411 __ bind(&check_for_nan); | |
12412 } | |
12413 | |
12414 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), | |
12415 // so we do the second best thing - test it ourselves. | |
12416 // Note: if cc_ != equal, never_nan_nan_ is not used. | |
12417 if (never_nan_nan_ && (cc_ == equal)) { | |
12418 __ Set(eax, Immediate(Smi::FromInt(EQUAL))); | |
12419 __ ret(0); | |
12420 } else { | |
12421 Label heap_number; | |
12422 __ cmp(FieldOperand(edx, HeapObject::kMapOffset), | |
12423 Immediate(Factory::heap_number_map())); | |
12424 __ j(equal, &heap_number); | |
12425 if (cc_ != equal) { | |
12426 // Call runtime on identical JSObjects. Otherwise return equal. | |
12427 __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx); | |
12428 __ j(above_equal, ¬_identical); | |
12429 } | |
12430 __ Set(eax, Immediate(Smi::FromInt(EQUAL))); | |
12431 __ ret(0); | |
12432 | |
12433 __ bind(&heap_number); | |
12434 // It is a heap number, so return non-equal if it's NaN and equal if | |
12435 // it's not NaN. | |
12436 // The representation of NaN values has all exponent bits (52..62) set, | |
12437 // and not all mantissa bits (0..51) clear. | |
12438 // We only accept QNaNs, which have bit 51 set. | |
12439 // Read top bits of double representation (second word of value). | |
12440 | |
12441 // Value is a QNaN if value & kQuietNaNMask == kQuietNaNMask, i.e., | |
12442 // all bits in the mask are set. We only need to check the word | |
12443 // that contains the exponent and high bit of the mantissa. | |
12444 STATIC_ASSERT(((kQuietNaNHighBitsMask << 1) & 0x80000000u) != 0); | |
12445 __ mov(edx, FieldOperand(edx, HeapNumber::kExponentOffset)); | |
12446 __ xor_(eax, Operand(eax)); | |
12447 // Shift value and mask so kQuietNaNHighBitsMask applies to topmost | |
12448 // bits. | |
12449 __ add(edx, Operand(edx)); | |
12450 __ cmp(edx, kQuietNaNHighBitsMask << 1); | |
12451 if (cc_ == equal) { | |
12452 STATIC_ASSERT(EQUAL != 1); | |
12453 __ setcc(above_equal, eax); | |
12454 __ ret(0); | |
12455 } else { | |
12456 Label nan; | |
12457 __ j(above_equal, &nan); | |
12458 __ Set(eax, Immediate(Smi::FromInt(EQUAL))); | |
12459 __ ret(0); | |
12460 __ bind(&nan); | |
12461 __ Set(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc_)))); | |
12462 __ ret(0); | |
12463 } | |
12464 } | |
12465 | |
12466 __ bind(¬_identical); | |
12467 } | |
12468 | |
12469 // Strict equality can quickly decide whether objects are equal. | |
12470 // Non-strict object equality is slower, so it is handled later in the stub. | |
12471 if (cc_ == equal && strict_) { | |
12472 Label slow; // Fallthrough label. | |
12473 Label not_smis; | |
12474 // If we're doing a strict equality comparison, we don't have to do | |
12475 // type conversion, so we generate code to do fast comparison for objects | |
12476 // and oddballs. Non-smi numbers and strings still go through the usual | |
12477 // slow-case code. | |
12478 // If either is a Smi (we know that not both are), then they can only | |
12479 // be equal if the other is a HeapNumber. If so, use the slow case. | |
12480 STATIC_ASSERT(kSmiTag == 0); | |
12481 ASSERT_EQ(0, Smi::FromInt(0)); | |
12482 __ mov(ecx, Immediate(kSmiTagMask)); | |
12483 __ and_(ecx, Operand(eax)); | |
12484 __ test(ecx, Operand(edx)); | |
12485 __ j(not_zero, ¬_smis); | |
12486 // One operand is a smi. | |
12487 | |
12488 // Check whether the non-smi is a heap number. | |
12489 STATIC_ASSERT(kSmiTagMask == 1); | |
12490 // ecx still holds eax & kSmiTag, which is either zero or one. | |
12491 __ sub(Operand(ecx), Immediate(0x01)); | |
12492 __ mov(ebx, edx); | |
12493 __ xor_(ebx, Operand(eax)); | |
12494 __ and_(ebx, Operand(ecx)); // ebx holds either 0 or eax ^ edx. | |
12495 __ xor_(ebx, Operand(eax)); | |
12496 // if eax was smi, ebx is now edx, else eax. | |
12497 | |
12498 // Check if the non-smi operand is a heap number. | |
12499 __ cmp(FieldOperand(ebx, HeapObject::kMapOffset), | |
12500 Immediate(Factory::heap_number_map())); | |
12501 // If heap number, handle it in the slow case. | |
12502 __ j(equal, &slow); | |
12503 // Return non-equal (ebx is not zero) | |
12504 __ mov(eax, ebx); | |
12505 __ ret(0); | |
12506 | |
12507 __ bind(¬_smis); | |
12508 // If either operand is a JSObject or an oddball value, then they are not | |
12509 // equal since their pointers are different | |
12510 // There is no test for undetectability in strict equality. | |
12511 | |
12512 // Get the type of the first operand. | |
12513 // If the first object is a JS object, we have done pointer comparison. | |
12514 Label first_non_object; | |
12515 STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); | |
12516 __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx); | |
12517 __ j(below, &first_non_object); | |
12518 | |
12519 // Return non-zero (eax is not zero) | |
12520 Label return_not_equal; | |
12521 STATIC_ASSERT(kHeapObjectTag != 0); | |
12522 __ bind(&return_not_equal); | |
12523 __ ret(0); | |
12524 | |
12525 __ bind(&first_non_object); | |
12526 // Check for oddballs: true, false, null, undefined. | |
12527 __ CmpInstanceType(ecx, ODDBALL_TYPE); | |
12528 __ j(equal, &return_not_equal); | |
12529 | |
12530 __ CmpObjectType(edx, FIRST_JS_OBJECT_TYPE, ecx); | |
12531 __ j(above_equal, &return_not_equal); | |
12532 | |
12533 // Check for oddballs: true, false, null, undefined. | |
12534 __ CmpInstanceType(ecx, ODDBALL_TYPE); | |
12535 __ j(equal, &return_not_equal); | |
12536 | |
12537 // Fall through to the general case. | |
12538 __ bind(&slow); | |
12539 } | |
12540 | |
12541 // Generate the number comparison code. | |
12542 if (include_number_compare_) { | |
12543 Label non_number_comparison; | |
12544 Label unordered; | |
12545 if (CpuFeatures::IsSupported(SSE2)) { | |
12546 CpuFeatures::Scope use_sse2(SSE2); | |
12547 CpuFeatures::Scope use_cmov(CMOV); | |
12548 | |
12549 FloatingPointHelper::LoadSSE2Operands(masm, &non_number_comparison); | |
12550 __ ucomisd(xmm0, xmm1); | |
12551 | |
12552 // Don't base result on EFLAGS when a NaN is involved. | |
12553 __ j(parity_even, &unordered, not_taken); | |
12554 // Return a result of -1, 0, or 1, based on EFLAGS. | |
12555 __ mov(eax, 0); // equal | |
12556 __ mov(ecx, Immediate(Smi::FromInt(1))); | |
12557 __ cmov(above, eax, Operand(ecx)); | |
12558 __ mov(ecx, Immediate(Smi::FromInt(-1))); | |
12559 __ cmov(below, eax, Operand(ecx)); | |
12560 __ ret(0); | |
12561 } else { | |
12562 FloatingPointHelper::CheckFloatOperands( | |
12563 masm, &non_number_comparison, ebx); | |
12564 FloatingPointHelper::LoadFloatOperand(masm, eax); | |
12565 FloatingPointHelper::LoadFloatOperand(masm, edx); | |
12566 __ FCmp(); | |
12567 | |
12568 // Don't base result on EFLAGS when a NaN is involved. | |
12569 __ j(parity_even, &unordered, not_taken); | |
12570 | |
12571 Label below_label, above_label; | |
12572 // Return a result of -1, 0, or 1, based on EFLAGS. | |
12573 __ j(below, &below_label, not_taken); | |
12574 __ j(above, &above_label, not_taken); | |
12575 | |
12576 __ xor_(eax, Operand(eax)); | |
12577 __ ret(0); | |
12578 | |
12579 __ bind(&below_label); | |
12580 __ mov(eax, Immediate(Smi::FromInt(-1))); | |
12581 __ ret(0); | |
12582 | |
12583 __ bind(&above_label); | |
12584 __ mov(eax, Immediate(Smi::FromInt(1))); | |
12585 __ ret(0); | |
12586 } | |
12587 | |
12588 // If one of the numbers was NaN, then the result is always false. | |
12589 // The cc is never not-equal. | |
12590 __ bind(&unordered); | |
12591 ASSERT(cc_ != not_equal); | |
12592 if (cc_ == less || cc_ == less_equal) { | |
12593 __ mov(eax, Immediate(Smi::FromInt(1))); | |
12594 } else { | |
12595 __ mov(eax, Immediate(Smi::FromInt(-1))); | |
12596 } | |
12597 __ ret(0); | |
12598 | |
12599 // The number comparison code did not provide a valid result. | |
12600 __ bind(&non_number_comparison); | |
12601 } | |
12602 | |
12603 // Fast negative check for symbol-to-symbol equality. | |
12604 Label check_for_strings; | |
12605 if (cc_ == equal) { | |
12606 BranchIfNonSymbol(masm, &check_for_strings, eax, ecx); | |
12607 BranchIfNonSymbol(masm, &check_for_strings, edx, ecx); | |
12608 | |
12609 // We've already checked for object identity, so if both operands | |
12610 // are symbols they aren't equal. Register eax already holds a | |
12611 // non-zero value, which indicates not equal, so just return. | |
12612 __ ret(0); | |
12613 } | |
12614 | |
12615 __ bind(&check_for_strings); | |
12616 | |
12617 __ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx, | |
12618 &check_unequal_objects); | |
12619 | |
12620 // Inline comparison of ascii strings. | |
12621 StringCompareStub::GenerateCompareFlatAsciiStrings(masm, | |
12622 edx, | |
12623 eax, | |
12624 ecx, | |
12625 ebx, | |
12626 edi); | |
12627 #ifdef DEBUG | |
12628 __ Abort("Unexpected fall-through from string comparison"); | |
12629 #endif | |
12630 | |
12631 __ bind(&check_unequal_objects); | |
12632 if (cc_ == equal && !strict_) { | |
12633 // Non-strict equality. Objects are unequal if | |
12634 // they are both JSObjects and not undetectable, | |
12635 // and their pointers are different. | |
12636 Label not_both_objects; | |
12637 Label return_unequal; | |
12638 // At most one is a smi, so we can test for smi by adding the two. | |
12639 // A smi plus a heap object has the low bit set, a heap object plus | |
12640 // a heap object has the low bit clear. | |
12641 STATIC_ASSERT(kSmiTag == 0); | |
12642 STATIC_ASSERT(kSmiTagMask == 1); | |
12643 __ lea(ecx, Operand(eax, edx, times_1, 0)); | |
12644 __ test(ecx, Immediate(kSmiTagMask)); | |
12645 __ j(not_zero, ¬_both_objects); | |
12646 __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx); | |
12647 __ j(below, ¬_both_objects); | |
12648 __ CmpObjectType(edx, FIRST_JS_OBJECT_TYPE, ebx); | |
12649 __ j(below, ¬_both_objects); | |
12650 // We do not bail out after this point. Both are JSObjects, and | |
12651 // they are equal if and only if both are undetectable. | |
12652 // The and of the undetectable flags is 1 if and only if they are equal. | |
12653 __ test_b(FieldOperand(ecx, Map::kBitFieldOffset), | |
12654 1 << Map::kIsUndetectable); | |
12655 __ j(zero, &return_unequal); | |
12656 __ test_b(FieldOperand(ebx, Map::kBitFieldOffset), | |
12657 1 << Map::kIsUndetectable); | |
12658 __ j(zero, &return_unequal); | |
12659 // The objects are both undetectable, so they both compare as the value | |
12660 // undefined, and are equal. | |
12661 __ Set(eax, Immediate(EQUAL)); | |
12662 __ bind(&return_unequal); | |
12663 // Return non-equal by returning the non-zero object pointer in eax, | |
12664 // or return equal if we fell through to here. | |
12665 __ ret(0); // rax, rdx were pushed | |
12666 __ bind(¬_both_objects); | |
12667 } | |
12668 | |
12669 // Push arguments below the return address. | |
12670 __ pop(ecx); | |
12671 __ push(edx); | |
12672 __ push(eax); | |
12673 | |
12674 // Figure out which native to call and setup the arguments. | |
12675 Builtins::JavaScript builtin; | |
12676 if (cc_ == equal) { | |
12677 builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; | |
12678 } else { | |
12679 builtin = Builtins::COMPARE; | |
12680 __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc_)))); | |
12681 } | |
12682 | |
12683 // Restore return address on the stack. | |
12684 __ push(ecx); | |
12685 | |
12686 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) | |
12687 // tagged as a small integer. | |
12688 __ InvokeBuiltin(builtin, JUMP_FUNCTION); | |
12689 } | |
12690 | |
12691 | |
12692 void CompareStub::BranchIfNonSymbol(MacroAssembler* masm, | |
12693 Label* label, | |
12694 Register object, | |
12695 Register scratch) { | |
12696 __ test(object, Immediate(kSmiTagMask)); | |
12697 __ j(zero, label); | |
12698 __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset)); | |
12699 __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); | |
12700 __ and_(scratch, kIsSymbolMask | kIsNotStringMask); | |
12701 __ cmp(scratch, kSymbolTag | kStringTag); | |
12702 __ j(not_equal, label); | |
12703 } | |
12704 | |
12705 | |
12706 void StackCheckStub::Generate(MacroAssembler* masm) { | |
12707 // Because builtins always remove the receiver from the stack, we | |
12708 // have to fake one to avoid underflowing the stack. The receiver | |
12709 // must be inserted below the return address on the stack so we | |
12710 // temporarily store that in a register. | |
12711 __ pop(eax); | |
12712 __ push(Immediate(Smi::FromInt(0))); | |
12713 __ push(eax); | |
12714 | |
12715 // Do tail-call to runtime routine. | |
12716 __ TailCallRuntime(Runtime::kStackGuard, 1, 1); | |
12717 } | |
12718 | |
12719 | |
12720 void CallFunctionStub::Generate(MacroAssembler* masm) { | |
12721 Label slow; | |
12722 | |
12723 // If the receiver might be a value (string, number or boolean) check for this | |
12724 // and box it if it is. | |
12725 if (ReceiverMightBeValue()) { | |
12726 // Get the receiver from the stack. | |
12727 // +1 ~ return address | |
12728 Label receiver_is_value, receiver_is_js_object; | |
12729 __ mov(eax, Operand(esp, (argc_ + 1) * kPointerSize)); | |
12730 | |
12731 // Check if receiver is a smi (which is a number value). | |
12732 __ test(eax, Immediate(kSmiTagMask)); | |
12733 __ j(zero, &receiver_is_value, not_taken); | |
12734 | |
12735 // Check if the receiver is a valid JS object. | |
12736 __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, edi); | |
12737 __ j(above_equal, &receiver_is_js_object); | |
12738 | |
12739 // Call the runtime to box the value. | |
12740 __ bind(&receiver_is_value); | |
12741 __ EnterInternalFrame(); | |
12742 __ push(eax); | |
12743 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); | |
12744 __ LeaveInternalFrame(); | |
12745 __ mov(Operand(esp, (argc_ + 1) * kPointerSize), eax); | |
12746 | |
12747 __ bind(&receiver_is_js_object); | |
12748 } | |
12749 | |
12750 // Get the function to call from the stack. | |
12751 // +2 ~ receiver, return address | |
12752 __ mov(edi, Operand(esp, (argc_ + 2) * kPointerSize)); | |
12753 | |
12754 // Check that the function really is a JavaScript function. | |
12755 __ test(edi, Immediate(kSmiTagMask)); | |
12756 __ j(zero, &slow, not_taken); | |
12757 // Goto slow case if we do not have a function. | |
12758 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); | |
12759 __ j(not_equal, &slow, not_taken); | |
12760 | |
12761 // Fast-case: Just invoke the function. | |
12762 ParameterCount actual(argc_); | |
12763 __ InvokeFunction(edi, actual, JUMP_FUNCTION); | |
12764 | |
12765 // Slow-case: Non-function called. | |
12766 __ bind(&slow); | |
12767 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead | |
12768 // of the original receiver from the call site). | |
12769 __ mov(Operand(esp, (argc_ + 1) * kPointerSize), edi); | |
12770 __ Set(eax, Immediate(argc_)); | |
12771 __ Set(ebx, Immediate(0)); | |
12772 __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION); | |
12773 Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)); | |
12774 __ jmp(adaptor, RelocInfo::CODE_TARGET); | |
12775 } | |
12776 | |
12777 | |
12778 void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) { | |
12779 // eax holds the exception. | |
12780 | |
12781 // Adjust this code if not the case. | |
12782 STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); | |
12783 | |
12784 // Drop the sp to the top of the handler. | |
12785 ExternalReference handler_address(Top::k_handler_address); | |
12786 __ mov(esp, Operand::StaticVariable(handler_address)); | |
12787 | |
12788 // Restore next handler and frame pointer, discard handler state. | |
12789 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); | |
12790 __ pop(Operand::StaticVariable(handler_address)); | |
12791 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize); | |
12792 __ pop(ebp); | |
12793 __ pop(edx); // Remove state. | |
12794 | |
12795 // Before returning we restore the context from the frame pointer if | |
12796 // not NULL. The frame pointer is NULL in the exception handler of | |
12797 // a JS entry frame. | |
12798 __ xor_(esi, Operand(esi)); // Tentatively set context pointer to NULL. | |
12799 Label skip; | |
12800 __ cmp(ebp, 0); | |
12801 __ j(equal, &skip, not_taken); | |
12802 __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); | |
12803 __ bind(&skip); | |
12804 | |
12805 STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); | |
12806 __ ret(0); | |
12807 } | |
12808 | |
12809 | |
12810 // If true, a Handle<T> passed by value is passed and returned by | |
12811 // using the location_ field directly. If false, it is passed and | |
12812 // returned as a pointer to a handle. | |
12813 #ifdef USING_BSD_ABI | |
12814 static const bool kPassHandlesDirectly = true; | |
12815 #else | |
12816 static const bool kPassHandlesDirectly = false; | |
12817 #endif | |
12818 | |
12819 | |
12820 void ApiGetterEntryStub::Generate(MacroAssembler* masm) { | |
12821 Label empty_handle; | |
12822 Label prologue; | |
12823 Label promote_scheduled_exception; | |
12824 __ EnterApiExitFrame(ExitFrame::MODE_NORMAL, kStackSpace, kArgc); | |
12825 STATIC_ASSERT(kArgc == 4); | |
12826 if (kPassHandlesDirectly) { | |
12827 // When handles as passed directly we don't have to allocate extra | |
12828 // space for and pass an out parameter. | |
12829 __ mov(Operand(esp, 0 * kPointerSize), ebx); // name. | |
12830 __ mov(Operand(esp, 1 * kPointerSize), eax); // arguments pointer. | |
12831 } else { | |
12832 // The function expects three arguments to be passed but we allocate | |
12833 // four to get space for the output cell. The argument slots are filled | |
12834 // as follows: | |
12835 // | |
12836 // 3: output cell | |
12837 // 2: arguments pointer | |
12838 // 1: name | |
12839 // 0: pointer to the output cell | |
12840 // | |
12841 // Note that this is one more "argument" than the function expects | |
12842 // so the out cell will have to be popped explicitly after returning | |
12843 // from the function. | |
12844 __ mov(Operand(esp, 1 * kPointerSize), ebx); // name. | |
12845 __ mov(Operand(esp, 2 * kPointerSize), eax); // arguments pointer. | |
12846 __ mov(ebx, esp); | |
12847 __ add(Operand(ebx), Immediate(3 * kPointerSize)); | |
12848 __ mov(Operand(esp, 0 * kPointerSize), ebx); // output | |
12849 __ mov(Operand(esp, 3 * kPointerSize), Immediate(0)); // out cell. | |
12850 } | |
12851 // Call the api function! | |
12852 __ call(fun()->address(), RelocInfo::RUNTIME_ENTRY); | |
12853 // Check if the function scheduled an exception. | |
12854 ExternalReference scheduled_exception_address = | |
12855 ExternalReference::scheduled_exception_address(); | |
12856 __ cmp(Operand::StaticVariable(scheduled_exception_address), | |
12857 Immediate(Factory::the_hole_value())); | |
12858 __ j(not_equal, &promote_scheduled_exception, not_taken); | |
12859 if (!kPassHandlesDirectly) { | |
12860 // The returned value is a pointer to the handle holding the result. | |
12861 // Dereference this to get to the location. | |
12862 __ mov(eax, Operand(eax, 0)); | |
12863 } | |
12864 // Check if the result handle holds 0. | |
12865 __ test(eax, Operand(eax)); | |
12866 __ j(zero, &empty_handle, not_taken); | |
12867 // It was non-zero. Dereference to get the result value. | |
12868 __ mov(eax, Operand(eax, 0)); | |
12869 __ bind(&prologue); | |
12870 __ LeaveExitFrame(ExitFrame::MODE_NORMAL); | |
12871 __ ret(0); | |
12872 __ bind(&promote_scheduled_exception); | |
12873 __ TailCallRuntime(Runtime::kPromoteScheduledException, 0, 1); | |
12874 __ bind(&empty_handle); | |
12875 // It was zero; the result is undefined. | |
12876 __ mov(eax, Factory::undefined_value()); | |
12877 __ jmp(&prologue); | |
12878 } | |
12879 | |
12880 | |
12881 void CEntryStub::GenerateCore(MacroAssembler* masm, | |
12882 Label* throw_normal_exception, | |
12883 Label* throw_termination_exception, | |
12884 Label* throw_out_of_memory_exception, | |
12885 bool do_gc, | |
12886 bool always_allocate_scope, | |
12887 int /* alignment_skew */) { | |
12888 // eax: result parameter for PerformGC, if any | |
12889 // ebx: pointer to C function (C callee-saved) | |
12890 // ebp: frame pointer (restored after C call) | |
12891 // esp: stack pointer (restored after C call) | |
12892 // edi: number of arguments including receiver (C callee-saved) | |
12893 // esi: pointer to the first argument (C callee-saved) | |
12894 | |
12895 // Result returned in eax, or eax+edx if result_size_ is 2. | |
12896 | |
12897 // Check stack alignment. | |
12898 if (FLAG_debug_code) { | |
12899 __ CheckStackAlignment(); | |
12900 } | |
12901 | |
12902 if (do_gc) { | |
12903 // Pass failure code returned from last attempt as first argument to | |
12904 // PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the | |
12905 // stack alignment is known to be correct. This function takes one argument | |
12906 // which is passed on the stack, and we know that the stack has been | |
12907 // prepared to pass at least one argument. | |
12908 __ mov(Operand(esp, 0 * kPointerSize), eax); // Result. | |
12909 __ call(FUNCTION_ADDR(Runtime::PerformGC), RelocInfo::RUNTIME_ENTRY); | |
12910 } | |
12911 | |
12912 ExternalReference scope_depth = | |
12913 ExternalReference::heap_always_allocate_scope_depth(); | |
12914 if (always_allocate_scope) { | |
12915 __ inc(Operand::StaticVariable(scope_depth)); | |
12916 } | |
12917 | |
12918 // Call C function. | |
12919 __ mov(Operand(esp, 0 * kPointerSize), edi); // argc. | |
12920 __ mov(Operand(esp, 1 * kPointerSize), esi); // argv. | |
12921 __ call(Operand(ebx)); | |
12922 // Result is in eax or edx:eax - do not destroy these registers! | |
12923 | |
12924 if (always_allocate_scope) { | |
12925 __ dec(Operand::StaticVariable(scope_depth)); | |
12926 } | |
12927 | |
12928 // Make sure we're not trying to return 'the hole' from the runtime | |
12929 // call as this may lead to crashes in the IC code later. | |
12930 if (FLAG_debug_code) { | |
12931 Label okay; | |
12932 __ cmp(eax, Factory::the_hole_value()); | |
12933 __ j(not_equal, &okay); | |
12934 __ int3(); | |
12935 __ bind(&okay); | |
12936 } | |
12937 | |
12938 // Check for failure result. | |
12939 Label failure_returned; | |
12940 STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); | |
12941 __ lea(ecx, Operand(eax, 1)); | |
12942 // Lower 2 bits of ecx are 0 iff eax has failure tag. | |
12943 __ test(ecx, Immediate(kFailureTagMask)); | |
12944 __ j(zero, &failure_returned, not_taken); | |
12945 | |
12946 // Exit the JavaScript to C++ exit frame. | |
12947 __ LeaveExitFrame(mode_); | |
12948 __ ret(0); | |
12949 | |
12950 // Handling of failure. | |
12951 __ bind(&failure_returned); | |
12952 | |
12953 Label retry; | |
12954 // If the returned exception is RETRY_AFTER_GC continue at retry label | |
12955 STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0); | |
12956 __ test(eax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); | |
12957 __ j(zero, &retry, taken); | |
12958 | |
12959 // Special handling of out of memory exceptions. | |
12960 __ cmp(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException())); | |
12961 __ j(equal, throw_out_of_memory_exception); | |
12962 | |
12963 // Retrieve the pending exception and clear the variable. | |
12964 ExternalReference pending_exception_address(Top::k_pending_exception_address); | |
12965 __ mov(eax, Operand::StaticVariable(pending_exception_address)); | |
12966 __ mov(edx, | |
12967 Operand::StaticVariable(ExternalReference::the_hole_value_location())); | |
12968 __ mov(Operand::StaticVariable(pending_exception_address), edx); | |
12969 | |
12970 // Special handling of termination exceptions which are uncatchable | |
12971 // by javascript code. | |
12972 __ cmp(eax, Factory::termination_exception()); | |
12973 __ j(equal, throw_termination_exception); | |
12974 | |
12975 // Handle normal exception. | |
12976 __ jmp(throw_normal_exception); | |
12977 | |
12978 // Retry. | |
12979 __ bind(&retry); | |
12980 } | |
12981 | |
12982 | |
12983 void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm, | |
12984 UncatchableExceptionType type) { | |
12985 // Adjust this code if not the case. | |
12986 STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); | |
12987 | |
12988 // Drop sp to the top stack handler. | |
12989 ExternalReference handler_address(Top::k_handler_address); | |
12990 __ mov(esp, Operand::StaticVariable(handler_address)); | |
12991 | |
12992 // Unwind the handlers until the ENTRY handler is found. | |
12993 Label loop, done; | |
12994 __ bind(&loop); | |
12995 // Load the type of the current stack handler. | |
12996 const int kStateOffset = StackHandlerConstants::kStateOffset; | |
12997 __ cmp(Operand(esp, kStateOffset), Immediate(StackHandler::ENTRY)); | |
12998 __ j(equal, &done); | |
12999 // Fetch the next handler in the list. | |
13000 const int kNextOffset = StackHandlerConstants::kNextOffset; | |
13001 __ mov(esp, Operand(esp, kNextOffset)); | |
13002 __ jmp(&loop); | |
13003 __ bind(&done); | |
13004 | |
13005 // Set the top handler address to next handler past the current ENTRY handler. | |
13006 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); | |
13007 __ pop(Operand::StaticVariable(handler_address)); | |
13008 | |
13009 if (type == OUT_OF_MEMORY) { | |
13010 // Set external caught exception to false. | |
13011 ExternalReference external_caught(Top::k_external_caught_exception_address); | |
13012 __ mov(eax, false); | |
13013 __ mov(Operand::StaticVariable(external_caught), eax); | |
13014 | |
13015 // Set pending exception and eax to out of memory exception. | |
13016 ExternalReference pending_exception(Top::k_pending_exception_address); | |
13017 __ mov(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException())); | |
13018 __ mov(Operand::StaticVariable(pending_exception), eax); | |
13019 } | |
13020 | |
13021 // Clear the context pointer. | |
13022 __ xor_(esi, Operand(esi)); | |
13023 | |
13024 // Restore fp from handler and discard handler state. | |
13025 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize); | |
13026 __ pop(ebp); | |
13027 __ pop(edx); // State. | |
13028 | |
13029 STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); | |
13030 __ ret(0); | |
13031 } | |
13032 | |
13033 | |
13034 void CEntryStub::Generate(MacroAssembler* masm) { | |
13035 // eax: number of arguments including receiver | |
13036 // ebx: pointer to C function (C callee-saved) | |
13037 // ebp: frame pointer (restored after C call) | |
13038 // esp: stack pointer (restored after C call) | |
13039 // esi: current context (C callee-saved) | |
13040 // edi: JS function of the caller (C callee-saved) | |
13041 | |
13042 // NOTE: Invocations of builtins may return failure objects instead | |
13043 // of a proper result. The builtin entry handles this by performing | |
13044 // a garbage collection and retrying the builtin (twice). | |
13045 | |
13046 // Enter the exit frame that transitions from JavaScript to C++. | |
13047 __ EnterExitFrame(mode_); | |
13048 | |
13049 // eax: result parameter for PerformGC, if any (setup below) | |
13050 // ebx: pointer to builtin function (C callee-saved) | |
13051 // ebp: frame pointer (restored after C call) | |
13052 // esp: stack pointer (restored after C call) | |
13053 // edi: number of arguments including receiver (C callee-saved) | |
13054 // esi: argv pointer (C callee-saved) | |
13055 | |
13056 Label throw_normal_exception; | |
13057 Label throw_termination_exception; | |
13058 Label throw_out_of_memory_exception; | |
13059 | |
13060 // Call into the runtime system. | |
13061 GenerateCore(masm, | |
13062 &throw_normal_exception, | |
13063 &throw_termination_exception, | |
13064 &throw_out_of_memory_exception, | |
13065 false, | |
13066 false); | |
13067 | |
13068 // Do space-specific GC and retry runtime call. | |
13069 GenerateCore(masm, | |
13070 &throw_normal_exception, | |
13071 &throw_termination_exception, | |
13072 &throw_out_of_memory_exception, | |
13073 true, | |
13074 false); | |
13075 | |
13076 // Do full GC and retry runtime call one final time. | |
13077 Failure* failure = Failure::InternalError(); | |
13078 __ mov(eax, Immediate(reinterpret_cast<int32_t>(failure))); | |
13079 GenerateCore(masm, | |
13080 &throw_normal_exception, | |
13081 &throw_termination_exception, | |
13082 &throw_out_of_memory_exception, | |
13083 true, | |
13084 true); | |
13085 | |
13086 __ bind(&throw_out_of_memory_exception); | |
13087 GenerateThrowUncatchable(masm, OUT_OF_MEMORY); | |
13088 | |
13089 __ bind(&throw_termination_exception); | |
13090 GenerateThrowUncatchable(masm, TERMINATION); | |
13091 | |
13092 __ bind(&throw_normal_exception); | |
13093 GenerateThrowTOS(masm); | |
13094 } | |
13095 | |
13096 | |
13097 void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { | |
13098 Label invoke, exit; | |
13099 #ifdef ENABLE_LOGGING_AND_PROFILING | |
13100 Label not_outermost_js, not_outermost_js_2; | |
13101 #endif | |
13102 | |
13103 // Setup frame. | |
13104 __ push(ebp); | |
13105 __ mov(ebp, Operand(esp)); | |
13106 | |
13107 // Push marker in two places. | |
13108 int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; | |
13109 __ push(Immediate(Smi::FromInt(marker))); // context slot | |
13110 __ push(Immediate(Smi::FromInt(marker))); // function slot | |
13111 // Save callee-saved registers (C calling conventions). | |
13112 __ push(edi); | |
13113 __ push(esi); | |
13114 __ push(ebx); | |
13115 | |
13116 // Save copies of the top frame descriptor on the stack. | |
13117 ExternalReference c_entry_fp(Top::k_c_entry_fp_address); | |
13118 __ push(Operand::StaticVariable(c_entry_fp)); | |
13119 | |
13120 #ifdef ENABLE_LOGGING_AND_PROFILING | |
13121 // If this is the outermost JS call, set js_entry_sp value. | |
13122 ExternalReference js_entry_sp(Top::k_js_entry_sp_address); | |
13123 __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0)); | |
13124 __ j(not_equal, ¬_outermost_js); | |
13125 __ mov(Operand::StaticVariable(js_entry_sp), ebp); | |
13126 __ bind(¬_outermost_js); | |
13127 #endif | |
13128 | |
13129 // Call a faked try-block that does the invoke. | |
13130 __ call(&invoke); | |
13131 | |
13132 // Caught exception: Store result (exception) in the pending | |
13133 // exception field in the JSEnv and return a failure sentinel. | |
13134 ExternalReference pending_exception(Top::k_pending_exception_address); | |
13135 __ mov(Operand::StaticVariable(pending_exception), eax); | |
13136 __ mov(eax, reinterpret_cast<int32_t>(Failure::Exception())); | |
13137 __ jmp(&exit); | |
13138 | |
13139 // Invoke: Link this frame into the handler chain. | |
13140 __ bind(&invoke); | |
13141 __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER); | |
13142 | |
13143 // Clear any pending exceptions. | |
13144 __ mov(edx, | |
13145 Operand::StaticVariable(ExternalReference::the_hole_value_location())); | |
13146 __ mov(Operand::StaticVariable(pending_exception), edx); | |
13147 | |
13148 // Fake a receiver (NULL). | |
13149 __ push(Immediate(0)); // receiver | |
13150 | |
13151 // Invoke the function by calling through JS entry trampoline | |
13152 // builtin and pop the faked function when we return. Notice that we | |
13153 // cannot store a reference to the trampoline code directly in this | |
13154 // stub, because the builtin stubs may not have been generated yet. | |
13155 if (is_construct) { | |
13156 ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline); | |
13157 __ mov(edx, Immediate(construct_entry)); | |
13158 } else { | |
13159 ExternalReference entry(Builtins::JSEntryTrampoline); | |
13160 __ mov(edx, Immediate(entry)); | |
13161 } | |
13162 __ mov(edx, Operand(edx, 0)); // deref address | |
13163 __ lea(edx, FieldOperand(edx, Code::kHeaderSize)); | |
13164 __ call(Operand(edx)); | |
13165 | |
13166 // Unlink this frame from the handler chain. | |
13167 __ pop(Operand::StaticVariable(ExternalReference(Top::k_handler_address))); | |
13168 // Pop next_sp. | |
13169 __ add(Operand(esp), Immediate(StackHandlerConstants::kSize - kPointerSize)); | |
13170 | |
13171 #ifdef ENABLE_LOGGING_AND_PROFILING | |
13172 // If current EBP value is the same as js_entry_sp value, it means that | |
13173 // the current function is the outermost. | |
13174 __ cmp(ebp, Operand::StaticVariable(js_entry_sp)); | |
13175 __ j(not_equal, ¬_outermost_js_2); | |
13176 __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0)); | |
13177 __ bind(¬_outermost_js_2); | |
13178 #endif | |
13179 | |
13180 // Restore the top frame descriptor from the stack. | |
13181 __ bind(&exit); | |
13182 __ pop(Operand::StaticVariable(ExternalReference(Top::k_c_entry_fp_address))); | |
13183 | |
13184 // Restore callee-saved registers (C calling conventions). | |
13185 __ pop(ebx); | |
13186 __ pop(esi); | |
13187 __ pop(edi); | |
13188 __ add(Operand(esp), Immediate(2 * kPointerSize)); // remove markers | |
13189 | |
13190 // Restore frame pointer and return. | |
13191 __ pop(ebp); | |
13192 __ ret(0); | |
13193 } | |
13194 | |
13195 | |
13196 void InstanceofStub::Generate(MacroAssembler* masm) { | |
13197 // Get the object - go slow case if it's a smi. | |
13198 Label slow; | |
13199 __ mov(eax, Operand(esp, 2 * kPointerSize)); // 2 ~ return address, function | |
13200 __ test(eax, Immediate(kSmiTagMask)); | |
13201 __ j(zero, &slow, not_taken); | |
13202 | |
13203 // Check that the left hand is a JS object. | |
13204 __ IsObjectJSObjectType(eax, eax, edx, &slow); | |
13205 | |
13206 // Get the prototype of the function. | |
13207 __ mov(edx, Operand(esp, 1 * kPointerSize)); // 1 ~ return address | |
13208 // edx is function, eax is map. | |
13209 | |
13210 // Look up the function and the map in the instanceof cache. | |
13211 Label miss; | |
13212 ExternalReference roots_address = ExternalReference::roots_address(); | |
13213 __ mov(ecx, Immediate(Heap::kInstanceofCacheFunctionRootIndex)); | |
13214 __ cmp(edx, Operand::StaticArray(ecx, times_pointer_size, roots_address)); | |
13215 __ j(not_equal, &miss); | |
13216 __ mov(ecx, Immediate(Heap::kInstanceofCacheMapRootIndex)); | |
13217 __ cmp(eax, Operand::StaticArray(ecx, times_pointer_size, roots_address)); | |
13218 __ j(not_equal, &miss); | |
13219 __ mov(ecx, Immediate(Heap::kInstanceofCacheAnswerRootIndex)); | |
13220 __ mov(eax, Operand::StaticArray(ecx, times_pointer_size, roots_address)); | |
13221 __ ret(2 * kPointerSize); | |
13222 | |
13223 __ bind(&miss); | |
13224 __ TryGetFunctionPrototype(edx, ebx, ecx, &slow); | |
13225 | |
13226 // Check that the function prototype is a JS object. | |
13227 __ test(ebx, Immediate(kSmiTagMask)); | |
13228 __ j(zero, &slow, not_taken); | |
13229 __ IsObjectJSObjectType(ebx, ecx, ecx, &slow); | |
13230 | |
13231 // Register mapping: | |
13232 // eax is object map. | |
13233 // edx is function. | |
13234 // ebx is function prototype. | |
13235 __ mov(ecx, Immediate(Heap::kInstanceofCacheMapRootIndex)); | |
13236 __ mov(Operand::StaticArray(ecx, times_pointer_size, roots_address), eax); | |
13237 __ mov(ecx, Immediate(Heap::kInstanceofCacheFunctionRootIndex)); | |
13238 __ mov(Operand::StaticArray(ecx, times_pointer_size, roots_address), edx); | |
13239 | |
13240 __ mov(ecx, FieldOperand(eax, Map::kPrototypeOffset)); | |
13241 | |
13242 // Loop through the prototype chain looking for the function prototype. | |
13243 Label loop, is_instance, is_not_instance; | |
13244 __ bind(&loop); | |
13245 __ cmp(ecx, Operand(ebx)); | |
13246 __ j(equal, &is_instance); | |
13247 __ cmp(Operand(ecx), Immediate(Factory::null_value())); | |
13248 __ j(equal, &is_not_instance); | |
13249 __ mov(ecx, FieldOperand(ecx, HeapObject::kMapOffset)); | |
13250 __ mov(ecx, FieldOperand(ecx, Map::kPrototypeOffset)); | |
13251 __ jmp(&loop); | |
13252 | |
13253 __ bind(&is_instance); | |
13254 __ Set(eax, Immediate(0)); | |
13255 __ mov(ecx, Immediate(Heap::kInstanceofCacheAnswerRootIndex)); | |
13256 __ mov(Operand::StaticArray(ecx, times_pointer_size, roots_address), eax); | |
13257 __ ret(2 * kPointerSize); | |
13258 | |
13259 __ bind(&is_not_instance); | |
13260 __ Set(eax, Immediate(Smi::FromInt(1))); | |
13261 __ mov(ecx, Immediate(Heap::kInstanceofCacheAnswerRootIndex)); | |
13262 __ mov(Operand::StaticArray(ecx, times_pointer_size, roots_address), eax); | |
13263 __ ret(2 * kPointerSize); | |
13264 | |
13265 // Slow-case: Go through the JavaScript implementation. | |
13266 __ bind(&slow); | |
13267 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); | |
13268 } | |
13269 | |
13270 | |
13271 int CompareStub::MinorKey() { | |
13272 // Encode the three parameters in a unique 16 bit value. To avoid duplicate | |
13273 // stubs the never NaN NaN condition is only taken into account if the | |
13274 // condition is equals. | |
13275 ASSERT(static_cast<unsigned>(cc_) < (1 << 12)); | |
13276 ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); | |
13277 return ConditionField::encode(static_cast<unsigned>(cc_)) | |
13278 | RegisterField::encode(false) // lhs_ and rhs_ are not used | |
13279 | StrictField::encode(strict_) | |
13280 | NeverNanNanField::encode(cc_ == equal ? never_nan_nan_ : false) | |
13281 | IncludeNumberCompareField::encode(include_number_compare_); | |
13282 } | |
13283 | |
13284 | |
13285 // Unfortunately you have to run without snapshots to see most of these | |
13286 // names in the profile since most compare stubs end up in the snapshot. | |
13287 const char* CompareStub::GetName() { | |
13288 ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); | |
13289 | |
13290 if (name_ != NULL) return name_; | |
13291 const int kMaxNameLength = 100; | |
13292 name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength); | |
13293 if (name_ == NULL) return "OOM"; | |
13294 | |
13295 const char* cc_name; | |
13296 switch (cc_) { | |
13297 case less: cc_name = "LT"; break; | |
13298 case greater: cc_name = "GT"; break; | |
13299 case less_equal: cc_name = "LE"; break; | |
13300 case greater_equal: cc_name = "GE"; break; | |
13301 case equal: cc_name = "EQ"; break; | |
13302 case not_equal: cc_name = "NE"; break; | |
13303 default: cc_name = "UnknownCondition"; break; | |
13304 } | |
13305 | |
13306 const char* strict_name = ""; | |
13307 if (strict_ && (cc_ == equal || cc_ == not_equal)) { | |
13308 strict_name = "_STRICT"; | |
13309 } | |
13310 | |
13311 const char* never_nan_nan_name = ""; | |
13312 if (never_nan_nan_ && (cc_ == equal || cc_ == not_equal)) { | |
13313 never_nan_nan_name = "_NO_NAN"; | |
13314 } | |
13315 | |
13316 const char* include_number_compare_name = ""; | |
13317 if (!include_number_compare_) { | |
13318 include_number_compare_name = "_NO_NUMBER"; | |
13319 } | |
13320 | |
13321 OS::SNPrintF(Vector<char>(name_, kMaxNameLength), | |
13322 "CompareStub_%s%s%s%s", | |
13323 cc_name, | |
13324 strict_name, | |
13325 never_nan_nan_name, | |
13326 include_number_compare_name); | |
13327 return name_; | |
13328 } | |
13329 | |
13330 | |
13331 // ------------------------------------------------------------------------- | |
13332 // StringCharCodeAtGenerator | |
13333 | |
13334 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { | |
13335 Label flat_string; | |
13336 Label ascii_string; | |
13337 Label got_char_code; | |
13338 | |
13339 // If the receiver is a smi trigger the non-string case. | |
13340 STATIC_ASSERT(kSmiTag == 0); | |
13341 __ test(object_, Immediate(kSmiTagMask)); | |
13342 __ j(zero, receiver_not_string_); | |
13343 | |
13344 // Fetch the instance type of the receiver into result register. | |
13345 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset)); | |
13346 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); | |
13347 // If the receiver is not a string trigger the non-string case. | |
13348 __ test(result_, Immediate(kIsNotStringMask)); | |
13349 __ j(not_zero, receiver_not_string_); | |
13350 | |
13351 // If the index is non-smi trigger the non-smi case. | |
13352 STATIC_ASSERT(kSmiTag == 0); | |
13353 __ test(index_, Immediate(kSmiTagMask)); | |
13354 __ j(not_zero, &index_not_smi_); | |
13355 | |
13356 // Put smi-tagged index into scratch register. | |
13357 __ mov(scratch_, index_); | |
13358 __ bind(&got_smi_index_); | |
13359 | |
13360 // Check for index out of range. | |
13361 __ cmp(scratch_, FieldOperand(object_, String::kLengthOffset)); | |
13362 __ j(above_equal, index_out_of_range_); | |
13363 | |
13364 // We need special handling for non-flat strings. | |
13365 STATIC_ASSERT(kSeqStringTag == 0); | |
13366 __ test(result_, Immediate(kStringRepresentationMask)); | |
13367 __ j(zero, &flat_string); | |
13368 | |
13369 // Handle non-flat strings. | |
13370 __ test(result_, Immediate(kIsConsStringMask)); | |
13371 __ j(zero, &call_runtime_); | |
13372 | |
13373 // ConsString. | |
13374 // Check whether the right hand side is the empty string (i.e. if | |
13375 // this is really a flat string in a cons string). If that is not | |
13376 // the case we would rather go to the runtime system now to flatten | |
13377 // the string. | |
13378 __ cmp(FieldOperand(object_, ConsString::kSecondOffset), | |
13379 Immediate(Factory::empty_string())); | |
13380 __ j(not_equal, &call_runtime_); | |
13381 // Get the first of the two strings and load its instance type. | |
13382 __ mov(object_, FieldOperand(object_, ConsString::kFirstOffset)); | |
13383 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset)); | |
13384 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); | |
13385 // If the first cons component is also non-flat, then go to runtime. | |
13386 STATIC_ASSERT(kSeqStringTag == 0); | |
13387 __ test(result_, Immediate(kStringRepresentationMask)); | |
13388 __ j(not_zero, &call_runtime_); | |
13389 | |
13390 // Check for 1-byte or 2-byte string. | |
13391 __ bind(&flat_string); | |
13392 STATIC_ASSERT(kAsciiStringTag != 0); | |
13393 __ test(result_, Immediate(kStringEncodingMask)); | |
13394 __ j(not_zero, &ascii_string); | |
13395 | |
13396 // 2-byte string. | |
13397 // Load the 2-byte character code into the result register. | |
13398 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); | |
13399 __ movzx_w(result_, FieldOperand(object_, | |
13400 scratch_, times_1, // Scratch is smi-tagged. | |
13401 SeqTwoByteString::kHeaderSize)); | |
13402 __ jmp(&got_char_code); | |
13403 | |
13404 // ASCII string. | |
13405 // Load the byte into the result register. | |
13406 __ bind(&ascii_string); | |
13407 __ SmiUntag(scratch_); | |
13408 __ movzx_b(result_, FieldOperand(object_, | |
13409 scratch_, times_1, | |
13410 SeqAsciiString::kHeaderSize)); | |
13411 __ bind(&got_char_code); | |
13412 __ SmiTag(result_); | |
13413 __ bind(&exit_); | |
13414 } | |
13415 | |
13416 | |
13417 void StringCharCodeAtGenerator::GenerateSlow( | |
13418 MacroAssembler* masm, const RuntimeCallHelper& call_helper) { | |
13419 __ Abort("Unexpected fallthrough to CharCodeAt slow case"); | |
13420 | |
13421 // Index is not a smi. | |
13422 __ bind(&index_not_smi_); | |
13423 // If index is a heap number, try converting it to an integer. | |
13424 __ CheckMap(index_, Factory::heap_number_map(), index_not_number_, true); | |
13425 call_helper.BeforeCall(masm); | |
13426 __ push(object_); | |
13427 __ push(index_); | |
13428 __ push(index_); // Consumed by runtime conversion function. | |
13429 if (index_flags_ == STRING_INDEX_IS_NUMBER) { | |
13430 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); | |
13431 } else { | |
13432 ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); | |
13433 // NumberToSmi discards numbers that are not exact integers. | |
13434 __ CallRuntime(Runtime::kNumberToSmi, 1); | |
13435 } | |
13436 if (!scratch_.is(eax)) { | |
13437 // Save the conversion result before the pop instructions below | |
13438 // have a chance to overwrite it. | |
13439 __ mov(scratch_, eax); | |
13440 } | |
13441 __ pop(index_); | |
13442 __ pop(object_); | |
13443 // Reload the instance type. | |
13444 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset)); | |
13445 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); | |
13446 call_helper.AfterCall(masm); | |
13447 // If index is still not a smi, it must be out of range. | |
13448 STATIC_ASSERT(kSmiTag == 0); | |
13449 __ test(scratch_, Immediate(kSmiTagMask)); | |
13450 __ j(not_zero, index_out_of_range_); | |
13451 // Otherwise, return to the fast path. | |
13452 __ jmp(&got_smi_index_); | |
13453 | |
13454 // Call runtime. We get here when the receiver is a string and the | |
13455 // index is a number, but the code of getting the actual character | |
13456 // is too complex (e.g., when the string needs to be flattened). | |
13457 __ bind(&call_runtime_); | |
13458 call_helper.BeforeCall(masm); | |
13459 __ push(object_); | |
13460 __ push(index_); | |
13461 __ CallRuntime(Runtime::kStringCharCodeAt, 2); | |
13462 if (!result_.is(eax)) { | |
13463 __ mov(result_, eax); | |
13464 } | |
13465 call_helper.AfterCall(masm); | |
13466 __ jmp(&exit_); | |
13467 | |
13468 __ Abort("Unexpected fallthrough from CharCodeAt slow case"); | |
13469 } | |
13470 | |
13471 | |
13472 // ------------------------------------------------------------------------- | |
13473 // StringCharFromCodeGenerator | |
13474 | |
13475 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { | |
13476 // Fast case of Heap::LookupSingleCharacterStringFromCode. | |
13477 STATIC_ASSERT(kSmiTag == 0); | |
13478 STATIC_ASSERT(kSmiShiftSize == 0); | |
13479 ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1)); | |
13480 __ test(code_, | |
13481 Immediate(kSmiTagMask | | |
13482 ((~String::kMaxAsciiCharCode) << kSmiTagSize))); | |
13483 __ j(not_zero, &slow_case_, not_taken); | |
13484 | |
13485 __ Set(result_, Immediate(Factory::single_character_string_cache())); | |
13486 STATIC_ASSERT(kSmiTag == 0); | |
13487 STATIC_ASSERT(kSmiTagSize == 1); | |
13488 STATIC_ASSERT(kSmiShiftSize == 0); | |
13489 // At this point code register contains smi tagged ascii char code. | |
13490 __ mov(result_, FieldOperand(result_, | |
13491 code_, times_half_pointer_size, | |
13492 FixedArray::kHeaderSize)); | |
13493 __ cmp(result_, Factory::undefined_value()); | |
13494 __ j(equal, &slow_case_, not_taken); | |
13495 __ bind(&exit_); | |
13496 } | |
13497 | |
13498 | |
13499 void StringCharFromCodeGenerator::GenerateSlow( | |
13500 MacroAssembler* masm, const RuntimeCallHelper& call_helper) { | |
13501 __ Abort("Unexpected fallthrough to CharFromCode slow case"); | |
13502 | |
13503 __ bind(&slow_case_); | |
13504 call_helper.BeforeCall(masm); | |
13505 __ push(code_); | |
13506 __ CallRuntime(Runtime::kCharFromCode, 1); | |
13507 if (!result_.is(eax)) { | |
13508 __ mov(result_, eax); | |
13509 } | |
13510 call_helper.AfterCall(masm); | |
13511 __ jmp(&exit_); | |
13512 | |
13513 __ Abort("Unexpected fallthrough from CharFromCode slow case"); | |
13514 } | |
13515 | |
13516 | |
13517 // ------------------------------------------------------------------------- | |
13518 // StringCharAtGenerator | |
13519 | |
13520 void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) { | |
13521 char_code_at_generator_.GenerateFast(masm); | |
13522 char_from_code_generator_.GenerateFast(masm); | |
13523 } | |
13524 | |
13525 | |
13526 void StringCharAtGenerator::GenerateSlow( | |
13527 MacroAssembler* masm, const RuntimeCallHelper& call_helper) { | |
13528 char_code_at_generator_.GenerateSlow(masm, call_helper); | |
13529 char_from_code_generator_.GenerateSlow(masm, call_helper); | |
13530 } | |
13531 | |
13532 | |
13533 void StringAddStub::Generate(MacroAssembler* masm) { | |
13534 Label string_add_runtime; | |
13535 | |
13536 // Load the two arguments. | |
13537 __ mov(eax, Operand(esp, 2 * kPointerSize)); // First argument. | |
13538 __ mov(edx, Operand(esp, 1 * kPointerSize)); // Second argument. | |
13539 | |
13540 // Make sure that both arguments are strings if not known in advance. | |
13541 if (string_check_) { | |
13542 __ test(eax, Immediate(kSmiTagMask)); | |
13543 __ j(zero, &string_add_runtime); | |
13544 __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, ebx); | |
13545 __ j(above_equal, &string_add_runtime); | |
13546 | |
13547 // First argument is a a string, test second. | |
13548 __ test(edx, Immediate(kSmiTagMask)); | |
13549 __ j(zero, &string_add_runtime); | |
13550 __ CmpObjectType(edx, FIRST_NONSTRING_TYPE, ebx); | |
13551 __ j(above_equal, &string_add_runtime); | |
13552 } | |
13553 | |
13554 // Both arguments are strings. | |
13555 // eax: first string | |
13556 // edx: second string | |
13557 // Check if either of the strings are empty. In that case return the other. | |
13558 Label second_not_zero_length, both_not_zero_length; | |
13559 __ mov(ecx, FieldOperand(edx, String::kLengthOffset)); | |
13560 STATIC_ASSERT(kSmiTag == 0); | |
13561 __ test(ecx, Operand(ecx)); | |
13562 __ j(not_zero, &second_not_zero_length); | |
13563 // Second string is empty, result is first string which is already in eax. | |
13564 __ IncrementCounter(&Counters::string_add_native, 1); | |
13565 __ ret(2 * kPointerSize); | |
13566 __ bind(&second_not_zero_length); | |
13567 __ mov(ebx, FieldOperand(eax, String::kLengthOffset)); | |
13568 STATIC_ASSERT(kSmiTag == 0); | |
13569 __ test(ebx, Operand(ebx)); | |
13570 __ j(not_zero, &both_not_zero_length); | |
13571 // First string is empty, result is second string which is in edx. | |
13572 __ mov(eax, edx); | |
13573 __ IncrementCounter(&Counters::string_add_native, 1); | |
13574 __ ret(2 * kPointerSize); | |
13575 | |
13576 // Both strings are non-empty. | |
13577 // eax: first string | |
13578 // ebx: length of first string as a smi | |
13579 // ecx: length of second string as a smi | |
13580 // edx: second string | |
13581 // Look at the length of the result of adding the two strings. | |
13582 Label string_add_flat_result, longer_than_two; | |
13583 __ bind(&both_not_zero_length); | |
13584 __ add(ebx, Operand(ecx)); | |
13585 STATIC_ASSERT(Smi::kMaxValue == String::kMaxLength); | |
13586 // Handle exceptionally long strings in the runtime system. | |
13587 __ j(overflow, &string_add_runtime); | |
13588 // Use the runtime system when adding two one character strings, as it | |
13589 // contains optimizations for this specific case using the symbol table. | |
13590 __ cmp(Operand(ebx), Immediate(Smi::FromInt(2))); | |
13591 __ j(not_equal, &longer_than_two); | |
13592 | |
13593 // Check that both strings are non-external ascii strings. | |
13594 __ JumpIfNotBothSequentialAsciiStrings(eax, edx, ebx, ecx, | |
13595 &string_add_runtime); | |
13596 | |
13597 // Get the two characters forming the sub string. | |
13598 __ movzx_b(ebx, FieldOperand(eax, SeqAsciiString::kHeaderSize)); | |
13599 __ movzx_b(ecx, FieldOperand(edx, SeqAsciiString::kHeaderSize)); | |
13600 | |
13601 // Try to lookup two character string in symbol table. If it is not found | |
13602 // just allocate a new one. | |
13603 Label make_two_character_string, make_flat_ascii_string; | |
13604 StringHelper::GenerateTwoCharacterSymbolTableProbe( | |
13605 masm, ebx, ecx, eax, edx, edi, &make_two_character_string); | |
13606 __ IncrementCounter(&Counters::string_add_native, 1); | |
13607 __ ret(2 * kPointerSize); | |
13608 | |
13609 __ bind(&make_two_character_string); | |
13610 __ Set(ebx, Immediate(Smi::FromInt(2))); | |
13611 __ jmp(&make_flat_ascii_string); | |
13612 | |
13613 __ bind(&longer_than_two); | |
13614 // Check if resulting string will be flat. | |
13615 __ cmp(Operand(ebx), Immediate(Smi::FromInt(String::kMinNonFlatLength))); | |
13616 __ j(below, &string_add_flat_result); | |
13617 | |
13618 // If result is not supposed to be flat allocate a cons string object. If both | |
13619 // strings are ascii the result is an ascii cons string. | |
13620 Label non_ascii, allocated, ascii_data; | |
13621 __ mov(edi, FieldOperand(eax, HeapObject::kMapOffset)); | |
13622 __ movzx_b(ecx, FieldOperand(edi, Map::kInstanceTypeOffset)); | |
13623 __ mov(edi, FieldOperand(edx, HeapObject::kMapOffset)); | |
13624 __ movzx_b(edi, FieldOperand(edi, Map::kInstanceTypeOffset)); | |
13625 __ and_(ecx, Operand(edi)); | |
13626 STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag); | |
13627 __ test(ecx, Immediate(kAsciiStringTag)); | |
13628 __ j(zero, &non_ascii); | |
13629 __ bind(&ascii_data); | |
13630 // Allocate an acsii cons string. | |
13631 __ AllocateAsciiConsString(ecx, edi, no_reg, &string_add_runtime); | |
13632 __ bind(&allocated); | |
13633 // Fill the fields of the cons string. | |
13634 if (FLAG_debug_code) __ AbortIfNotSmi(ebx); | |
13635 __ mov(FieldOperand(ecx, ConsString::kLengthOffset), ebx); | |
13636 __ mov(FieldOperand(ecx, ConsString::kHashFieldOffset), | |
13637 Immediate(String::kEmptyHashField)); | |
13638 __ mov(FieldOperand(ecx, ConsString::kFirstOffset), eax); | |
13639 __ mov(FieldOperand(ecx, ConsString::kSecondOffset), edx); | |
13640 __ mov(eax, ecx); | |
13641 __ IncrementCounter(&Counters::string_add_native, 1); | |
13642 __ ret(2 * kPointerSize); | |
13643 __ bind(&non_ascii); | |
13644 // At least one of the strings is two-byte. Check whether it happens | |
13645 // to contain only ascii characters. | |
13646 // ecx: first instance type AND second instance type. | |
13647 // edi: second instance type. | |
13648 __ test(ecx, Immediate(kAsciiDataHintMask)); | |
13649 __ j(not_zero, &ascii_data); | |
13650 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); | |
13651 __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); | |
13652 __ xor_(edi, Operand(ecx)); | |
13653 STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0); | |
13654 __ and_(edi, kAsciiStringTag | kAsciiDataHintTag); | |
13655 __ cmp(edi, kAsciiStringTag | kAsciiDataHintTag); | |
13656 __ j(equal, &ascii_data); | |
13657 // Allocate a two byte cons string. | |
13658 __ AllocateConsString(ecx, edi, no_reg, &string_add_runtime); | |
13659 __ jmp(&allocated); | |
13660 | |
13661 // Handle creating a flat result. First check that both strings are not | |
13662 // external strings. | |
13663 // eax: first string | |
13664 // ebx: length of resulting flat string as a smi | |
13665 // edx: second string | |
13666 __ bind(&string_add_flat_result); | |
13667 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); | |
13668 __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); | |
13669 __ and_(ecx, kStringRepresentationMask); | |
13670 __ cmp(ecx, kExternalStringTag); | |
13671 __ j(equal, &string_add_runtime); | |
13672 __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); | |
13673 __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); | |
13674 __ and_(ecx, kStringRepresentationMask); | |
13675 __ cmp(ecx, kExternalStringTag); | |
13676 __ j(equal, &string_add_runtime); | |
13677 // Now check if both strings are ascii strings. | |
13678 // eax: first string | |
13679 // ebx: length of resulting flat string as a smi | |
13680 // edx: second string | |
13681 Label non_ascii_string_add_flat_result; | |
13682 STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag); | |
13683 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); | |
13684 __ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag); | |
13685 __ j(zero, &non_ascii_string_add_flat_result); | |
13686 __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); | |
13687 __ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag); | |
13688 __ j(zero, &string_add_runtime); | |
13689 | |
13690 __ bind(&make_flat_ascii_string); | |
13691 // Both strings are ascii strings. As they are short they are both flat. | |
13692 // ebx: length of resulting flat string as a smi | |
13693 __ SmiUntag(ebx); | |
13694 __ AllocateAsciiString(eax, ebx, ecx, edx, edi, &string_add_runtime); | |
13695 // eax: result string | |
13696 __ mov(ecx, eax); | |
13697 // Locate first character of result. | |
13698 __ add(Operand(ecx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); | |
13699 // Load first argument and locate first character. | |
13700 __ mov(edx, Operand(esp, 2 * kPointerSize)); | |
13701 __ mov(edi, FieldOperand(edx, String::kLengthOffset)); | |
13702 __ SmiUntag(edi); | |
13703 __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); | |
13704 // eax: result string | |
13705 // ecx: first character of result | |
13706 // edx: first char of first argument | |
13707 // edi: length of first argument | |
13708 StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, true); | |
13709 // Load second argument and locate first character. | |
13710 __ mov(edx, Operand(esp, 1 * kPointerSize)); | |
13711 __ mov(edi, FieldOperand(edx, String::kLengthOffset)); | |
13712 __ SmiUntag(edi); | |
13713 __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); | |
13714 // eax: result string | |
13715 // ecx: next character of result | |
13716 // edx: first char of second argument | |
13717 // edi: length of second argument | |
13718 StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, true); | |
13719 __ IncrementCounter(&Counters::string_add_native, 1); | |
13720 __ ret(2 * kPointerSize); | |
13721 | |
13722 // Handle creating a flat two byte result. | |
13723 // eax: first string - known to be two byte | |
13724 // ebx: length of resulting flat string as a smi | |
13725 // edx: second string | |
13726 __ bind(&non_ascii_string_add_flat_result); | |
13727 __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); | |
13728 __ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag); | |
13729 __ j(not_zero, &string_add_runtime); | |
13730 // Both strings are two byte strings. As they are short they are both | |
13731 // flat. | |
13732 __ SmiUntag(ebx); | |
13733 __ AllocateTwoByteString(eax, ebx, ecx, edx, edi, &string_add_runtime); | |
13734 // eax: result string | |
13735 __ mov(ecx, eax); | |
13736 // Locate first character of result. | |
13737 __ add(Operand(ecx), | |
13738 Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); | |
13739 // Load first argument and locate first character. | |
13740 __ mov(edx, Operand(esp, 2 * kPointerSize)); | |
13741 __ mov(edi, FieldOperand(edx, String::kLengthOffset)); | |
13742 __ SmiUntag(edi); | |
13743 __ add(Operand(edx), | |
13744 Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); | |
13745 // eax: result string | |
13746 // ecx: first character of result | |
13747 // edx: first char of first argument | |
13748 // edi: length of first argument | |
13749 StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, false); | |
13750 // Load second argument and locate first character. | |
13751 __ mov(edx, Operand(esp, 1 * kPointerSize)); | |
13752 __ mov(edi, FieldOperand(edx, String::kLengthOffset)); | |
13753 __ SmiUntag(edi); | |
13754 __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); | |
13755 // eax: result string | |
13756 // ecx: next character of result | |
13757 // edx: first char of second argument | |
13758 // edi: length of second argument | |
13759 StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, false); | |
13760 __ IncrementCounter(&Counters::string_add_native, 1); | |
13761 __ ret(2 * kPointerSize); | |
13762 | |
13763 // Just jump to runtime to add the two strings. | |
13764 __ bind(&string_add_runtime); | |
13765 __ TailCallRuntime(Runtime::kStringAdd, 2, 1); | |
13766 } | |
13767 | |
13768 | |
13769 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, | |
13770 Register dest, | |
13771 Register src, | |
13772 Register count, | |
13773 Register scratch, | |
13774 bool ascii) { | |
13775 Label loop; | |
13776 __ bind(&loop); | |
13777 // This loop just copies one character at a time, as it is only used for very | |
13778 // short strings. | |
13779 if (ascii) { | |
13780 __ mov_b(scratch, Operand(src, 0)); | |
13781 __ mov_b(Operand(dest, 0), scratch); | |
13782 __ add(Operand(src), Immediate(1)); | |
13783 __ add(Operand(dest), Immediate(1)); | |
13784 } else { | |
13785 __ mov_w(scratch, Operand(src, 0)); | |
13786 __ mov_w(Operand(dest, 0), scratch); | |
13787 __ add(Operand(src), Immediate(2)); | |
13788 __ add(Operand(dest), Immediate(2)); | |
13789 } | |
13790 __ sub(Operand(count), Immediate(1)); | |
13791 __ j(not_zero, &loop); | |
13792 } | |
13793 | |
13794 | |
13795 void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm, | |
13796 Register dest, | |
13797 Register src, | |
13798 Register count, | |
13799 Register scratch, | |
13800 bool ascii) { | |
13801 // Copy characters using rep movs of doublewords. | |
13802 // The destination is aligned on a 4 byte boundary because we are | |
13803 // copying to the beginning of a newly allocated string. | |
13804 ASSERT(dest.is(edi)); // rep movs destination | |
13805 ASSERT(src.is(esi)); // rep movs source | |
13806 ASSERT(count.is(ecx)); // rep movs count | |
13807 ASSERT(!scratch.is(dest)); | |
13808 ASSERT(!scratch.is(src)); | |
13809 ASSERT(!scratch.is(count)); | |
13810 | |
13811 // Nothing to do for zero characters. | |
13812 Label done; | |
13813 __ test(count, Operand(count)); | |
13814 __ j(zero, &done); | |
13815 | |
13816 // Make count the number of bytes to copy. | |
13817 if (!ascii) { | |
13818 __ shl(count, 1); | |
13819 } | |
13820 | |
13821 // Don't enter the rep movs if there are less than 4 bytes to copy. | |
13822 Label last_bytes; | |
13823 __ test(count, Immediate(~3)); | |
13824 __ j(zero, &last_bytes); | |
13825 | |
13826 // Copy from edi to esi using rep movs instruction. | |
13827 __ mov(scratch, count); | |
13828 __ sar(count, 2); // Number of doublewords to copy. | |
13829 __ cld(); | |
13830 __ rep_movs(); | |
13831 | |
13832 // Find number of bytes left. | |
13833 __ mov(count, scratch); | |
13834 __ and_(count, 3); | |
13835 | |
13836 // Check if there are more bytes to copy. | |
13837 __ bind(&last_bytes); | |
13838 __ test(count, Operand(count)); | |
13839 __ j(zero, &done); | |
13840 | |
13841 // Copy remaining characters. | |
13842 Label loop; | |
13843 __ bind(&loop); | |
13844 __ mov_b(scratch, Operand(src, 0)); | |
13845 __ mov_b(Operand(dest, 0), scratch); | |
13846 __ add(Operand(src), Immediate(1)); | |
13847 __ add(Operand(dest), Immediate(1)); | |
13848 __ sub(Operand(count), Immediate(1)); | |
13849 __ j(not_zero, &loop); | |
13850 | |
13851 __ bind(&done); | |
13852 } | |
13853 | |
13854 | |
13855 void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, | |
13856 Register c1, | |
13857 Register c2, | |
13858 Register scratch1, | |
13859 Register scratch2, | |
13860 Register scratch3, | |
13861 Label* not_found) { | |
13862 // Register scratch3 is the general scratch register in this function. | |
13863 Register scratch = scratch3; | |
13864 | |
13865 // Make sure that both characters are not digits as such strings has a | |
13866 // different hash algorithm. Don't try to look for these in the symbol table. | |
13867 Label not_array_index; | |
13868 __ mov(scratch, c1); | |
13869 __ sub(Operand(scratch), Immediate(static_cast<int>('0'))); | |
13870 __ cmp(Operand(scratch), Immediate(static_cast<int>('9' - '0'))); | |
13871 __ j(above, ¬_array_index); | |
13872 __ mov(scratch, c2); | |
13873 __ sub(Operand(scratch), Immediate(static_cast<int>('0'))); | |
13874 __ cmp(Operand(scratch), Immediate(static_cast<int>('9' - '0'))); | |
13875 __ j(below_equal, not_found); | |
13876 | |
13877 __ bind(¬_array_index); | |
13878 // Calculate the two character string hash. | |
13879 Register hash = scratch1; | |
13880 GenerateHashInit(masm, hash, c1, scratch); | |
13881 GenerateHashAddCharacter(masm, hash, c2, scratch); | |
13882 GenerateHashGetHash(masm, hash, scratch); | |
13883 | |
13884 // Collect the two characters in a register. | |
13885 Register chars = c1; | |
13886 __ shl(c2, kBitsPerByte); | |
13887 __ or_(chars, Operand(c2)); | |
13888 | |
13889 // chars: two character string, char 1 in byte 0 and char 2 in byte 1. | |
13890 // hash: hash of two character string. | |
13891 | |
13892 // Load the symbol table. | |
13893 Register symbol_table = c2; | |
13894 ExternalReference roots_address = ExternalReference::roots_address(); | |
13895 __ mov(scratch, Immediate(Heap::kSymbolTableRootIndex)); | |
13896 __ mov(symbol_table, | |
13897 Operand::StaticArray(scratch, times_pointer_size, roots_address)); | |
13898 | |
13899 // Calculate capacity mask from the symbol table capacity. | |
13900 Register mask = scratch2; | |
13901 __ mov(mask, FieldOperand(symbol_table, SymbolTable::kCapacityOffset)); | |
13902 __ SmiUntag(mask); | |
13903 __ sub(Operand(mask), Immediate(1)); | |
13904 | |
13905 // Registers | |
13906 // chars: two character string, char 1 in byte 0 and char 2 in byte 1. | |
13907 // hash: hash of two character string | |
13908 // symbol_table: symbol table | |
13909 // mask: capacity mask | |
13910 // scratch: - | |
13911 | |
13912 // Perform a number of probes in the symbol table. | |
13913 static const int kProbes = 4; | |
13914 Label found_in_symbol_table; | |
13915 Label next_probe[kProbes], next_probe_pop_mask[kProbes]; | |
13916 for (int i = 0; i < kProbes; i++) { | |
13917 // Calculate entry in symbol table. | |
13918 __ mov(scratch, hash); | |
13919 if (i > 0) { | |
13920 __ add(Operand(scratch), Immediate(SymbolTable::GetProbeOffset(i))); | |
13921 } | |
13922 __ and_(scratch, Operand(mask)); | |
13923 | |
13924 // Load the entry from the symbol table. | |
13925 Register candidate = scratch; // Scratch register contains candidate. | |
13926 STATIC_ASSERT(SymbolTable::kEntrySize == 1); | |
13927 __ mov(candidate, | |
13928 FieldOperand(symbol_table, | |
13929 scratch, | |
13930 times_pointer_size, | |
13931 SymbolTable::kElementsStartOffset)); | |
13932 | |
13933 // If entry is undefined no string with this hash can be found. | |
13934 __ cmp(candidate, Factory::undefined_value()); | |
13935 __ j(equal, not_found); | |
13936 | |
13937 // If length is not 2 the string is not a candidate. | |
13938 __ cmp(FieldOperand(candidate, String::kLengthOffset), | |
13939 Immediate(Smi::FromInt(2))); | |
13940 __ j(not_equal, &next_probe[i]); | |
13941 | |
13942 // As we are out of registers save the mask on the stack and use that | |
13943 // register as a temporary. | |
13944 __ push(mask); | |
13945 Register temp = mask; | |
13946 | |
13947 // Check that the candidate is a non-external ascii string. | |
13948 __ mov(temp, FieldOperand(candidate, HeapObject::kMapOffset)); | |
13949 __ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset)); | |
13950 __ JumpIfInstanceTypeIsNotSequentialAscii( | |
13951 temp, temp, &next_probe_pop_mask[i]); | |
13952 | |
13953 // Check if the two characters match. | |
13954 __ mov(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize)); | |
13955 __ and_(temp, 0x0000ffff); | |
13956 __ cmp(chars, Operand(temp)); | |
13957 __ j(equal, &found_in_symbol_table); | |
13958 __ bind(&next_probe_pop_mask[i]); | |
13959 __ pop(mask); | |
13960 __ bind(&next_probe[i]); | |
13961 } | |
13962 | |
13963 // No matching 2 character string found by probing. | |
13964 __ jmp(not_found); | |
13965 | |
13966 // Scratch register contains result when we fall through to here. | |
13967 Register result = scratch; | |
13968 __ bind(&found_in_symbol_table); | |
13969 __ pop(mask); // Pop saved mask from the stack. | |
13970 if (!result.is(eax)) { | |
13971 __ mov(eax, result); | |
13972 } | |
13973 } | |
13974 | |
13975 | |
13976 void StringHelper::GenerateHashInit(MacroAssembler* masm, | |
13977 Register hash, | |
13978 Register character, | |
13979 Register scratch) { | |
13980 // hash = character + (character << 10); | |
13981 __ mov(hash, character); | |
13982 __ shl(hash, 10); | |
13983 __ add(hash, Operand(character)); | |
13984 // hash ^= hash >> 6; | |
13985 __ mov(scratch, hash); | |
13986 __ sar(scratch, 6); | |
13987 __ xor_(hash, Operand(scratch)); | |
13988 } | |
13989 | |
13990 | |
13991 void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, | |
13992 Register hash, | |
13993 Register character, | |
13994 Register scratch) { | |
13995 // hash += character; | |
13996 __ add(hash, Operand(character)); | |
13997 // hash += hash << 10; | |
13998 __ mov(scratch, hash); | |
13999 __ shl(scratch, 10); | |
14000 __ add(hash, Operand(scratch)); | |
14001 // hash ^= hash >> 6; | |
14002 __ mov(scratch, hash); | |
14003 __ sar(scratch, 6); | |
14004 __ xor_(hash, Operand(scratch)); | |
14005 } | |
14006 | |
14007 | |
14008 void StringHelper::GenerateHashGetHash(MacroAssembler* masm, | |
14009 Register hash, | |
14010 Register scratch) { | |
14011 // hash += hash << 3; | |
14012 __ mov(scratch, hash); | |
14013 __ shl(scratch, 3); | |
14014 __ add(hash, Operand(scratch)); | |
14015 // hash ^= hash >> 11; | |
14016 __ mov(scratch, hash); | |
14017 __ sar(scratch, 11); | |
14018 __ xor_(hash, Operand(scratch)); | |
14019 // hash += hash << 15; | |
14020 __ mov(scratch, hash); | |
14021 __ shl(scratch, 15); | |
14022 __ add(hash, Operand(scratch)); | |
14023 | |
14024 // if (hash == 0) hash = 27; | |
14025 Label hash_not_zero; | |
14026 __ test(hash, Operand(hash)); | |
14027 __ j(not_zero, &hash_not_zero); | |
14028 __ mov(hash, Immediate(27)); | |
14029 __ bind(&hash_not_zero); | |
14030 } | |
14031 | |
14032 | |
14033 void SubStringStub::Generate(MacroAssembler* masm) { | |
14034 Label runtime; | |
14035 | |
14036 // Stack frame on entry. | |
14037 // esp[0]: return address | |
14038 // esp[4]: to | |
14039 // esp[8]: from | |
14040 // esp[12]: string | |
14041 | |
14042 // Make sure first argument is a string. | |
14043 __ mov(eax, Operand(esp, 3 * kPointerSize)); | |
14044 STATIC_ASSERT(kSmiTag == 0); | |
14045 __ test(eax, Immediate(kSmiTagMask)); | |
14046 __ j(zero, &runtime); | |
14047 Condition is_string = masm->IsObjectStringType(eax, ebx, ebx); | |
14048 __ j(NegateCondition(is_string), &runtime); | |
14049 | |
14050 // eax: string | |
14051 // ebx: instance type | |
14052 | |
14053 // Calculate length of sub string using the smi values. | |
14054 Label result_longer_than_two; | |
14055 __ mov(ecx, Operand(esp, 1 * kPointerSize)); // To index. | |
14056 __ test(ecx, Immediate(kSmiTagMask)); | |
14057 __ j(not_zero, &runtime); | |
14058 __ mov(edx, Operand(esp, 2 * kPointerSize)); // From index. | |
14059 __ test(edx, Immediate(kSmiTagMask)); | |
14060 __ j(not_zero, &runtime); | |
14061 __ sub(ecx, Operand(edx)); | |
14062 __ cmp(ecx, FieldOperand(eax, String::kLengthOffset)); | |
14063 Label return_eax; | |
14064 __ j(equal, &return_eax); | |
14065 // Special handling of sub-strings of length 1 and 2. One character strings | |
14066 // are handled in the runtime system (looked up in the single character | |
14067 // cache). Two character strings are looked for in the symbol cache. | |
14068 __ SmiUntag(ecx); // Result length is no longer smi. | |
14069 __ cmp(ecx, 2); | |
14070 __ j(greater, &result_longer_than_two); | |
14071 __ j(less, &runtime); | |
14072 | |
14073 // Sub string of length 2 requested. | |
14074 // eax: string | |
14075 // ebx: instance type | |
14076 // ecx: sub string length (value is 2) | |
14077 // edx: from index (smi) | |
14078 __ JumpIfInstanceTypeIsNotSequentialAscii(ebx, ebx, &runtime); | |
14079 | |
14080 // Get the two characters forming the sub string. | |
14081 __ SmiUntag(edx); // From index is no longer smi. | |
14082 __ movzx_b(ebx, FieldOperand(eax, edx, times_1, SeqAsciiString::kHeaderSize)); | |
14083 __ movzx_b(ecx, | |
14084 FieldOperand(eax, edx, times_1, SeqAsciiString::kHeaderSize + 1)); | |
14085 | |
14086 // Try to lookup two character string in symbol table. | |
14087 Label make_two_character_string; | |
14088 StringHelper::GenerateTwoCharacterSymbolTableProbe( | |
14089 masm, ebx, ecx, eax, edx, edi, &make_two_character_string); | |
14090 __ ret(3 * kPointerSize); | |
14091 | |
14092 __ bind(&make_two_character_string); | |
14093 // Setup registers for allocating the two character string. | |
14094 __ mov(eax, Operand(esp, 3 * kPointerSize)); | |
14095 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); | |
14096 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); | |
14097 __ Set(ecx, Immediate(2)); | |
14098 | |
14099 __ bind(&result_longer_than_two); | |
14100 // eax: string | |
14101 // ebx: instance type | |
14102 // ecx: result string length | |
14103 // Check for flat ascii string | |
14104 Label non_ascii_flat; | |
14105 __ JumpIfInstanceTypeIsNotSequentialAscii(ebx, ebx, &non_ascii_flat); | |
14106 | |
14107 // Allocate the result. | |
14108 __ AllocateAsciiString(eax, ecx, ebx, edx, edi, &runtime); | |
14109 | |
14110 // eax: result string | |
14111 // ecx: result string length | |
14112 __ mov(edx, esi); // esi used by following code. | |
14113 // Locate first character of result. | |
14114 __ mov(edi, eax); | |
14115 __ add(Operand(edi), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); | |
14116 // Load string argument and locate character of sub string start. | |
14117 __ mov(esi, Operand(esp, 3 * kPointerSize)); | |
14118 __ add(Operand(esi), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); | |
14119 __ mov(ebx, Operand(esp, 2 * kPointerSize)); // from | |
14120 __ SmiUntag(ebx); | |
14121 __ add(esi, Operand(ebx)); | |
14122 | |
14123 // eax: result string | |
14124 // ecx: result length | |
14125 // edx: original value of esi | |
14126 // edi: first character of result | |
14127 // esi: character of sub string start | |
14128 StringHelper::GenerateCopyCharactersREP(masm, edi, esi, ecx, ebx, true); | |
14129 __ mov(esi, edx); // Restore esi. | |
14130 __ IncrementCounter(&Counters::sub_string_native, 1); | |
14131 __ ret(3 * kPointerSize); | |
14132 | |
14133 __ bind(&non_ascii_flat); | |
14134 // eax: string | |
14135 // ebx: instance type & kStringRepresentationMask | kStringEncodingMask | |
14136 // ecx: result string length | |
14137 // Check for flat two byte string | |
14138 __ cmp(ebx, kSeqStringTag | kTwoByteStringTag); | |
14139 __ j(not_equal, &runtime); | |
14140 | |
14141 // Allocate the result. | |
14142 __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime); | |
14143 | |
14144 // eax: result string | |
14145 // ecx: result string length | |
14146 __ mov(edx, esi); // esi used by following code. | |
14147 // Locate first character of result. | |
14148 __ mov(edi, eax); | |
14149 __ add(Operand(edi), | |
14150 Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); | |
14151 // Load string argument and locate character of sub string start. | |
14152 __ mov(esi, Operand(esp, 3 * kPointerSize)); | |
14153 __ add(Operand(esi), | |
14154 Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); | |
14155 __ mov(ebx, Operand(esp, 2 * kPointerSize)); // from | |
14156 // As from is a smi it is 2 times the value which matches the size of a two | |
14157 // byte character. | |
14158 STATIC_ASSERT(kSmiTag == 0); | |
14159 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); | |
14160 __ add(esi, Operand(ebx)); | |
14161 | |
14162 // eax: result string | |
14163 // ecx: result length | |
14164 // edx: original value of esi | |
14165 // edi: first character of result | |
14166 // esi: character of sub string start | |
14167 StringHelper::GenerateCopyCharactersREP(masm, edi, esi, ecx, ebx, false); | |
14168 __ mov(esi, edx); // Restore esi. | |
14169 | |
14170 __ bind(&return_eax); | |
14171 __ IncrementCounter(&Counters::sub_string_native, 1); | |
14172 __ ret(3 * kPointerSize); | |
14173 | |
14174 // Just jump to runtime to create the sub string. | |
14175 __ bind(&runtime); | |
14176 __ TailCallRuntime(Runtime::kSubString, 3, 1); | |
14177 } | |
14178 | |
14179 | |
14180 void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, | |
14181 Register left, | |
14182 Register right, | |
14183 Register scratch1, | |
14184 Register scratch2, | |
14185 Register scratch3) { | |
14186 Label result_not_equal; | |
14187 Label result_greater; | |
14188 Label compare_lengths; | |
14189 | |
14190 __ IncrementCounter(&Counters::string_compare_native, 1); | |
14191 | |
14192 // Find minimum length. | |
14193 Label left_shorter; | |
14194 __ mov(scratch1, FieldOperand(left, String::kLengthOffset)); | |
14195 __ mov(scratch3, scratch1); | |
14196 __ sub(scratch3, FieldOperand(right, String::kLengthOffset)); | |
14197 | |
14198 Register length_delta = scratch3; | |
14199 | |
14200 __ j(less_equal, &left_shorter); | |
14201 // Right string is shorter. Change scratch1 to be length of right string. | |
14202 __ sub(scratch1, Operand(length_delta)); | |
14203 __ bind(&left_shorter); | |
14204 | |
14205 Register min_length = scratch1; | |
14206 | |
14207 // If either length is zero, just compare lengths. | |
14208 __ test(min_length, Operand(min_length)); | |
14209 __ j(zero, &compare_lengths); | |
14210 | |
14211 // Change index to run from -min_length to -1 by adding min_length | |
14212 // to string start. This means that loop ends when index reaches zero, | |
14213 // which doesn't need an additional compare. | |
14214 __ SmiUntag(min_length); | |
14215 __ lea(left, | |
14216 FieldOperand(left, | |
14217 min_length, times_1, | |
14218 SeqAsciiString::kHeaderSize)); | |
14219 __ lea(right, | |
14220 FieldOperand(right, | |
14221 min_length, times_1, | |
14222 SeqAsciiString::kHeaderSize)); | |
14223 __ neg(min_length); | |
14224 | |
14225 Register index = min_length; // index = -min_length; | |
14226 | |
14227 { | |
14228 // Compare loop. | |
14229 Label loop; | |
14230 __ bind(&loop); | |
14231 // Compare characters. | |
14232 __ mov_b(scratch2, Operand(left, index, times_1, 0)); | |
14233 __ cmpb(scratch2, Operand(right, index, times_1, 0)); | |
14234 __ j(not_equal, &result_not_equal); | |
14235 __ add(Operand(index), Immediate(1)); | |
14236 __ j(not_zero, &loop); | |
14237 } | |
14238 | |
14239 // Compare lengths - strings up to min-length are equal. | |
14240 __ bind(&compare_lengths); | |
14241 __ test(length_delta, Operand(length_delta)); | |
14242 __ j(not_zero, &result_not_equal); | |
14243 | |
14244 // Result is EQUAL. | |
14245 STATIC_ASSERT(EQUAL == 0); | |
14246 STATIC_ASSERT(kSmiTag == 0); | |
14247 __ Set(eax, Immediate(Smi::FromInt(EQUAL))); | |
14248 __ ret(0); | |
14249 | |
14250 __ bind(&result_not_equal); | |
14251 __ j(greater, &result_greater); | |
14252 | |
14253 // Result is LESS. | |
14254 __ Set(eax, Immediate(Smi::FromInt(LESS))); | |
14255 __ ret(0); | |
14256 | |
14257 // Result is GREATER. | |
14258 __ bind(&result_greater); | |
14259 __ Set(eax, Immediate(Smi::FromInt(GREATER))); | |
14260 __ ret(0); | |
14261 } | |
14262 | |
14263 | |
14264 void StringCompareStub::Generate(MacroAssembler* masm) { | |
14265 Label runtime; | |
14266 | |
14267 // Stack frame on entry. | |
14268 // esp[0]: return address | |
14269 // esp[4]: right string | |
14270 // esp[8]: left string | |
14271 | |
14272 __ mov(edx, Operand(esp, 2 * kPointerSize)); // left | |
14273 __ mov(eax, Operand(esp, 1 * kPointerSize)); // right | |
14274 | |
14275 Label not_same; | |
14276 __ cmp(edx, Operand(eax)); | |
14277 __ j(not_equal, ¬_same); | |
14278 STATIC_ASSERT(EQUAL == 0); | |
14279 STATIC_ASSERT(kSmiTag == 0); | |
14280 __ Set(eax, Immediate(Smi::FromInt(EQUAL))); | |
14281 __ IncrementCounter(&Counters::string_compare_native, 1); | |
14282 __ ret(2 * kPointerSize); | |
14283 | |
14284 __ bind(¬_same); | |
14285 | |
14286 // Check that both objects are sequential ascii strings. | |
14287 __ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx, &runtime); | |
14288 | |
14289 // Compare flat ascii strings. | |
14290 // Drop arguments from the stack. | |
14291 __ pop(ecx); | |
14292 __ add(Operand(esp), Immediate(2 * kPointerSize)); | |
14293 __ push(ecx); | |
14294 GenerateCompareFlatAsciiStrings(masm, edx, eax, ecx, ebx, edi); | |
14295 | |
14296 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) | |
14297 // tagged as a small integer. | |
14298 __ bind(&runtime); | |
14299 __ TailCallRuntime(Runtime::kStringCompare, 2, 1); | |
14300 } | |
14301 | |
14302 #undef __ | 9808 #undef __ |
14303 | 9809 |
14304 #define __ masm. | 9810 #define __ masm. |
14305 | 9811 |
14306 MemCopyFunction CreateMemCopyFunction() { | 9812 MemCopyFunction CreateMemCopyFunction() { |
14307 size_t actual_size; | 9813 size_t actual_size; |
14308 byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize, | 9814 byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize, |
14309 &actual_size, | 9815 &actual_size, |
14310 true)); | 9816 true)); |
14311 CHECK(buffer); | 9817 CHECK(buffer); |
(...skipping 190 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
14502 masm.GetCode(&desc); | 10008 masm.GetCode(&desc); |
14503 // Call the function from C++. | 10009 // Call the function from C++. |
14504 return FUNCTION_CAST<MemCopyFunction>(buffer); | 10010 return FUNCTION_CAST<MemCopyFunction>(buffer); |
14505 } | 10011 } |
14506 | 10012 |
14507 #undef __ | 10013 #undef __ |
14508 | 10014 |
14509 } } // namespace v8::internal | 10015 } } // namespace v8::internal |
14510 | 10016 |
14511 #endif // V8_TARGET_ARCH_IA32 | 10017 #endif // V8_TARGET_ARCH_IA32 |
OLD | NEW |