Index: src/x64/code-stubs-x64.cc |
=================================================================== |
--- src/x64/code-stubs-x64.cc (revision 0) |
+++ src/x64/code-stubs-x64.cc (revision 0) |
@@ -0,0 +1,4016 @@ |
+// Copyright 2010 the V8 project authors. All rights reserved. |
+// Redistribution and use in source and binary forms, with or without |
+// modification, are permitted provided that the following conditions are |
+// met: |
+// |
+// * Redistributions of source code must retain the above copyright |
+// notice, this list of conditions and the following disclaimer. |
+// * Redistributions in binary form must reproduce the above |
+// copyright notice, this list of conditions and the following |
+// disclaimer in the documentation and/or other materials provided |
+// with the distribution. |
+// * Neither the name of Google Inc. nor the names of its |
+// contributors may be used to endorse or promote products derived |
+// from this software without specific prior written permission. |
+// |
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+ |
+#include "v8.h" |
+ |
+#if defined(V8_TARGET_ARCH_X64) |
+ |
+#include "bootstrapper.h" |
+#include "code-stubs-x64.h" |
+#include "codegen-inl.h" |
+#include "regexp-macro-assembler.h" |
+ |
+namespace v8 { |
+namespace internal { |
+ |
+#define __ ACCESS_MASM(masm) |
+void FastNewClosureStub::Generate(MacroAssembler* masm) { |
+ // Create a new closure from the given function info in new |
+ // space. Set the context to the current context in rsi. |
+ Label gc; |
+ __ AllocateInNewSpace(JSFunction::kSize, rax, rbx, rcx, &gc, TAG_OBJECT); |
+ |
+ // Get the function info from the stack. |
+ __ movq(rdx, Operand(rsp, 1 * kPointerSize)); |
+ |
+ // Compute the function map in the current global context and set that |
+ // as the map of the allocated object. |
+ __ movq(rcx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
+ __ movq(rcx, FieldOperand(rcx, GlobalObject::kGlobalContextOffset)); |
+ __ movq(rcx, Operand(rcx, Context::SlotOffset(Context::FUNCTION_MAP_INDEX))); |
+ __ movq(FieldOperand(rax, JSObject::kMapOffset), rcx); |
+ |
+ // Initialize the rest of the function. We don't have to update the |
+ // write barrier because the allocated object is in new space. |
+ __ LoadRoot(rbx, Heap::kEmptyFixedArrayRootIndex); |
+ __ LoadRoot(rcx, Heap::kTheHoleValueRootIndex); |
+ __ movq(FieldOperand(rax, JSObject::kPropertiesOffset), rbx); |
+ __ movq(FieldOperand(rax, JSObject::kElementsOffset), rbx); |
+ __ movq(FieldOperand(rax, JSFunction::kPrototypeOrInitialMapOffset), rcx); |
+ __ movq(FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset), rdx); |
+ __ movq(FieldOperand(rax, JSFunction::kContextOffset), rsi); |
+ __ movq(FieldOperand(rax, JSFunction::kLiteralsOffset), rbx); |
+ |
+ // Initialize the code pointer in the function to be the one |
+ // found in the shared function info object. |
+ __ movq(rdx, FieldOperand(rdx, SharedFunctionInfo::kCodeOffset)); |
+ __ lea(rdx, FieldOperand(rdx, Code::kHeaderSize)); |
+ __ movq(FieldOperand(rax, JSFunction::kCodeEntryOffset), rdx); |
+ |
+ |
+ // Return and remove the on-stack parameter. |
+ __ ret(1 * kPointerSize); |
+ |
+ // Create a new closure through the slower runtime call. |
+ __ bind(&gc); |
+ __ pop(rcx); // Temporarily remove return address. |
+ __ pop(rdx); |
+ __ push(rsi); |
+ __ push(rdx); |
+ __ push(rcx); // Restore return address. |
+ __ TailCallRuntime(Runtime::kNewClosure, 2, 1); |
+} |
+ |
+ |
+void FastNewContextStub::Generate(MacroAssembler* masm) { |
+ // Try to allocate the context in new space. |
+ Label gc; |
+ int length = slots_ + Context::MIN_CONTEXT_SLOTS; |
+ __ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize, |
+ rax, rbx, rcx, &gc, TAG_OBJECT); |
+ |
+ // Get the function from the stack. |
+ __ movq(rcx, Operand(rsp, 1 * kPointerSize)); |
+ |
+ // Setup the object header. |
+ __ LoadRoot(kScratchRegister, Heap::kContextMapRootIndex); |
+ __ movq(FieldOperand(rax, HeapObject::kMapOffset), kScratchRegister); |
+ __ Move(FieldOperand(rax, FixedArray::kLengthOffset), Smi::FromInt(length)); |
+ |
+ // Setup the fixed slots. |
+ __ xor_(rbx, rbx); // Set to NULL. |
+ __ movq(Operand(rax, Context::SlotOffset(Context::CLOSURE_INDEX)), rcx); |
+ __ movq(Operand(rax, Context::SlotOffset(Context::FCONTEXT_INDEX)), rax); |
+ __ movq(Operand(rax, Context::SlotOffset(Context::PREVIOUS_INDEX)), rbx); |
+ __ movq(Operand(rax, Context::SlotOffset(Context::EXTENSION_INDEX)), rbx); |
+ |
+ // Copy the global object from the surrounding context. |
+ __ movq(rbx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
+ __ movq(Operand(rax, Context::SlotOffset(Context::GLOBAL_INDEX)), rbx); |
+ |
+ // Initialize the rest of the slots to undefined. |
+ __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex); |
+ for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) { |
+ __ movq(Operand(rax, Context::SlotOffset(i)), rbx); |
+ } |
+ |
+ // Return and remove the on-stack parameter. |
+ __ movq(rsi, rax); |
+ __ ret(1 * kPointerSize); |
+ |
+ // Need to collect. Call into runtime system. |
+ __ bind(&gc); |
+ __ TailCallRuntime(Runtime::kNewContext, 1, 1); |
+} |
+ |
+ |
+void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { |
+ // Stack layout on entry: |
+ // |
+ // [rsp + kPointerSize]: constant elements. |
+ // [rsp + (2 * kPointerSize)]: literal index. |
+ // [rsp + (3 * kPointerSize)]: literals array. |
+ |
+ // All sizes here are multiples of kPointerSize. |
+ int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0; |
+ int size = JSArray::kSize + elements_size; |
+ |
+ // Load boilerplate object into rcx and check if we need to create a |
+ // boilerplate. |
+ Label slow_case; |
+ __ movq(rcx, Operand(rsp, 3 * kPointerSize)); |
+ __ movq(rax, Operand(rsp, 2 * kPointerSize)); |
+ SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2); |
+ __ movq(rcx, |
+ FieldOperand(rcx, index.reg, index.scale, FixedArray::kHeaderSize)); |
+ __ CompareRoot(rcx, Heap::kUndefinedValueRootIndex); |
+ __ j(equal, &slow_case); |
+ |
+ if (FLAG_debug_code) { |
+ const char* message; |
+ Heap::RootListIndex expected_map_index; |
+ if (mode_ == CLONE_ELEMENTS) { |
+ message = "Expected (writable) fixed array"; |
+ expected_map_index = Heap::kFixedArrayMapRootIndex; |
+ } else { |
+ ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS); |
+ message = "Expected copy-on-write fixed array"; |
+ expected_map_index = Heap::kFixedCOWArrayMapRootIndex; |
+ } |
+ __ push(rcx); |
+ __ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset)); |
+ __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset), |
+ expected_map_index); |
+ __ Assert(equal, message); |
+ __ pop(rcx); |
+ } |
+ |
+ // Allocate both the JS array and the elements array in one big |
+ // allocation. This avoids multiple limit checks. |
+ __ AllocateInNewSpace(size, rax, rbx, rdx, &slow_case, TAG_OBJECT); |
+ |
+ // Copy the JS array part. |
+ for (int i = 0; i < JSArray::kSize; i += kPointerSize) { |
+ if ((i != JSArray::kElementsOffset) || (length_ == 0)) { |
+ __ movq(rbx, FieldOperand(rcx, i)); |
+ __ movq(FieldOperand(rax, i), rbx); |
+ } |
+ } |
+ |
+ if (length_ > 0) { |
+ // Get hold of the elements array of the boilerplate and setup the |
+ // elements pointer in the resulting object. |
+ __ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset)); |
+ __ lea(rdx, Operand(rax, JSArray::kSize)); |
+ __ movq(FieldOperand(rax, JSArray::kElementsOffset), rdx); |
+ |
+ // Copy the elements array. |
+ for (int i = 0; i < elements_size; i += kPointerSize) { |
+ __ movq(rbx, FieldOperand(rcx, i)); |
+ __ movq(FieldOperand(rdx, i), rbx); |
+ } |
+ } |
+ |
+ // Return and remove the on-stack parameters. |
+ __ ret(3 * kPointerSize); |
+ |
+ __ bind(&slow_case); |
+ __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1); |
+} |
+ |
+ |
+void ToBooleanStub::Generate(MacroAssembler* masm) { |
+ Label false_result, true_result, not_string; |
+ __ movq(rax, Operand(rsp, 1 * kPointerSize)); |
+ |
+ // 'null' => false. |
+ __ CompareRoot(rax, Heap::kNullValueRootIndex); |
+ __ j(equal, &false_result); |
+ |
+ // Get the map and type of the heap object. |
+ // We don't use CmpObjectType because we manipulate the type field. |
+ __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset)); |
+ __ movzxbq(rcx, FieldOperand(rdx, Map::kInstanceTypeOffset)); |
+ |
+ // Undetectable => false. |
+ __ movzxbq(rbx, FieldOperand(rdx, Map::kBitFieldOffset)); |
+ __ and_(rbx, Immediate(1 << Map::kIsUndetectable)); |
+ __ j(not_zero, &false_result); |
+ |
+ // JavaScript object => true. |
+ __ cmpq(rcx, Immediate(FIRST_JS_OBJECT_TYPE)); |
+ __ j(above_equal, &true_result); |
+ |
+ // String value => false iff empty. |
+ __ cmpq(rcx, Immediate(FIRST_NONSTRING_TYPE)); |
+ __ j(above_equal, ¬_string); |
+ __ movq(rdx, FieldOperand(rax, String::kLengthOffset)); |
+ __ SmiTest(rdx); |
+ __ j(zero, &false_result); |
+ __ jmp(&true_result); |
+ |
+ __ bind(¬_string); |
+ __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex); |
+ __ j(not_equal, &true_result); |
+ // HeapNumber => false iff +0, -0, or NaN. |
+ // These three cases set the zero flag when compared to zero using ucomisd. |
+ __ xorpd(xmm0, xmm0); |
+ __ ucomisd(xmm0, FieldOperand(rax, HeapNumber::kValueOffset)); |
+ __ j(zero, &false_result); |
+ // Fall through to |true_result|. |
+ |
+ // Return 1/0 for true/false in rax. |
+ __ bind(&true_result); |
+ __ movq(rax, Immediate(1)); |
+ __ ret(1 * kPointerSize); |
+ __ bind(&false_result); |
+ __ xor_(rax, rax); |
+ __ ret(1 * kPointerSize); |
+} |
+ |
+ |
+const char* GenericBinaryOpStub::GetName() { |
+ if (name_ != NULL) return name_; |
+ const int kMaxNameLength = 100; |
+ name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength); |
+ if (name_ == NULL) return "OOM"; |
+ const char* op_name = Token::Name(op_); |
+ const char* overwrite_name; |
+ switch (mode_) { |
+ case NO_OVERWRITE: overwrite_name = "Alloc"; break; |
+ case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; |
+ case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; |
+ default: overwrite_name = "UnknownOverwrite"; break; |
+ } |
+ |
+ OS::SNPrintF(Vector<char>(name_, kMaxNameLength), |
+ "GenericBinaryOpStub_%s_%s%s_%s%s_%s_%s", |
+ op_name, |
+ overwrite_name, |
+ (flags_ & NO_SMI_CODE_IN_STUB) ? "_NoSmiInStub" : "", |
+ args_in_registers_ ? "RegArgs" : "StackArgs", |
+ args_reversed_ ? "_R" : "", |
+ static_operands_type_.ToString(), |
+ BinaryOpIC::GetName(runtime_operands_type_)); |
+ return name_; |
+} |
+ |
+ |
+void GenericBinaryOpStub::GenerateCall( |
+ MacroAssembler* masm, |
+ Register left, |
+ Register right) { |
+ if (!ArgsInRegistersSupported()) { |
+ // Pass arguments on the stack. |
+ __ push(left); |
+ __ push(right); |
+ } else { |
+ // The calling convention with registers is left in rdx and right in rax. |
+ Register left_arg = rdx; |
+ Register right_arg = rax; |
+ if (!(left.is(left_arg) && right.is(right_arg))) { |
+ if (left.is(right_arg) && right.is(left_arg)) { |
+ if (IsOperationCommutative()) { |
+ SetArgsReversed(); |
+ } else { |
+ __ xchg(left, right); |
+ } |
+ } else if (left.is(left_arg)) { |
+ __ movq(right_arg, right); |
+ } else if (right.is(right_arg)) { |
+ __ movq(left_arg, left); |
+ } else if (left.is(right_arg)) { |
+ if (IsOperationCommutative()) { |
+ __ movq(left_arg, right); |
+ SetArgsReversed(); |
+ } else { |
+ // Order of moves important to avoid destroying left argument. |
+ __ movq(left_arg, left); |
+ __ movq(right_arg, right); |
+ } |
+ } else if (right.is(left_arg)) { |
+ if (IsOperationCommutative()) { |
+ __ movq(right_arg, left); |
+ SetArgsReversed(); |
+ } else { |
+ // Order of moves important to avoid destroying right argument. |
+ __ movq(right_arg, right); |
+ __ movq(left_arg, left); |
+ } |
+ } else { |
+ // Order of moves is not important. |
+ __ movq(left_arg, left); |
+ __ movq(right_arg, right); |
+ } |
+ } |
+ |
+ // Update flags to indicate that arguments are in registers. |
+ SetArgsInRegisters(); |
+ __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
+ } |
+ |
+ // Call the stub. |
+ __ CallStub(this); |
+} |
+ |
+ |
+void GenericBinaryOpStub::GenerateCall( |
+ MacroAssembler* masm, |
+ Register left, |
+ Smi* right) { |
+ if (!ArgsInRegistersSupported()) { |
+ // Pass arguments on the stack. |
+ __ push(left); |
+ __ Push(right); |
+ } else { |
+ // The calling convention with registers is left in rdx and right in rax. |
+ Register left_arg = rdx; |
+ Register right_arg = rax; |
+ if (left.is(left_arg)) { |
+ __ Move(right_arg, right); |
+ } else if (left.is(right_arg) && IsOperationCommutative()) { |
+ __ Move(left_arg, right); |
+ SetArgsReversed(); |
+ } else { |
+ // For non-commutative operations, left and right_arg might be |
+ // the same register. Therefore, the order of the moves is |
+ // important here in order to not overwrite left before moving |
+ // it to left_arg. |
+ __ movq(left_arg, left); |
+ __ Move(right_arg, right); |
+ } |
+ |
+ // Update flags to indicate that arguments are in registers. |
+ SetArgsInRegisters(); |
+ __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
+ } |
+ |
+ // Call the stub. |
+ __ CallStub(this); |
+} |
+ |
+ |
+void GenericBinaryOpStub::GenerateCall( |
+ MacroAssembler* masm, |
+ Smi* left, |
+ Register right) { |
+ if (!ArgsInRegistersSupported()) { |
+ // Pass arguments on the stack. |
+ __ Push(left); |
+ __ push(right); |
+ } else { |
+ // The calling convention with registers is left in rdx and right in rax. |
+ Register left_arg = rdx; |
+ Register right_arg = rax; |
+ if (right.is(right_arg)) { |
+ __ Move(left_arg, left); |
+ } else if (right.is(left_arg) && IsOperationCommutative()) { |
+ __ Move(right_arg, left); |
+ SetArgsReversed(); |
+ } else { |
+ // For non-commutative operations, right and left_arg might be |
+ // the same register. Therefore, the order of the moves is |
+ // important here in order to not overwrite right before moving |
+ // it to right_arg. |
+ __ movq(right_arg, right); |
+ __ Move(left_arg, left); |
+ } |
+ // Update flags to indicate that arguments are in registers. |
+ SetArgsInRegisters(); |
+ __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
+ } |
+ |
+ // Call the stub. |
+ __ CallStub(this); |
+} |
+ |
+ |
+class FloatingPointHelper : public AllStatic { |
+ public: |
+ // Load the operands from rdx and rax into xmm0 and xmm1, as doubles. |
+ // If the operands are not both numbers, jump to not_numbers. |
+ // Leaves rdx and rax unchanged. SmiOperands assumes both are smis. |
+ // NumberOperands assumes both are smis or heap numbers. |
+ static void LoadSSE2SmiOperands(MacroAssembler* masm); |
+ static void LoadSSE2NumberOperands(MacroAssembler* masm); |
+ static void LoadSSE2UnknownOperands(MacroAssembler* masm, |
+ Label* not_numbers); |
+ |
+ // Takes the operands in rdx and rax and loads them as integers in rax |
+ // and rcx. |
+ static void LoadAsIntegers(MacroAssembler* masm, |
+ Label* operand_conversion_failure, |
+ Register heap_number_map); |
+ // As above, but we know the operands to be numbers. In that case, |
+ // conversion can't fail. |
+ static void LoadNumbersAsIntegers(MacroAssembler* masm); |
+}; |
+ |
+ |
+void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) { |
+ // 1. Move arguments into rdx, rax except for DIV and MOD, which need the |
+ // dividend in rax and rdx free for the division. Use rax, rbx for those. |
+ Comment load_comment(masm, "-- Load arguments"); |
+ Register left = rdx; |
+ Register right = rax; |
+ if (op_ == Token::DIV || op_ == Token::MOD) { |
+ left = rax; |
+ right = rbx; |
+ if (HasArgsInRegisters()) { |
+ __ movq(rbx, rax); |
+ __ movq(rax, rdx); |
+ } |
+ } |
+ if (!HasArgsInRegisters()) { |
+ __ movq(right, Operand(rsp, 1 * kPointerSize)); |
+ __ movq(left, Operand(rsp, 2 * kPointerSize)); |
+ } |
+ |
+ Label not_smis; |
+ // 2. Smi check both operands. |
+ if (static_operands_type_.IsSmi()) { |
+ // Skip smi check if we know that both arguments are smis. |
+ if (FLAG_debug_code) { |
+ __ AbortIfNotSmi(left); |
+ __ AbortIfNotSmi(right); |
+ } |
+ if (op_ == Token::BIT_OR) { |
+ // Handle OR here, since we do extra smi-checking in the or code below. |
+ __ SmiOr(right, right, left); |
+ GenerateReturn(masm); |
+ return; |
+ } |
+ } else { |
+ if (op_ != Token::BIT_OR) { |
+ // Skip the check for OR as it is better combined with the |
+ // actual operation. |
+ Comment smi_check_comment(masm, "-- Smi check arguments"); |
+ __ JumpIfNotBothSmi(left, right, ¬_smis); |
+ } |
+ } |
+ |
+ // 3. Operands are both smis (except for OR), perform the operation leaving |
+ // the result in rax and check the result if necessary. |
+ Comment perform_smi(masm, "-- Perform smi operation"); |
+ Label use_fp_on_smis; |
+ switch (op_) { |
+ case Token::ADD: { |
+ ASSERT(right.is(rax)); |
+ __ SmiAdd(right, right, left, &use_fp_on_smis); // ADD is commutative. |
+ break; |
+ } |
+ |
+ case Token::SUB: { |
+ __ SmiSub(left, left, right, &use_fp_on_smis); |
+ __ movq(rax, left); |
+ break; |
+ } |
+ |
+ case Token::MUL: |
+ ASSERT(right.is(rax)); |
+ __ SmiMul(right, right, left, &use_fp_on_smis); // MUL is commutative. |
+ break; |
+ |
+ case Token::DIV: |
+ ASSERT(left.is(rax)); |
+ __ SmiDiv(left, left, right, &use_fp_on_smis); |
+ break; |
+ |
+ case Token::MOD: |
+ ASSERT(left.is(rax)); |
+ __ SmiMod(left, left, right, slow); |
+ break; |
+ |
+ case Token::BIT_OR: |
+ ASSERT(right.is(rax)); |
+ __ movq(rcx, right); // Save the right operand. |
+ __ SmiOr(right, right, left); // BIT_OR is commutative. |
+ __ testb(right, Immediate(kSmiTagMask)); |
+ __ j(not_zero, ¬_smis); |
+ break; |
+ |
+ case Token::BIT_AND: |
+ ASSERT(right.is(rax)); |
+ __ SmiAnd(right, right, left); // BIT_AND is commutative. |
+ break; |
+ |
+ case Token::BIT_XOR: |
+ ASSERT(right.is(rax)); |
+ __ SmiXor(right, right, left); // BIT_XOR is commutative. |
+ break; |
+ |
+ case Token::SHL: |
+ case Token::SHR: |
+ case Token::SAR: |
+ switch (op_) { |
+ case Token::SAR: |
+ __ SmiShiftArithmeticRight(left, left, right); |
+ break; |
+ case Token::SHR: |
+ __ SmiShiftLogicalRight(left, left, right, slow); |
+ break; |
+ case Token::SHL: |
+ __ SmiShiftLeft(left, left, right); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+ __ movq(rax, left); |
+ break; |
+ |
+ default: |
+ UNREACHABLE(); |
+ break; |
+ } |
+ |
+ // 4. Emit return of result in rax. |
+ GenerateReturn(masm); |
+ |
+ // 5. For some operations emit inline code to perform floating point |
+ // operations on known smis (e.g., if the result of the operation |
+ // overflowed the smi range). |
+ switch (op_) { |
+ case Token::ADD: |
+ case Token::SUB: |
+ case Token::MUL: |
+ case Token::DIV: { |
+ ASSERT(use_fp_on_smis.is_linked()); |
+ __ bind(&use_fp_on_smis); |
+ if (op_ == Token::DIV) { |
+ __ movq(rdx, rax); |
+ __ movq(rax, rbx); |
+ } |
+ // left is rdx, right is rax. |
+ __ AllocateHeapNumber(rbx, rcx, slow); |
+ FloatingPointHelper::LoadSSE2SmiOperands(masm); |
+ switch (op_) { |
+ case Token::ADD: __ addsd(xmm0, xmm1); break; |
+ case Token::SUB: __ subsd(xmm0, xmm1); break; |
+ case Token::MUL: __ mulsd(xmm0, xmm1); break; |
+ case Token::DIV: __ divsd(xmm0, xmm1); break; |
+ default: UNREACHABLE(); |
+ } |
+ __ movsd(FieldOperand(rbx, HeapNumber::kValueOffset), xmm0); |
+ __ movq(rax, rbx); |
+ GenerateReturn(masm); |
+ } |
+ default: |
+ break; |
+ } |
+ |
+ // 6. Non-smi operands, fall out to the non-smi code with the operands in |
+ // rdx and rax. |
+ Comment done_comment(masm, "-- Enter non-smi code"); |
+ __ bind(¬_smis); |
+ |
+ switch (op_) { |
+ case Token::DIV: |
+ case Token::MOD: |
+ // Operands are in rax, rbx at this point. |
+ __ movq(rdx, rax); |
+ __ movq(rax, rbx); |
+ break; |
+ |
+ case Token::BIT_OR: |
+ // Right operand is saved in rcx and rax was destroyed by the smi |
+ // operation. |
+ __ movq(rax, rcx); |
+ break; |
+ |
+ default: |
+ break; |
+ } |
+} |
+ |
+ |
+void GenericBinaryOpStub::Generate(MacroAssembler* masm) { |
+ Label call_runtime; |
+ |
+ if (ShouldGenerateSmiCode()) { |
+ GenerateSmiCode(masm, &call_runtime); |
+ } else if (op_ != Token::MOD) { |
+ if (!HasArgsInRegisters()) { |
+ GenerateLoadArguments(masm); |
+ } |
+ } |
+ // Floating point case. |
+ if (ShouldGenerateFPCode()) { |
+ switch (op_) { |
+ case Token::ADD: |
+ case Token::SUB: |
+ case Token::MUL: |
+ case Token::DIV: { |
+ if (runtime_operands_type_ == BinaryOpIC::DEFAULT && |
+ HasSmiCodeInStub()) { |
+ // Execution reaches this point when the first non-smi argument occurs |
+ // (and only if smi code is generated). This is the right moment to |
+ // patch to HEAP_NUMBERS state. The transition is attempted only for |
+ // the four basic operations. The stub stays in the DEFAULT state |
+ // forever for all other operations (also if smi code is skipped). |
+ GenerateTypeTransition(masm); |
+ break; |
+ } |
+ |
+ Label not_floats; |
+ // rax: y |
+ // rdx: x |
+ if (static_operands_type_.IsNumber()) { |
+ if (FLAG_debug_code) { |
+ // Assert at runtime that inputs are only numbers. |
+ __ AbortIfNotNumber(rdx); |
+ __ AbortIfNotNumber(rax); |
+ } |
+ FloatingPointHelper::LoadSSE2NumberOperands(masm); |
+ } else { |
+ FloatingPointHelper::LoadSSE2UnknownOperands(masm, &call_runtime); |
+ } |
+ |
+ switch (op_) { |
+ case Token::ADD: __ addsd(xmm0, xmm1); break; |
+ case Token::SUB: __ subsd(xmm0, xmm1); break; |
+ case Token::MUL: __ mulsd(xmm0, xmm1); break; |
+ case Token::DIV: __ divsd(xmm0, xmm1); break; |
+ default: UNREACHABLE(); |
+ } |
+ // Allocate a heap number, if needed. |
+ Label skip_allocation; |
+ OverwriteMode mode = mode_; |
+ if (HasArgsReversed()) { |
+ if (mode == OVERWRITE_RIGHT) { |
+ mode = OVERWRITE_LEFT; |
+ } else if (mode == OVERWRITE_LEFT) { |
+ mode = OVERWRITE_RIGHT; |
+ } |
+ } |
+ switch (mode) { |
+ case OVERWRITE_LEFT: |
+ __ JumpIfNotSmi(rdx, &skip_allocation); |
+ __ AllocateHeapNumber(rbx, rcx, &call_runtime); |
+ __ movq(rdx, rbx); |
+ __ bind(&skip_allocation); |
+ __ movq(rax, rdx); |
+ break; |
+ case OVERWRITE_RIGHT: |
+ // If the argument in rax is already an object, we skip the |
+ // allocation of a heap number. |
+ __ JumpIfNotSmi(rax, &skip_allocation); |
+ // Fall through! |
+ case NO_OVERWRITE: |
+ // Allocate a heap number for the result. Keep rax and rdx intact |
+ // for the possible runtime call. |
+ __ AllocateHeapNumber(rbx, rcx, &call_runtime); |
+ __ movq(rax, rbx); |
+ __ bind(&skip_allocation); |
+ break; |
+ default: UNREACHABLE(); |
+ } |
+ __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0); |
+ GenerateReturn(masm); |
+ __ bind(¬_floats); |
+ if (runtime_operands_type_ == BinaryOpIC::DEFAULT && |
+ !HasSmiCodeInStub()) { |
+ // Execution reaches this point when the first non-number argument |
+ // occurs (and only if smi code is skipped from the stub, otherwise |
+ // the patching has already been done earlier in this case branch). |
+ // A perfect moment to try patching to STRINGS for ADD operation. |
+ if (op_ == Token::ADD) { |
+ GenerateTypeTransition(masm); |
+ } |
+ } |
+ break; |
+ } |
+ case Token::MOD: { |
+ // For MOD we go directly to runtime in the non-smi case. |
+ break; |
+ } |
+ case Token::BIT_OR: |
+ case Token::BIT_AND: |
+ case Token::BIT_XOR: |
+ case Token::SAR: |
+ case Token::SHL: |
+ case Token::SHR: { |
+ Label skip_allocation, non_smi_shr_result; |
+ Register heap_number_map = r9; |
+ __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
+ if (static_operands_type_.IsNumber()) { |
+ if (FLAG_debug_code) { |
+ // Assert at runtime that inputs are only numbers. |
+ __ AbortIfNotNumber(rdx); |
+ __ AbortIfNotNumber(rax); |
+ } |
+ FloatingPointHelper::LoadNumbersAsIntegers(masm); |
+ } else { |
+ FloatingPointHelper::LoadAsIntegers(masm, |
+ &call_runtime, |
+ heap_number_map); |
+ } |
+ switch (op_) { |
+ case Token::BIT_OR: __ orl(rax, rcx); break; |
+ case Token::BIT_AND: __ andl(rax, rcx); break; |
+ case Token::BIT_XOR: __ xorl(rax, rcx); break; |
+ case Token::SAR: __ sarl_cl(rax); break; |
+ case Token::SHL: __ shll_cl(rax); break; |
+ case Token::SHR: { |
+ __ shrl_cl(rax); |
+ // Check if result is negative. This can only happen for a shift |
+ // by zero. |
+ __ testl(rax, rax); |
+ __ j(negative, &non_smi_shr_result); |
+ break; |
+ } |
+ default: UNREACHABLE(); |
+ } |
+ |
+ STATIC_ASSERT(kSmiValueSize == 32); |
+ // Tag smi result and return. |
+ __ Integer32ToSmi(rax, rax); |
+ GenerateReturn(masm); |
+ |
+ // All bit-ops except SHR return a signed int32 that can be |
+ // returned immediately as a smi. |
+ // We might need to allocate a HeapNumber if we shift a negative |
+ // number right by zero (i.e., convert to UInt32). |
+ if (op_ == Token::SHR) { |
+ ASSERT(non_smi_shr_result.is_linked()); |
+ __ bind(&non_smi_shr_result); |
+ // Allocate a heap number if needed. |
+ __ movl(rbx, rax); // rbx holds result value (uint32 value as int64). |
+ switch (mode_) { |
+ case OVERWRITE_LEFT: |
+ case OVERWRITE_RIGHT: |
+ // If the operand was an object, we skip the |
+ // allocation of a heap number. |
+ __ movq(rax, Operand(rsp, mode_ == OVERWRITE_RIGHT ? |
+ 1 * kPointerSize : 2 * kPointerSize)); |
+ __ JumpIfNotSmi(rax, &skip_allocation); |
+ // Fall through! |
+ case NO_OVERWRITE: |
+ // Allocate heap number in new space. |
+ // Not using AllocateHeapNumber macro in order to reuse |
+ // already loaded heap_number_map. |
+ __ AllocateInNewSpace(HeapNumber::kSize, |
+ rax, |
+ rcx, |
+ no_reg, |
+ &call_runtime, |
+ TAG_OBJECT); |
+ // Set the map. |
+ if (FLAG_debug_code) { |
+ __ AbortIfNotRootValue(heap_number_map, |
+ Heap::kHeapNumberMapRootIndex, |
+ "HeapNumberMap register clobbered."); |
+ } |
+ __ movq(FieldOperand(rax, HeapObject::kMapOffset), |
+ heap_number_map); |
+ __ bind(&skip_allocation); |
+ break; |
+ default: UNREACHABLE(); |
+ } |
+ // Store the result in the HeapNumber and return. |
+ __ cvtqsi2sd(xmm0, rbx); |
+ __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0); |
+ GenerateReturn(masm); |
+ } |
+ |
+ break; |
+ } |
+ default: UNREACHABLE(); break; |
+ } |
+ } |
+ |
+ // If all else fails, use the runtime system to get the correct |
+ // result. If arguments was passed in registers now place them on the |
+ // stack in the correct order below the return address. |
+ __ bind(&call_runtime); |
+ |
+ if (HasArgsInRegisters()) { |
+ GenerateRegisterArgsPush(masm); |
+ } |
+ |
+ switch (op_) { |
+ case Token::ADD: { |
+ // Registers containing left and right operands respectively. |
+ Register lhs, rhs; |
+ |
+ if (HasArgsReversed()) { |
+ lhs = rax; |
+ rhs = rdx; |
+ } else { |
+ lhs = rdx; |
+ rhs = rax; |
+ } |
+ |
+ // Test for string arguments before calling runtime. |
+ Label not_strings, both_strings, not_string1, string1, string1_smi2; |
+ |
+ // If this stub has already generated FP-specific code then the arguments |
+ // are already in rdx and rax. |
+ if (!ShouldGenerateFPCode() && !HasArgsInRegisters()) { |
+ GenerateLoadArguments(masm); |
+ } |
+ |
+ Condition is_smi; |
+ is_smi = masm->CheckSmi(lhs); |
+ __ j(is_smi, ¬_string1); |
+ __ CmpObjectType(lhs, FIRST_NONSTRING_TYPE, r8); |
+ __ j(above_equal, ¬_string1); |
+ |
+ // First argument is a a string, test second. |
+ is_smi = masm->CheckSmi(rhs); |
+ __ j(is_smi, &string1_smi2); |
+ __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, r9); |
+ __ j(above_equal, &string1); |
+ |
+ // First and second argument are strings. |
+ StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB); |
+ __ TailCallStub(&string_add_stub); |
+ |
+ __ bind(&string1_smi2); |
+ // First argument is a string, second is a smi. Try to lookup the number |
+ // string for the smi in the number string cache. |
+ NumberToStringStub::GenerateLookupNumberStringCache( |
+ masm, rhs, rbx, rcx, r8, true, &string1); |
+ |
+ // Replace second argument on stack and tailcall string add stub to make |
+ // the result. |
+ __ movq(Operand(rsp, 1 * kPointerSize), rbx); |
+ __ TailCallStub(&string_add_stub); |
+ |
+ // Only first argument is a string. |
+ __ bind(&string1); |
+ __ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_FUNCTION); |
+ |
+ // First argument was not a string, test second. |
+ __ bind(¬_string1); |
+ is_smi = masm->CheckSmi(rhs); |
+ __ j(is_smi, ¬_strings); |
+ __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, rhs); |
+ __ j(above_equal, ¬_strings); |
+ |
+ // Only second argument is a string. |
+ __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_FUNCTION); |
+ |
+ __ bind(¬_strings); |
+ // Neither argument is a string. |
+ __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); |
+ break; |
+ } |
+ case Token::SUB: |
+ __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); |
+ break; |
+ case Token::MUL: |
+ __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); |
+ break; |
+ case Token::DIV: |
+ __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); |
+ break; |
+ case Token::MOD: |
+ __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); |
+ break; |
+ case Token::BIT_OR: |
+ __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); |
+ break; |
+ case Token::BIT_AND: |
+ __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); |
+ break; |
+ case Token::BIT_XOR: |
+ __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); |
+ break; |
+ case Token::SAR: |
+ __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); |
+ break; |
+ case Token::SHL: |
+ __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); |
+ break; |
+ case Token::SHR: |
+ __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+void GenericBinaryOpStub::GenerateLoadArguments(MacroAssembler* masm) { |
+ ASSERT(!HasArgsInRegisters()); |
+ __ movq(rax, Operand(rsp, 1 * kPointerSize)); |
+ __ movq(rdx, Operand(rsp, 2 * kPointerSize)); |
+} |
+ |
+ |
+void GenericBinaryOpStub::GenerateReturn(MacroAssembler* masm) { |
+ // If arguments are not passed in registers remove them from the stack before |
+ // returning. |
+ if (!HasArgsInRegisters()) { |
+ __ ret(2 * kPointerSize); // Remove both operands |
+ } else { |
+ __ ret(0); |
+ } |
+} |
+ |
+ |
+void GenericBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) { |
+ ASSERT(HasArgsInRegisters()); |
+ __ pop(rcx); |
+ if (HasArgsReversed()) { |
+ __ push(rax); |
+ __ push(rdx); |
+ } else { |
+ __ push(rdx); |
+ __ push(rax); |
+ } |
+ __ push(rcx); |
+} |
+ |
+ |
+void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { |
+ Label get_result; |
+ |
+ // Ensure the operands are on the stack. |
+ if (HasArgsInRegisters()) { |
+ GenerateRegisterArgsPush(masm); |
+ } |
+ |
+ // Left and right arguments are already on stack. |
+ __ pop(rcx); // Save the return address. |
+ |
+ // Push this stub's key. |
+ __ Push(Smi::FromInt(MinorKey())); |
+ |
+ // Although the operation and the type info are encoded into the key, |
+ // the encoding is opaque, so push them too. |
+ __ Push(Smi::FromInt(op_)); |
+ |
+ __ Push(Smi::FromInt(runtime_operands_type_)); |
+ |
+ __ push(rcx); // The return address. |
+ |
+ // Perform patching to an appropriate fast case and return the result. |
+ __ TailCallExternalReference( |
+ ExternalReference(IC_Utility(IC::kBinaryOp_Patch)), |
+ 5, |
+ 1); |
+} |
+ |
+ |
+Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) { |
+ GenericBinaryOpStub stub(key, type_info); |
+ return stub.GetCode(); |
+} |
+ |
+ |
+void TranscendentalCacheStub::Generate(MacroAssembler* masm) { |
+ // Input on stack: |
+ // rsp[8]: argument (should be number). |
+ // rsp[0]: return address. |
+ Label runtime_call; |
+ Label runtime_call_clear_stack; |
+ Label input_not_smi; |
+ Label loaded; |
+ // Test that rax is a number. |
+ __ movq(rax, Operand(rsp, kPointerSize)); |
+ __ JumpIfNotSmi(rax, &input_not_smi); |
+ // Input is a smi. Untag and load it onto the FPU stack. |
+ // Then load the bits of the double into rbx. |
+ __ SmiToInteger32(rax, rax); |
+ __ subq(rsp, Immediate(kPointerSize)); |
+ __ cvtlsi2sd(xmm1, rax); |
+ __ movsd(Operand(rsp, 0), xmm1); |
+ __ movq(rbx, xmm1); |
+ __ movq(rdx, xmm1); |
+ __ fld_d(Operand(rsp, 0)); |
+ __ addq(rsp, Immediate(kPointerSize)); |
+ __ jmp(&loaded); |
+ |
+ __ bind(&input_not_smi); |
+ // Check if input is a HeapNumber. |
+ __ Move(rbx, Factory::heap_number_map()); |
+ __ cmpq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); |
+ __ j(not_equal, &runtime_call); |
+ // Input is a HeapNumber. Push it on the FPU stack and load its |
+ // bits into rbx. |
+ __ fld_d(FieldOperand(rax, HeapNumber::kValueOffset)); |
+ __ movq(rbx, FieldOperand(rax, HeapNumber::kValueOffset)); |
+ __ movq(rdx, rbx); |
+ __ bind(&loaded); |
+ // ST[0] == double value |
+ // rbx = bits of double value. |
+ // rdx = also bits of double value. |
+ // Compute hash (h is 32 bits, bits are 64 and the shifts are arithmetic): |
+ // h = h0 = bits ^ (bits >> 32); |
+ // h ^= h >> 16; |
+ // h ^= h >> 8; |
+ // h = h & (cacheSize - 1); |
+ // or h = (h0 ^ (h0 >> 8) ^ (h0 >> 16) ^ (h0 >> 24)) & (cacheSize - 1) |
+ __ sar(rdx, Immediate(32)); |
+ __ xorl(rdx, rbx); |
+ __ movl(rcx, rdx); |
+ __ movl(rax, rdx); |
+ __ movl(rdi, rdx); |
+ __ sarl(rdx, Immediate(8)); |
+ __ sarl(rcx, Immediate(16)); |
+ __ sarl(rax, Immediate(24)); |
+ __ xorl(rcx, rdx); |
+ __ xorl(rax, rdi); |
+ __ xorl(rcx, rax); |
+ ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize)); |
+ __ andl(rcx, Immediate(TranscendentalCache::kCacheSize - 1)); |
+ |
+ // ST[0] == double value. |
+ // rbx = bits of double value. |
+ // rcx = TranscendentalCache::hash(double value). |
+ __ movq(rax, ExternalReference::transcendental_cache_array_address()); |
+ // rax points to cache array. |
+ __ movq(rax, Operand(rax, type_ * sizeof(TranscendentalCache::caches_[0]))); |
+ // rax points to the cache for the type type_. |
+ // If NULL, the cache hasn't been initialized yet, so go through runtime. |
+ __ testq(rax, rax); |
+ __ j(zero, &runtime_call_clear_stack); |
+#ifdef DEBUG |
+ // Check that the layout of cache elements match expectations. |
+ { // NOLINT - doesn't like a single brace on a line. |
+ TranscendentalCache::Element test_elem[2]; |
+ char* elem_start = reinterpret_cast<char*>(&test_elem[0]); |
+ char* elem2_start = reinterpret_cast<char*>(&test_elem[1]); |
+ char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0])); |
+ char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1])); |
+ char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output)); |
+ // Two uint_32's and a pointer per element. |
+ CHECK_EQ(16, static_cast<int>(elem2_start - elem_start)); |
+ CHECK_EQ(0, static_cast<int>(elem_in0 - elem_start)); |
+ CHECK_EQ(kIntSize, static_cast<int>(elem_in1 - elem_start)); |
+ CHECK_EQ(2 * kIntSize, static_cast<int>(elem_out - elem_start)); |
+ } |
+#endif |
+ // Find the address of the rcx'th entry in the cache, i.e., &rax[rcx*16]. |
+ __ addl(rcx, rcx); |
+ __ lea(rcx, Operand(rax, rcx, times_8, 0)); |
+ // Check if cache matches: Double value is stored in uint32_t[2] array. |
+ Label cache_miss; |
+ __ cmpq(rbx, Operand(rcx, 0)); |
+ __ j(not_equal, &cache_miss); |
+ // Cache hit! |
+ __ movq(rax, Operand(rcx, 2 * kIntSize)); |
+ __ fstp(0); // Clear FPU stack. |
+ __ ret(kPointerSize); |
+ |
+ __ bind(&cache_miss); |
+ // Update cache with new value. |
+ Label nan_result; |
+ GenerateOperation(masm, &nan_result); |
+ __ AllocateHeapNumber(rax, rdi, &runtime_call_clear_stack); |
+ __ movq(Operand(rcx, 0), rbx); |
+ __ movq(Operand(rcx, 2 * kIntSize), rax); |
+ __ fstp_d(FieldOperand(rax, HeapNumber::kValueOffset)); |
+ __ ret(kPointerSize); |
+ |
+ __ bind(&runtime_call_clear_stack); |
+ __ fstp(0); |
+ __ bind(&runtime_call); |
+ __ TailCallExternalReference(ExternalReference(RuntimeFunction()), 1, 1); |
+ |
+ __ bind(&nan_result); |
+ __ fstp(0); // Remove argument from FPU stack. |
+ __ LoadRoot(rax, Heap::kNanValueRootIndex); |
+ __ movq(Operand(rcx, 0), rbx); |
+ __ movq(Operand(rcx, 2 * kIntSize), rax); |
+ __ ret(kPointerSize); |
+} |
+ |
+ |
+Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() { |
+ switch (type_) { |
+ // Add more cases when necessary. |
+ case TranscendentalCache::SIN: return Runtime::kMath_sin; |
+ case TranscendentalCache::COS: return Runtime::kMath_cos; |
+ default: |
+ UNIMPLEMENTED(); |
+ return Runtime::kAbort; |
+ } |
+} |
+ |
+ |
+void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm, |
+ Label* on_nan_result) { |
+ // Registers: |
+ // rbx: Bits of input double. Must be preserved. |
+ // rcx: Pointer to cache entry. Must be preserved. |
+ // st(0): Input double |
+ Label done; |
+ ASSERT(type_ == TranscendentalCache::SIN || |
+ type_ == TranscendentalCache::COS); |
+ // More transcendental types can be added later. |
+ |
+ // Both fsin and fcos require arguments in the range +/-2^63 and |
+ // return NaN for infinities and NaN. They can share all code except |
+ // the actual fsin/fcos operation. |
+ Label in_range; |
+ // If argument is outside the range -2^63..2^63, fsin/cos doesn't |
+ // work. We must reduce it to the appropriate range. |
+ __ movq(rdi, rbx); |
+ // Move exponent and sign bits to low bits. |
+ __ shr(rdi, Immediate(HeapNumber::kMantissaBits)); |
+ // Remove sign bit. |
+ __ andl(rdi, Immediate((1 << HeapNumber::kExponentBits) - 1)); |
+ int supported_exponent_limit = (63 + HeapNumber::kExponentBias); |
+ __ cmpl(rdi, Immediate(supported_exponent_limit)); |
+ __ j(below, &in_range); |
+ // Check for infinity and NaN. Both return NaN for sin. |
+ __ cmpl(rdi, Immediate(0x7ff)); |
+ __ j(equal, on_nan_result); |
+ |
+ // Use fpmod to restrict argument to the range +/-2*PI. |
+ __ fldpi(); |
+ __ fadd(0); |
+ __ fld(1); |
+ // FPU Stack: input, 2*pi, input. |
+ { |
+ Label no_exceptions; |
+ __ fwait(); |
+ __ fnstsw_ax(); |
+ // Clear if Illegal Operand or Zero Division exceptions are set. |
+ __ testl(rax, Immediate(5)); // #IO and #ZD flags of FPU status word. |
+ __ j(zero, &no_exceptions); |
+ __ fnclex(); |
+ __ bind(&no_exceptions); |
+ } |
+ |
+ // Compute st(0) % st(1) |
+ { |
+ Label partial_remainder_loop; |
+ __ bind(&partial_remainder_loop); |
+ __ fprem1(); |
+ __ fwait(); |
+ __ fnstsw_ax(); |
+ __ testl(rax, Immediate(0x400)); // Check C2 bit of FPU status word. |
+ // If C2 is set, computation only has partial result. Loop to |
+ // continue computation. |
+ __ j(not_zero, &partial_remainder_loop); |
+ } |
+ // FPU Stack: input, 2*pi, input % 2*pi |
+ __ fstp(2); |
+ // FPU Stack: input % 2*pi, 2*pi, |
+ __ fstp(0); |
+ // FPU Stack: input % 2*pi |
+ __ bind(&in_range); |
+ switch (type_) { |
+ case TranscendentalCache::SIN: |
+ __ fsin(); |
+ break; |
+ case TranscendentalCache::COS: |
+ __ fcos(); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+ __ bind(&done); |
+} |
+ |
+ |
+// Get the integer part of a heap number. |
+// Overwrites the contents of rdi, rbx and rcx. Result cannot be rdi or rbx. |
+void IntegerConvert(MacroAssembler* masm, |
+ Register result, |
+ Register source) { |
+ // Result may be rcx. If result and source are the same register, source will |
+ // be overwritten. |
+ ASSERT(!result.is(rdi) && !result.is(rbx)); |
+ // TODO(lrn): When type info reaches here, if value is a 32-bit integer, use |
+ // cvttsd2si (32-bit version) directly. |
+ Register double_exponent = rbx; |
+ Register double_value = rdi; |
+ Label done, exponent_63_plus; |
+ // Get double and extract exponent. |
+ __ movq(double_value, FieldOperand(source, HeapNumber::kValueOffset)); |
+ // Clear result preemptively, in case we need to return zero. |
+ __ xorl(result, result); |
+ __ movq(xmm0, double_value); // Save copy in xmm0 in case we need it there. |
+ // Double to remove sign bit, shift exponent down to least significant bits. |
+ // and subtract bias to get the unshifted, unbiased exponent. |
+ __ lea(double_exponent, Operand(double_value, double_value, times_1, 0)); |
+ __ shr(double_exponent, Immediate(64 - HeapNumber::kExponentBits)); |
+ __ subl(double_exponent, Immediate(HeapNumber::kExponentBias)); |
+ // Check whether the exponent is too big for a 63 bit unsigned integer. |
+ __ cmpl(double_exponent, Immediate(63)); |
+ __ j(above_equal, &exponent_63_plus); |
+ // Handle exponent range 0..62. |
+ __ cvttsd2siq(result, xmm0); |
+ __ jmp(&done); |
+ |
+ __ bind(&exponent_63_plus); |
+ // Exponent negative or 63+. |
+ __ cmpl(double_exponent, Immediate(83)); |
+ // If exponent negative or above 83, number contains no significant bits in |
+ // the range 0..2^31, so result is zero, and rcx already holds zero. |
+ __ j(above, &done); |
+ |
+ // Exponent in rage 63..83. |
+ // Mantissa * 2^exponent contains bits in the range 2^0..2^31, namely |
+ // the least significant exponent-52 bits. |
+ |
+ // Negate low bits of mantissa if value is negative. |
+ __ addq(double_value, double_value); // Move sign bit to carry. |
+ __ sbbl(result, result); // And convert carry to -1 in result register. |
+ // if scratch2 is negative, do (scratch2-1)^-1, otherwise (scratch2-0)^0. |
+ __ addl(double_value, result); |
+ // Do xor in opposite directions depending on where we want the result |
+ // (depending on whether result is rcx or not). |
+ |
+ if (result.is(rcx)) { |
+ __ xorl(double_value, result); |
+ // Left shift mantissa by (exponent - mantissabits - 1) to save the |
+ // bits that have positional values below 2^32 (the extra -1 comes from the |
+ // doubling done above to move the sign bit into the carry flag). |
+ __ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1)); |
+ __ shll_cl(double_value); |
+ __ movl(result, double_value); |
+ } else { |
+ // As the then-branch, but move double-value to result before shifting. |
+ __ xorl(result, double_value); |
+ __ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1)); |
+ __ shll_cl(result); |
+ } |
+ |
+ __ bind(&done); |
+} |
+ |
+ |
+// Input: rdx, rax are the left and right objects of a bit op. |
+// Output: rax, rcx are left and right integers for a bit op. |
+void FloatingPointHelper::LoadNumbersAsIntegers(MacroAssembler* masm) { |
+ // Check float operands. |
+ Label done; |
+ Label rax_is_smi; |
+ Label rax_is_object; |
+ Label rdx_is_object; |
+ |
+ __ JumpIfNotSmi(rdx, &rdx_is_object); |
+ __ SmiToInteger32(rdx, rdx); |
+ __ JumpIfSmi(rax, &rax_is_smi); |
+ |
+ __ bind(&rax_is_object); |
+ IntegerConvert(masm, rcx, rax); // Uses rdi, rcx and rbx. |
+ __ jmp(&done); |
+ |
+ __ bind(&rdx_is_object); |
+ IntegerConvert(masm, rdx, rdx); // Uses rdi, rcx and rbx. |
+ __ JumpIfNotSmi(rax, &rax_is_object); |
+ __ bind(&rax_is_smi); |
+ __ SmiToInteger32(rcx, rax); |
+ |
+ __ bind(&done); |
+ __ movl(rax, rdx); |
+} |
+ |
+ |
+// Input: rdx, rax are the left and right objects of a bit op. |
+// Output: rax, rcx are left and right integers for a bit op. |
+void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm, |
+ Label* conversion_failure, |
+ Register heap_number_map) { |
+ // Check float operands. |
+ Label arg1_is_object, check_undefined_arg1; |
+ Label arg2_is_object, check_undefined_arg2; |
+ Label load_arg2, done; |
+ |
+ __ JumpIfNotSmi(rdx, &arg1_is_object); |
+ __ SmiToInteger32(rdx, rdx); |
+ __ jmp(&load_arg2); |
+ |
+ // If the argument is undefined it converts to zero (ECMA-262, section 9.5). |
+ __ bind(&check_undefined_arg1); |
+ __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex); |
+ __ j(not_equal, conversion_failure); |
+ __ movl(rdx, Immediate(0)); |
+ __ jmp(&load_arg2); |
+ |
+ __ bind(&arg1_is_object); |
+ __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), heap_number_map); |
+ __ j(not_equal, &check_undefined_arg1); |
+ // Get the untagged integer version of the edx heap number in rcx. |
+ IntegerConvert(masm, rdx, rdx); |
+ |
+ // Here rdx has the untagged integer, rax has a Smi or a heap number. |
+ __ bind(&load_arg2); |
+ // Test if arg2 is a Smi. |
+ __ JumpIfNotSmi(rax, &arg2_is_object); |
+ __ SmiToInteger32(rax, rax); |
+ __ movl(rcx, rax); |
+ __ jmp(&done); |
+ |
+ // If the argument is undefined it converts to zero (ECMA-262, section 9.5). |
+ __ bind(&check_undefined_arg2); |
+ __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); |
+ __ j(not_equal, conversion_failure); |
+ __ movl(rcx, Immediate(0)); |
+ __ jmp(&done); |
+ |
+ __ bind(&arg2_is_object); |
+ __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), heap_number_map); |
+ __ j(not_equal, &check_undefined_arg2); |
+ // Get the untagged integer version of the rax heap number in rcx. |
+ IntegerConvert(masm, rcx, rax); |
+ __ bind(&done); |
+ __ movl(rax, rdx); |
+} |
+ |
+ |
+void FloatingPointHelper::LoadSSE2SmiOperands(MacroAssembler* masm) { |
+ __ SmiToInteger32(kScratchRegister, rdx); |
+ __ cvtlsi2sd(xmm0, kScratchRegister); |
+ __ SmiToInteger32(kScratchRegister, rax); |
+ __ cvtlsi2sd(xmm1, kScratchRegister); |
+} |
+ |
+ |
+void FloatingPointHelper::LoadSSE2NumberOperands(MacroAssembler* masm) { |
+ Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, done; |
+ // Load operand in rdx into xmm0. |
+ __ JumpIfSmi(rdx, &load_smi_rdx); |
+ __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); |
+ // Load operand in rax into xmm1. |
+ __ JumpIfSmi(rax, &load_smi_rax); |
+ __ bind(&load_nonsmi_rax); |
+ __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); |
+ __ jmp(&done); |
+ |
+ __ bind(&load_smi_rdx); |
+ __ SmiToInteger32(kScratchRegister, rdx); |
+ __ cvtlsi2sd(xmm0, kScratchRegister); |
+ __ JumpIfNotSmi(rax, &load_nonsmi_rax); |
+ |
+ __ bind(&load_smi_rax); |
+ __ SmiToInteger32(kScratchRegister, rax); |
+ __ cvtlsi2sd(xmm1, kScratchRegister); |
+ |
+ __ bind(&done); |
+} |
+ |
+ |
+void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm, |
+ Label* not_numbers) { |
+ Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done; |
+ // Load operand in rdx into xmm0, or branch to not_numbers. |
+ __ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex); |
+ __ JumpIfSmi(rdx, &load_smi_rdx); |
+ __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), rcx); |
+ __ j(not_equal, not_numbers); // Argument in rdx is not a number. |
+ __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); |
+ // Load operand in rax into xmm1, or branch to not_numbers. |
+ __ JumpIfSmi(rax, &load_smi_rax); |
+ |
+ __ bind(&load_nonsmi_rax); |
+ __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), rcx); |
+ __ j(not_equal, not_numbers); |
+ __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); |
+ __ jmp(&done); |
+ |
+ __ bind(&load_smi_rdx); |
+ __ SmiToInteger32(kScratchRegister, rdx); |
+ __ cvtlsi2sd(xmm0, kScratchRegister); |
+ __ JumpIfNotSmi(rax, &load_nonsmi_rax); |
+ |
+ __ bind(&load_smi_rax); |
+ __ SmiToInteger32(kScratchRegister, rax); |
+ __ cvtlsi2sd(xmm1, kScratchRegister); |
+ __ bind(&done); |
+} |
+ |
+ |
+void GenericUnaryOpStub::Generate(MacroAssembler* masm) { |
+ Label slow, done; |
+ |
+ if (op_ == Token::SUB) { |
+ // Check whether the value is a smi. |
+ Label try_float; |
+ __ JumpIfNotSmi(rax, &try_float); |
+ |
+ if (negative_zero_ == kIgnoreNegativeZero) { |
+ __ SmiCompare(rax, Smi::FromInt(0)); |
+ __ j(equal, &done); |
+ } |
+ |
+ // Enter runtime system if the value of the smi is zero |
+ // to make sure that we switch between 0 and -0. |
+ // Also enter it if the value of the smi is Smi::kMinValue. |
+ __ SmiNeg(rax, rax, &done); |
+ |
+ // Either zero or Smi::kMinValue, neither of which become a smi when |
+ // negated. |
+ if (negative_zero_ == kStrictNegativeZero) { |
+ __ SmiCompare(rax, Smi::FromInt(0)); |
+ __ j(not_equal, &slow); |
+ __ Move(rax, Factory::minus_zero_value()); |
+ __ jmp(&done); |
+ } else { |
+ __ jmp(&slow); |
+ } |
+ |
+ // Try floating point case. |
+ __ bind(&try_float); |
+ __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset)); |
+ __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex); |
+ __ j(not_equal, &slow); |
+ // Operand is a float, negate its value by flipping sign bit. |
+ __ movq(rdx, FieldOperand(rax, HeapNumber::kValueOffset)); |
+ __ movq(kScratchRegister, Immediate(0x01)); |
+ __ shl(kScratchRegister, Immediate(63)); |
+ __ xor_(rdx, kScratchRegister); // Flip sign. |
+ // rdx is value to store. |
+ if (overwrite_ == UNARY_OVERWRITE) { |
+ __ movq(FieldOperand(rax, HeapNumber::kValueOffset), rdx); |
+ } else { |
+ __ AllocateHeapNumber(rcx, rbx, &slow); |
+ // rcx: allocated 'empty' number |
+ __ movq(FieldOperand(rcx, HeapNumber::kValueOffset), rdx); |
+ __ movq(rax, rcx); |
+ } |
+ } else if (op_ == Token::BIT_NOT) { |
+ // Check if the operand is a heap number. |
+ __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset)); |
+ __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex); |
+ __ j(not_equal, &slow); |
+ |
+ // Convert the heap number in rax to an untagged integer in rcx. |
+ IntegerConvert(masm, rax, rax); |
+ |
+ // Do the bitwise operation and smi tag the result. |
+ __ notl(rax); |
+ __ Integer32ToSmi(rax, rax); |
+ } |
+ |
+ // Return from the stub. |
+ __ bind(&done); |
+ __ StubReturn(1); |
+ |
+ // Handle the slow case by jumping to the JavaScript builtin. |
+ __ bind(&slow); |
+ __ pop(rcx); // pop return address |
+ __ push(rax); |
+ __ push(rcx); // push return address |
+ switch (op_) { |
+ case Token::SUB: |
+ __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION); |
+ break; |
+ case Token::BIT_NOT: |
+ __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { |
+ // The key is in rdx and the parameter count is in rax. |
+ |
+ // The displacement is used for skipping the frame pointer on the |
+ // stack. It is the offset of the last parameter (if any) relative |
+ // to the frame pointer. |
+ static const int kDisplacement = 1 * kPointerSize; |
+ |
+ // Check that the key is a smi. |
+ Label slow; |
+ __ JumpIfNotSmi(rdx, &slow); |
+ |
+ // Check if the calling frame is an arguments adaptor frame. |
+ Label adaptor; |
+ __ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); |
+ __ SmiCompare(Operand(rbx, StandardFrameConstants::kContextOffset), |
+ Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); |
+ __ j(equal, &adaptor); |
+ |
+ // Check index against formal parameters count limit passed in |
+ // through register rax. Use unsigned comparison to get negative |
+ // check for free. |
+ __ cmpq(rdx, rax); |
+ __ j(above_equal, &slow); |
+ |
+ // Read the argument from the stack and return it. |
+ SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2); |
+ __ lea(rbx, Operand(rbp, index.reg, index.scale, 0)); |
+ index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2); |
+ __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement)); |
+ __ Ret(); |
+ |
+ // Arguments adaptor case: Check index against actual arguments |
+ // limit found in the arguments adaptor frame. Use unsigned |
+ // comparison to get negative check for free. |
+ __ bind(&adaptor); |
+ __ movq(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
+ __ cmpq(rdx, rcx); |
+ __ j(above_equal, &slow); |
+ |
+ // Read the argument from the stack and return it. |
+ index = masm->SmiToIndex(rax, rcx, kPointerSizeLog2); |
+ __ lea(rbx, Operand(rbx, index.reg, index.scale, 0)); |
+ index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2); |
+ __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement)); |
+ __ Ret(); |
+ |
+ // Slow-case: Handle non-smi or out-of-bounds access to arguments |
+ // by calling the runtime system. |
+ __ bind(&slow); |
+ __ pop(rbx); // Return address. |
+ __ push(rdx); |
+ __ push(rbx); |
+ __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); |
+} |
+ |
+ |
+void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) { |
+ // rsp[0] : return address |
+ // rsp[8] : number of parameters |
+ // rsp[16] : receiver displacement |
+ // rsp[24] : function |
+ |
+ // The displacement is used for skipping the return address and the |
+ // frame pointer on the stack. It is the offset of the last |
+ // parameter (if any) relative to the frame pointer. |
+ static const int kDisplacement = 2 * kPointerSize; |
+ |
+ // Check if the calling frame is an arguments adaptor frame. |
+ Label adaptor_frame, try_allocate, runtime; |
+ __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); |
+ __ SmiCompare(Operand(rdx, StandardFrameConstants::kContextOffset), |
+ Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); |
+ __ j(equal, &adaptor_frame); |
+ |
+ // Get the length from the frame. |
+ __ SmiToInteger32(rcx, Operand(rsp, 1 * kPointerSize)); |
+ __ jmp(&try_allocate); |
+ |
+ // Patch the arguments.length and the parameters pointer. |
+ __ bind(&adaptor_frame); |
+ __ SmiToInteger32(rcx, |
+ Operand(rdx, |
+ ArgumentsAdaptorFrameConstants::kLengthOffset)); |
+ // Space on stack must already hold a smi. |
+ __ Integer32ToSmiField(Operand(rsp, 1 * kPointerSize), rcx); |
+ // Do not clobber the length index for the indexing operation since |
+ // it is used compute the size for allocation later. |
+ __ lea(rdx, Operand(rdx, rcx, times_pointer_size, kDisplacement)); |
+ __ movq(Operand(rsp, 2 * kPointerSize), rdx); |
+ |
+ // Try the new space allocation. Start out with computing the size of |
+ // the arguments object and the elements array. |
+ Label add_arguments_object; |
+ __ bind(&try_allocate); |
+ __ testl(rcx, rcx); |
+ __ j(zero, &add_arguments_object); |
+ __ leal(rcx, Operand(rcx, times_pointer_size, FixedArray::kHeaderSize)); |
+ __ bind(&add_arguments_object); |
+ __ addl(rcx, Immediate(Heap::kArgumentsObjectSize)); |
+ |
+ // Do the allocation of both objects in one go. |
+ __ AllocateInNewSpace(rcx, rax, rdx, rbx, &runtime, TAG_OBJECT); |
+ |
+ // Get the arguments boilerplate from the current (global) context. |
+ int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX); |
+ __ movq(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
+ __ movq(rdi, FieldOperand(rdi, GlobalObject::kGlobalContextOffset)); |
+ __ movq(rdi, Operand(rdi, offset)); |
+ |
+ // Copy the JS object part. |
+ STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize); |
+ __ movq(kScratchRegister, FieldOperand(rdi, 0 * kPointerSize)); |
+ __ movq(rdx, FieldOperand(rdi, 1 * kPointerSize)); |
+ __ movq(rbx, FieldOperand(rdi, 2 * kPointerSize)); |
+ __ movq(FieldOperand(rax, 0 * kPointerSize), kScratchRegister); |
+ __ movq(FieldOperand(rax, 1 * kPointerSize), rdx); |
+ __ movq(FieldOperand(rax, 2 * kPointerSize), rbx); |
+ |
+ // Setup the callee in-object property. |
+ ASSERT(Heap::arguments_callee_index == 0); |
+ __ movq(kScratchRegister, Operand(rsp, 3 * kPointerSize)); |
+ __ movq(FieldOperand(rax, JSObject::kHeaderSize), kScratchRegister); |
+ |
+ // Get the length (smi tagged) and set that as an in-object property too. |
+ ASSERT(Heap::arguments_length_index == 1); |
+ __ movq(rcx, Operand(rsp, 1 * kPointerSize)); |
+ __ movq(FieldOperand(rax, JSObject::kHeaderSize + kPointerSize), rcx); |
+ |
+ // If there are no actual arguments, we're done. |
+ Label done; |
+ __ SmiTest(rcx); |
+ __ j(zero, &done); |
+ |
+ // Get the parameters pointer from the stack and untag the length. |
+ __ movq(rdx, Operand(rsp, 2 * kPointerSize)); |
+ |
+ // Setup the elements pointer in the allocated arguments object and |
+ // initialize the header in the elements fixed array. |
+ __ lea(rdi, Operand(rax, Heap::kArgumentsObjectSize)); |
+ __ movq(FieldOperand(rax, JSObject::kElementsOffset), rdi); |
+ __ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex); |
+ __ movq(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister); |
+ __ movq(FieldOperand(rdi, FixedArray::kLengthOffset), rcx); |
+ __ SmiToInteger32(rcx, rcx); // Untag length for the loop below. |
+ |
+ // Copy the fixed array slots. |
+ Label loop; |
+ __ bind(&loop); |
+ __ movq(kScratchRegister, Operand(rdx, -1 * kPointerSize)); // Skip receiver. |
+ __ movq(FieldOperand(rdi, FixedArray::kHeaderSize), kScratchRegister); |
+ __ addq(rdi, Immediate(kPointerSize)); |
+ __ subq(rdx, Immediate(kPointerSize)); |
+ __ decl(rcx); |
+ __ j(not_zero, &loop); |
+ |
+ // Return and remove the on-stack parameters. |
+ __ bind(&done); |
+ __ ret(3 * kPointerSize); |
+ |
+ // Do the runtime call to allocate the arguments object. |
+ __ bind(&runtime); |
+ __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); |
+} |
+ |
+ |
+void RegExpExecStub::Generate(MacroAssembler* masm) { |
+ // Just jump directly to runtime if native RegExp is not selected at compile |
+ // time or if regexp entry in generated code is turned off runtime switch or |
+ // at compilation. |
+#ifdef V8_INTERPRETED_REGEXP |
+ __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
+#else // V8_INTERPRETED_REGEXP |
+ if (!FLAG_regexp_entry_native) { |
+ __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
+ return; |
+ } |
+ |
+ // Stack frame on entry. |
+ // esp[0]: return address |
+ // esp[8]: last_match_info (expected JSArray) |
+ // esp[16]: previous index |
+ // esp[24]: subject string |
+ // esp[32]: JSRegExp object |
+ |
+ static const int kLastMatchInfoOffset = 1 * kPointerSize; |
+ static const int kPreviousIndexOffset = 2 * kPointerSize; |
+ static const int kSubjectOffset = 3 * kPointerSize; |
+ static const int kJSRegExpOffset = 4 * kPointerSize; |
+ |
+ Label runtime; |
+ |
+ // Ensure that a RegExp stack is allocated. |
+ ExternalReference address_of_regexp_stack_memory_address = |
+ ExternalReference::address_of_regexp_stack_memory_address(); |
+ ExternalReference address_of_regexp_stack_memory_size = |
+ ExternalReference::address_of_regexp_stack_memory_size(); |
+ __ movq(kScratchRegister, address_of_regexp_stack_memory_size); |
+ __ movq(kScratchRegister, Operand(kScratchRegister, 0)); |
+ __ testq(kScratchRegister, kScratchRegister); |
+ __ j(zero, &runtime); |
+ |
+ |
+ // Check that the first argument is a JSRegExp object. |
+ __ movq(rax, Operand(rsp, kJSRegExpOffset)); |
+ __ JumpIfSmi(rax, &runtime); |
+ __ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister); |
+ __ j(not_equal, &runtime); |
+ // Check that the RegExp has been compiled (data contains a fixed array). |
+ __ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset)); |
+ if (FLAG_debug_code) { |
+ Condition is_smi = masm->CheckSmi(rcx); |
+ __ Check(NegateCondition(is_smi), |
+ "Unexpected type for RegExp data, FixedArray expected"); |
+ __ CmpObjectType(rcx, FIXED_ARRAY_TYPE, kScratchRegister); |
+ __ Check(equal, "Unexpected type for RegExp data, FixedArray expected"); |
+ } |
+ |
+ // rcx: RegExp data (FixedArray) |
+ // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. |
+ __ SmiToInteger32(rbx, FieldOperand(rcx, JSRegExp::kDataTagOffset)); |
+ __ cmpl(rbx, Immediate(JSRegExp::IRREGEXP)); |
+ __ j(not_equal, &runtime); |
+ |
+ // rcx: RegExp data (FixedArray) |
+ // Check that the number of captures fit in the static offsets vector buffer. |
+ __ SmiToInteger32(rdx, |
+ FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset)); |
+ // Calculate number of capture registers (number_of_captures + 1) * 2. |
+ __ leal(rdx, Operand(rdx, rdx, times_1, 2)); |
+ // Check that the static offsets vector buffer is large enough. |
+ __ cmpl(rdx, Immediate(OffsetsVector::kStaticOffsetsVectorSize)); |
+ __ j(above, &runtime); |
+ |
+ // rcx: RegExp data (FixedArray) |
+ // rdx: Number of capture registers |
+ // Check that the second argument is a string. |
+ __ movq(rax, Operand(rsp, kSubjectOffset)); |
+ __ JumpIfSmi(rax, &runtime); |
+ Condition is_string = masm->IsObjectStringType(rax, rbx, rbx); |
+ __ j(NegateCondition(is_string), &runtime); |
+ |
+ // rax: Subject string. |
+ // rcx: RegExp data (FixedArray). |
+ // rdx: Number of capture registers. |
+ // Check that the third argument is a positive smi less than the string |
+ // length. A negative value will be greater (unsigned comparison). |
+ __ movq(rbx, Operand(rsp, kPreviousIndexOffset)); |
+ __ JumpIfNotSmi(rbx, &runtime); |
+ __ SmiCompare(rbx, FieldOperand(rax, String::kLengthOffset)); |
+ __ j(above_equal, &runtime); |
+ |
+ // rcx: RegExp data (FixedArray) |
+ // rdx: Number of capture registers |
+ // Check that the fourth object is a JSArray object. |
+ __ movq(rax, Operand(rsp, kLastMatchInfoOffset)); |
+ __ JumpIfSmi(rax, &runtime); |
+ __ CmpObjectType(rax, JS_ARRAY_TYPE, kScratchRegister); |
+ __ j(not_equal, &runtime); |
+ // Check that the JSArray is in fast case. |
+ __ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset)); |
+ __ movq(rax, FieldOperand(rbx, HeapObject::kMapOffset)); |
+ __ Cmp(rax, Factory::fixed_array_map()); |
+ __ j(not_equal, &runtime); |
+ // Check that the last match info has space for the capture registers and the |
+ // additional information. Ensure no overflow in add. |
+ STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset); |
+ __ SmiToInteger32(rax, FieldOperand(rbx, FixedArray::kLengthOffset)); |
+ __ addl(rdx, Immediate(RegExpImpl::kLastMatchOverhead)); |
+ __ cmpl(rdx, rax); |
+ __ j(greater, &runtime); |
+ |
+ // rcx: RegExp data (FixedArray) |
+ // Check the representation and encoding of the subject string. |
+ Label seq_ascii_string, seq_two_byte_string, check_code; |
+ __ movq(rax, Operand(rsp, kSubjectOffset)); |
+ __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); |
+ __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); |
+ // First check for flat two byte string. |
+ __ andb(rbx, Immediate( |
+ kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask)); |
+ STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0); |
+ __ j(zero, &seq_two_byte_string); |
+ // Any other flat string must be a flat ascii string. |
+ __ testb(rbx, Immediate(kIsNotStringMask | kStringRepresentationMask)); |
+ __ j(zero, &seq_ascii_string); |
+ |
+ // Check for flat cons string. |
+ // A flat cons string is a cons string where the second part is the empty |
+ // string. In that case the subject string is just the first part of the cons |
+ // string. Also in this case the first part of the cons string is known to be |
+ // a sequential string or an external string. |
+ STATIC_ASSERT(kExternalStringTag !=0); |
+ STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0); |
+ __ testb(rbx, Immediate(kIsNotStringMask | kExternalStringTag)); |
+ __ j(not_zero, &runtime); |
+ // String is a cons string. |
+ __ movq(rdx, FieldOperand(rax, ConsString::kSecondOffset)); |
+ __ Cmp(rdx, Factory::empty_string()); |
+ __ j(not_equal, &runtime); |
+ __ movq(rax, FieldOperand(rax, ConsString::kFirstOffset)); |
+ __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); |
+ // String is a cons string with empty second part. |
+ // rax: first part of cons string. |
+ // rbx: map of first part of cons string. |
+ // Is first part a flat two byte string? |
+ __ testb(FieldOperand(rbx, Map::kInstanceTypeOffset), |
+ Immediate(kStringRepresentationMask | kStringEncodingMask)); |
+ STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0); |
+ __ j(zero, &seq_two_byte_string); |
+ // Any other flat string must be ascii. |
+ __ testb(FieldOperand(rbx, Map::kInstanceTypeOffset), |
+ Immediate(kStringRepresentationMask)); |
+ __ j(not_zero, &runtime); |
+ |
+ __ bind(&seq_ascii_string); |
+ // rax: subject string (sequential ascii) |
+ // rcx: RegExp data (FixedArray) |
+ __ movq(r11, FieldOperand(rcx, JSRegExp::kDataAsciiCodeOffset)); |
+ __ Set(rdi, 1); // Type is ascii. |
+ __ jmp(&check_code); |
+ |
+ __ bind(&seq_two_byte_string); |
+ // rax: subject string (flat two-byte) |
+ // rcx: RegExp data (FixedArray) |
+ __ movq(r11, FieldOperand(rcx, JSRegExp::kDataUC16CodeOffset)); |
+ __ Set(rdi, 0); // Type is two byte. |
+ |
+ __ bind(&check_code); |
+ // Check that the irregexp code has been generated for the actual string |
+ // encoding. If it has, the field contains a code object otherwise it contains |
+ // the hole. |
+ __ CmpObjectType(r11, CODE_TYPE, kScratchRegister); |
+ __ j(not_equal, &runtime); |
+ |
+ // rax: subject string |
+ // rdi: encoding of subject string (1 if ascii, 0 if two_byte); |
+ // r11: code |
+ // Load used arguments before starting to push arguments for call to native |
+ // RegExp code to avoid handling changing stack height. |
+ __ SmiToInteger64(rbx, Operand(rsp, kPreviousIndexOffset)); |
+ |
+ // rax: subject string |
+ // rbx: previous index |
+ // rdi: encoding of subject string (1 if ascii 0 if two_byte); |
+ // r11: code |
+ // All checks done. Now push arguments for native regexp code. |
+ __ IncrementCounter(&Counters::regexp_entry_native, 1); |
+ |
+ // rsi is caller save on Windows and used to pass parameter on Linux. |
+ __ push(rsi); |
+ |
+ static const int kRegExpExecuteArguments = 7; |
+ __ PrepareCallCFunction(kRegExpExecuteArguments); |
+ int argument_slots_on_stack = |
+ masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments); |
+ |
+ // Argument 7: Indicate that this is a direct call from JavaScript. |
+ __ movq(Operand(rsp, (argument_slots_on_stack - 1) * kPointerSize), |
+ Immediate(1)); |
+ |
+ // Argument 6: Start (high end) of backtracking stack memory area. |
+ __ movq(kScratchRegister, address_of_regexp_stack_memory_address); |
+ __ movq(r9, Operand(kScratchRegister, 0)); |
+ __ movq(kScratchRegister, address_of_regexp_stack_memory_size); |
+ __ addq(r9, Operand(kScratchRegister, 0)); |
+ // Argument 6 passed in r9 on Linux and on the stack on Windows. |
+#ifdef _WIN64 |
+ __ movq(Operand(rsp, (argument_slots_on_stack - 2) * kPointerSize), r9); |
+#endif |
+ |
+ // Argument 5: static offsets vector buffer. |
+ __ movq(r8, ExternalReference::address_of_static_offsets_vector()); |
+ // Argument 5 passed in r8 on Linux and on the stack on Windows. |
+#ifdef _WIN64 |
+ __ movq(Operand(rsp, (argument_slots_on_stack - 3) * kPointerSize), r8); |
+#endif |
+ |
+ // First four arguments are passed in registers on both Linux and Windows. |
+#ifdef _WIN64 |
+ Register arg4 = r9; |
+ Register arg3 = r8; |
+ Register arg2 = rdx; |
+ Register arg1 = rcx; |
+#else |
+ Register arg4 = rcx; |
+ Register arg3 = rdx; |
+ Register arg2 = rsi; |
+ Register arg1 = rdi; |
+#endif |
+ |
+ // Keep track on aliasing between argX defined above and the registers used. |
+ // rax: subject string |
+ // rbx: previous index |
+ // rdi: encoding of subject string (1 if ascii 0 if two_byte); |
+ // r11: code |
+ |
+ // Argument 4: End of string data |
+ // Argument 3: Start of string data |
+ Label setup_two_byte, setup_rest; |
+ __ testb(rdi, rdi); |
+ __ j(zero, &setup_two_byte); |
+ __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset)); |
+ __ lea(arg4, FieldOperand(rax, rdi, times_1, SeqAsciiString::kHeaderSize)); |
+ __ lea(arg3, FieldOperand(rax, rbx, times_1, SeqAsciiString::kHeaderSize)); |
+ __ jmp(&setup_rest); |
+ __ bind(&setup_two_byte); |
+ __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset)); |
+ __ lea(arg4, FieldOperand(rax, rdi, times_2, SeqTwoByteString::kHeaderSize)); |
+ __ lea(arg3, FieldOperand(rax, rbx, times_2, SeqTwoByteString::kHeaderSize)); |
+ |
+ __ bind(&setup_rest); |
+ // Argument 2: Previous index. |
+ __ movq(arg2, rbx); |
+ |
+ // Argument 1: Subject string. |
+ __ movq(arg1, rax); |
+ |
+ // Locate the code entry and call it. |
+ __ addq(r11, Immediate(Code::kHeaderSize - kHeapObjectTag)); |
+ __ CallCFunction(r11, kRegExpExecuteArguments); |
+ |
+ // rsi is caller save, as it is used to pass parameter. |
+ __ pop(rsi); |
+ |
+ // Check the result. |
+ Label success; |
+ __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::SUCCESS)); |
+ __ j(equal, &success); |
+ Label failure; |
+ __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::FAILURE)); |
+ __ j(equal, &failure); |
+ __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION)); |
+ // If not exception it can only be retry. Handle that in the runtime system. |
+ __ j(not_equal, &runtime); |
+ // Result must now be exception. If there is no pending exception already a |
+ // stack overflow (on the backtrack stack) was detected in RegExp code but |
+ // haven't created the exception yet. Handle that in the runtime system. |
+ // TODO(592): Rerunning the RegExp to get the stack overflow exception. |
+ ExternalReference pending_exception_address(Top::k_pending_exception_address); |
+ __ movq(kScratchRegister, pending_exception_address); |
+ __ Cmp(kScratchRegister, Factory::the_hole_value()); |
+ __ j(equal, &runtime); |
+ __ bind(&failure); |
+ // For failure and exception return null. |
+ __ Move(rax, Factory::null_value()); |
+ __ ret(4 * kPointerSize); |
+ |
+ // Load RegExp data. |
+ __ bind(&success); |
+ __ movq(rax, Operand(rsp, kJSRegExpOffset)); |
+ __ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset)); |
+ __ SmiToInteger32(rax, |
+ FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset)); |
+ // Calculate number of capture registers (number_of_captures + 1) * 2. |
+ __ leal(rdx, Operand(rax, rax, times_1, 2)); |
+ |
+ // rdx: Number of capture registers |
+ // Load last_match_info which is still known to be a fast case JSArray. |
+ __ movq(rax, Operand(rsp, kLastMatchInfoOffset)); |
+ __ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset)); |
+ |
+ // rbx: last_match_info backing store (FixedArray) |
+ // rdx: number of capture registers |
+ // Store the capture count. |
+ __ Integer32ToSmi(kScratchRegister, rdx); |
+ __ movq(FieldOperand(rbx, RegExpImpl::kLastCaptureCountOffset), |
+ kScratchRegister); |
+ // Store last subject and last input. |
+ __ movq(rax, Operand(rsp, kSubjectOffset)); |
+ __ movq(FieldOperand(rbx, RegExpImpl::kLastSubjectOffset), rax); |
+ __ movq(rcx, rbx); |
+ __ RecordWrite(rcx, RegExpImpl::kLastSubjectOffset, rax, rdi); |
+ __ movq(rax, Operand(rsp, kSubjectOffset)); |
+ __ movq(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rax); |
+ __ movq(rcx, rbx); |
+ __ RecordWrite(rcx, RegExpImpl::kLastInputOffset, rax, rdi); |
+ |
+ // Get the static offsets vector filled by the native regexp code. |
+ __ movq(rcx, ExternalReference::address_of_static_offsets_vector()); |
+ |
+ // rbx: last_match_info backing store (FixedArray) |
+ // rcx: offsets vector |
+ // rdx: number of capture registers |
+ Label next_capture, done; |
+ // Capture register counter starts from number of capture registers and |
+ // counts down until wraping after zero. |
+ __ bind(&next_capture); |
+ __ subq(rdx, Immediate(1)); |
+ __ j(negative, &done); |
+ // Read the value from the static offsets vector buffer and make it a smi. |
+ __ movl(rdi, Operand(rcx, rdx, times_int_size, 0)); |
+ __ Integer32ToSmi(rdi, rdi, &runtime); |
+ // Store the smi value in the last match info. |
+ __ movq(FieldOperand(rbx, |
+ rdx, |
+ times_pointer_size, |
+ RegExpImpl::kFirstCaptureOffset), |
+ rdi); |
+ __ jmp(&next_capture); |
+ __ bind(&done); |
+ |
+ // Return last match info. |
+ __ movq(rax, Operand(rsp, kLastMatchInfoOffset)); |
+ __ ret(4 * kPointerSize); |
+ |
+ // Do the runtime call to execute the regexp. |
+ __ bind(&runtime); |
+ __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
+#endif // V8_INTERPRETED_REGEXP |
+} |
+ |
+ |
+void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, |
+ Register object, |
+ Register result, |
+ Register scratch1, |
+ Register scratch2, |
+ bool object_is_smi, |
+ Label* not_found) { |
+ // Use of registers. Register result is used as a temporary. |
+ Register number_string_cache = result; |
+ Register mask = scratch1; |
+ Register scratch = scratch2; |
+ |
+ // Load the number string cache. |
+ __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); |
+ |
+ // Make the hash mask from the length of the number string cache. It |
+ // contains two elements (number and string) for each cache entry. |
+ __ SmiToInteger32( |
+ mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset)); |
+ __ shrl(mask, Immediate(1)); |
+ __ subq(mask, Immediate(1)); // Make mask. |
+ |
+ // Calculate the entry in the number string cache. The hash value in the |
+ // number string cache for smis is just the smi value, and the hash for |
+ // doubles is the xor of the upper and lower words. See |
+ // Heap::GetNumberStringCache. |
+ Label is_smi; |
+ Label load_result_from_cache; |
+ if (!object_is_smi) { |
+ __ JumpIfSmi(object, &is_smi); |
+ __ CheckMap(object, Factory::heap_number_map(), not_found, true); |
+ |
+ STATIC_ASSERT(8 == kDoubleSize); |
+ __ movl(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4)); |
+ __ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset)); |
+ GenerateConvertHashCodeToIndex(masm, scratch, mask); |
+ |
+ Register index = scratch; |
+ Register probe = mask; |
+ __ movq(probe, |
+ FieldOperand(number_string_cache, |
+ index, |
+ times_1, |
+ FixedArray::kHeaderSize)); |
+ __ JumpIfSmi(probe, not_found); |
+ ASSERT(CpuFeatures::IsSupported(SSE2)); |
+ CpuFeatures::Scope fscope(SSE2); |
+ __ movsd(xmm0, FieldOperand(object, HeapNumber::kValueOffset)); |
+ __ movsd(xmm1, FieldOperand(probe, HeapNumber::kValueOffset)); |
+ __ ucomisd(xmm0, xmm1); |
+ __ j(parity_even, not_found); // Bail out if NaN is involved. |
+ __ j(not_equal, not_found); // The cache did not contain this value. |
+ __ jmp(&load_result_from_cache); |
+ } |
+ |
+ __ bind(&is_smi); |
+ __ SmiToInteger32(scratch, object); |
+ GenerateConvertHashCodeToIndex(masm, scratch, mask); |
+ |
+ Register index = scratch; |
+ // Check if the entry is the smi we are looking for. |
+ __ cmpq(object, |
+ FieldOperand(number_string_cache, |
+ index, |
+ times_1, |
+ FixedArray::kHeaderSize)); |
+ __ j(not_equal, not_found); |
+ |
+ // Get the result from the cache. |
+ __ bind(&load_result_from_cache); |
+ __ movq(result, |
+ FieldOperand(number_string_cache, |
+ index, |
+ times_1, |
+ FixedArray::kHeaderSize + kPointerSize)); |
+ __ IncrementCounter(&Counters::number_to_string_native, 1); |
+} |
+ |
+ |
+void NumberToStringStub::GenerateConvertHashCodeToIndex(MacroAssembler* masm, |
+ Register hash, |
+ Register mask) { |
+ __ and_(hash, mask); |
+ // Each entry in string cache consists of two pointer sized fields, |
+ // but times_twice_pointer_size (multiplication by 16) scale factor |
+ // is not supported by addrmode on x64 platform. |
+ // So we have to premultiply entry index before lookup. |
+ __ shl(hash, Immediate(kPointerSizeLog2 + 1)); |
+} |
+ |
+ |
+void NumberToStringStub::Generate(MacroAssembler* masm) { |
+ Label runtime; |
+ |
+ __ movq(rbx, Operand(rsp, kPointerSize)); |
+ |
+ // Generate code to lookup number in the number string cache. |
+ GenerateLookupNumberStringCache(masm, rbx, rax, r8, r9, false, &runtime); |
+ __ ret(1 * kPointerSize); |
+ |
+ __ bind(&runtime); |
+ // Handle number to string in the runtime system if not found in the cache. |
+ __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1); |
+} |
+ |
+ |
+static int NegativeComparisonResult(Condition cc) { |
+ ASSERT(cc != equal); |
+ ASSERT((cc == less) || (cc == less_equal) |
+ || (cc == greater) || (cc == greater_equal)); |
+ return (cc == greater || cc == greater_equal) ? LESS : GREATER; |
+} |
+ |
+ |
+void CompareStub::Generate(MacroAssembler* masm) { |
+ ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); |
+ |
+ Label check_unequal_objects, done; |
+ // The compare stub returns a positive, negative, or zero 64-bit integer |
+ // value in rax, corresponding to result of comparing the two inputs. |
+ // NOTICE! This code is only reached after a smi-fast-case check, so |
+ // it is certain that at least one operand isn't a smi. |
+ |
+ // Two identical objects are equal unless they are both NaN or undefined. |
+ { |
+ Label not_identical; |
+ __ cmpq(rax, rdx); |
+ __ j(not_equal, ¬_identical); |
+ |
+ if (cc_ != equal) { |
+ // Check for undefined. undefined OP undefined is false even though |
+ // undefined == undefined. |
+ Label check_for_nan; |
+ __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex); |
+ __ j(not_equal, &check_for_nan); |
+ __ Set(rax, NegativeComparisonResult(cc_)); |
+ __ ret(0); |
+ __ bind(&check_for_nan); |
+ } |
+ |
+ // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), |
+ // so we do the second best thing - test it ourselves. |
+ // Note: if cc_ != equal, never_nan_nan_ is not used. |
+ // We cannot set rax to EQUAL until just before return because |
+ // rax must be unchanged on jump to not_identical. |
+ |
+ if (never_nan_nan_ && (cc_ == equal)) { |
+ __ Set(rax, EQUAL); |
+ __ ret(0); |
+ } else { |
+ Label heap_number; |
+ // If it's not a heap number, then return equal for (in)equality operator. |
+ __ Cmp(FieldOperand(rdx, HeapObject::kMapOffset), |
+ Factory::heap_number_map()); |
+ __ j(equal, &heap_number); |
+ if (cc_ != equal) { |
+ // Call runtime on identical JSObjects. Otherwise return equal. |
+ __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx); |
+ __ j(above_equal, ¬_identical); |
+ } |
+ __ Set(rax, EQUAL); |
+ __ ret(0); |
+ |
+ __ bind(&heap_number); |
+ // It is a heap number, so return equal if it's not NaN. |
+ // For NaN, return 1 for every condition except greater and |
+ // greater-equal. Return -1 for them, so the comparison yields |
+ // false for all conditions except not-equal. |
+ __ Set(rax, EQUAL); |
+ __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); |
+ __ ucomisd(xmm0, xmm0); |
+ __ setcc(parity_even, rax); |
+ // rax is 0 for equal non-NaN heapnumbers, 1 for NaNs. |
+ if (cc_ == greater_equal || cc_ == greater) { |
+ __ neg(rax); |
+ } |
+ __ ret(0); |
+ } |
+ |
+ __ bind(¬_identical); |
+ } |
+ |
+ if (cc_ == equal) { // Both strict and non-strict. |
+ Label slow; // Fallthrough label. |
+ |
+ // If we're doing a strict equality comparison, we don't have to do |
+ // type conversion, so we generate code to do fast comparison for objects |
+ // and oddballs. Non-smi numbers and strings still go through the usual |
+ // slow-case code. |
+ if (strict_) { |
+ // If either is a Smi (we know that not both are), then they can only |
+ // be equal if the other is a HeapNumber. If so, use the slow case. |
+ { |
+ Label not_smis; |
+ __ SelectNonSmi(rbx, rax, rdx, ¬_smis); |
+ |
+ // Check if the non-smi operand is a heap number. |
+ __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset), |
+ Factory::heap_number_map()); |
+ // If heap number, handle it in the slow case. |
+ __ j(equal, &slow); |
+ // Return non-equal. ebx (the lower half of rbx) is not zero. |
+ __ movq(rax, rbx); |
+ __ ret(0); |
+ |
+ __ bind(¬_smis); |
+ } |
+ |
+ // If either operand is a JSObject or an oddball value, then they are not |
+ // equal since their pointers are different |
+ // There is no test for undetectability in strict equality. |
+ |
+ // If the first object is a JS object, we have done pointer comparison. |
+ STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
+ Label first_non_object; |
+ __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx); |
+ __ j(below, &first_non_object); |
+ // Return non-zero (eax (not rax) is not zero) |
+ Label return_not_equal; |
+ STATIC_ASSERT(kHeapObjectTag != 0); |
+ __ bind(&return_not_equal); |
+ __ ret(0); |
+ |
+ __ bind(&first_non_object); |
+ // Check for oddballs: true, false, null, undefined. |
+ __ CmpInstanceType(rcx, ODDBALL_TYPE); |
+ __ j(equal, &return_not_equal); |
+ |
+ __ CmpObjectType(rdx, FIRST_JS_OBJECT_TYPE, rcx); |
+ __ j(above_equal, &return_not_equal); |
+ |
+ // Check for oddballs: true, false, null, undefined. |
+ __ CmpInstanceType(rcx, ODDBALL_TYPE); |
+ __ j(equal, &return_not_equal); |
+ |
+ // Fall through to the general case. |
+ } |
+ __ bind(&slow); |
+ } |
+ |
+ // Generate the number comparison code. |
+ if (include_number_compare_) { |
+ Label non_number_comparison; |
+ Label unordered; |
+ FloatingPointHelper::LoadSSE2UnknownOperands(masm, &non_number_comparison); |
+ __ xorl(rax, rax); |
+ __ xorl(rcx, rcx); |
+ __ ucomisd(xmm0, xmm1); |
+ |
+ // Don't base result on EFLAGS when a NaN is involved. |
+ __ j(parity_even, &unordered); |
+ // Return a result of -1, 0, or 1, based on EFLAGS. |
+ __ setcc(above, rax); |
+ __ setcc(below, rcx); |
+ __ subq(rax, rcx); |
+ __ ret(0); |
+ |
+ // If one of the numbers was NaN, then the result is always false. |
+ // The cc is never not-equal. |
+ __ bind(&unordered); |
+ ASSERT(cc_ != not_equal); |
+ if (cc_ == less || cc_ == less_equal) { |
+ __ Set(rax, 1); |
+ } else { |
+ __ Set(rax, -1); |
+ } |
+ __ ret(0); |
+ |
+ // The number comparison code did not provide a valid result. |
+ __ bind(&non_number_comparison); |
+ } |
+ |
+ // Fast negative check for symbol-to-symbol equality. |
+ Label check_for_strings; |
+ if (cc_ == equal) { |
+ BranchIfNonSymbol(masm, &check_for_strings, rax, kScratchRegister); |
+ BranchIfNonSymbol(masm, &check_for_strings, rdx, kScratchRegister); |
+ |
+ // We've already checked for object identity, so if both operands |
+ // are symbols they aren't equal. Register eax (not rax) already holds a |
+ // non-zero value, which indicates not equal, so just return. |
+ __ ret(0); |
+ } |
+ |
+ __ bind(&check_for_strings); |
+ |
+ __ JumpIfNotBothSequentialAsciiStrings( |
+ rdx, rax, rcx, rbx, &check_unequal_objects); |
+ |
+ // Inline comparison of ascii strings. |
+ StringCompareStub::GenerateCompareFlatAsciiStrings(masm, |
+ rdx, |
+ rax, |
+ rcx, |
+ rbx, |
+ rdi, |
+ r8); |
+ |
+#ifdef DEBUG |
+ __ Abort("Unexpected fall-through from string comparison"); |
+#endif |
+ |
+ __ bind(&check_unequal_objects); |
+ if (cc_ == equal && !strict_) { |
+ // Not strict equality. Objects are unequal if |
+ // they are both JSObjects and not undetectable, |
+ // and their pointers are different. |
+ Label not_both_objects, return_unequal; |
+ // At most one is a smi, so we can test for smi by adding the two. |
+ // A smi plus a heap object has the low bit set, a heap object plus |
+ // a heap object has the low bit clear. |
+ STATIC_ASSERT(kSmiTag == 0); |
+ STATIC_ASSERT(kSmiTagMask == 1); |
+ __ lea(rcx, Operand(rax, rdx, times_1, 0)); |
+ __ testb(rcx, Immediate(kSmiTagMask)); |
+ __ j(not_zero, ¬_both_objects); |
+ __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rbx); |
+ __ j(below, ¬_both_objects); |
+ __ CmpObjectType(rdx, FIRST_JS_OBJECT_TYPE, rcx); |
+ __ j(below, ¬_both_objects); |
+ __ testb(FieldOperand(rbx, Map::kBitFieldOffset), |
+ Immediate(1 << Map::kIsUndetectable)); |
+ __ j(zero, &return_unequal); |
+ __ testb(FieldOperand(rcx, Map::kBitFieldOffset), |
+ Immediate(1 << Map::kIsUndetectable)); |
+ __ j(zero, &return_unequal); |
+ // The objects are both undetectable, so they both compare as the value |
+ // undefined, and are equal. |
+ __ Set(rax, EQUAL); |
+ __ bind(&return_unequal); |
+ // Return non-equal by returning the non-zero object pointer in eax, |
+ // or return equal if we fell through to here. |
+ __ ret(0); |
+ __ bind(¬_both_objects); |
+ } |
+ |
+ // Push arguments below the return address to prepare jump to builtin. |
+ __ pop(rcx); |
+ __ push(rdx); |
+ __ push(rax); |
+ |
+ // Figure out which native to call and setup the arguments. |
+ Builtins::JavaScript builtin; |
+ if (cc_ == equal) { |
+ builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; |
+ } else { |
+ builtin = Builtins::COMPARE; |
+ __ Push(Smi::FromInt(NegativeComparisonResult(cc_))); |
+ } |
+ |
+ // Restore return address on the stack. |
+ __ push(rcx); |
+ |
+ // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) |
+ // tagged as a small integer. |
+ __ InvokeBuiltin(builtin, JUMP_FUNCTION); |
+} |
+ |
+ |
+void CompareStub::BranchIfNonSymbol(MacroAssembler* masm, |
+ Label* label, |
+ Register object, |
+ Register scratch) { |
+ __ JumpIfSmi(object, label); |
+ __ movq(scratch, FieldOperand(object, HeapObject::kMapOffset)); |
+ __ movzxbq(scratch, |
+ FieldOperand(scratch, Map::kInstanceTypeOffset)); |
+ // Ensure that no non-strings have the symbol bit set. |
+ STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask); |
+ STATIC_ASSERT(kSymbolTag != 0); |
+ __ testb(scratch, Immediate(kIsSymbolMask)); |
+ __ j(zero, label); |
+} |
+ |
+ |
+void StackCheckStub::Generate(MacroAssembler* masm) { |
+ // Because builtins always remove the receiver from the stack, we |
+ // have to fake one to avoid underflowing the stack. The receiver |
+ // must be inserted below the return address on the stack so we |
+ // temporarily store that in a register. |
+ __ pop(rax); |
+ __ Push(Smi::FromInt(0)); |
+ __ push(rax); |
+ |
+ // Do tail-call to runtime routine. |
+ __ TailCallRuntime(Runtime::kStackGuard, 1, 1); |
+} |
+ |
+ |
+void CallFunctionStub::Generate(MacroAssembler* masm) { |
+ Label slow; |
+ |
+ // If the receiver might be a value (string, number or boolean) check for this |
+ // and box it if it is. |
+ if (ReceiverMightBeValue()) { |
+ // Get the receiver from the stack. |
+ // +1 ~ return address |
+ Label receiver_is_value, receiver_is_js_object; |
+ __ movq(rax, Operand(rsp, (argc_ + 1) * kPointerSize)); |
+ |
+ // Check if receiver is a smi (which is a number value). |
+ __ JumpIfSmi(rax, &receiver_is_value); |
+ |
+ // Check if the receiver is a valid JS object. |
+ __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rdi); |
+ __ j(above_equal, &receiver_is_js_object); |
+ |
+ // Call the runtime to box the value. |
+ __ bind(&receiver_is_value); |
+ __ EnterInternalFrame(); |
+ __ push(rax); |
+ __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); |
+ __ LeaveInternalFrame(); |
+ __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rax); |
+ |
+ __ bind(&receiver_is_js_object); |
+ } |
+ |
+ // Get the function to call from the stack. |
+ // +2 ~ receiver, return address |
+ __ movq(rdi, Operand(rsp, (argc_ + 2) * kPointerSize)); |
+ |
+ // Check that the function really is a JavaScript function. |
+ __ JumpIfSmi(rdi, &slow); |
+ // Goto slow case if we do not have a function. |
+ __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); |
+ __ j(not_equal, &slow); |
+ |
+ // Fast-case: Just invoke the function. |
+ ParameterCount actual(argc_); |
+ __ InvokeFunction(rdi, actual, JUMP_FUNCTION); |
+ |
+ // Slow-case: Non-function called. |
+ __ bind(&slow); |
+ // CALL_NON_FUNCTION expects the non-function callee as receiver (instead |
+ // of the original receiver from the call site). |
+ __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rdi); |
+ __ Set(rax, argc_); |
+ __ Set(rbx, 0); |
+ __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION); |
+ Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)); |
+ __ Jump(adaptor, RelocInfo::CODE_TARGET); |
+} |
+ |
+ |
+void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) { |
+ // Check that stack should contain next handler, frame pointer, state and |
+ // return address in that order. |
+ STATIC_ASSERT(StackHandlerConstants::kFPOffset + kPointerSize == |
+ StackHandlerConstants::kStateOffset); |
+ STATIC_ASSERT(StackHandlerConstants::kStateOffset + kPointerSize == |
+ StackHandlerConstants::kPCOffset); |
+ |
+ ExternalReference handler_address(Top::k_handler_address); |
+ __ movq(kScratchRegister, handler_address); |
+ __ movq(rsp, Operand(kScratchRegister, 0)); |
+ // get next in chain |
+ __ pop(rcx); |
+ __ movq(Operand(kScratchRegister, 0), rcx); |
+ __ pop(rbp); // pop frame pointer |
+ __ pop(rdx); // remove state |
+ |
+ // Before returning we restore the context from the frame pointer if not NULL. |
+ // The frame pointer is NULL in the exception handler of a JS entry frame. |
+ __ xor_(rsi, rsi); // tentatively set context pointer to NULL |
+ Label skip; |
+ __ cmpq(rbp, Immediate(0)); |
+ __ j(equal, &skip); |
+ __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); |
+ __ bind(&skip); |
+ __ ret(0); |
+} |
+ |
+ |
+void ApiGetterEntryStub::Generate(MacroAssembler* masm) { |
+ Label empty_result; |
+ Label prologue; |
+ Label promote_scheduled_exception; |
+ __ EnterApiExitFrame(ExitFrame::MODE_NORMAL, kStackSpace, 0); |
+ ASSERT_EQ(kArgc, 4); |
+#ifdef _WIN64 |
+ // All the parameters should be set up by a caller. |
+#else |
+ // Set 1st parameter register with property name. |
+ __ movq(rsi, rdx); |
+ // Second parameter register rdi should be set with pointer to AccessorInfo |
+ // by a caller. |
+#endif |
+ // Call the api function! |
+ __ movq(rax, |
+ reinterpret_cast<int64_t>(fun()->address()), |
+ RelocInfo::RUNTIME_ENTRY); |
+ __ call(rax); |
+ // Check if the function scheduled an exception. |
+ ExternalReference scheduled_exception_address = |
+ ExternalReference::scheduled_exception_address(); |
+ __ movq(rsi, scheduled_exception_address); |
+ __ Cmp(Operand(rsi, 0), Factory::the_hole_value()); |
+ __ j(not_equal, &promote_scheduled_exception); |
+#ifdef _WIN64 |
+ // rax keeps a pointer to v8::Handle, unpack it. |
+ __ movq(rax, Operand(rax, 0)); |
+#endif |
+ // Check if the result handle holds 0. |
+ __ testq(rax, rax); |
+ __ j(zero, &empty_result); |
+ // It was non-zero. Dereference to get the result value. |
+ __ movq(rax, Operand(rax, 0)); |
+ __ bind(&prologue); |
+ __ LeaveExitFrame(ExitFrame::MODE_NORMAL); |
+ __ ret(0); |
+ __ bind(&promote_scheduled_exception); |
+ __ TailCallRuntime(Runtime::kPromoteScheduledException, 0, 1); |
+ __ bind(&empty_result); |
+ // It was zero; the result is undefined. |
+ __ Move(rax, Factory::undefined_value()); |
+ __ jmp(&prologue); |
+} |
+ |
+ |
+void CEntryStub::GenerateCore(MacroAssembler* masm, |
+ Label* throw_normal_exception, |
+ Label* throw_termination_exception, |
+ Label* throw_out_of_memory_exception, |
+ bool do_gc, |
+ bool always_allocate_scope, |
+ int /* alignment_skew */) { |
+ // rax: result parameter for PerformGC, if any. |
+ // rbx: pointer to C function (C callee-saved). |
+ // rbp: frame pointer (restored after C call). |
+ // rsp: stack pointer (restored after C call). |
+ // r14: number of arguments including receiver (C callee-saved). |
+ // r12: pointer to the first argument (C callee-saved). |
+ // This pointer is reused in LeaveExitFrame(), so it is stored in a |
+ // callee-saved register. |
+ |
+ // Simple results returned in rax (both AMD64 and Win64 calling conventions). |
+ // Complex results must be written to address passed as first argument. |
+ // AMD64 calling convention: a struct of two pointers in rax+rdx |
+ |
+ // Check stack alignment. |
+ if (FLAG_debug_code) { |
+ __ CheckStackAlignment(); |
+ } |
+ |
+ if (do_gc) { |
+ // Pass failure code returned from last attempt as first argument to |
+ // PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the |
+ // stack is known to be aligned. This function takes one argument which is |
+ // passed in register. |
+#ifdef _WIN64 |
+ __ movq(rcx, rax); |
+#else // _WIN64 |
+ __ movq(rdi, rax); |
+#endif |
+ __ movq(kScratchRegister, |
+ FUNCTION_ADDR(Runtime::PerformGC), |
+ RelocInfo::RUNTIME_ENTRY); |
+ __ call(kScratchRegister); |
+ } |
+ |
+ ExternalReference scope_depth = |
+ ExternalReference::heap_always_allocate_scope_depth(); |
+ if (always_allocate_scope) { |
+ __ movq(kScratchRegister, scope_depth); |
+ __ incl(Operand(kScratchRegister, 0)); |
+ } |
+ |
+ // Call C function. |
+#ifdef _WIN64 |
+ // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9 |
+ // Store Arguments object on stack, below the 4 WIN64 ABI parameter slots. |
+ __ movq(Operand(rsp, 4 * kPointerSize), r14); // argc. |
+ __ movq(Operand(rsp, 5 * kPointerSize), r12); // argv. |
+ if (result_size_ < 2) { |
+ // Pass a pointer to the Arguments object as the first argument. |
+ // Return result in single register (rax). |
+ __ lea(rcx, Operand(rsp, 4 * kPointerSize)); |
+ } else { |
+ ASSERT_EQ(2, result_size_); |
+ // Pass a pointer to the result location as the first argument. |
+ __ lea(rcx, Operand(rsp, 6 * kPointerSize)); |
+ // Pass a pointer to the Arguments object as the second argument. |
+ __ lea(rdx, Operand(rsp, 4 * kPointerSize)); |
+ } |
+ |
+#else // _WIN64 |
+ // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9. |
+ __ movq(rdi, r14); // argc. |
+ __ movq(rsi, r12); // argv. |
+#endif |
+ __ call(rbx); |
+ // Result is in rax - do not destroy this register! |
+ |
+ if (always_allocate_scope) { |
+ __ movq(kScratchRegister, scope_depth); |
+ __ decl(Operand(kScratchRegister, 0)); |
+ } |
+ |
+ // Check for failure result. |
+ Label failure_returned; |
+ STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); |
+#ifdef _WIN64 |
+ // If return value is on the stack, pop it to registers. |
+ if (result_size_ > 1) { |
+ ASSERT_EQ(2, result_size_); |
+ // Read result values stored on stack. Result is stored |
+ // above the four argument mirror slots and the two |
+ // Arguments object slots. |
+ __ movq(rax, Operand(rsp, 6 * kPointerSize)); |
+ __ movq(rdx, Operand(rsp, 7 * kPointerSize)); |
+ } |
+#endif |
+ __ lea(rcx, Operand(rax, 1)); |
+ // Lower 2 bits of rcx are 0 iff rax has failure tag. |
+ __ testl(rcx, Immediate(kFailureTagMask)); |
+ __ j(zero, &failure_returned); |
+ |
+ // Exit the JavaScript to C++ exit frame. |
+ __ LeaveExitFrame(mode_, result_size_); |
+ __ ret(0); |
+ |
+ // Handling of failure. |
+ __ bind(&failure_returned); |
+ |
+ Label retry; |
+ // If the returned exception is RETRY_AFTER_GC continue at retry label |
+ STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0); |
+ __ testl(rax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); |
+ __ j(zero, &retry); |
+ |
+ // Special handling of out of memory exceptions. |
+ __ movq(kScratchRegister, Failure::OutOfMemoryException(), RelocInfo::NONE); |
+ __ cmpq(rax, kScratchRegister); |
+ __ j(equal, throw_out_of_memory_exception); |
+ |
+ // Retrieve the pending exception and clear the variable. |
+ ExternalReference pending_exception_address(Top::k_pending_exception_address); |
+ __ movq(kScratchRegister, pending_exception_address); |
+ __ movq(rax, Operand(kScratchRegister, 0)); |
+ __ movq(rdx, ExternalReference::the_hole_value_location()); |
+ __ movq(rdx, Operand(rdx, 0)); |
+ __ movq(Operand(kScratchRegister, 0), rdx); |
+ |
+ // Special handling of termination exceptions which are uncatchable |
+ // by javascript code. |
+ __ CompareRoot(rax, Heap::kTerminationExceptionRootIndex); |
+ __ j(equal, throw_termination_exception); |
+ |
+ // Handle normal exception. |
+ __ jmp(throw_normal_exception); |
+ |
+ // Retry. |
+ __ bind(&retry); |
+} |
+ |
+ |
+void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm, |
+ UncatchableExceptionType type) { |
+ // Fetch top stack handler. |
+ ExternalReference handler_address(Top::k_handler_address); |
+ __ movq(kScratchRegister, handler_address); |
+ __ movq(rsp, Operand(kScratchRegister, 0)); |
+ |
+ // Unwind the handlers until the ENTRY handler is found. |
+ Label loop, done; |
+ __ bind(&loop); |
+ // Load the type of the current stack handler. |
+ const int kStateOffset = StackHandlerConstants::kStateOffset; |
+ __ cmpq(Operand(rsp, kStateOffset), Immediate(StackHandler::ENTRY)); |
+ __ j(equal, &done); |
+ // Fetch the next handler in the list. |
+ const int kNextOffset = StackHandlerConstants::kNextOffset; |
+ __ movq(rsp, Operand(rsp, kNextOffset)); |
+ __ jmp(&loop); |
+ __ bind(&done); |
+ |
+ // Set the top handler address to next handler past the current ENTRY handler. |
+ __ movq(kScratchRegister, handler_address); |
+ __ pop(Operand(kScratchRegister, 0)); |
+ |
+ if (type == OUT_OF_MEMORY) { |
+ // Set external caught exception to false. |
+ ExternalReference external_caught(Top::k_external_caught_exception_address); |
+ __ movq(rax, Immediate(false)); |
+ __ store_rax(external_caught); |
+ |
+ // Set pending exception and rax to out of memory exception. |
+ ExternalReference pending_exception(Top::k_pending_exception_address); |
+ __ movq(rax, Failure::OutOfMemoryException(), RelocInfo::NONE); |
+ __ store_rax(pending_exception); |
+ } |
+ |
+ // Clear the context pointer. |
+ __ xor_(rsi, rsi); |
+ |
+ // Restore registers from handler. |
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset + kPointerSize == |
+ StackHandlerConstants::kFPOffset); |
+ __ pop(rbp); // FP |
+ STATIC_ASSERT(StackHandlerConstants::kFPOffset + kPointerSize == |
+ StackHandlerConstants::kStateOffset); |
+ __ pop(rdx); // State |
+ |
+ STATIC_ASSERT(StackHandlerConstants::kStateOffset + kPointerSize == |
+ StackHandlerConstants::kPCOffset); |
+ __ ret(0); |
+} |
+ |
+ |
+void CEntryStub::Generate(MacroAssembler* masm) { |
+ // rax: number of arguments including receiver |
+ // rbx: pointer to C function (C callee-saved) |
+ // rbp: frame pointer of calling JS frame (restored after C call) |
+ // rsp: stack pointer (restored after C call) |
+ // rsi: current context (restored) |
+ |
+ // NOTE: Invocations of builtins may return failure objects |
+ // instead of a proper result. The builtin entry handles |
+ // this by performing a garbage collection and retrying the |
+ // builtin once. |
+ |
+ // Enter the exit frame that transitions from JavaScript to C++. |
+ __ EnterExitFrame(mode_, result_size_); |
+ |
+ // rax: Holds the context at this point, but should not be used. |
+ // On entry to code generated by GenerateCore, it must hold |
+ // a failure result if the collect_garbage argument to GenerateCore |
+ // is true. This failure result can be the result of code |
+ // generated by a previous call to GenerateCore. The value |
+ // of rax is then passed to Runtime::PerformGC. |
+ // rbx: pointer to builtin function (C callee-saved). |
+ // rbp: frame pointer of exit frame (restored after C call). |
+ // rsp: stack pointer (restored after C call). |
+ // r14: number of arguments including receiver (C callee-saved). |
+ // r12: argv pointer (C callee-saved). |
+ |
+ Label throw_normal_exception; |
+ Label throw_termination_exception; |
+ Label throw_out_of_memory_exception; |
+ |
+ // Call into the runtime system. |
+ GenerateCore(masm, |
+ &throw_normal_exception, |
+ &throw_termination_exception, |
+ &throw_out_of_memory_exception, |
+ false, |
+ false); |
+ |
+ // Do space-specific GC and retry runtime call. |
+ GenerateCore(masm, |
+ &throw_normal_exception, |
+ &throw_termination_exception, |
+ &throw_out_of_memory_exception, |
+ true, |
+ false); |
+ |
+ // Do full GC and retry runtime call one final time. |
+ Failure* failure = Failure::InternalError(); |
+ __ movq(rax, failure, RelocInfo::NONE); |
+ GenerateCore(masm, |
+ &throw_normal_exception, |
+ &throw_termination_exception, |
+ &throw_out_of_memory_exception, |
+ true, |
+ true); |
+ |
+ __ bind(&throw_out_of_memory_exception); |
+ GenerateThrowUncatchable(masm, OUT_OF_MEMORY); |
+ |
+ __ bind(&throw_termination_exception); |
+ GenerateThrowUncatchable(masm, TERMINATION); |
+ |
+ __ bind(&throw_normal_exception); |
+ GenerateThrowTOS(masm); |
+} |
+ |
+ |
+void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { |
+ Label invoke, exit; |
+#ifdef ENABLE_LOGGING_AND_PROFILING |
+ Label not_outermost_js, not_outermost_js_2; |
+#endif |
+ |
+ // Setup frame. |
+ __ push(rbp); |
+ __ movq(rbp, rsp); |
+ |
+ // Push the stack frame type marker twice. |
+ int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; |
+ // Scratch register is neither callee-save, nor an argument register on any |
+ // platform. It's free to use at this point. |
+ // Cannot use smi-register for loading yet. |
+ __ movq(kScratchRegister, |
+ reinterpret_cast<uint64_t>(Smi::FromInt(marker)), |
+ RelocInfo::NONE); |
+ __ push(kScratchRegister); // context slot |
+ __ push(kScratchRegister); // function slot |
+ // Save callee-saved registers (X64/Win64 calling conventions). |
+ __ push(r12); |
+ __ push(r13); |
+ __ push(r14); |
+ __ push(r15); |
+#ifdef _WIN64 |
+ __ push(rdi); // Only callee save in Win64 ABI, argument in AMD64 ABI. |
+ __ push(rsi); // Only callee save in Win64 ABI, argument in AMD64 ABI. |
+#endif |
+ __ push(rbx); |
+ // TODO(X64): On Win64, if we ever use XMM6-XMM15, the low low 64 bits are |
+ // callee save as well. |
+ |
+ // Save copies of the top frame descriptor on the stack. |
+ ExternalReference c_entry_fp(Top::k_c_entry_fp_address); |
+ __ load_rax(c_entry_fp); |
+ __ push(rax); |
+ |
+ // Set up the roots and smi constant registers. |
+ // Needs to be done before any further smi loads. |
+ ExternalReference roots_address = ExternalReference::roots_address(); |
+ __ movq(kRootRegister, roots_address); |
+ __ InitializeSmiConstantRegister(); |
+ |
+#ifdef ENABLE_LOGGING_AND_PROFILING |
+ // If this is the outermost JS call, set js_entry_sp value. |
+ ExternalReference js_entry_sp(Top::k_js_entry_sp_address); |
+ __ load_rax(js_entry_sp); |
+ __ testq(rax, rax); |
+ __ j(not_zero, ¬_outermost_js); |
+ __ movq(rax, rbp); |
+ __ store_rax(js_entry_sp); |
+ __ bind(¬_outermost_js); |
+#endif |
+ |
+ // Call a faked try-block that does the invoke. |
+ __ call(&invoke); |
+ |
+ // Caught exception: Store result (exception) in the pending |
+ // exception field in the JSEnv and return a failure sentinel. |
+ ExternalReference pending_exception(Top::k_pending_exception_address); |
+ __ store_rax(pending_exception); |
+ __ movq(rax, Failure::Exception(), RelocInfo::NONE); |
+ __ jmp(&exit); |
+ |
+ // Invoke: Link this frame into the handler chain. |
+ __ bind(&invoke); |
+ __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER); |
+ |
+ // Clear any pending exceptions. |
+ __ load_rax(ExternalReference::the_hole_value_location()); |
+ __ store_rax(pending_exception); |
+ |
+ // Fake a receiver (NULL). |
+ __ push(Immediate(0)); // receiver |
+ |
+ // Invoke the function by calling through JS entry trampoline |
+ // builtin and pop the faked function when we return. We load the address |
+ // from an external reference instead of inlining the call target address |
+ // directly in the code, because the builtin stubs may not have been |
+ // generated yet at the time this code is generated. |
+ if (is_construct) { |
+ ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline); |
+ __ load_rax(construct_entry); |
+ } else { |
+ ExternalReference entry(Builtins::JSEntryTrampoline); |
+ __ load_rax(entry); |
+ } |
+ __ lea(kScratchRegister, FieldOperand(rax, Code::kHeaderSize)); |
+ __ call(kScratchRegister); |
+ |
+ // Unlink this frame from the handler chain. |
+ __ movq(kScratchRegister, ExternalReference(Top::k_handler_address)); |
+ __ pop(Operand(kScratchRegister, 0)); |
+ // Pop next_sp. |
+ __ addq(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize)); |
+ |
+#ifdef ENABLE_LOGGING_AND_PROFILING |
+ // If current EBP value is the same as js_entry_sp value, it means that |
+ // the current function is the outermost. |
+ __ movq(kScratchRegister, js_entry_sp); |
+ __ cmpq(rbp, Operand(kScratchRegister, 0)); |
+ __ j(not_equal, ¬_outermost_js_2); |
+ __ movq(Operand(kScratchRegister, 0), Immediate(0)); |
+ __ bind(¬_outermost_js_2); |
+#endif |
+ |
+ // Restore the top frame descriptor from the stack. |
+ __ bind(&exit); |
+ __ movq(kScratchRegister, ExternalReference(Top::k_c_entry_fp_address)); |
+ __ pop(Operand(kScratchRegister, 0)); |
+ |
+ // Restore callee-saved registers (X64 conventions). |
+ __ pop(rbx); |
+#ifdef _WIN64 |
+ // Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI. |
+ __ pop(rsi); |
+ __ pop(rdi); |
+#endif |
+ __ pop(r15); |
+ __ pop(r14); |
+ __ pop(r13); |
+ __ pop(r12); |
+ __ addq(rsp, Immediate(2 * kPointerSize)); // remove markers |
+ |
+ // Restore frame pointer and return. |
+ __ pop(rbp); |
+ __ ret(0); |
+} |
+ |
+ |
+void InstanceofStub::Generate(MacroAssembler* masm) { |
+ // Implements "value instanceof function" operator. |
+ // Expected input state: |
+ // rsp[0] : return address |
+ // rsp[1] : function pointer |
+ // rsp[2] : value |
+ // Returns a bitwise zero to indicate that the value |
+ // is and instance of the function and anything else to |
+ // indicate that the value is not an instance. |
+ |
+ // Get the object - go slow case if it's a smi. |
+ Label slow; |
+ __ movq(rax, Operand(rsp, 2 * kPointerSize)); |
+ __ JumpIfSmi(rax, &slow); |
+ |
+ // Check that the left hand is a JS object. Leave its map in rax. |
+ __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rax); |
+ __ j(below, &slow); |
+ __ CmpInstanceType(rax, LAST_JS_OBJECT_TYPE); |
+ __ j(above, &slow); |
+ |
+ // Get the prototype of the function. |
+ __ movq(rdx, Operand(rsp, 1 * kPointerSize)); |
+ // rdx is function, rax is map. |
+ |
+ // Look up the function and the map in the instanceof cache. |
+ Label miss; |
+ __ CompareRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex); |
+ __ j(not_equal, &miss); |
+ __ CompareRoot(rax, Heap::kInstanceofCacheMapRootIndex); |
+ __ j(not_equal, &miss); |
+ __ LoadRoot(rax, Heap::kInstanceofCacheAnswerRootIndex); |
+ __ ret(2 * kPointerSize); |
+ |
+ __ bind(&miss); |
+ __ TryGetFunctionPrototype(rdx, rbx, &slow); |
+ |
+ // Check that the function prototype is a JS object. |
+ __ JumpIfSmi(rbx, &slow); |
+ __ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, kScratchRegister); |
+ __ j(below, &slow); |
+ __ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE); |
+ __ j(above, &slow); |
+ |
+ // Register mapping: |
+ // rax is object map. |
+ // rdx is function. |
+ // rbx is function prototype. |
+ __ StoreRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex); |
+ __ StoreRoot(rax, Heap::kInstanceofCacheMapRootIndex); |
+ |
+ __ movq(rcx, FieldOperand(rax, Map::kPrototypeOffset)); |
+ |
+ // Loop through the prototype chain looking for the function prototype. |
+ Label loop, is_instance, is_not_instance; |
+ __ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex); |
+ __ bind(&loop); |
+ __ cmpq(rcx, rbx); |
+ __ j(equal, &is_instance); |
+ __ cmpq(rcx, kScratchRegister); |
+ // The code at is_not_instance assumes that kScratchRegister contains a |
+ // non-zero GCable value (the null object in this case). |
+ __ j(equal, &is_not_instance); |
+ __ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset)); |
+ __ movq(rcx, FieldOperand(rcx, Map::kPrototypeOffset)); |
+ __ jmp(&loop); |
+ |
+ __ bind(&is_instance); |
+ __ xorl(rax, rax); |
+ // Store bitwise zero in the cache. This is a Smi in GC terms. |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex); |
+ __ ret(2 * kPointerSize); |
+ |
+ __ bind(&is_not_instance); |
+ // We have to store a non-zero value in the cache. |
+ __ StoreRoot(kScratchRegister, Heap::kInstanceofCacheAnswerRootIndex); |
+ __ ret(2 * kPointerSize); |
+ |
+ // Slow-case: Go through the JavaScript implementation. |
+ __ bind(&slow); |
+ __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); |
+} |
+ |
+ |
+int CompareStub::MinorKey() { |
+ // Encode the three parameters in a unique 16 bit value. To avoid duplicate |
+ // stubs the never NaN NaN condition is only taken into account if the |
+ // condition is equals. |
+ ASSERT(static_cast<unsigned>(cc_) < (1 << 12)); |
+ ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); |
+ return ConditionField::encode(static_cast<unsigned>(cc_)) |
+ | RegisterField::encode(false) // lhs_ and rhs_ are not used |
+ | StrictField::encode(strict_) |
+ | NeverNanNanField::encode(cc_ == equal ? never_nan_nan_ : false) |
+ | IncludeNumberCompareField::encode(include_number_compare_); |
+} |
+ |
+ |
+// Unfortunately you have to run without snapshots to see most of these |
+// names in the profile since most compare stubs end up in the snapshot. |
+const char* CompareStub::GetName() { |
+ ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); |
+ |
+ if (name_ != NULL) return name_; |
+ const int kMaxNameLength = 100; |
+ name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength); |
+ if (name_ == NULL) return "OOM"; |
+ |
+ const char* cc_name; |
+ switch (cc_) { |
+ case less: cc_name = "LT"; break; |
+ case greater: cc_name = "GT"; break; |
+ case less_equal: cc_name = "LE"; break; |
+ case greater_equal: cc_name = "GE"; break; |
+ case equal: cc_name = "EQ"; break; |
+ case not_equal: cc_name = "NE"; break; |
+ default: cc_name = "UnknownCondition"; break; |
+ } |
+ |
+ const char* strict_name = ""; |
+ if (strict_ && (cc_ == equal || cc_ == not_equal)) { |
+ strict_name = "_STRICT"; |
+ } |
+ |
+ const char* never_nan_nan_name = ""; |
+ if (never_nan_nan_ && (cc_ == equal || cc_ == not_equal)) { |
+ never_nan_nan_name = "_NO_NAN"; |
+ } |
+ |
+ const char* include_number_compare_name = ""; |
+ if (!include_number_compare_) { |
+ include_number_compare_name = "_NO_NUMBER"; |
+ } |
+ |
+ OS::SNPrintF(Vector<char>(name_, kMaxNameLength), |
+ "CompareStub_%s%s%s%s", |
+ cc_name, |
+ strict_name, |
+ never_nan_nan_name, |
+ include_number_compare_name); |
+ return name_; |
+} |
+ |
+ |
+// ------------------------------------------------------------------------- |
+// StringCharCodeAtGenerator |
+ |
+void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { |
+ Label flat_string; |
+ Label ascii_string; |
+ Label got_char_code; |
+ |
+ // If the receiver is a smi trigger the non-string case. |
+ __ JumpIfSmi(object_, receiver_not_string_); |
+ |
+ // Fetch the instance type of the receiver into result register. |
+ __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset)); |
+ __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); |
+ // If the receiver is not a string trigger the non-string case. |
+ __ testb(result_, Immediate(kIsNotStringMask)); |
+ __ j(not_zero, receiver_not_string_); |
+ |
+ // If the index is non-smi trigger the non-smi case. |
+ __ JumpIfNotSmi(index_, &index_not_smi_); |
+ |
+ // Put smi-tagged index into scratch register. |
+ __ movq(scratch_, index_); |
+ __ bind(&got_smi_index_); |
+ |
+ // Check for index out of range. |
+ __ SmiCompare(scratch_, FieldOperand(object_, String::kLengthOffset)); |
+ __ j(above_equal, index_out_of_range_); |
+ |
+ // We need special handling for non-flat strings. |
+ STATIC_ASSERT(kSeqStringTag == 0); |
+ __ testb(result_, Immediate(kStringRepresentationMask)); |
+ __ j(zero, &flat_string); |
+ |
+ // Handle non-flat strings. |
+ __ testb(result_, Immediate(kIsConsStringMask)); |
+ __ j(zero, &call_runtime_); |
+ |
+ // ConsString. |
+ // Check whether the right hand side is the empty string (i.e. if |
+ // this is really a flat string in a cons string). If that is not |
+ // the case we would rather go to the runtime system now to flatten |
+ // the string. |
+ __ CompareRoot(FieldOperand(object_, ConsString::kSecondOffset), |
+ Heap::kEmptyStringRootIndex); |
+ __ j(not_equal, &call_runtime_); |
+ // Get the first of the two strings and load its instance type. |
+ __ movq(object_, FieldOperand(object_, ConsString::kFirstOffset)); |
+ __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset)); |
+ __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); |
+ // If the first cons component is also non-flat, then go to runtime. |
+ STATIC_ASSERT(kSeqStringTag == 0); |
+ __ testb(result_, Immediate(kStringRepresentationMask)); |
+ __ j(not_zero, &call_runtime_); |
+ |
+ // Check for 1-byte or 2-byte string. |
+ __ bind(&flat_string); |
+ STATIC_ASSERT(kAsciiStringTag != 0); |
+ __ testb(result_, Immediate(kStringEncodingMask)); |
+ __ j(not_zero, &ascii_string); |
+ |
+ // 2-byte string. |
+ // Load the 2-byte character code into the result register. |
+ __ SmiToInteger32(scratch_, scratch_); |
+ __ movzxwl(result_, FieldOperand(object_, |
+ scratch_, times_2, |
+ SeqTwoByteString::kHeaderSize)); |
+ __ jmp(&got_char_code); |
+ |
+ // ASCII string. |
+ // Load the byte into the result register. |
+ __ bind(&ascii_string); |
+ __ SmiToInteger32(scratch_, scratch_); |
+ __ movzxbl(result_, FieldOperand(object_, |
+ scratch_, times_1, |
+ SeqAsciiString::kHeaderSize)); |
+ __ bind(&got_char_code); |
+ __ Integer32ToSmi(result_, result_); |
+ __ bind(&exit_); |
+} |
+ |
+ |
+void StringCharCodeAtGenerator::GenerateSlow( |
+ MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
+ __ Abort("Unexpected fallthrough to CharCodeAt slow case"); |
+ |
+ // Index is not a smi. |
+ __ bind(&index_not_smi_); |
+ // If index is a heap number, try converting it to an integer. |
+ __ CheckMap(index_, Factory::heap_number_map(), index_not_number_, true); |
+ call_helper.BeforeCall(masm); |
+ __ push(object_); |
+ __ push(index_); |
+ __ push(index_); // Consumed by runtime conversion function. |
+ if (index_flags_ == STRING_INDEX_IS_NUMBER) { |
+ __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); |
+ } else { |
+ ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); |
+ // NumberToSmi discards numbers that are not exact integers. |
+ __ CallRuntime(Runtime::kNumberToSmi, 1); |
+ } |
+ if (!scratch_.is(rax)) { |
+ // Save the conversion result before the pop instructions below |
+ // have a chance to overwrite it. |
+ __ movq(scratch_, rax); |
+ } |
+ __ pop(index_); |
+ __ pop(object_); |
+ // Reload the instance type. |
+ __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset)); |
+ __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); |
+ call_helper.AfterCall(masm); |
+ // If index is still not a smi, it must be out of range. |
+ __ JumpIfNotSmi(scratch_, index_out_of_range_); |
+ // Otherwise, return to the fast path. |
+ __ jmp(&got_smi_index_); |
+ |
+ // Call runtime. We get here when the receiver is a string and the |
+ // index is a number, but the code of getting the actual character |
+ // is too complex (e.g., when the string needs to be flattened). |
+ __ bind(&call_runtime_); |
+ call_helper.BeforeCall(masm); |
+ __ push(object_); |
+ __ push(index_); |
+ __ CallRuntime(Runtime::kStringCharCodeAt, 2); |
+ if (!result_.is(rax)) { |
+ __ movq(result_, rax); |
+ } |
+ call_helper.AfterCall(masm); |
+ __ jmp(&exit_); |
+ |
+ __ Abort("Unexpected fallthrough from CharCodeAt slow case"); |
+} |
+ |
+ |
+// ------------------------------------------------------------------------- |
+// StringCharFromCodeGenerator |
+ |
+void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { |
+ // Fast case of Heap::LookupSingleCharacterStringFromCode. |
+ __ JumpIfNotSmi(code_, &slow_case_); |
+ __ SmiCompare(code_, Smi::FromInt(String::kMaxAsciiCharCode)); |
+ __ j(above, &slow_case_); |
+ |
+ __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); |
+ SmiIndex index = masm->SmiToIndex(kScratchRegister, code_, kPointerSizeLog2); |
+ __ movq(result_, FieldOperand(result_, index.reg, index.scale, |
+ FixedArray::kHeaderSize)); |
+ __ CompareRoot(result_, Heap::kUndefinedValueRootIndex); |
+ __ j(equal, &slow_case_); |
+ __ bind(&exit_); |
+} |
+ |
+ |
+void StringCharFromCodeGenerator::GenerateSlow( |
+ MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
+ __ Abort("Unexpected fallthrough to CharFromCode slow case"); |
+ |
+ __ bind(&slow_case_); |
+ call_helper.BeforeCall(masm); |
+ __ push(code_); |
+ __ CallRuntime(Runtime::kCharFromCode, 1); |
+ if (!result_.is(rax)) { |
+ __ movq(result_, rax); |
+ } |
+ call_helper.AfterCall(masm); |
+ __ jmp(&exit_); |
+ |
+ __ Abort("Unexpected fallthrough from CharFromCode slow case"); |
+} |
+ |
+ |
+// ------------------------------------------------------------------------- |
+// StringCharAtGenerator |
+ |
+void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) { |
+ char_code_at_generator_.GenerateFast(masm); |
+ char_from_code_generator_.GenerateFast(masm); |
+} |
+ |
+ |
+void StringCharAtGenerator::GenerateSlow( |
+ MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
+ char_code_at_generator_.GenerateSlow(masm, call_helper); |
+ char_from_code_generator_.GenerateSlow(masm, call_helper); |
+} |
+ |
+ |
+void StringAddStub::Generate(MacroAssembler* masm) { |
+ Label string_add_runtime; |
+ |
+ // Load the two arguments. |
+ __ movq(rax, Operand(rsp, 2 * kPointerSize)); // First argument. |
+ __ movq(rdx, Operand(rsp, 1 * kPointerSize)); // Second argument. |
+ |
+ // Make sure that both arguments are strings if not known in advance. |
+ if (string_check_) { |
+ Condition is_smi; |
+ is_smi = masm->CheckSmi(rax); |
+ __ j(is_smi, &string_add_runtime); |
+ __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, r8); |
+ __ j(above_equal, &string_add_runtime); |
+ |
+ // First argument is a a string, test second. |
+ is_smi = masm->CheckSmi(rdx); |
+ __ j(is_smi, &string_add_runtime); |
+ __ CmpObjectType(rdx, FIRST_NONSTRING_TYPE, r9); |
+ __ j(above_equal, &string_add_runtime); |
+ } |
+ |
+ // Both arguments are strings. |
+ // rax: first string |
+ // rdx: second string |
+ // Check if either of the strings are empty. In that case return the other. |
+ Label second_not_zero_length, both_not_zero_length; |
+ __ movq(rcx, FieldOperand(rdx, String::kLengthOffset)); |
+ __ SmiTest(rcx); |
+ __ j(not_zero, &second_not_zero_length); |
+ // Second string is empty, result is first string which is already in rax. |
+ __ IncrementCounter(&Counters::string_add_native, 1); |
+ __ ret(2 * kPointerSize); |
+ __ bind(&second_not_zero_length); |
+ __ movq(rbx, FieldOperand(rax, String::kLengthOffset)); |
+ __ SmiTest(rbx); |
+ __ j(not_zero, &both_not_zero_length); |
+ // First string is empty, result is second string which is in rdx. |
+ __ movq(rax, rdx); |
+ __ IncrementCounter(&Counters::string_add_native, 1); |
+ __ ret(2 * kPointerSize); |
+ |
+ // Both strings are non-empty. |
+ // rax: first string |
+ // rbx: length of first string |
+ // rcx: length of second string |
+ // rdx: second string |
+ // r8: map of first string if string check was performed above |
+ // r9: map of second string if string check was performed above |
+ Label string_add_flat_result, longer_than_two; |
+ __ bind(&both_not_zero_length); |
+ |
+ // If arguments where known to be strings, maps are not loaded to r8 and r9 |
+ // by the code above. |
+ if (!string_check_) { |
+ __ movq(r8, FieldOperand(rax, HeapObject::kMapOffset)); |
+ __ movq(r9, FieldOperand(rdx, HeapObject::kMapOffset)); |
+ } |
+ // Get the instance types of the two strings as they will be needed soon. |
+ __ movzxbl(r8, FieldOperand(r8, Map::kInstanceTypeOffset)); |
+ __ movzxbl(r9, FieldOperand(r9, Map::kInstanceTypeOffset)); |
+ |
+ // Look at the length of the result of adding the two strings. |
+ STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue / 2); |
+ __ SmiAdd(rbx, rbx, rcx, NULL); |
+ // Use the runtime system when adding two one character strings, as it |
+ // contains optimizations for this specific case using the symbol table. |
+ __ SmiCompare(rbx, Smi::FromInt(2)); |
+ __ j(not_equal, &longer_than_two); |
+ |
+ // Check that both strings are non-external ascii strings. |
+ __ JumpIfBothInstanceTypesAreNotSequentialAscii(r8, r9, rbx, rcx, |
+ &string_add_runtime); |
+ |
+ // Get the two characters forming the sub string. |
+ __ movzxbq(rbx, FieldOperand(rax, SeqAsciiString::kHeaderSize)); |
+ __ movzxbq(rcx, FieldOperand(rdx, SeqAsciiString::kHeaderSize)); |
+ |
+ // Try to lookup two character string in symbol table. If it is not found |
+ // just allocate a new one. |
+ Label make_two_character_string, make_flat_ascii_string; |
+ StringHelper::GenerateTwoCharacterSymbolTableProbe( |
+ masm, rbx, rcx, r14, r11, rdi, r12, &make_two_character_string); |
+ __ IncrementCounter(&Counters::string_add_native, 1); |
+ __ ret(2 * kPointerSize); |
+ |
+ __ bind(&make_two_character_string); |
+ __ Set(rbx, 2); |
+ __ jmp(&make_flat_ascii_string); |
+ |
+ __ bind(&longer_than_two); |
+ // Check if resulting string will be flat. |
+ __ SmiCompare(rbx, Smi::FromInt(String::kMinNonFlatLength)); |
+ __ j(below, &string_add_flat_result); |
+ // Handle exceptionally long strings in the runtime system. |
+ STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0); |
+ __ SmiCompare(rbx, Smi::FromInt(String::kMaxLength)); |
+ __ j(above, &string_add_runtime); |
+ |
+ // If result is not supposed to be flat, allocate a cons string object. If |
+ // both strings are ascii the result is an ascii cons string. |
+ // rax: first string |
+ // rbx: length of resulting flat string |
+ // rdx: second string |
+ // r8: instance type of first string |
+ // r9: instance type of second string |
+ Label non_ascii, allocated, ascii_data; |
+ __ movl(rcx, r8); |
+ __ and_(rcx, r9); |
+ STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag); |
+ __ testl(rcx, Immediate(kAsciiStringTag)); |
+ __ j(zero, &non_ascii); |
+ __ bind(&ascii_data); |
+ // Allocate an acsii cons string. |
+ __ AllocateAsciiConsString(rcx, rdi, no_reg, &string_add_runtime); |
+ __ bind(&allocated); |
+ // Fill the fields of the cons string. |
+ __ movq(FieldOperand(rcx, ConsString::kLengthOffset), rbx); |
+ __ movq(FieldOperand(rcx, ConsString::kHashFieldOffset), |
+ Immediate(String::kEmptyHashField)); |
+ __ movq(FieldOperand(rcx, ConsString::kFirstOffset), rax); |
+ __ movq(FieldOperand(rcx, ConsString::kSecondOffset), rdx); |
+ __ movq(rax, rcx); |
+ __ IncrementCounter(&Counters::string_add_native, 1); |
+ __ ret(2 * kPointerSize); |
+ __ bind(&non_ascii); |
+ // At least one of the strings is two-byte. Check whether it happens |
+ // to contain only ascii characters. |
+ // rcx: first instance type AND second instance type. |
+ // r8: first instance type. |
+ // r9: second instance type. |
+ __ testb(rcx, Immediate(kAsciiDataHintMask)); |
+ __ j(not_zero, &ascii_data); |
+ __ xor_(r8, r9); |
+ STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0); |
+ __ andb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag)); |
+ __ cmpb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag)); |
+ __ j(equal, &ascii_data); |
+ // Allocate a two byte cons string. |
+ __ AllocateConsString(rcx, rdi, no_reg, &string_add_runtime); |
+ __ jmp(&allocated); |
+ |
+ // Handle creating a flat result. First check that both strings are not |
+ // external strings. |
+ // rax: first string |
+ // rbx: length of resulting flat string as smi |
+ // rdx: second string |
+ // r8: instance type of first string |
+ // r9: instance type of first string |
+ __ bind(&string_add_flat_result); |
+ __ SmiToInteger32(rbx, rbx); |
+ __ movl(rcx, r8); |
+ __ and_(rcx, Immediate(kStringRepresentationMask)); |
+ __ cmpl(rcx, Immediate(kExternalStringTag)); |
+ __ j(equal, &string_add_runtime); |
+ __ movl(rcx, r9); |
+ __ and_(rcx, Immediate(kStringRepresentationMask)); |
+ __ cmpl(rcx, Immediate(kExternalStringTag)); |
+ __ j(equal, &string_add_runtime); |
+ // Now check if both strings are ascii strings. |
+ // rax: first string |
+ // rbx: length of resulting flat string |
+ // rdx: second string |
+ // r8: instance type of first string |
+ // r9: instance type of second string |
+ Label non_ascii_string_add_flat_result; |
+ STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag); |
+ __ testl(r8, Immediate(kAsciiStringTag)); |
+ __ j(zero, &non_ascii_string_add_flat_result); |
+ __ testl(r9, Immediate(kAsciiStringTag)); |
+ __ j(zero, &string_add_runtime); |
+ |
+ __ bind(&make_flat_ascii_string); |
+ // Both strings are ascii strings. As they are short they are both flat. |
+ __ AllocateAsciiString(rcx, rbx, rdi, r14, r11, &string_add_runtime); |
+ // rcx: result string |
+ __ movq(rbx, rcx); |
+ // Locate first character of result. |
+ __ addq(rcx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
+ // Locate first character of first argument |
+ __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset)); |
+ __ addq(rax, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
+ // rax: first char of first argument |
+ // rbx: result string |
+ // rcx: first character of result |
+ // rdx: second string |
+ // rdi: length of first argument |
+ StringHelper::GenerateCopyCharacters(masm, rcx, rax, rdi, true); |
+ // Locate first character of second argument. |
+ __ SmiToInteger32(rdi, FieldOperand(rdx, String::kLengthOffset)); |
+ __ addq(rdx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
+ // rbx: result string |
+ // rcx: next character of result |
+ // rdx: first char of second argument |
+ // rdi: length of second argument |
+ StringHelper::GenerateCopyCharacters(masm, rcx, rdx, rdi, true); |
+ __ movq(rax, rbx); |
+ __ IncrementCounter(&Counters::string_add_native, 1); |
+ __ ret(2 * kPointerSize); |
+ |
+ // Handle creating a flat two byte result. |
+ // rax: first string - known to be two byte |
+ // rbx: length of resulting flat string |
+ // rdx: second string |
+ // r8: instance type of first string |
+ // r9: instance type of first string |
+ __ bind(&non_ascii_string_add_flat_result); |
+ __ and_(r9, Immediate(kAsciiStringTag)); |
+ __ j(not_zero, &string_add_runtime); |
+ // Both strings are two byte strings. As they are short they are both |
+ // flat. |
+ __ AllocateTwoByteString(rcx, rbx, rdi, r14, r11, &string_add_runtime); |
+ // rcx: result string |
+ __ movq(rbx, rcx); |
+ // Locate first character of result. |
+ __ addq(rcx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
+ // Locate first character of first argument. |
+ __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset)); |
+ __ addq(rax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
+ // rax: first char of first argument |
+ // rbx: result string |
+ // rcx: first character of result |
+ // rdx: second argument |
+ // rdi: length of first argument |
+ StringHelper::GenerateCopyCharacters(masm, rcx, rax, rdi, false); |
+ // Locate first character of second argument. |
+ __ SmiToInteger32(rdi, FieldOperand(rdx, String::kLengthOffset)); |
+ __ addq(rdx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
+ // rbx: result string |
+ // rcx: next character of result |
+ // rdx: first char of second argument |
+ // rdi: length of second argument |
+ StringHelper::GenerateCopyCharacters(masm, rcx, rdx, rdi, false); |
+ __ movq(rax, rbx); |
+ __ IncrementCounter(&Counters::string_add_native, 1); |
+ __ ret(2 * kPointerSize); |
+ |
+ // Just jump to runtime to add the two strings. |
+ __ bind(&string_add_runtime); |
+ __ TailCallRuntime(Runtime::kStringAdd, 2, 1); |
+} |
+ |
+ |
+void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, |
+ Register dest, |
+ Register src, |
+ Register count, |
+ bool ascii) { |
+ Label loop; |
+ __ bind(&loop); |
+ // This loop just copies one character at a time, as it is only used for very |
+ // short strings. |
+ if (ascii) { |
+ __ movb(kScratchRegister, Operand(src, 0)); |
+ __ movb(Operand(dest, 0), kScratchRegister); |
+ __ incq(src); |
+ __ incq(dest); |
+ } else { |
+ __ movzxwl(kScratchRegister, Operand(src, 0)); |
+ __ movw(Operand(dest, 0), kScratchRegister); |
+ __ addq(src, Immediate(2)); |
+ __ addq(dest, Immediate(2)); |
+ } |
+ __ decl(count); |
+ __ j(not_zero, &loop); |
+} |
+ |
+ |
+void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm, |
+ Register dest, |
+ Register src, |
+ Register count, |
+ bool ascii) { |
+ // Copy characters using rep movs of doublewords. Align destination on 4 byte |
+ // boundary before starting rep movs. Copy remaining characters after running |
+ // rep movs. |
+ // Count is positive int32, dest and src are character pointers. |
+ ASSERT(dest.is(rdi)); // rep movs destination |
+ ASSERT(src.is(rsi)); // rep movs source |
+ ASSERT(count.is(rcx)); // rep movs count |
+ |
+ // Nothing to do for zero characters. |
+ Label done; |
+ __ testl(count, count); |
+ __ j(zero, &done); |
+ |
+ // Make count the number of bytes to copy. |
+ if (!ascii) { |
+ STATIC_ASSERT(2 == sizeof(uc16)); |
+ __ addl(count, count); |
+ } |
+ |
+ // Don't enter the rep movs if there are less than 4 bytes to copy. |
+ Label last_bytes; |
+ __ testl(count, Immediate(~7)); |
+ __ j(zero, &last_bytes); |
+ |
+ // Copy from edi to esi using rep movs instruction. |
+ __ movl(kScratchRegister, count); |
+ __ shr(count, Immediate(3)); // Number of doublewords to copy. |
+ __ repmovsq(); |
+ |
+ // Find number of bytes left. |
+ __ movl(count, kScratchRegister); |
+ __ and_(count, Immediate(7)); |
+ |
+ // Check if there are more bytes to copy. |
+ __ bind(&last_bytes); |
+ __ testl(count, count); |
+ __ j(zero, &done); |
+ |
+ // Copy remaining characters. |
+ Label loop; |
+ __ bind(&loop); |
+ __ movb(kScratchRegister, Operand(src, 0)); |
+ __ movb(Operand(dest, 0), kScratchRegister); |
+ __ incq(src); |
+ __ incq(dest); |
+ __ decl(count); |
+ __ j(not_zero, &loop); |
+ |
+ __ bind(&done); |
+} |
+ |
+void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, |
+ Register c1, |
+ Register c2, |
+ Register scratch1, |
+ Register scratch2, |
+ Register scratch3, |
+ Register scratch4, |
+ Label* not_found) { |
+ // Register scratch3 is the general scratch register in this function. |
+ Register scratch = scratch3; |
+ |
+ // Make sure that both characters are not digits as such strings has a |
+ // different hash algorithm. Don't try to look for these in the symbol table. |
+ Label not_array_index; |
+ __ leal(scratch, Operand(c1, -'0')); |
+ __ cmpl(scratch, Immediate(static_cast<int>('9' - '0'))); |
+ __ j(above, ¬_array_index); |
+ __ leal(scratch, Operand(c2, -'0')); |
+ __ cmpl(scratch, Immediate(static_cast<int>('9' - '0'))); |
+ __ j(below_equal, not_found); |
+ |
+ __ bind(¬_array_index); |
+ // Calculate the two character string hash. |
+ Register hash = scratch1; |
+ GenerateHashInit(masm, hash, c1, scratch); |
+ GenerateHashAddCharacter(masm, hash, c2, scratch); |
+ GenerateHashGetHash(masm, hash, scratch); |
+ |
+ // Collect the two characters in a register. |
+ Register chars = c1; |
+ __ shl(c2, Immediate(kBitsPerByte)); |
+ __ orl(chars, c2); |
+ |
+ // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
+ // hash: hash of two character string. |
+ |
+ // Load the symbol table. |
+ Register symbol_table = c2; |
+ __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex); |
+ |
+ // Calculate capacity mask from the symbol table capacity. |
+ Register mask = scratch2; |
+ __ SmiToInteger32(mask, |
+ FieldOperand(symbol_table, SymbolTable::kCapacityOffset)); |
+ __ decl(mask); |
+ |
+ Register undefined = scratch4; |
+ __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); |
+ |
+ // Registers |
+ // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
+ // hash: hash of two character string (32-bit int) |
+ // symbol_table: symbol table |
+ // mask: capacity mask (32-bit int) |
+ // undefined: undefined value |
+ // scratch: - |
+ |
+ // Perform a number of probes in the symbol table. |
+ static const int kProbes = 4; |
+ Label found_in_symbol_table; |
+ Label next_probe[kProbes]; |
+ for (int i = 0; i < kProbes; i++) { |
+ // Calculate entry in symbol table. |
+ __ movl(scratch, hash); |
+ if (i > 0) { |
+ __ addl(scratch, Immediate(SymbolTable::GetProbeOffset(i))); |
+ } |
+ __ andl(scratch, mask); |
+ |
+ // Load the entry from the symble table. |
+ Register candidate = scratch; // Scratch register contains candidate. |
+ STATIC_ASSERT(SymbolTable::kEntrySize == 1); |
+ __ movq(candidate, |
+ FieldOperand(symbol_table, |
+ scratch, |
+ times_pointer_size, |
+ SymbolTable::kElementsStartOffset)); |
+ |
+ // If entry is undefined no string with this hash can be found. |
+ __ cmpq(candidate, undefined); |
+ __ j(equal, not_found); |
+ |
+ // If length is not 2 the string is not a candidate. |
+ __ SmiCompare(FieldOperand(candidate, String::kLengthOffset), |
+ Smi::FromInt(2)); |
+ __ j(not_equal, &next_probe[i]); |
+ |
+ // We use kScratchRegister as a temporary register in assumption that |
+ // JumpIfInstanceTypeIsNotSequentialAscii does not use it implicitly |
+ Register temp = kScratchRegister; |
+ |
+ // Check that the candidate is a non-external ascii string. |
+ __ movq(temp, FieldOperand(candidate, HeapObject::kMapOffset)); |
+ __ movzxbl(temp, FieldOperand(temp, Map::kInstanceTypeOffset)); |
+ __ JumpIfInstanceTypeIsNotSequentialAscii( |
+ temp, temp, &next_probe[i]); |
+ |
+ // Check if the two characters match. |
+ __ movl(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize)); |
+ __ andl(temp, Immediate(0x0000ffff)); |
+ __ cmpl(chars, temp); |
+ __ j(equal, &found_in_symbol_table); |
+ __ bind(&next_probe[i]); |
+ } |
+ |
+ // No matching 2 character string found by probing. |
+ __ jmp(not_found); |
+ |
+ // Scratch register contains result when we fall through to here. |
+ Register result = scratch; |
+ __ bind(&found_in_symbol_table); |
+ if (!result.is(rax)) { |
+ __ movq(rax, result); |
+ } |
+} |
+ |
+ |
+void StringHelper::GenerateHashInit(MacroAssembler* masm, |
+ Register hash, |
+ Register character, |
+ Register scratch) { |
+ // hash = character + (character << 10); |
+ __ movl(hash, character); |
+ __ shll(hash, Immediate(10)); |
+ __ addl(hash, character); |
+ // hash ^= hash >> 6; |
+ __ movl(scratch, hash); |
+ __ sarl(scratch, Immediate(6)); |
+ __ xorl(hash, scratch); |
+} |
+ |
+ |
+void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, |
+ Register hash, |
+ Register character, |
+ Register scratch) { |
+ // hash += character; |
+ __ addl(hash, character); |
+ // hash += hash << 10; |
+ __ movl(scratch, hash); |
+ __ shll(scratch, Immediate(10)); |
+ __ addl(hash, scratch); |
+ // hash ^= hash >> 6; |
+ __ movl(scratch, hash); |
+ __ sarl(scratch, Immediate(6)); |
+ __ xorl(hash, scratch); |
+} |
+ |
+ |
+void StringHelper::GenerateHashGetHash(MacroAssembler* masm, |
+ Register hash, |
+ Register scratch) { |
+ // hash += hash << 3; |
+ __ leal(hash, Operand(hash, hash, times_8, 0)); |
+ // hash ^= hash >> 11; |
+ __ movl(scratch, hash); |
+ __ sarl(scratch, Immediate(11)); |
+ __ xorl(hash, scratch); |
+ // hash += hash << 15; |
+ __ movl(scratch, hash); |
+ __ shll(scratch, Immediate(15)); |
+ __ addl(hash, scratch); |
+ |
+ // if (hash == 0) hash = 27; |
+ Label hash_not_zero; |
+ __ j(not_zero, &hash_not_zero); |
+ __ movl(hash, Immediate(27)); |
+ __ bind(&hash_not_zero); |
+} |
+ |
+void SubStringStub::Generate(MacroAssembler* masm) { |
+ Label runtime; |
+ |
+ // Stack frame on entry. |
+ // rsp[0]: return address |
+ // rsp[8]: to |
+ // rsp[16]: from |
+ // rsp[24]: string |
+ |
+ const int kToOffset = 1 * kPointerSize; |
+ const int kFromOffset = kToOffset + kPointerSize; |
+ const int kStringOffset = kFromOffset + kPointerSize; |
+ const int kArgumentsSize = (kStringOffset + kPointerSize) - kToOffset; |
+ |
+ // Make sure first argument is a string. |
+ __ movq(rax, Operand(rsp, kStringOffset)); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ testl(rax, Immediate(kSmiTagMask)); |
+ __ j(zero, &runtime); |
+ Condition is_string = masm->IsObjectStringType(rax, rbx, rbx); |
+ __ j(NegateCondition(is_string), &runtime); |
+ |
+ // rax: string |
+ // rbx: instance type |
+ // Calculate length of sub string using the smi values. |
+ Label result_longer_than_two; |
+ __ movq(rcx, Operand(rsp, kToOffset)); |
+ __ movq(rdx, Operand(rsp, kFromOffset)); |
+ __ JumpIfNotBothPositiveSmi(rcx, rdx, &runtime); |
+ |
+ __ SmiSub(rcx, rcx, rdx, NULL); // Overflow doesn't happen. |
+ __ cmpq(FieldOperand(rax, String::kLengthOffset), rcx); |
+ Label return_rax; |
+ __ j(equal, &return_rax); |
+ // Special handling of sub-strings of length 1 and 2. One character strings |
+ // are handled in the runtime system (looked up in the single character |
+ // cache). Two character strings are looked for in the symbol cache. |
+ __ SmiToInteger32(rcx, rcx); |
+ __ cmpl(rcx, Immediate(2)); |
+ __ j(greater, &result_longer_than_two); |
+ __ j(less, &runtime); |
+ |
+ // Sub string of length 2 requested. |
+ // rax: string |
+ // rbx: instance type |
+ // rcx: sub string length (value is 2) |
+ // rdx: from index (smi) |
+ __ JumpIfInstanceTypeIsNotSequentialAscii(rbx, rbx, &runtime); |
+ |
+ // Get the two characters forming the sub string. |
+ __ SmiToInteger32(rdx, rdx); // From index is no longer smi. |
+ __ movzxbq(rbx, FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize)); |
+ __ movzxbq(rcx, |
+ FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize + 1)); |
+ |
+ // Try to lookup two character string in symbol table. |
+ Label make_two_character_string; |
+ StringHelper::GenerateTwoCharacterSymbolTableProbe( |
+ masm, rbx, rcx, rax, rdx, rdi, r14, &make_two_character_string); |
+ __ ret(3 * kPointerSize); |
+ |
+ __ bind(&make_two_character_string); |
+ // Setup registers for allocating the two character string. |
+ __ movq(rax, Operand(rsp, kStringOffset)); |
+ __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); |
+ __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); |
+ __ Set(rcx, 2); |
+ |
+ __ bind(&result_longer_than_two); |
+ |
+ // rax: string |
+ // rbx: instance type |
+ // rcx: result string length |
+ // Check for flat ascii string |
+ Label non_ascii_flat; |
+ __ JumpIfInstanceTypeIsNotSequentialAscii(rbx, rbx, &non_ascii_flat); |
+ |
+ // Allocate the result. |
+ __ AllocateAsciiString(rax, rcx, rbx, rdx, rdi, &runtime); |
+ |
+ // rax: result string |
+ // rcx: result string length |
+ __ movq(rdx, rsi); // esi used by following code. |
+ // Locate first character of result. |
+ __ lea(rdi, FieldOperand(rax, SeqAsciiString::kHeaderSize)); |
+ // Load string argument and locate character of sub string start. |
+ __ movq(rsi, Operand(rsp, kStringOffset)); |
+ __ movq(rbx, Operand(rsp, kFromOffset)); |
+ { |
+ SmiIndex smi_as_index = masm->SmiToIndex(rbx, rbx, times_1); |
+ __ lea(rsi, Operand(rsi, smi_as_index.reg, smi_as_index.scale, |
+ SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
+ } |
+ |
+ // rax: result string |
+ // rcx: result length |
+ // rdx: original value of rsi |
+ // rdi: first character of result |
+ // rsi: character of sub string start |
+ StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, true); |
+ __ movq(rsi, rdx); // Restore rsi. |
+ __ IncrementCounter(&Counters::sub_string_native, 1); |
+ __ ret(kArgumentsSize); |
+ |
+ __ bind(&non_ascii_flat); |
+ // rax: string |
+ // rbx: instance type & kStringRepresentationMask | kStringEncodingMask |
+ // rcx: result string length |
+ // Check for sequential two byte string |
+ __ cmpb(rbx, Immediate(kSeqStringTag | kTwoByteStringTag)); |
+ __ j(not_equal, &runtime); |
+ |
+ // Allocate the result. |
+ __ AllocateTwoByteString(rax, rcx, rbx, rdx, rdi, &runtime); |
+ |
+ // rax: result string |
+ // rcx: result string length |
+ __ movq(rdx, rsi); // esi used by following code. |
+ // Locate first character of result. |
+ __ lea(rdi, FieldOperand(rax, SeqTwoByteString::kHeaderSize)); |
+ // Load string argument and locate character of sub string start. |
+ __ movq(rsi, Operand(rsp, kStringOffset)); |
+ __ movq(rbx, Operand(rsp, kFromOffset)); |
+ { |
+ SmiIndex smi_as_index = masm->SmiToIndex(rbx, rbx, times_2); |
+ __ lea(rsi, Operand(rsi, smi_as_index.reg, smi_as_index.scale, |
+ SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
+ } |
+ |
+ // rax: result string |
+ // rcx: result length |
+ // rdx: original value of rsi |
+ // rdi: first character of result |
+ // rsi: character of sub string start |
+ StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, false); |
+ __ movq(rsi, rdx); // Restore esi. |
+ |
+ __ bind(&return_rax); |
+ __ IncrementCounter(&Counters::sub_string_native, 1); |
+ __ ret(kArgumentsSize); |
+ |
+ // Just jump to runtime to create the sub string. |
+ __ bind(&runtime); |
+ __ TailCallRuntime(Runtime::kSubString, 3, 1); |
+} |
+ |
+ |
+void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, |
+ Register left, |
+ Register right, |
+ Register scratch1, |
+ Register scratch2, |
+ Register scratch3, |
+ Register scratch4) { |
+ // Ensure that you can always subtract a string length from a non-negative |
+ // number (e.g. another length). |
+ STATIC_ASSERT(String::kMaxLength < 0x7fffffff); |
+ |
+ // Find minimum length and length difference. |
+ __ movq(scratch1, FieldOperand(left, String::kLengthOffset)); |
+ __ movq(scratch4, scratch1); |
+ __ SmiSub(scratch4, |
+ scratch4, |
+ FieldOperand(right, String::kLengthOffset), |
+ NULL); |
+ // Register scratch4 now holds left.length - right.length. |
+ const Register length_difference = scratch4; |
+ Label left_shorter; |
+ __ j(less, &left_shorter); |
+ // The right string isn't longer that the left one. |
+ // Get the right string's length by subtracting the (non-negative) difference |
+ // from the left string's length. |
+ __ SmiSub(scratch1, scratch1, length_difference, NULL); |
+ __ bind(&left_shorter); |
+ // Register scratch1 now holds Min(left.length, right.length). |
+ const Register min_length = scratch1; |
+ |
+ Label compare_lengths; |
+ // If min-length is zero, go directly to comparing lengths. |
+ __ SmiTest(min_length); |
+ __ j(zero, &compare_lengths); |
+ |
+ __ SmiToInteger32(min_length, min_length); |
+ |
+ // Registers scratch2 and scratch3 are free. |
+ Label result_not_equal; |
+ Label loop; |
+ { |
+ // Check characters 0 .. min_length - 1 in a loop. |
+ // Use scratch3 as loop index, min_length as limit and scratch2 |
+ // for computation. |
+ const Register index = scratch3; |
+ __ movl(index, Immediate(0)); // Index into strings. |
+ __ bind(&loop); |
+ // Compare characters. |
+ // TODO(lrn): Could we load more than one character at a time? |
+ __ movb(scratch2, FieldOperand(left, |
+ index, |
+ times_1, |
+ SeqAsciiString::kHeaderSize)); |
+ // Increment index and use -1 modifier on next load to give |
+ // the previous load extra time to complete. |
+ __ addl(index, Immediate(1)); |
+ __ cmpb(scratch2, FieldOperand(right, |
+ index, |
+ times_1, |
+ SeqAsciiString::kHeaderSize - 1)); |
+ __ j(not_equal, &result_not_equal); |
+ __ cmpl(index, min_length); |
+ __ j(not_equal, &loop); |
+ } |
+ // Completed loop without finding different characters. |
+ // Compare lengths (precomputed). |
+ __ bind(&compare_lengths); |
+ __ SmiTest(length_difference); |
+ __ j(not_zero, &result_not_equal); |
+ |
+ // Result is EQUAL. |
+ __ Move(rax, Smi::FromInt(EQUAL)); |
+ __ ret(0); |
+ |
+ Label result_greater; |
+ __ bind(&result_not_equal); |
+ // Unequal comparison of left to right, either character or length. |
+ __ j(greater, &result_greater); |
+ |
+ // Result is LESS. |
+ __ Move(rax, Smi::FromInt(LESS)); |
+ __ ret(0); |
+ |
+ // Result is GREATER. |
+ __ bind(&result_greater); |
+ __ Move(rax, Smi::FromInt(GREATER)); |
+ __ ret(0); |
+} |
+ |
+ |
+void StringCompareStub::Generate(MacroAssembler* masm) { |
+ Label runtime; |
+ |
+ // Stack frame on entry. |
+ // rsp[0]: return address |
+ // rsp[8]: right string |
+ // rsp[16]: left string |
+ |
+ __ movq(rdx, Operand(rsp, 2 * kPointerSize)); // left |
+ __ movq(rax, Operand(rsp, 1 * kPointerSize)); // right |
+ |
+ // Check for identity. |
+ Label not_same; |
+ __ cmpq(rdx, rax); |
+ __ j(not_equal, ¬_same); |
+ __ Move(rax, Smi::FromInt(EQUAL)); |
+ __ IncrementCounter(&Counters::string_compare_native, 1); |
+ __ ret(2 * kPointerSize); |
+ |
+ __ bind(¬_same); |
+ |
+ // Check that both are sequential ASCII strings. |
+ __ JumpIfNotBothSequentialAsciiStrings(rdx, rax, rcx, rbx, &runtime); |
+ |
+ // Inline comparison of ascii strings. |
+ __ IncrementCounter(&Counters::string_compare_native, 1); |
+ // Drop arguments from the stack |
+ __ pop(rcx); |
+ __ addq(rsp, Immediate(2 * kPointerSize)); |
+ __ push(rcx); |
+ GenerateCompareFlatAsciiStrings(masm, rdx, rax, rcx, rbx, rdi, r8); |
+ |
+ // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) |
+ // tagged as a small integer. |
+ __ bind(&runtime); |
+ __ TailCallRuntime(Runtime::kStringCompare, 2, 1); |
+} |
+ |
+#undef __ |
+ |
+} } // namespace v8::internal |
+ |
+#endif // V8_TARGET_ARCH_X64 |
Property changes on: src/x64/code-stubs-x64.cc |
___________________________________________________________________ |
Added: svn:eol-style |
+ LF |