OLD | NEW |
(Empty) | |
| 1 // Copyright 2010 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are |
| 4 // met: |
| 5 // |
| 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided |
| 11 // with the distribution. |
| 12 // * Neither the name of Google Inc. nor the names of its |
| 13 // contributors may be used to endorse or promote products derived |
| 14 // from this software without specific prior written permission. |
| 15 // |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 |
| 28 #include "v8.h" |
| 29 |
| 30 #if defined(V8_TARGET_ARCH_X64) |
| 31 |
| 32 #include "bootstrapper.h" |
| 33 #include "code-stubs-x64.h" |
| 34 #include "codegen-inl.h" |
| 35 #include "regexp-macro-assembler.h" |
| 36 |
| 37 namespace v8 { |
| 38 namespace internal { |
| 39 |
| 40 #define __ ACCESS_MASM(masm) |
| 41 void FastNewClosureStub::Generate(MacroAssembler* masm) { |
| 42 // Create a new closure from the given function info in new |
| 43 // space. Set the context to the current context in rsi. |
| 44 Label gc; |
| 45 __ AllocateInNewSpace(JSFunction::kSize, rax, rbx, rcx, &gc, TAG_OBJECT); |
| 46 |
| 47 // Get the function info from the stack. |
| 48 __ movq(rdx, Operand(rsp, 1 * kPointerSize)); |
| 49 |
| 50 // Compute the function map in the current global context and set that |
| 51 // as the map of the allocated object. |
| 52 __ movq(rcx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| 53 __ movq(rcx, FieldOperand(rcx, GlobalObject::kGlobalContextOffset)); |
| 54 __ movq(rcx, Operand(rcx, Context::SlotOffset(Context::FUNCTION_MAP_INDEX))); |
| 55 __ movq(FieldOperand(rax, JSObject::kMapOffset), rcx); |
| 56 |
| 57 // Initialize the rest of the function. We don't have to update the |
| 58 // write barrier because the allocated object is in new space. |
| 59 __ LoadRoot(rbx, Heap::kEmptyFixedArrayRootIndex); |
| 60 __ LoadRoot(rcx, Heap::kTheHoleValueRootIndex); |
| 61 __ movq(FieldOperand(rax, JSObject::kPropertiesOffset), rbx); |
| 62 __ movq(FieldOperand(rax, JSObject::kElementsOffset), rbx); |
| 63 __ movq(FieldOperand(rax, JSFunction::kPrototypeOrInitialMapOffset), rcx); |
| 64 __ movq(FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset), rdx); |
| 65 __ movq(FieldOperand(rax, JSFunction::kContextOffset), rsi); |
| 66 __ movq(FieldOperand(rax, JSFunction::kLiteralsOffset), rbx); |
| 67 |
| 68 // Initialize the code pointer in the function to be the one |
| 69 // found in the shared function info object. |
| 70 __ movq(rdx, FieldOperand(rdx, SharedFunctionInfo::kCodeOffset)); |
| 71 __ lea(rdx, FieldOperand(rdx, Code::kHeaderSize)); |
| 72 __ movq(FieldOperand(rax, JSFunction::kCodeEntryOffset), rdx); |
| 73 |
| 74 |
| 75 // Return and remove the on-stack parameter. |
| 76 __ ret(1 * kPointerSize); |
| 77 |
| 78 // Create a new closure through the slower runtime call. |
| 79 __ bind(&gc); |
| 80 __ pop(rcx); // Temporarily remove return address. |
| 81 __ pop(rdx); |
| 82 __ push(rsi); |
| 83 __ push(rdx); |
| 84 __ push(rcx); // Restore return address. |
| 85 __ TailCallRuntime(Runtime::kNewClosure, 2, 1); |
| 86 } |
| 87 |
| 88 |
| 89 void FastNewContextStub::Generate(MacroAssembler* masm) { |
| 90 // Try to allocate the context in new space. |
| 91 Label gc; |
| 92 int length = slots_ + Context::MIN_CONTEXT_SLOTS; |
| 93 __ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize, |
| 94 rax, rbx, rcx, &gc, TAG_OBJECT); |
| 95 |
| 96 // Get the function from the stack. |
| 97 __ movq(rcx, Operand(rsp, 1 * kPointerSize)); |
| 98 |
| 99 // Setup the object header. |
| 100 __ LoadRoot(kScratchRegister, Heap::kContextMapRootIndex); |
| 101 __ movq(FieldOperand(rax, HeapObject::kMapOffset), kScratchRegister); |
| 102 __ Move(FieldOperand(rax, FixedArray::kLengthOffset), Smi::FromInt(length)); |
| 103 |
| 104 // Setup the fixed slots. |
| 105 __ xor_(rbx, rbx); // Set to NULL. |
| 106 __ movq(Operand(rax, Context::SlotOffset(Context::CLOSURE_INDEX)), rcx); |
| 107 __ movq(Operand(rax, Context::SlotOffset(Context::FCONTEXT_INDEX)), rax); |
| 108 __ movq(Operand(rax, Context::SlotOffset(Context::PREVIOUS_INDEX)), rbx); |
| 109 __ movq(Operand(rax, Context::SlotOffset(Context::EXTENSION_INDEX)), rbx); |
| 110 |
| 111 // Copy the global object from the surrounding context. |
| 112 __ movq(rbx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| 113 __ movq(Operand(rax, Context::SlotOffset(Context::GLOBAL_INDEX)), rbx); |
| 114 |
| 115 // Initialize the rest of the slots to undefined. |
| 116 __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex); |
| 117 for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) { |
| 118 __ movq(Operand(rax, Context::SlotOffset(i)), rbx); |
| 119 } |
| 120 |
| 121 // Return and remove the on-stack parameter. |
| 122 __ movq(rsi, rax); |
| 123 __ ret(1 * kPointerSize); |
| 124 |
| 125 // Need to collect. Call into runtime system. |
| 126 __ bind(&gc); |
| 127 __ TailCallRuntime(Runtime::kNewContext, 1, 1); |
| 128 } |
| 129 |
| 130 |
| 131 void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { |
| 132 // Stack layout on entry: |
| 133 // |
| 134 // [rsp + kPointerSize]: constant elements. |
| 135 // [rsp + (2 * kPointerSize)]: literal index. |
| 136 // [rsp + (3 * kPointerSize)]: literals array. |
| 137 |
| 138 // All sizes here are multiples of kPointerSize. |
| 139 int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0; |
| 140 int size = JSArray::kSize + elements_size; |
| 141 |
| 142 // Load boilerplate object into rcx and check if we need to create a |
| 143 // boilerplate. |
| 144 Label slow_case; |
| 145 __ movq(rcx, Operand(rsp, 3 * kPointerSize)); |
| 146 __ movq(rax, Operand(rsp, 2 * kPointerSize)); |
| 147 SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2); |
| 148 __ movq(rcx, |
| 149 FieldOperand(rcx, index.reg, index.scale, FixedArray::kHeaderSize)); |
| 150 __ CompareRoot(rcx, Heap::kUndefinedValueRootIndex); |
| 151 __ j(equal, &slow_case); |
| 152 |
| 153 if (FLAG_debug_code) { |
| 154 const char* message; |
| 155 Heap::RootListIndex expected_map_index; |
| 156 if (mode_ == CLONE_ELEMENTS) { |
| 157 message = "Expected (writable) fixed array"; |
| 158 expected_map_index = Heap::kFixedArrayMapRootIndex; |
| 159 } else { |
| 160 ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS); |
| 161 message = "Expected copy-on-write fixed array"; |
| 162 expected_map_index = Heap::kFixedCOWArrayMapRootIndex; |
| 163 } |
| 164 __ push(rcx); |
| 165 __ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset)); |
| 166 __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset), |
| 167 expected_map_index); |
| 168 __ Assert(equal, message); |
| 169 __ pop(rcx); |
| 170 } |
| 171 |
| 172 // Allocate both the JS array and the elements array in one big |
| 173 // allocation. This avoids multiple limit checks. |
| 174 __ AllocateInNewSpace(size, rax, rbx, rdx, &slow_case, TAG_OBJECT); |
| 175 |
| 176 // Copy the JS array part. |
| 177 for (int i = 0; i < JSArray::kSize; i += kPointerSize) { |
| 178 if ((i != JSArray::kElementsOffset) || (length_ == 0)) { |
| 179 __ movq(rbx, FieldOperand(rcx, i)); |
| 180 __ movq(FieldOperand(rax, i), rbx); |
| 181 } |
| 182 } |
| 183 |
| 184 if (length_ > 0) { |
| 185 // Get hold of the elements array of the boilerplate and setup the |
| 186 // elements pointer in the resulting object. |
| 187 __ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset)); |
| 188 __ lea(rdx, Operand(rax, JSArray::kSize)); |
| 189 __ movq(FieldOperand(rax, JSArray::kElementsOffset), rdx); |
| 190 |
| 191 // Copy the elements array. |
| 192 for (int i = 0; i < elements_size; i += kPointerSize) { |
| 193 __ movq(rbx, FieldOperand(rcx, i)); |
| 194 __ movq(FieldOperand(rdx, i), rbx); |
| 195 } |
| 196 } |
| 197 |
| 198 // Return and remove the on-stack parameters. |
| 199 __ ret(3 * kPointerSize); |
| 200 |
| 201 __ bind(&slow_case); |
| 202 __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1); |
| 203 } |
| 204 |
| 205 |
| 206 void ToBooleanStub::Generate(MacroAssembler* masm) { |
| 207 Label false_result, true_result, not_string; |
| 208 __ movq(rax, Operand(rsp, 1 * kPointerSize)); |
| 209 |
| 210 // 'null' => false. |
| 211 __ CompareRoot(rax, Heap::kNullValueRootIndex); |
| 212 __ j(equal, &false_result); |
| 213 |
| 214 // Get the map and type of the heap object. |
| 215 // We don't use CmpObjectType because we manipulate the type field. |
| 216 __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset)); |
| 217 __ movzxbq(rcx, FieldOperand(rdx, Map::kInstanceTypeOffset)); |
| 218 |
| 219 // Undetectable => false. |
| 220 __ movzxbq(rbx, FieldOperand(rdx, Map::kBitFieldOffset)); |
| 221 __ and_(rbx, Immediate(1 << Map::kIsUndetectable)); |
| 222 __ j(not_zero, &false_result); |
| 223 |
| 224 // JavaScript object => true. |
| 225 __ cmpq(rcx, Immediate(FIRST_JS_OBJECT_TYPE)); |
| 226 __ j(above_equal, &true_result); |
| 227 |
| 228 // String value => false iff empty. |
| 229 __ cmpq(rcx, Immediate(FIRST_NONSTRING_TYPE)); |
| 230 __ j(above_equal, ¬_string); |
| 231 __ movq(rdx, FieldOperand(rax, String::kLengthOffset)); |
| 232 __ SmiTest(rdx); |
| 233 __ j(zero, &false_result); |
| 234 __ jmp(&true_result); |
| 235 |
| 236 __ bind(¬_string); |
| 237 __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex); |
| 238 __ j(not_equal, &true_result); |
| 239 // HeapNumber => false iff +0, -0, or NaN. |
| 240 // These three cases set the zero flag when compared to zero using ucomisd. |
| 241 __ xorpd(xmm0, xmm0); |
| 242 __ ucomisd(xmm0, FieldOperand(rax, HeapNumber::kValueOffset)); |
| 243 __ j(zero, &false_result); |
| 244 // Fall through to |true_result|. |
| 245 |
| 246 // Return 1/0 for true/false in rax. |
| 247 __ bind(&true_result); |
| 248 __ movq(rax, Immediate(1)); |
| 249 __ ret(1 * kPointerSize); |
| 250 __ bind(&false_result); |
| 251 __ xor_(rax, rax); |
| 252 __ ret(1 * kPointerSize); |
| 253 } |
| 254 |
| 255 |
| 256 const char* GenericBinaryOpStub::GetName() { |
| 257 if (name_ != NULL) return name_; |
| 258 const int kMaxNameLength = 100; |
| 259 name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength); |
| 260 if (name_ == NULL) return "OOM"; |
| 261 const char* op_name = Token::Name(op_); |
| 262 const char* overwrite_name; |
| 263 switch (mode_) { |
| 264 case NO_OVERWRITE: overwrite_name = "Alloc"; break; |
| 265 case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; |
| 266 case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; |
| 267 default: overwrite_name = "UnknownOverwrite"; break; |
| 268 } |
| 269 |
| 270 OS::SNPrintF(Vector<char>(name_, kMaxNameLength), |
| 271 "GenericBinaryOpStub_%s_%s%s_%s%s_%s_%s", |
| 272 op_name, |
| 273 overwrite_name, |
| 274 (flags_ & NO_SMI_CODE_IN_STUB) ? "_NoSmiInStub" : "", |
| 275 args_in_registers_ ? "RegArgs" : "StackArgs", |
| 276 args_reversed_ ? "_R" : "", |
| 277 static_operands_type_.ToString(), |
| 278 BinaryOpIC::GetName(runtime_operands_type_)); |
| 279 return name_; |
| 280 } |
| 281 |
| 282 |
| 283 void GenericBinaryOpStub::GenerateCall( |
| 284 MacroAssembler* masm, |
| 285 Register left, |
| 286 Register right) { |
| 287 if (!ArgsInRegistersSupported()) { |
| 288 // Pass arguments on the stack. |
| 289 __ push(left); |
| 290 __ push(right); |
| 291 } else { |
| 292 // The calling convention with registers is left in rdx and right in rax. |
| 293 Register left_arg = rdx; |
| 294 Register right_arg = rax; |
| 295 if (!(left.is(left_arg) && right.is(right_arg))) { |
| 296 if (left.is(right_arg) && right.is(left_arg)) { |
| 297 if (IsOperationCommutative()) { |
| 298 SetArgsReversed(); |
| 299 } else { |
| 300 __ xchg(left, right); |
| 301 } |
| 302 } else if (left.is(left_arg)) { |
| 303 __ movq(right_arg, right); |
| 304 } else if (right.is(right_arg)) { |
| 305 __ movq(left_arg, left); |
| 306 } else if (left.is(right_arg)) { |
| 307 if (IsOperationCommutative()) { |
| 308 __ movq(left_arg, right); |
| 309 SetArgsReversed(); |
| 310 } else { |
| 311 // Order of moves important to avoid destroying left argument. |
| 312 __ movq(left_arg, left); |
| 313 __ movq(right_arg, right); |
| 314 } |
| 315 } else if (right.is(left_arg)) { |
| 316 if (IsOperationCommutative()) { |
| 317 __ movq(right_arg, left); |
| 318 SetArgsReversed(); |
| 319 } else { |
| 320 // Order of moves important to avoid destroying right argument. |
| 321 __ movq(right_arg, right); |
| 322 __ movq(left_arg, left); |
| 323 } |
| 324 } else { |
| 325 // Order of moves is not important. |
| 326 __ movq(left_arg, left); |
| 327 __ movq(right_arg, right); |
| 328 } |
| 329 } |
| 330 |
| 331 // Update flags to indicate that arguments are in registers. |
| 332 SetArgsInRegisters(); |
| 333 __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
| 334 } |
| 335 |
| 336 // Call the stub. |
| 337 __ CallStub(this); |
| 338 } |
| 339 |
| 340 |
| 341 void GenericBinaryOpStub::GenerateCall( |
| 342 MacroAssembler* masm, |
| 343 Register left, |
| 344 Smi* right) { |
| 345 if (!ArgsInRegistersSupported()) { |
| 346 // Pass arguments on the stack. |
| 347 __ push(left); |
| 348 __ Push(right); |
| 349 } else { |
| 350 // The calling convention with registers is left in rdx and right in rax. |
| 351 Register left_arg = rdx; |
| 352 Register right_arg = rax; |
| 353 if (left.is(left_arg)) { |
| 354 __ Move(right_arg, right); |
| 355 } else if (left.is(right_arg) && IsOperationCommutative()) { |
| 356 __ Move(left_arg, right); |
| 357 SetArgsReversed(); |
| 358 } else { |
| 359 // For non-commutative operations, left and right_arg might be |
| 360 // the same register. Therefore, the order of the moves is |
| 361 // important here in order to not overwrite left before moving |
| 362 // it to left_arg. |
| 363 __ movq(left_arg, left); |
| 364 __ Move(right_arg, right); |
| 365 } |
| 366 |
| 367 // Update flags to indicate that arguments are in registers. |
| 368 SetArgsInRegisters(); |
| 369 __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
| 370 } |
| 371 |
| 372 // Call the stub. |
| 373 __ CallStub(this); |
| 374 } |
| 375 |
| 376 |
| 377 void GenericBinaryOpStub::GenerateCall( |
| 378 MacroAssembler* masm, |
| 379 Smi* left, |
| 380 Register right) { |
| 381 if (!ArgsInRegistersSupported()) { |
| 382 // Pass arguments on the stack. |
| 383 __ Push(left); |
| 384 __ push(right); |
| 385 } else { |
| 386 // The calling convention with registers is left in rdx and right in rax. |
| 387 Register left_arg = rdx; |
| 388 Register right_arg = rax; |
| 389 if (right.is(right_arg)) { |
| 390 __ Move(left_arg, left); |
| 391 } else if (right.is(left_arg) && IsOperationCommutative()) { |
| 392 __ Move(right_arg, left); |
| 393 SetArgsReversed(); |
| 394 } else { |
| 395 // For non-commutative operations, right and left_arg might be |
| 396 // the same register. Therefore, the order of the moves is |
| 397 // important here in order to not overwrite right before moving |
| 398 // it to right_arg. |
| 399 __ movq(right_arg, right); |
| 400 __ Move(left_arg, left); |
| 401 } |
| 402 // Update flags to indicate that arguments are in registers. |
| 403 SetArgsInRegisters(); |
| 404 __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
| 405 } |
| 406 |
| 407 // Call the stub. |
| 408 __ CallStub(this); |
| 409 } |
| 410 |
| 411 |
| 412 class FloatingPointHelper : public AllStatic { |
| 413 public: |
| 414 // Load the operands from rdx and rax into xmm0 and xmm1, as doubles. |
| 415 // If the operands are not both numbers, jump to not_numbers. |
| 416 // Leaves rdx and rax unchanged. SmiOperands assumes both are smis. |
| 417 // NumberOperands assumes both are smis or heap numbers. |
| 418 static void LoadSSE2SmiOperands(MacroAssembler* masm); |
| 419 static void LoadSSE2NumberOperands(MacroAssembler* masm); |
| 420 static void LoadSSE2UnknownOperands(MacroAssembler* masm, |
| 421 Label* not_numbers); |
| 422 |
| 423 // Takes the operands in rdx and rax and loads them as integers in rax |
| 424 // and rcx. |
| 425 static void LoadAsIntegers(MacroAssembler* masm, |
| 426 Label* operand_conversion_failure, |
| 427 Register heap_number_map); |
| 428 // As above, but we know the operands to be numbers. In that case, |
| 429 // conversion can't fail. |
| 430 static void LoadNumbersAsIntegers(MacroAssembler* masm); |
| 431 }; |
| 432 |
| 433 |
| 434 void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) { |
| 435 // 1. Move arguments into rdx, rax except for DIV and MOD, which need the |
| 436 // dividend in rax and rdx free for the division. Use rax, rbx for those. |
| 437 Comment load_comment(masm, "-- Load arguments"); |
| 438 Register left = rdx; |
| 439 Register right = rax; |
| 440 if (op_ == Token::DIV || op_ == Token::MOD) { |
| 441 left = rax; |
| 442 right = rbx; |
| 443 if (HasArgsInRegisters()) { |
| 444 __ movq(rbx, rax); |
| 445 __ movq(rax, rdx); |
| 446 } |
| 447 } |
| 448 if (!HasArgsInRegisters()) { |
| 449 __ movq(right, Operand(rsp, 1 * kPointerSize)); |
| 450 __ movq(left, Operand(rsp, 2 * kPointerSize)); |
| 451 } |
| 452 |
| 453 Label not_smis; |
| 454 // 2. Smi check both operands. |
| 455 if (static_operands_type_.IsSmi()) { |
| 456 // Skip smi check if we know that both arguments are smis. |
| 457 if (FLAG_debug_code) { |
| 458 __ AbortIfNotSmi(left); |
| 459 __ AbortIfNotSmi(right); |
| 460 } |
| 461 if (op_ == Token::BIT_OR) { |
| 462 // Handle OR here, since we do extra smi-checking in the or code below. |
| 463 __ SmiOr(right, right, left); |
| 464 GenerateReturn(masm); |
| 465 return; |
| 466 } |
| 467 } else { |
| 468 if (op_ != Token::BIT_OR) { |
| 469 // Skip the check for OR as it is better combined with the |
| 470 // actual operation. |
| 471 Comment smi_check_comment(masm, "-- Smi check arguments"); |
| 472 __ JumpIfNotBothSmi(left, right, ¬_smis); |
| 473 } |
| 474 } |
| 475 |
| 476 // 3. Operands are both smis (except for OR), perform the operation leaving |
| 477 // the result in rax and check the result if necessary. |
| 478 Comment perform_smi(masm, "-- Perform smi operation"); |
| 479 Label use_fp_on_smis; |
| 480 switch (op_) { |
| 481 case Token::ADD: { |
| 482 ASSERT(right.is(rax)); |
| 483 __ SmiAdd(right, right, left, &use_fp_on_smis); // ADD is commutative. |
| 484 break; |
| 485 } |
| 486 |
| 487 case Token::SUB: { |
| 488 __ SmiSub(left, left, right, &use_fp_on_smis); |
| 489 __ movq(rax, left); |
| 490 break; |
| 491 } |
| 492 |
| 493 case Token::MUL: |
| 494 ASSERT(right.is(rax)); |
| 495 __ SmiMul(right, right, left, &use_fp_on_smis); // MUL is commutative. |
| 496 break; |
| 497 |
| 498 case Token::DIV: |
| 499 ASSERT(left.is(rax)); |
| 500 __ SmiDiv(left, left, right, &use_fp_on_smis); |
| 501 break; |
| 502 |
| 503 case Token::MOD: |
| 504 ASSERT(left.is(rax)); |
| 505 __ SmiMod(left, left, right, slow); |
| 506 break; |
| 507 |
| 508 case Token::BIT_OR: |
| 509 ASSERT(right.is(rax)); |
| 510 __ movq(rcx, right); // Save the right operand. |
| 511 __ SmiOr(right, right, left); // BIT_OR is commutative. |
| 512 __ testb(right, Immediate(kSmiTagMask)); |
| 513 __ j(not_zero, ¬_smis); |
| 514 break; |
| 515 |
| 516 case Token::BIT_AND: |
| 517 ASSERT(right.is(rax)); |
| 518 __ SmiAnd(right, right, left); // BIT_AND is commutative. |
| 519 break; |
| 520 |
| 521 case Token::BIT_XOR: |
| 522 ASSERT(right.is(rax)); |
| 523 __ SmiXor(right, right, left); // BIT_XOR is commutative. |
| 524 break; |
| 525 |
| 526 case Token::SHL: |
| 527 case Token::SHR: |
| 528 case Token::SAR: |
| 529 switch (op_) { |
| 530 case Token::SAR: |
| 531 __ SmiShiftArithmeticRight(left, left, right); |
| 532 break; |
| 533 case Token::SHR: |
| 534 __ SmiShiftLogicalRight(left, left, right, slow); |
| 535 break; |
| 536 case Token::SHL: |
| 537 __ SmiShiftLeft(left, left, right); |
| 538 break; |
| 539 default: |
| 540 UNREACHABLE(); |
| 541 } |
| 542 __ movq(rax, left); |
| 543 break; |
| 544 |
| 545 default: |
| 546 UNREACHABLE(); |
| 547 break; |
| 548 } |
| 549 |
| 550 // 4. Emit return of result in rax. |
| 551 GenerateReturn(masm); |
| 552 |
| 553 // 5. For some operations emit inline code to perform floating point |
| 554 // operations on known smis (e.g., if the result of the operation |
| 555 // overflowed the smi range). |
| 556 switch (op_) { |
| 557 case Token::ADD: |
| 558 case Token::SUB: |
| 559 case Token::MUL: |
| 560 case Token::DIV: { |
| 561 ASSERT(use_fp_on_smis.is_linked()); |
| 562 __ bind(&use_fp_on_smis); |
| 563 if (op_ == Token::DIV) { |
| 564 __ movq(rdx, rax); |
| 565 __ movq(rax, rbx); |
| 566 } |
| 567 // left is rdx, right is rax. |
| 568 __ AllocateHeapNumber(rbx, rcx, slow); |
| 569 FloatingPointHelper::LoadSSE2SmiOperands(masm); |
| 570 switch (op_) { |
| 571 case Token::ADD: __ addsd(xmm0, xmm1); break; |
| 572 case Token::SUB: __ subsd(xmm0, xmm1); break; |
| 573 case Token::MUL: __ mulsd(xmm0, xmm1); break; |
| 574 case Token::DIV: __ divsd(xmm0, xmm1); break; |
| 575 default: UNREACHABLE(); |
| 576 } |
| 577 __ movsd(FieldOperand(rbx, HeapNumber::kValueOffset), xmm0); |
| 578 __ movq(rax, rbx); |
| 579 GenerateReturn(masm); |
| 580 } |
| 581 default: |
| 582 break; |
| 583 } |
| 584 |
| 585 // 6. Non-smi operands, fall out to the non-smi code with the operands in |
| 586 // rdx and rax. |
| 587 Comment done_comment(masm, "-- Enter non-smi code"); |
| 588 __ bind(¬_smis); |
| 589 |
| 590 switch (op_) { |
| 591 case Token::DIV: |
| 592 case Token::MOD: |
| 593 // Operands are in rax, rbx at this point. |
| 594 __ movq(rdx, rax); |
| 595 __ movq(rax, rbx); |
| 596 break; |
| 597 |
| 598 case Token::BIT_OR: |
| 599 // Right operand is saved in rcx and rax was destroyed by the smi |
| 600 // operation. |
| 601 __ movq(rax, rcx); |
| 602 break; |
| 603 |
| 604 default: |
| 605 break; |
| 606 } |
| 607 } |
| 608 |
| 609 |
| 610 void GenericBinaryOpStub::Generate(MacroAssembler* masm) { |
| 611 Label call_runtime; |
| 612 |
| 613 if (ShouldGenerateSmiCode()) { |
| 614 GenerateSmiCode(masm, &call_runtime); |
| 615 } else if (op_ != Token::MOD) { |
| 616 if (!HasArgsInRegisters()) { |
| 617 GenerateLoadArguments(masm); |
| 618 } |
| 619 } |
| 620 // Floating point case. |
| 621 if (ShouldGenerateFPCode()) { |
| 622 switch (op_) { |
| 623 case Token::ADD: |
| 624 case Token::SUB: |
| 625 case Token::MUL: |
| 626 case Token::DIV: { |
| 627 if (runtime_operands_type_ == BinaryOpIC::DEFAULT && |
| 628 HasSmiCodeInStub()) { |
| 629 // Execution reaches this point when the first non-smi argument occurs |
| 630 // (and only if smi code is generated). This is the right moment to |
| 631 // patch to HEAP_NUMBERS state. The transition is attempted only for |
| 632 // the four basic operations. The stub stays in the DEFAULT state |
| 633 // forever for all other operations (also if smi code is skipped). |
| 634 GenerateTypeTransition(masm); |
| 635 break; |
| 636 } |
| 637 |
| 638 Label not_floats; |
| 639 // rax: y |
| 640 // rdx: x |
| 641 if (static_operands_type_.IsNumber()) { |
| 642 if (FLAG_debug_code) { |
| 643 // Assert at runtime that inputs are only numbers. |
| 644 __ AbortIfNotNumber(rdx); |
| 645 __ AbortIfNotNumber(rax); |
| 646 } |
| 647 FloatingPointHelper::LoadSSE2NumberOperands(masm); |
| 648 } else { |
| 649 FloatingPointHelper::LoadSSE2UnknownOperands(masm, &call_runtime); |
| 650 } |
| 651 |
| 652 switch (op_) { |
| 653 case Token::ADD: __ addsd(xmm0, xmm1); break; |
| 654 case Token::SUB: __ subsd(xmm0, xmm1); break; |
| 655 case Token::MUL: __ mulsd(xmm0, xmm1); break; |
| 656 case Token::DIV: __ divsd(xmm0, xmm1); break; |
| 657 default: UNREACHABLE(); |
| 658 } |
| 659 // Allocate a heap number, if needed. |
| 660 Label skip_allocation; |
| 661 OverwriteMode mode = mode_; |
| 662 if (HasArgsReversed()) { |
| 663 if (mode == OVERWRITE_RIGHT) { |
| 664 mode = OVERWRITE_LEFT; |
| 665 } else if (mode == OVERWRITE_LEFT) { |
| 666 mode = OVERWRITE_RIGHT; |
| 667 } |
| 668 } |
| 669 switch (mode) { |
| 670 case OVERWRITE_LEFT: |
| 671 __ JumpIfNotSmi(rdx, &skip_allocation); |
| 672 __ AllocateHeapNumber(rbx, rcx, &call_runtime); |
| 673 __ movq(rdx, rbx); |
| 674 __ bind(&skip_allocation); |
| 675 __ movq(rax, rdx); |
| 676 break; |
| 677 case OVERWRITE_RIGHT: |
| 678 // If the argument in rax is already an object, we skip the |
| 679 // allocation of a heap number. |
| 680 __ JumpIfNotSmi(rax, &skip_allocation); |
| 681 // Fall through! |
| 682 case NO_OVERWRITE: |
| 683 // Allocate a heap number for the result. Keep rax and rdx intact |
| 684 // for the possible runtime call. |
| 685 __ AllocateHeapNumber(rbx, rcx, &call_runtime); |
| 686 __ movq(rax, rbx); |
| 687 __ bind(&skip_allocation); |
| 688 break; |
| 689 default: UNREACHABLE(); |
| 690 } |
| 691 __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0); |
| 692 GenerateReturn(masm); |
| 693 __ bind(¬_floats); |
| 694 if (runtime_operands_type_ == BinaryOpIC::DEFAULT && |
| 695 !HasSmiCodeInStub()) { |
| 696 // Execution reaches this point when the first non-number argument |
| 697 // occurs (and only if smi code is skipped from the stub, otherwise |
| 698 // the patching has already been done earlier in this case branch). |
| 699 // A perfect moment to try patching to STRINGS for ADD operation. |
| 700 if (op_ == Token::ADD) { |
| 701 GenerateTypeTransition(masm); |
| 702 } |
| 703 } |
| 704 break; |
| 705 } |
| 706 case Token::MOD: { |
| 707 // For MOD we go directly to runtime in the non-smi case. |
| 708 break; |
| 709 } |
| 710 case Token::BIT_OR: |
| 711 case Token::BIT_AND: |
| 712 case Token::BIT_XOR: |
| 713 case Token::SAR: |
| 714 case Token::SHL: |
| 715 case Token::SHR: { |
| 716 Label skip_allocation, non_smi_shr_result; |
| 717 Register heap_number_map = r9; |
| 718 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| 719 if (static_operands_type_.IsNumber()) { |
| 720 if (FLAG_debug_code) { |
| 721 // Assert at runtime that inputs are only numbers. |
| 722 __ AbortIfNotNumber(rdx); |
| 723 __ AbortIfNotNumber(rax); |
| 724 } |
| 725 FloatingPointHelper::LoadNumbersAsIntegers(masm); |
| 726 } else { |
| 727 FloatingPointHelper::LoadAsIntegers(masm, |
| 728 &call_runtime, |
| 729 heap_number_map); |
| 730 } |
| 731 switch (op_) { |
| 732 case Token::BIT_OR: __ orl(rax, rcx); break; |
| 733 case Token::BIT_AND: __ andl(rax, rcx); break; |
| 734 case Token::BIT_XOR: __ xorl(rax, rcx); break; |
| 735 case Token::SAR: __ sarl_cl(rax); break; |
| 736 case Token::SHL: __ shll_cl(rax); break; |
| 737 case Token::SHR: { |
| 738 __ shrl_cl(rax); |
| 739 // Check if result is negative. This can only happen for a shift |
| 740 // by zero. |
| 741 __ testl(rax, rax); |
| 742 __ j(negative, &non_smi_shr_result); |
| 743 break; |
| 744 } |
| 745 default: UNREACHABLE(); |
| 746 } |
| 747 |
| 748 STATIC_ASSERT(kSmiValueSize == 32); |
| 749 // Tag smi result and return. |
| 750 __ Integer32ToSmi(rax, rax); |
| 751 GenerateReturn(masm); |
| 752 |
| 753 // All bit-ops except SHR return a signed int32 that can be |
| 754 // returned immediately as a smi. |
| 755 // We might need to allocate a HeapNumber if we shift a negative |
| 756 // number right by zero (i.e., convert to UInt32). |
| 757 if (op_ == Token::SHR) { |
| 758 ASSERT(non_smi_shr_result.is_linked()); |
| 759 __ bind(&non_smi_shr_result); |
| 760 // Allocate a heap number if needed. |
| 761 __ movl(rbx, rax); // rbx holds result value (uint32 value as int64). |
| 762 switch (mode_) { |
| 763 case OVERWRITE_LEFT: |
| 764 case OVERWRITE_RIGHT: |
| 765 // If the operand was an object, we skip the |
| 766 // allocation of a heap number. |
| 767 __ movq(rax, Operand(rsp, mode_ == OVERWRITE_RIGHT ? |
| 768 1 * kPointerSize : 2 * kPointerSize)); |
| 769 __ JumpIfNotSmi(rax, &skip_allocation); |
| 770 // Fall through! |
| 771 case NO_OVERWRITE: |
| 772 // Allocate heap number in new space. |
| 773 // Not using AllocateHeapNumber macro in order to reuse |
| 774 // already loaded heap_number_map. |
| 775 __ AllocateInNewSpace(HeapNumber::kSize, |
| 776 rax, |
| 777 rcx, |
| 778 no_reg, |
| 779 &call_runtime, |
| 780 TAG_OBJECT); |
| 781 // Set the map. |
| 782 if (FLAG_debug_code) { |
| 783 __ AbortIfNotRootValue(heap_number_map, |
| 784 Heap::kHeapNumberMapRootIndex, |
| 785 "HeapNumberMap register clobbered."); |
| 786 } |
| 787 __ movq(FieldOperand(rax, HeapObject::kMapOffset), |
| 788 heap_number_map); |
| 789 __ bind(&skip_allocation); |
| 790 break; |
| 791 default: UNREACHABLE(); |
| 792 } |
| 793 // Store the result in the HeapNumber and return. |
| 794 __ cvtqsi2sd(xmm0, rbx); |
| 795 __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0); |
| 796 GenerateReturn(masm); |
| 797 } |
| 798 |
| 799 break; |
| 800 } |
| 801 default: UNREACHABLE(); break; |
| 802 } |
| 803 } |
| 804 |
| 805 // If all else fails, use the runtime system to get the correct |
| 806 // result. If arguments was passed in registers now place them on the |
| 807 // stack in the correct order below the return address. |
| 808 __ bind(&call_runtime); |
| 809 |
| 810 if (HasArgsInRegisters()) { |
| 811 GenerateRegisterArgsPush(masm); |
| 812 } |
| 813 |
| 814 switch (op_) { |
| 815 case Token::ADD: { |
| 816 // Registers containing left and right operands respectively. |
| 817 Register lhs, rhs; |
| 818 |
| 819 if (HasArgsReversed()) { |
| 820 lhs = rax; |
| 821 rhs = rdx; |
| 822 } else { |
| 823 lhs = rdx; |
| 824 rhs = rax; |
| 825 } |
| 826 |
| 827 // Test for string arguments before calling runtime. |
| 828 Label not_strings, both_strings, not_string1, string1, string1_smi2; |
| 829 |
| 830 // If this stub has already generated FP-specific code then the arguments |
| 831 // are already in rdx and rax. |
| 832 if (!ShouldGenerateFPCode() && !HasArgsInRegisters()) { |
| 833 GenerateLoadArguments(masm); |
| 834 } |
| 835 |
| 836 Condition is_smi; |
| 837 is_smi = masm->CheckSmi(lhs); |
| 838 __ j(is_smi, ¬_string1); |
| 839 __ CmpObjectType(lhs, FIRST_NONSTRING_TYPE, r8); |
| 840 __ j(above_equal, ¬_string1); |
| 841 |
| 842 // First argument is a a string, test second. |
| 843 is_smi = masm->CheckSmi(rhs); |
| 844 __ j(is_smi, &string1_smi2); |
| 845 __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, r9); |
| 846 __ j(above_equal, &string1); |
| 847 |
| 848 // First and second argument are strings. |
| 849 StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB); |
| 850 __ TailCallStub(&string_add_stub); |
| 851 |
| 852 __ bind(&string1_smi2); |
| 853 // First argument is a string, second is a smi. Try to lookup the number |
| 854 // string for the smi in the number string cache. |
| 855 NumberToStringStub::GenerateLookupNumberStringCache( |
| 856 masm, rhs, rbx, rcx, r8, true, &string1); |
| 857 |
| 858 // Replace second argument on stack and tailcall string add stub to make |
| 859 // the result. |
| 860 __ movq(Operand(rsp, 1 * kPointerSize), rbx); |
| 861 __ TailCallStub(&string_add_stub); |
| 862 |
| 863 // Only first argument is a string. |
| 864 __ bind(&string1); |
| 865 __ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_FUNCTION); |
| 866 |
| 867 // First argument was not a string, test second. |
| 868 __ bind(¬_string1); |
| 869 is_smi = masm->CheckSmi(rhs); |
| 870 __ j(is_smi, ¬_strings); |
| 871 __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, rhs); |
| 872 __ j(above_equal, ¬_strings); |
| 873 |
| 874 // Only second argument is a string. |
| 875 __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_FUNCTION); |
| 876 |
| 877 __ bind(¬_strings); |
| 878 // Neither argument is a string. |
| 879 __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); |
| 880 break; |
| 881 } |
| 882 case Token::SUB: |
| 883 __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); |
| 884 break; |
| 885 case Token::MUL: |
| 886 __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); |
| 887 break; |
| 888 case Token::DIV: |
| 889 __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); |
| 890 break; |
| 891 case Token::MOD: |
| 892 __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); |
| 893 break; |
| 894 case Token::BIT_OR: |
| 895 __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); |
| 896 break; |
| 897 case Token::BIT_AND: |
| 898 __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); |
| 899 break; |
| 900 case Token::BIT_XOR: |
| 901 __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); |
| 902 break; |
| 903 case Token::SAR: |
| 904 __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); |
| 905 break; |
| 906 case Token::SHL: |
| 907 __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); |
| 908 break; |
| 909 case Token::SHR: |
| 910 __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); |
| 911 break; |
| 912 default: |
| 913 UNREACHABLE(); |
| 914 } |
| 915 } |
| 916 |
| 917 |
| 918 void GenericBinaryOpStub::GenerateLoadArguments(MacroAssembler* masm) { |
| 919 ASSERT(!HasArgsInRegisters()); |
| 920 __ movq(rax, Operand(rsp, 1 * kPointerSize)); |
| 921 __ movq(rdx, Operand(rsp, 2 * kPointerSize)); |
| 922 } |
| 923 |
| 924 |
| 925 void GenericBinaryOpStub::GenerateReturn(MacroAssembler* masm) { |
| 926 // If arguments are not passed in registers remove them from the stack before |
| 927 // returning. |
| 928 if (!HasArgsInRegisters()) { |
| 929 __ ret(2 * kPointerSize); // Remove both operands |
| 930 } else { |
| 931 __ ret(0); |
| 932 } |
| 933 } |
| 934 |
| 935 |
| 936 void GenericBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) { |
| 937 ASSERT(HasArgsInRegisters()); |
| 938 __ pop(rcx); |
| 939 if (HasArgsReversed()) { |
| 940 __ push(rax); |
| 941 __ push(rdx); |
| 942 } else { |
| 943 __ push(rdx); |
| 944 __ push(rax); |
| 945 } |
| 946 __ push(rcx); |
| 947 } |
| 948 |
| 949 |
| 950 void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { |
| 951 Label get_result; |
| 952 |
| 953 // Ensure the operands are on the stack. |
| 954 if (HasArgsInRegisters()) { |
| 955 GenerateRegisterArgsPush(masm); |
| 956 } |
| 957 |
| 958 // Left and right arguments are already on stack. |
| 959 __ pop(rcx); // Save the return address. |
| 960 |
| 961 // Push this stub's key. |
| 962 __ Push(Smi::FromInt(MinorKey())); |
| 963 |
| 964 // Although the operation and the type info are encoded into the key, |
| 965 // the encoding is opaque, so push them too. |
| 966 __ Push(Smi::FromInt(op_)); |
| 967 |
| 968 __ Push(Smi::FromInt(runtime_operands_type_)); |
| 969 |
| 970 __ push(rcx); // The return address. |
| 971 |
| 972 // Perform patching to an appropriate fast case and return the result. |
| 973 __ TailCallExternalReference( |
| 974 ExternalReference(IC_Utility(IC::kBinaryOp_Patch)), |
| 975 5, |
| 976 1); |
| 977 } |
| 978 |
| 979 |
| 980 Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) { |
| 981 GenericBinaryOpStub stub(key, type_info); |
| 982 return stub.GetCode(); |
| 983 } |
| 984 |
| 985 |
| 986 void TranscendentalCacheStub::Generate(MacroAssembler* masm) { |
| 987 // Input on stack: |
| 988 // rsp[8]: argument (should be number). |
| 989 // rsp[0]: return address. |
| 990 Label runtime_call; |
| 991 Label runtime_call_clear_stack; |
| 992 Label input_not_smi; |
| 993 Label loaded; |
| 994 // Test that rax is a number. |
| 995 __ movq(rax, Operand(rsp, kPointerSize)); |
| 996 __ JumpIfNotSmi(rax, &input_not_smi); |
| 997 // Input is a smi. Untag and load it onto the FPU stack. |
| 998 // Then load the bits of the double into rbx. |
| 999 __ SmiToInteger32(rax, rax); |
| 1000 __ subq(rsp, Immediate(kPointerSize)); |
| 1001 __ cvtlsi2sd(xmm1, rax); |
| 1002 __ movsd(Operand(rsp, 0), xmm1); |
| 1003 __ movq(rbx, xmm1); |
| 1004 __ movq(rdx, xmm1); |
| 1005 __ fld_d(Operand(rsp, 0)); |
| 1006 __ addq(rsp, Immediate(kPointerSize)); |
| 1007 __ jmp(&loaded); |
| 1008 |
| 1009 __ bind(&input_not_smi); |
| 1010 // Check if input is a HeapNumber. |
| 1011 __ Move(rbx, Factory::heap_number_map()); |
| 1012 __ cmpq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); |
| 1013 __ j(not_equal, &runtime_call); |
| 1014 // Input is a HeapNumber. Push it on the FPU stack and load its |
| 1015 // bits into rbx. |
| 1016 __ fld_d(FieldOperand(rax, HeapNumber::kValueOffset)); |
| 1017 __ movq(rbx, FieldOperand(rax, HeapNumber::kValueOffset)); |
| 1018 __ movq(rdx, rbx); |
| 1019 __ bind(&loaded); |
| 1020 // ST[0] == double value |
| 1021 // rbx = bits of double value. |
| 1022 // rdx = also bits of double value. |
| 1023 // Compute hash (h is 32 bits, bits are 64 and the shifts are arithmetic): |
| 1024 // h = h0 = bits ^ (bits >> 32); |
| 1025 // h ^= h >> 16; |
| 1026 // h ^= h >> 8; |
| 1027 // h = h & (cacheSize - 1); |
| 1028 // or h = (h0 ^ (h0 >> 8) ^ (h0 >> 16) ^ (h0 >> 24)) & (cacheSize - 1) |
| 1029 __ sar(rdx, Immediate(32)); |
| 1030 __ xorl(rdx, rbx); |
| 1031 __ movl(rcx, rdx); |
| 1032 __ movl(rax, rdx); |
| 1033 __ movl(rdi, rdx); |
| 1034 __ sarl(rdx, Immediate(8)); |
| 1035 __ sarl(rcx, Immediate(16)); |
| 1036 __ sarl(rax, Immediate(24)); |
| 1037 __ xorl(rcx, rdx); |
| 1038 __ xorl(rax, rdi); |
| 1039 __ xorl(rcx, rax); |
| 1040 ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize)); |
| 1041 __ andl(rcx, Immediate(TranscendentalCache::kCacheSize - 1)); |
| 1042 |
| 1043 // ST[0] == double value. |
| 1044 // rbx = bits of double value. |
| 1045 // rcx = TranscendentalCache::hash(double value). |
| 1046 __ movq(rax, ExternalReference::transcendental_cache_array_address()); |
| 1047 // rax points to cache array. |
| 1048 __ movq(rax, Operand(rax, type_ * sizeof(TranscendentalCache::caches_[0]))); |
| 1049 // rax points to the cache for the type type_. |
| 1050 // If NULL, the cache hasn't been initialized yet, so go through runtime. |
| 1051 __ testq(rax, rax); |
| 1052 __ j(zero, &runtime_call_clear_stack); |
| 1053 #ifdef DEBUG |
| 1054 // Check that the layout of cache elements match expectations. |
| 1055 { // NOLINT - doesn't like a single brace on a line. |
| 1056 TranscendentalCache::Element test_elem[2]; |
| 1057 char* elem_start = reinterpret_cast<char*>(&test_elem[0]); |
| 1058 char* elem2_start = reinterpret_cast<char*>(&test_elem[1]); |
| 1059 char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0])); |
| 1060 char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1])); |
| 1061 char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output)); |
| 1062 // Two uint_32's and a pointer per element. |
| 1063 CHECK_EQ(16, static_cast<int>(elem2_start - elem_start)); |
| 1064 CHECK_EQ(0, static_cast<int>(elem_in0 - elem_start)); |
| 1065 CHECK_EQ(kIntSize, static_cast<int>(elem_in1 - elem_start)); |
| 1066 CHECK_EQ(2 * kIntSize, static_cast<int>(elem_out - elem_start)); |
| 1067 } |
| 1068 #endif |
| 1069 // Find the address of the rcx'th entry in the cache, i.e., &rax[rcx*16]. |
| 1070 __ addl(rcx, rcx); |
| 1071 __ lea(rcx, Operand(rax, rcx, times_8, 0)); |
| 1072 // Check if cache matches: Double value is stored in uint32_t[2] array. |
| 1073 Label cache_miss; |
| 1074 __ cmpq(rbx, Operand(rcx, 0)); |
| 1075 __ j(not_equal, &cache_miss); |
| 1076 // Cache hit! |
| 1077 __ movq(rax, Operand(rcx, 2 * kIntSize)); |
| 1078 __ fstp(0); // Clear FPU stack. |
| 1079 __ ret(kPointerSize); |
| 1080 |
| 1081 __ bind(&cache_miss); |
| 1082 // Update cache with new value. |
| 1083 Label nan_result; |
| 1084 GenerateOperation(masm, &nan_result); |
| 1085 __ AllocateHeapNumber(rax, rdi, &runtime_call_clear_stack); |
| 1086 __ movq(Operand(rcx, 0), rbx); |
| 1087 __ movq(Operand(rcx, 2 * kIntSize), rax); |
| 1088 __ fstp_d(FieldOperand(rax, HeapNumber::kValueOffset)); |
| 1089 __ ret(kPointerSize); |
| 1090 |
| 1091 __ bind(&runtime_call_clear_stack); |
| 1092 __ fstp(0); |
| 1093 __ bind(&runtime_call); |
| 1094 __ TailCallExternalReference(ExternalReference(RuntimeFunction()), 1, 1); |
| 1095 |
| 1096 __ bind(&nan_result); |
| 1097 __ fstp(0); // Remove argument from FPU stack. |
| 1098 __ LoadRoot(rax, Heap::kNanValueRootIndex); |
| 1099 __ movq(Operand(rcx, 0), rbx); |
| 1100 __ movq(Operand(rcx, 2 * kIntSize), rax); |
| 1101 __ ret(kPointerSize); |
| 1102 } |
| 1103 |
| 1104 |
| 1105 Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() { |
| 1106 switch (type_) { |
| 1107 // Add more cases when necessary. |
| 1108 case TranscendentalCache::SIN: return Runtime::kMath_sin; |
| 1109 case TranscendentalCache::COS: return Runtime::kMath_cos; |
| 1110 default: |
| 1111 UNIMPLEMENTED(); |
| 1112 return Runtime::kAbort; |
| 1113 } |
| 1114 } |
| 1115 |
| 1116 |
| 1117 void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm, |
| 1118 Label* on_nan_result) { |
| 1119 // Registers: |
| 1120 // rbx: Bits of input double. Must be preserved. |
| 1121 // rcx: Pointer to cache entry. Must be preserved. |
| 1122 // st(0): Input double |
| 1123 Label done; |
| 1124 ASSERT(type_ == TranscendentalCache::SIN || |
| 1125 type_ == TranscendentalCache::COS); |
| 1126 // More transcendental types can be added later. |
| 1127 |
| 1128 // Both fsin and fcos require arguments in the range +/-2^63 and |
| 1129 // return NaN for infinities and NaN. They can share all code except |
| 1130 // the actual fsin/fcos operation. |
| 1131 Label in_range; |
| 1132 // If argument is outside the range -2^63..2^63, fsin/cos doesn't |
| 1133 // work. We must reduce it to the appropriate range. |
| 1134 __ movq(rdi, rbx); |
| 1135 // Move exponent and sign bits to low bits. |
| 1136 __ shr(rdi, Immediate(HeapNumber::kMantissaBits)); |
| 1137 // Remove sign bit. |
| 1138 __ andl(rdi, Immediate((1 << HeapNumber::kExponentBits) - 1)); |
| 1139 int supported_exponent_limit = (63 + HeapNumber::kExponentBias); |
| 1140 __ cmpl(rdi, Immediate(supported_exponent_limit)); |
| 1141 __ j(below, &in_range); |
| 1142 // Check for infinity and NaN. Both return NaN for sin. |
| 1143 __ cmpl(rdi, Immediate(0x7ff)); |
| 1144 __ j(equal, on_nan_result); |
| 1145 |
| 1146 // Use fpmod to restrict argument to the range +/-2*PI. |
| 1147 __ fldpi(); |
| 1148 __ fadd(0); |
| 1149 __ fld(1); |
| 1150 // FPU Stack: input, 2*pi, input. |
| 1151 { |
| 1152 Label no_exceptions; |
| 1153 __ fwait(); |
| 1154 __ fnstsw_ax(); |
| 1155 // Clear if Illegal Operand or Zero Division exceptions are set. |
| 1156 __ testl(rax, Immediate(5)); // #IO and #ZD flags of FPU status word. |
| 1157 __ j(zero, &no_exceptions); |
| 1158 __ fnclex(); |
| 1159 __ bind(&no_exceptions); |
| 1160 } |
| 1161 |
| 1162 // Compute st(0) % st(1) |
| 1163 { |
| 1164 Label partial_remainder_loop; |
| 1165 __ bind(&partial_remainder_loop); |
| 1166 __ fprem1(); |
| 1167 __ fwait(); |
| 1168 __ fnstsw_ax(); |
| 1169 __ testl(rax, Immediate(0x400)); // Check C2 bit of FPU status word. |
| 1170 // If C2 is set, computation only has partial result. Loop to |
| 1171 // continue computation. |
| 1172 __ j(not_zero, &partial_remainder_loop); |
| 1173 } |
| 1174 // FPU Stack: input, 2*pi, input % 2*pi |
| 1175 __ fstp(2); |
| 1176 // FPU Stack: input % 2*pi, 2*pi, |
| 1177 __ fstp(0); |
| 1178 // FPU Stack: input % 2*pi |
| 1179 __ bind(&in_range); |
| 1180 switch (type_) { |
| 1181 case TranscendentalCache::SIN: |
| 1182 __ fsin(); |
| 1183 break; |
| 1184 case TranscendentalCache::COS: |
| 1185 __ fcos(); |
| 1186 break; |
| 1187 default: |
| 1188 UNREACHABLE(); |
| 1189 } |
| 1190 __ bind(&done); |
| 1191 } |
| 1192 |
| 1193 |
| 1194 // Get the integer part of a heap number. |
| 1195 // Overwrites the contents of rdi, rbx and rcx. Result cannot be rdi or rbx. |
| 1196 void IntegerConvert(MacroAssembler* masm, |
| 1197 Register result, |
| 1198 Register source) { |
| 1199 // Result may be rcx. If result and source are the same register, source will |
| 1200 // be overwritten. |
| 1201 ASSERT(!result.is(rdi) && !result.is(rbx)); |
| 1202 // TODO(lrn): When type info reaches here, if value is a 32-bit integer, use |
| 1203 // cvttsd2si (32-bit version) directly. |
| 1204 Register double_exponent = rbx; |
| 1205 Register double_value = rdi; |
| 1206 Label done, exponent_63_plus; |
| 1207 // Get double and extract exponent. |
| 1208 __ movq(double_value, FieldOperand(source, HeapNumber::kValueOffset)); |
| 1209 // Clear result preemptively, in case we need to return zero. |
| 1210 __ xorl(result, result); |
| 1211 __ movq(xmm0, double_value); // Save copy in xmm0 in case we need it there. |
| 1212 // Double to remove sign bit, shift exponent down to least significant bits. |
| 1213 // and subtract bias to get the unshifted, unbiased exponent. |
| 1214 __ lea(double_exponent, Operand(double_value, double_value, times_1, 0)); |
| 1215 __ shr(double_exponent, Immediate(64 - HeapNumber::kExponentBits)); |
| 1216 __ subl(double_exponent, Immediate(HeapNumber::kExponentBias)); |
| 1217 // Check whether the exponent is too big for a 63 bit unsigned integer. |
| 1218 __ cmpl(double_exponent, Immediate(63)); |
| 1219 __ j(above_equal, &exponent_63_plus); |
| 1220 // Handle exponent range 0..62. |
| 1221 __ cvttsd2siq(result, xmm0); |
| 1222 __ jmp(&done); |
| 1223 |
| 1224 __ bind(&exponent_63_plus); |
| 1225 // Exponent negative or 63+. |
| 1226 __ cmpl(double_exponent, Immediate(83)); |
| 1227 // If exponent negative or above 83, number contains no significant bits in |
| 1228 // the range 0..2^31, so result is zero, and rcx already holds zero. |
| 1229 __ j(above, &done); |
| 1230 |
| 1231 // Exponent in rage 63..83. |
| 1232 // Mantissa * 2^exponent contains bits in the range 2^0..2^31, namely |
| 1233 // the least significant exponent-52 bits. |
| 1234 |
| 1235 // Negate low bits of mantissa if value is negative. |
| 1236 __ addq(double_value, double_value); // Move sign bit to carry. |
| 1237 __ sbbl(result, result); // And convert carry to -1 in result register. |
| 1238 // if scratch2 is negative, do (scratch2-1)^-1, otherwise (scratch2-0)^0. |
| 1239 __ addl(double_value, result); |
| 1240 // Do xor in opposite directions depending on where we want the result |
| 1241 // (depending on whether result is rcx or not). |
| 1242 |
| 1243 if (result.is(rcx)) { |
| 1244 __ xorl(double_value, result); |
| 1245 // Left shift mantissa by (exponent - mantissabits - 1) to save the |
| 1246 // bits that have positional values below 2^32 (the extra -1 comes from the |
| 1247 // doubling done above to move the sign bit into the carry flag). |
| 1248 __ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1)); |
| 1249 __ shll_cl(double_value); |
| 1250 __ movl(result, double_value); |
| 1251 } else { |
| 1252 // As the then-branch, but move double-value to result before shifting. |
| 1253 __ xorl(result, double_value); |
| 1254 __ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1)); |
| 1255 __ shll_cl(result); |
| 1256 } |
| 1257 |
| 1258 __ bind(&done); |
| 1259 } |
| 1260 |
| 1261 |
| 1262 // Input: rdx, rax are the left and right objects of a bit op. |
| 1263 // Output: rax, rcx are left and right integers for a bit op. |
| 1264 void FloatingPointHelper::LoadNumbersAsIntegers(MacroAssembler* masm) { |
| 1265 // Check float operands. |
| 1266 Label done; |
| 1267 Label rax_is_smi; |
| 1268 Label rax_is_object; |
| 1269 Label rdx_is_object; |
| 1270 |
| 1271 __ JumpIfNotSmi(rdx, &rdx_is_object); |
| 1272 __ SmiToInteger32(rdx, rdx); |
| 1273 __ JumpIfSmi(rax, &rax_is_smi); |
| 1274 |
| 1275 __ bind(&rax_is_object); |
| 1276 IntegerConvert(masm, rcx, rax); // Uses rdi, rcx and rbx. |
| 1277 __ jmp(&done); |
| 1278 |
| 1279 __ bind(&rdx_is_object); |
| 1280 IntegerConvert(masm, rdx, rdx); // Uses rdi, rcx and rbx. |
| 1281 __ JumpIfNotSmi(rax, &rax_is_object); |
| 1282 __ bind(&rax_is_smi); |
| 1283 __ SmiToInteger32(rcx, rax); |
| 1284 |
| 1285 __ bind(&done); |
| 1286 __ movl(rax, rdx); |
| 1287 } |
| 1288 |
| 1289 |
| 1290 // Input: rdx, rax are the left and right objects of a bit op. |
| 1291 // Output: rax, rcx are left and right integers for a bit op. |
| 1292 void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm, |
| 1293 Label* conversion_failure, |
| 1294 Register heap_number_map) { |
| 1295 // Check float operands. |
| 1296 Label arg1_is_object, check_undefined_arg1; |
| 1297 Label arg2_is_object, check_undefined_arg2; |
| 1298 Label load_arg2, done; |
| 1299 |
| 1300 __ JumpIfNotSmi(rdx, &arg1_is_object); |
| 1301 __ SmiToInteger32(rdx, rdx); |
| 1302 __ jmp(&load_arg2); |
| 1303 |
| 1304 // If the argument is undefined it converts to zero (ECMA-262, section 9.5). |
| 1305 __ bind(&check_undefined_arg1); |
| 1306 __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex); |
| 1307 __ j(not_equal, conversion_failure); |
| 1308 __ movl(rdx, Immediate(0)); |
| 1309 __ jmp(&load_arg2); |
| 1310 |
| 1311 __ bind(&arg1_is_object); |
| 1312 __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), heap_number_map); |
| 1313 __ j(not_equal, &check_undefined_arg1); |
| 1314 // Get the untagged integer version of the edx heap number in rcx. |
| 1315 IntegerConvert(masm, rdx, rdx); |
| 1316 |
| 1317 // Here rdx has the untagged integer, rax has a Smi or a heap number. |
| 1318 __ bind(&load_arg2); |
| 1319 // Test if arg2 is a Smi. |
| 1320 __ JumpIfNotSmi(rax, &arg2_is_object); |
| 1321 __ SmiToInteger32(rax, rax); |
| 1322 __ movl(rcx, rax); |
| 1323 __ jmp(&done); |
| 1324 |
| 1325 // If the argument is undefined it converts to zero (ECMA-262, section 9.5). |
| 1326 __ bind(&check_undefined_arg2); |
| 1327 __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); |
| 1328 __ j(not_equal, conversion_failure); |
| 1329 __ movl(rcx, Immediate(0)); |
| 1330 __ jmp(&done); |
| 1331 |
| 1332 __ bind(&arg2_is_object); |
| 1333 __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), heap_number_map); |
| 1334 __ j(not_equal, &check_undefined_arg2); |
| 1335 // Get the untagged integer version of the rax heap number in rcx. |
| 1336 IntegerConvert(masm, rcx, rax); |
| 1337 __ bind(&done); |
| 1338 __ movl(rax, rdx); |
| 1339 } |
| 1340 |
| 1341 |
| 1342 void FloatingPointHelper::LoadSSE2SmiOperands(MacroAssembler* masm) { |
| 1343 __ SmiToInteger32(kScratchRegister, rdx); |
| 1344 __ cvtlsi2sd(xmm0, kScratchRegister); |
| 1345 __ SmiToInteger32(kScratchRegister, rax); |
| 1346 __ cvtlsi2sd(xmm1, kScratchRegister); |
| 1347 } |
| 1348 |
| 1349 |
| 1350 void FloatingPointHelper::LoadSSE2NumberOperands(MacroAssembler* masm) { |
| 1351 Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, done; |
| 1352 // Load operand in rdx into xmm0. |
| 1353 __ JumpIfSmi(rdx, &load_smi_rdx); |
| 1354 __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); |
| 1355 // Load operand in rax into xmm1. |
| 1356 __ JumpIfSmi(rax, &load_smi_rax); |
| 1357 __ bind(&load_nonsmi_rax); |
| 1358 __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); |
| 1359 __ jmp(&done); |
| 1360 |
| 1361 __ bind(&load_smi_rdx); |
| 1362 __ SmiToInteger32(kScratchRegister, rdx); |
| 1363 __ cvtlsi2sd(xmm0, kScratchRegister); |
| 1364 __ JumpIfNotSmi(rax, &load_nonsmi_rax); |
| 1365 |
| 1366 __ bind(&load_smi_rax); |
| 1367 __ SmiToInteger32(kScratchRegister, rax); |
| 1368 __ cvtlsi2sd(xmm1, kScratchRegister); |
| 1369 |
| 1370 __ bind(&done); |
| 1371 } |
| 1372 |
| 1373 |
| 1374 void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm, |
| 1375 Label* not_numbers) { |
| 1376 Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done; |
| 1377 // Load operand in rdx into xmm0, or branch to not_numbers. |
| 1378 __ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex); |
| 1379 __ JumpIfSmi(rdx, &load_smi_rdx); |
| 1380 __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), rcx); |
| 1381 __ j(not_equal, not_numbers); // Argument in rdx is not a number. |
| 1382 __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); |
| 1383 // Load operand in rax into xmm1, or branch to not_numbers. |
| 1384 __ JumpIfSmi(rax, &load_smi_rax); |
| 1385 |
| 1386 __ bind(&load_nonsmi_rax); |
| 1387 __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), rcx); |
| 1388 __ j(not_equal, not_numbers); |
| 1389 __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); |
| 1390 __ jmp(&done); |
| 1391 |
| 1392 __ bind(&load_smi_rdx); |
| 1393 __ SmiToInteger32(kScratchRegister, rdx); |
| 1394 __ cvtlsi2sd(xmm0, kScratchRegister); |
| 1395 __ JumpIfNotSmi(rax, &load_nonsmi_rax); |
| 1396 |
| 1397 __ bind(&load_smi_rax); |
| 1398 __ SmiToInteger32(kScratchRegister, rax); |
| 1399 __ cvtlsi2sd(xmm1, kScratchRegister); |
| 1400 __ bind(&done); |
| 1401 } |
| 1402 |
| 1403 |
| 1404 void GenericUnaryOpStub::Generate(MacroAssembler* masm) { |
| 1405 Label slow, done; |
| 1406 |
| 1407 if (op_ == Token::SUB) { |
| 1408 // Check whether the value is a smi. |
| 1409 Label try_float; |
| 1410 __ JumpIfNotSmi(rax, &try_float); |
| 1411 |
| 1412 if (negative_zero_ == kIgnoreNegativeZero) { |
| 1413 __ SmiCompare(rax, Smi::FromInt(0)); |
| 1414 __ j(equal, &done); |
| 1415 } |
| 1416 |
| 1417 // Enter runtime system if the value of the smi is zero |
| 1418 // to make sure that we switch between 0 and -0. |
| 1419 // Also enter it if the value of the smi is Smi::kMinValue. |
| 1420 __ SmiNeg(rax, rax, &done); |
| 1421 |
| 1422 // Either zero or Smi::kMinValue, neither of which become a smi when |
| 1423 // negated. |
| 1424 if (negative_zero_ == kStrictNegativeZero) { |
| 1425 __ SmiCompare(rax, Smi::FromInt(0)); |
| 1426 __ j(not_equal, &slow); |
| 1427 __ Move(rax, Factory::minus_zero_value()); |
| 1428 __ jmp(&done); |
| 1429 } else { |
| 1430 __ jmp(&slow); |
| 1431 } |
| 1432 |
| 1433 // Try floating point case. |
| 1434 __ bind(&try_float); |
| 1435 __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset)); |
| 1436 __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex); |
| 1437 __ j(not_equal, &slow); |
| 1438 // Operand is a float, negate its value by flipping sign bit. |
| 1439 __ movq(rdx, FieldOperand(rax, HeapNumber::kValueOffset)); |
| 1440 __ movq(kScratchRegister, Immediate(0x01)); |
| 1441 __ shl(kScratchRegister, Immediate(63)); |
| 1442 __ xor_(rdx, kScratchRegister); // Flip sign. |
| 1443 // rdx is value to store. |
| 1444 if (overwrite_ == UNARY_OVERWRITE) { |
| 1445 __ movq(FieldOperand(rax, HeapNumber::kValueOffset), rdx); |
| 1446 } else { |
| 1447 __ AllocateHeapNumber(rcx, rbx, &slow); |
| 1448 // rcx: allocated 'empty' number |
| 1449 __ movq(FieldOperand(rcx, HeapNumber::kValueOffset), rdx); |
| 1450 __ movq(rax, rcx); |
| 1451 } |
| 1452 } else if (op_ == Token::BIT_NOT) { |
| 1453 // Check if the operand is a heap number. |
| 1454 __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset)); |
| 1455 __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex); |
| 1456 __ j(not_equal, &slow); |
| 1457 |
| 1458 // Convert the heap number in rax to an untagged integer in rcx. |
| 1459 IntegerConvert(masm, rax, rax); |
| 1460 |
| 1461 // Do the bitwise operation and smi tag the result. |
| 1462 __ notl(rax); |
| 1463 __ Integer32ToSmi(rax, rax); |
| 1464 } |
| 1465 |
| 1466 // Return from the stub. |
| 1467 __ bind(&done); |
| 1468 __ StubReturn(1); |
| 1469 |
| 1470 // Handle the slow case by jumping to the JavaScript builtin. |
| 1471 __ bind(&slow); |
| 1472 __ pop(rcx); // pop return address |
| 1473 __ push(rax); |
| 1474 __ push(rcx); // push return address |
| 1475 switch (op_) { |
| 1476 case Token::SUB: |
| 1477 __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION); |
| 1478 break; |
| 1479 case Token::BIT_NOT: |
| 1480 __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION); |
| 1481 break; |
| 1482 default: |
| 1483 UNREACHABLE(); |
| 1484 } |
| 1485 } |
| 1486 |
| 1487 |
| 1488 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { |
| 1489 // The key is in rdx and the parameter count is in rax. |
| 1490 |
| 1491 // The displacement is used for skipping the frame pointer on the |
| 1492 // stack. It is the offset of the last parameter (if any) relative |
| 1493 // to the frame pointer. |
| 1494 static const int kDisplacement = 1 * kPointerSize; |
| 1495 |
| 1496 // Check that the key is a smi. |
| 1497 Label slow; |
| 1498 __ JumpIfNotSmi(rdx, &slow); |
| 1499 |
| 1500 // Check if the calling frame is an arguments adaptor frame. |
| 1501 Label adaptor; |
| 1502 __ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); |
| 1503 __ SmiCompare(Operand(rbx, StandardFrameConstants::kContextOffset), |
| 1504 Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); |
| 1505 __ j(equal, &adaptor); |
| 1506 |
| 1507 // Check index against formal parameters count limit passed in |
| 1508 // through register rax. Use unsigned comparison to get negative |
| 1509 // check for free. |
| 1510 __ cmpq(rdx, rax); |
| 1511 __ j(above_equal, &slow); |
| 1512 |
| 1513 // Read the argument from the stack and return it. |
| 1514 SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2); |
| 1515 __ lea(rbx, Operand(rbp, index.reg, index.scale, 0)); |
| 1516 index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2); |
| 1517 __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement)); |
| 1518 __ Ret(); |
| 1519 |
| 1520 // Arguments adaptor case: Check index against actual arguments |
| 1521 // limit found in the arguments adaptor frame. Use unsigned |
| 1522 // comparison to get negative check for free. |
| 1523 __ bind(&adaptor); |
| 1524 __ movq(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| 1525 __ cmpq(rdx, rcx); |
| 1526 __ j(above_equal, &slow); |
| 1527 |
| 1528 // Read the argument from the stack and return it. |
| 1529 index = masm->SmiToIndex(rax, rcx, kPointerSizeLog2); |
| 1530 __ lea(rbx, Operand(rbx, index.reg, index.scale, 0)); |
| 1531 index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2); |
| 1532 __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement)); |
| 1533 __ Ret(); |
| 1534 |
| 1535 // Slow-case: Handle non-smi or out-of-bounds access to arguments |
| 1536 // by calling the runtime system. |
| 1537 __ bind(&slow); |
| 1538 __ pop(rbx); // Return address. |
| 1539 __ push(rdx); |
| 1540 __ push(rbx); |
| 1541 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); |
| 1542 } |
| 1543 |
| 1544 |
| 1545 void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) { |
| 1546 // rsp[0] : return address |
| 1547 // rsp[8] : number of parameters |
| 1548 // rsp[16] : receiver displacement |
| 1549 // rsp[24] : function |
| 1550 |
| 1551 // The displacement is used for skipping the return address and the |
| 1552 // frame pointer on the stack. It is the offset of the last |
| 1553 // parameter (if any) relative to the frame pointer. |
| 1554 static const int kDisplacement = 2 * kPointerSize; |
| 1555 |
| 1556 // Check if the calling frame is an arguments adaptor frame. |
| 1557 Label adaptor_frame, try_allocate, runtime; |
| 1558 __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); |
| 1559 __ SmiCompare(Operand(rdx, StandardFrameConstants::kContextOffset), |
| 1560 Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); |
| 1561 __ j(equal, &adaptor_frame); |
| 1562 |
| 1563 // Get the length from the frame. |
| 1564 __ SmiToInteger32(rcx, Operand(rsp, 1 * kPointerSize)); |
| 1565 __ jmp(&try_allocate); |
| 1566 |
| 1567 // Patch the arguments.length and the parameters pointer. |
| 1568 __ bind(&adaptor_frame); |
| 1569 __ SmiToInteger32(rcx, |
| 1570 Operand(rdx, |
| 1571 ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| 1572 // Space on stack must already hold a smi. |
| 1573 __ Integer32ToSmiField(Operand(rsp, 1 * kPointerSize), rcx); |
| 1574 // Do not clobber the length index for the indexing operation since |
| 1575 // it is used compute the size for allocation later. |
| 1576 __ lea(rdx, Operand(rdx, rcx, times_pointer_size, kDisplacement)); |
| 1577 __ movq(Operand(rsp, 2 * kPointerSize), rdx); |
| 1578 |
| 1579 // Try the new space allocation. Start out with computing the size of |
| 1580 // the arguments object and the elements array. |
| 1581 Label add_arguments_object; |
| 1582 __ bind(&try_allocate); |
| 1583 __ testl(rcx, rcx); |
| 1584 __ j(zero, &add_arguments_object); |
| 1585 __ leal(rcx, Operand(rcx, times_pointer_size, FixedArray::kHeaderSize)); |
| 1586 __ bind(&add_arguments_object); |
| 1587 __ addl(rcx, Immediate(Heap::kArgumentsObjectSize)); |
| 1588 |
| 1589 // Do the allocation of both objects in one go. |
| 1590 __ AllocateInNewSpace(rcx, rax, rdx, rbx, &runtime, TAG_OBJECT); |
| 1591 |
| 1592 // Get the arguments boilerplate from the current (global) context. |
| 1593 int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX); |
| 1594 __ movq(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| 1595 __ movq(rdi, FieldOperand(rdi, GlobalObject::kGlobalContextOffset)); |
| 1596 __ movq(rdi, Operand(rdi, offset)); |
| 1597 |
| 1598 // Copy the JS object part. |
| 1599 STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize); |
| 1600 __ movq(kScratchRegister, FieldOperand(rdi, 0 * kPointerSize)); |
| 1601 __ movq(rdx, FieldOperand(rdi, 1 * kPointerSize)); |
| 1602 __ movq(rbx, FieldOperand(rdi, 2 * kPointerSize)); |
| 1603 __ movq(FieldOperand(rax, 0 * kPointerSize), kScratchRegister); |
| 1604 __ movq(FieldOperand(rax, 1 * kPointerSize), rdx); |
| 1605 __ movq(FieldOperand(rax, 2 * kPointerSize), rbx); |
| 1606 |
| 1607 // Setup the callee in-object property. |
| 1608 ASSERT(Heap::arguments_callee_index == 0); |
| 1609 __ movq(kScratchRegister, Operand(rsp, 3 * kPointerSize)); |
| 1610 __ movq(FieldOperand(rax, JSObject::kHeaderSize), kScratchRegister); |
| 1611 |
| 1612 // Get the length (smi tagged) and set that as an in-object property too. |
| 1613 ASSERT(Heap::arguments_length_index == 1); |
| 1614 __ movq(rcx, Operand(rsp, 1 * kPointerSize)); |
| 1615 __ movq(FieldOperand(rax, JSObject::kHeaderSize + kPointerSize), rcx); |
| 1616 |
| 1617 // If there are no actual arguments, we're done. |
| 1618 Label done; |
| 1619 __ SmiTest(rcx); |
| 1620 __ j(zero, &done); |
| 1621 |
| 1622 // Get the parameters pointer from the stack and untag the length. |
| 1623 __ movq(rdx, Operand(rsp, 2 * kPointerSize)); |
| 1624 |
| 1625 // Setup the elements pointer in the allocated arguments object and |
| 1626 // initialize the header in the elements fixed array. |
| 1627 __ lea(rdi, Operand(rax, Heap::kArgumentsObjectSize)); |
| 1628 __ movq(FieldOperand(rax, JSObject::kElementsOffset), rdi); |
| 1629 __ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex); |
| 1630 __ movq(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister); |
| 1631 __ movq(FieldOperand(rdi, FixedArray::kLengthOffset), rcx); |
| 1632 __ SmiToInteger32(rcx, rcx); // Untag length for the loop below. |
| 1633 |
| 1634 // Copy the fixed array slots. |
| 1635 Label loop; |
| 1636 __ bind(&loop); |
| 1637 __ movq(kScratchRegister, Operand(rdx, -1 * kPointerSize)); // Skip receiver. |
| 1638 __ movq(FieldOperand(rdi, FixedArray::kHeaderSize), kScratchRegister); |
| 1639 __ addq(rdi, Immediate(kPointerSize)); |
| 1640 __ subq(rdx, Immediate(kPointerSize)); |
| 1641 __ decl(rcx); |
| 1642 __ j(not_zero, &loop); |
| 1643 |
| 1644 // Return and remove the on-stack parameters. |
| 1645 __ bind(&done); |
| 1646 __ ret(3 * kPointerSize); |
| 1647 |
| 1648 // Do the runtime call to allocate the arguments object. |
| 1649 __ bind(&runtime); |
| 1650 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); |
| 1651 } |
| 1652 |
| 1653 |
| 1654 void RegExpExecStub::Generate(MacroAssembler* masm) { |
| 1655 // Just jump directly to runtime if native RegExp is not selected at compile |
| 1656 // time or if regexp entry in generated code is turned off runtime switch or |
| 1657 // at compilation. |
| 1658 #ifdef V8_INTERPRETED_REGEXP |
| 1659 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| 1660 #else // V8_INTERPRETED_REGEXP |
| 1661 if (!FLAG_regexp_entry_native) { |
| 1662 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| 1663 return; |
| 1664 } |
| 1665 |
| 1666 // Stack frame on entry. |
| 1667 // esp[0]: return address |
| 1668 // esp[8]: last_match_info (expected JSArray) |
| 1669 // esp[16]: previous index |
| 1670 // esp[24]: subject string |
| 1671 // esp[32]: JSRegExp object |
| 1672 |
| 1673 static const int kLastMatchInfoOffset = 1 * kPointerSize; |
| 1674 static const int kPreviousIndexOffset = 2 * kPointerSize; |
| 1675 static const int kSubjectOffset = 3 * kPointerSize; |
| 1676 static const int kJSRegExpOffset = 4 * kPointerSize; |
| 1677 |
| 1678 Label runtime; |
| 1679 |
| 1680 // Ensure that a RegExp stack is allocated. |
| 1681 ExternalReference address_of_regexp_stack_memory_address = |
| 1682 ExternalReference::address_of_regexp_stack_memory_address(); |
| 1683 ExternalReference address_of_regexp_stack_memory_size = |
| 1684 ExternalReference::address_of_regexp_stack_memory_size(); |
| 1685 __ movq(kScratchRegister, address_of_regexp_stack_memory_size); |
| 1686 __ movq(kScratchRegister, Operand(kScratchRegister, 0)); |
| 1687 __ testq(kScratchRegister, kScratchRegister); |
| 1688 __ j(zero, &runtime); |
| 1689 |
| 1690 |
| 1691 // Check that the first argument is a JSRegExp object. |
| 1692 __ movq(rax, Operand(rsp, kJSRegExpOffset)); |
| 1693 __ JumpIfSmi(rax, &runtime); |
| 1694 __ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister); |
| 1695 __ j(not_equal, &runtime); |
| 1696 // Check that the RegExp has been compiled (data contains a fixed array). |
| 1697 __ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset)); |
| 1698 if (FLAG_debug_code) { |
| 1699 Condition is_smi = masm->CheckSmi(rcx); |
| 1700 __ Check(NegateCondition(is_smi), |
| 1701 "Unexpected type for RegExp data, FixedArray expected"); |
| 1702 __ CmpObjectType(rcx, FIXED_ARRAY_TYPE, kScratchRegister); |
| 1703 __ Check(equal, "Unexpected type for RegExp data, FixedArray expected"); |
| 1704 } |
| 1705 |
| 1706 // rcx: RegExp data (FixedArray) |
| 1707 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. |
| 1708 __ SmiToInteger32(rbx, FieldOperand(rcx, JSRegExp::kDataTagOffset)); |
| 1709 __ cmpl(rbx, Immediate(JSRegExp::IRREGEXP)); |
| 1710 __ j(not_equal, &runtime); |
| 1711 |
| 1712 // rcx: RegExp data (FixedArray) |
| 1713 // Check that the number of captures fit in the static offsets vector buffer. |
| 1714 __ SmiToInteger32(rdx, |
| 1715 FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset)); |
| 1716 // Calculate number of capture registers (number_of_captures + 1) * 2. |
| 1717 __ leal(rdx, Operand(rdx, rdx, times_1, 2)); |
| 1718 // Check that the static offsets vector buffer is large enough. |
| 1719 __ cmpl(rdx, Immediate(OffsetsVector::kStaticOffsetsVectorSize)); |
| 1720 __ j(above, &runtime); |
| 1721 |
| 1722 // rcx: RegExp data (FixedArray) |
| 1723 // rdx: Number of capture registers |
| 1724 // Check that the second argument is a string. |
| 1725 __ movq(rax, Operand(rsp, kSubjectOffset)); |
| 1726 __ JumpIfSmi(rax, &runtime); |
| 1727 Condition is_string = masm->IsObjectStringType(rax, rbx, rbx); |
| 1728 __ j(NegateCondition(is_string), &runtime); |
| 1729 |
| 1730 // rax: Subject string. |
| 1731 // rcx: RegExp data (FixedArray). |
| 1732 // rdx: Number of capture registers. |
| 1733 // Check that the third argument is a positive smi less than the string |
| 1734 // length. A negative value will be greater (unsigned comparison). |
| 1735 __ movq(rbx, Operand(rsp, kPreviousIndexOffset)); |
| 1736 __ JumpIfNotSmi(rbx, &runtime); |
| 1737 __ SmiCompare(rbx, FieldOperand(rax, String::kLengthOffset)); |
| 1738 __ j(above_equal, &runtime); |
| 1739 |
| 1740 // rcx: RegExp data (FixedArray) |
| 1741 // rdx: Number of capture registers |
| 1742 // Check that the fourth object is a JSArray object. |
| 1743 __ movq(rax, Operand(rsp, kLastMatchInfoOffset)); |
| 1744 __ JumpIfSmi(rax, &runtime); |
| 1745 __ CmpObjectType(rax, JS_ARRAY_TYPE, kScratchRegister); |
| 1746 __ j(not_equal, &runtime); |
| 1747 // Check that the JSArray is in fast case. |
| 1748 __ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset)); |
| 1749 __ movq(rax, FieldOperand(rbx, HeapObject::kMapOffset)); |
| 1750 __ Cmp(rax, Factory::fixed_array_map()); |
| 1751 __ j(not_equal, &runtime); |
| 1752 // Check that the last match info has space for the capture registers and the |
| 1753 // additional information. Ensure no overflow in add. |
| 1754 STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset); |
| 1755 __ SmiToInteger32(rax, FieldOperand(rbx, FixedArray::kLengthOffset)); |
| 1756 __ addl(rdx, Immediate(RegExpImpl::kLastMatchOverhead)); |
| 1757 __ cmpl(rdx, rax); |
| 1758 __ j(greater, &runtime); |
| 1759 |
| 1760 // rcx: RegExp data (FixedArray) |
| 1761 // Check the representation and encoding of the subject string. |
| 1762 Label seq_ascii_string, seq_two_byte_string, check_code; |
| 1763 __ movq(rax, Operand(rsp, kSubjectOffset)); |
| 1764 __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); |
| 1765 __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); |
| 1766 // First check for flat two byte string. |
| 1767 __ andb(rbx, Immediate( |
| 1768 kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask)); |
| 1769 STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0); |
| 1770 __ j(zero, &seq_two_byte_string); |
| 1771 // Any other flat string must be a flat ascii string. |
| 1772 __ testb(rbx, Immediate(kIsNotStringMask | kStringRepresentationMask)); |
| 1773 __ j(zero, &seq_ascii_string); |
| 1774 |
| 1775 // Check for flat cons string. |
| 1776 // A flat cons string is a cons string where the second part is the empty |
| 1777 // string. In that case the subject string is just the first part of the cons |
| 1778 // string. Also in this case the first part of the cons string is known to be |
| 1779 // a sequential string or an external string. |
| 1780 STATIC_ASSERT(kExternalStringTag !=0); |
| 1781 STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0); |
| 1782 __ testb(rbx, Immediate(kIsNotStringMask | kExternalStringTag)); |
| 1783 __ j(not_zero, &runtime); |
| 1784 // String is a cons string. |
| 1785 __ movq(rdx, FieldOperand(rax, ConsString::kSecondOffset)); |
| 1786 __ Cmp(rdx, Factory::empty_string()); |
| 1787 __ j(not_equal, &runtime); |
| 1788 __ movq(rax, FieldOperand(rax, ConsString::kFirstOffset)); |
| 1789 __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); |
| 1790 // String is a cons string with empty second part. |
| 1791 // rax: first part of cons string. |
| 1792 // rbx: map of first part of cons string. |
| 1793 // Is first part a flat two byte string? |
| 1794 __ testb(FieldOperand(rbx, Map::kInstanceTypeOffset), |
| 1795 Immediate(kStringRepresentationMask | kStringEncodingMask)); |
| 1796 STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0); |
| 1797 __ j(zero, &seq_two_byte_string); |
| 1798 // Any other flat string must be ascii. |
| 1799 __ testb(FieldOperand(rbx, Map::kInstanceTypeOffset), |
| 1800 Immediate(kStringRepresentationMask)); |
| 1801 __ j(not_zero, &runtime); |
| 1802 |
| 1803 __ bind(&seq_ascii_string); |
| 1804 // rax: subject string (sequential ascii) |
| 1805 // rcx: RegExp data (FixedArray) |
| 1806 __ movq(r11, FieldOperand(rcx, JSRegExp::kDataAsciiCodeOffset)); |
| 1807 __ Set(rdi, 1); // Type is ascii. |
| 1808 __ jmp(&check_code); |
| 1809 |
| 1810 __ bind(&seq_two_byte_string); |
| 1811 // rax: subject string (flat two-byte) |
| 1812 // rcx: RegExp data (FixedArray) |
| 1813 __ movq(r11, FieldOperand(rcx, JSRegExp::kDataUC16CodeOffset)); |
| 1814 __ Set(rdi, 0); // Type is two byte. |
| 1815 |
| 1816 __ bind(&check_code); |
| 1817 // Check that the irregexp code has been generated for the actual string |
| 1818 // encoding. If it has, the field contains a code object otherwise it contains |
| 1819 // the hole. |
| 1820 __ CmpObjectType(r11, CODE_TYPE, kScratchRegister); |
| 1821 __ j(not_equal, &runtime); |
| 1822 |
| 1823 // rax: subject string |
| 1824 // rdi: encoding of subject string (1 if ascii, 0 if two_byte); |
| 1825 // r11: code |
| 1826 // Load used arguments before starting to push arguments for call to native |
| 1827 // RegExp code to avoid handling changing stack height. |
| 1828 __ SmiToInteger64(rbx, Operand(rsp, kPreviousIndexOffset)); |
| 1829 |
| 1830 // rax: subject string |
| 1831 // rbx: previous index |
| 1832 // rdi: encoding of subject string (1 if ascii 0 if two_byte); |
| 1833 // r11: code |
| 1834 // All checks done. Now push arguments for native regexp code. |
| 1835 __ IncrementCounter(&Counters::regexp_entry_native, 1); |
| 1836 |
| 1837 // rsi is caller save on Windows and used to pass parameter on Linux. |
| 1838 __ push(rsi); |
| 1839 |
| 1840 static const int kRegExpExecuteArguments = 7; |
| 1841 __ PrepareCallCFunction(kRegExpExecuteArguments); |
| 1842 int argument_slots_on_stack = |
| 1843 masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments); |
| 1844 |
| 1845 // Argument 7: Indicate that this is a direct call from JavaScript. |
| 1846 __ movq(Operand(rsp, (argument_slots_on_stack - 1) * kPointerSize), |
| 1847 Immediate(1)); |
| 1848 |
| 1849 // Argument 6: Start (high end) of backtracking stack memory area. |
| 1850 __ movq(kScratchRegister, address_of_regexp_stack_memory_address); |
| 1851 __ movq(r9, Operand(kScratchRegister, 0)); |
| 1852 __ movq(kScratchRegister, address_of_regexp_stack_memory_size); |
| 1853 __ addq(r9, Operand(kScratchRegister, 0)); |
| 1854 // Argument 6 passed in r9 on Linux and on the stack on Windows. |
| 1855 #ifdef _WIN64 |
| 1856 __ movq(Operand(rsp, (argument_slots_on_stack - 2) * kPointerSize), r9); |
| 1857 #endif |
| 1858 |
| 1859 // Argument 5: static offsets vector buffer. |
| 1860 __ movq(r8, ExternalReference::address_of_static_offsets_vector()); |
| 1861 // Argument 5 passed in r8 on Linux and on the stack on Windows. |
| 1862 #ifdef _WIN64 |
| 1863 __ movq(Operand(rsp, (argument_slots_on_stack - 3) * kPointerSize), r8); |
| 1864 #endif |
| 1865 |
| 1866 // First four arguments are passed in registers on both Linux and Windows. |
| 1867 #ifdef _WIN64 |
| 1868 Register arg4 = r9; |
| 1869 Register arg3 = r8; |
| 1870 Register arg2 = rdx; |
| 1871 Register arg1 = rcx; |
| 1872 #else |
| 1873 Register arg4 = rcx; |
| 1874 Register arg3 = rdx; |
| 1875 Register arg2 = rsi; |
| 1876 Register arg1 = rdi; |
| 1877 #endif |
| 1878 |
| 1879 // Keep track on aliasing between argX defined above and the registers used. |
| 1880 // rax: subject string |
| 1881 // rbx: previous index |
| 1882 // rdi: encoding of subject string (1 if ascii 0 if two_byte); |
| 1883 // r11: code |
| 1884 |
| 1885 // Argument 4: End of string data |
| 1886 // Argument 3: Start of string data |
| 1887 Label setup_two_byte, setup_rest; |
| 1888 __ testb(rdi, rdi); |
| 1889 __ j(zero, &setup_two_byte); |
| 1890 __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset)); |
| 1891 __ lea(arg4, FieldOperand(rax, rdi, times_1, SeqAsciiString::kHeaderSize)); |
| 1892 __ lea(arg3, FieldOperand(rax, rbx, times_1, SeqAsciiString::kHeaderSize)); |
| 1893 __ jmp(&setup_rest); |
| 1894 __ bind(&setup_two_byte); |
| 1895 __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset)); |
| 1896 __ lea(arg4, FieldOperand(rax, rdi, times_2, SeqTwoByteString::kHeaderSize)); |
| 1897 __ lea(arg3, FieldOperand(rax, rbx, times_2, SeqTwoByteString::kHeaderSize)); |
| 1898 |
| 1899 __ bind(&setup_rest); |
| 1900 // Argument 2: Previous index. |
| 1901 __ movq(arg2, rbx); |
| 1902 |
| 1903 // Argument 1: Subject string. |
| 1904 __ movq(arg1, rax); |
| 1905 |
| 1906 // Locate the code entry and call it. |
| 1907 __ addq(r11, Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| 1908 __ CallCFunction(r11, kRegExpExecuteArguments); |
| 1909 |
| 1910 // rsi is caller save, as it is used to pass parameter. |
| 1911 __ pop(rsi); |
| 1912 |
| 1913 // Check the result. |
| 1914 Label success; |
| 1915 __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::SUCCESS)); |
| 1916 __ j(equal, &success); |
| 1917 Label failure; |
| 1918 __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::FAILURE)); |
| 1919 __ j(equal, &failure); |
| 1920 __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION)); |
| 1921 // If not exception it can only be retry. Handle that in the runtime system. |
| 1922 __ j(not_equal, &runtime); |
| 1923 // Result must now be exception. If there is no pending exception already a |
| 1924 // stack overflow (on the backtrack stack) was detected in RegExp code but |
| 1925 // haven't created the exception yet. Handle that in the runtime system. |
| 1926 // TODO(592): Rerunning the RegExp to get the stack overflow exception. |
| 1927 ExternalReference pending_exception_address(Top::k_pending_exception_address); |
| 1928 __ movq(kScratchRegister, pending_exception_address); |
| 1929 __ Cmp(kScratchRegister, Factory::the_hole_value()); |
| 1930 __ j(equal, &runtime); |
| 1931 __ bind(&failure); |
| 1932 // For failure and exception return null. |
| 1933 __ Move(rax, Factory::null_value()); |
| 1934 __ ret(4 * kPointerSize); |
| 1935 |
| 1936 // Load RegExp data. |
| 1937 __ bind(&success); |
| 1938 __ movq(rax, Operand(rsp, kJSRegExpOffset)); |
| 1939 __ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset)); |
| 1940 __ SmiToInteger32(rax, |
| 1941 FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset)); |
| 1942 // Calculate number of capture registers (number_of_captures + 1) * 2. |
| 1943 __ leal(rdx, Operand(rax, rax, times_1, 2)); |
| 1944 |
| 1945 // rdx: Number of capture registers |
| 1946 // Load last_match_info which is still known to be a fast case JSArray. |
| 1947 __ movq(rax, Operand(rsp, kLastMatchInfoOffset)); |
| 1948 __ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset)); |
| 1949 |
| 1950 // rbx: last_match_info backing store (FixedArray) |
| 1951 // rdx: number of capture registers |
| 1952 // Store the capture count. |
| 1953 __ Integer32ToSmi(kScratchRegister, rdx); |
| 1954 __ movq(FieldOperand(rbx, RegExpImpl::kLastCaptureCountOffset), |
| 1955 kScratchRegister); |
| 1956 // Store last subject and last input. |
| 1957 __ movq(rax, Operand(rsp, kSubjectOffset)); |
| 1958 __ movq(FieldOperand(rbx, RegExpImpl::kLastSubjectOffset), rax); |
| 1959 __ movq(rcx, rbx); |
| 1960 __ RecordWrite(rcx, RegExpImpl::kLastSubjectOffset, rax, rdi); |
| 1961 __ movq(rax, Operand(rsp, kSubjectOffset)); |
| 1962 __ movq(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rax); |
| 1963 __ movq(rcx, rbx); |
| 1964 __ RecordWrite(rcx, RegExpImpl::kLastInputOffset, rax, rdi); |
| 1965 |
| 1966 // Get the static offsets vector filled by the native regexp code. |
| 1967 __ movq(rcx, ExternalReference::address_of_static_offsets_vector()); |
| 1968 |
| 1969 // rbx: last_match_info backing store (FixedArray) |
| 1970 // rcx: offsets vector |
| 1971 // rdx: number of capture registers |
| 1972 Label next_capture, done; |
| 1973 // Capture register counter starts from number of capture registers and |
| 1974 // counts down until wraping after zero. |
| 1975 __ bind(&next_capture); |
| 1976 __ subq(rdx, Immediate(1)); |
| 1977 __ j(negative, &done); |
| 1978 // Read the value from the static offsets vector buffer and make it a smi. |
| 1979 __ movl(rdi, Operand(rcx, rdx, times_int_size, 0)); |
| 1980 __ Integer32ToSmi(rdi, rdi, &runtime); |
| 1981 // Store the smi value in the last match info. |
| 1982 __ movq(FieldOperand(rbx, |
| 1983 rdx, |
| 1984 times_pointer_size, |
| 1985 RegExpImpl::kFirstCaptureOffset), |
| 1986 rdi); |
| 1987 __ jmp(&next_capture); |
| 1988 __ bind(&done); |
| 1989 |
| 1990 // Return last match info. |
| 1991 __ movq(rax, Operand(rsp, kLastMatchInfoOffset)); |
| 1992 __ ret(4 * kPointerSize); |
| 1993 |
| 1994 // Do the runtime call to execute the regexp. |
| 1995 __ bind(&runtime); |
| 1996 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| 1997 #endif // V8_INTERPRETED_REGEXP |
| 1998 } |
| 1999 |
| 2000 |
| 2001 void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, |
| 2002 Register object, |
| 2003 Register result, |
| 2004 Register scratch1, |
| 2005 Register scratch2, |
| 2006 bool object_is_smi, |
| 2007 Label* not_found) { |
| 2008 // Use of registers. Register result is used as a temporary. |
| 2009 Register number_string_cache = result; |
| 2010 Register mask = scratch1; |
| 2011 Register scratch = scratch2; |
| 2012 |
| 2013 // Load the number string cache. |
| 2014 __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); |
| 2015 |
| 2016 // Make the hash mask from the length of the number string cache. It |
| 2017 // contains two elements (number and string) for each cache entry. |
| 2018 __ SmiToInteger32( |
| 2019 mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset)); |
| 2020 __ shrl(mask, Immediate(1)); |
| 2021 __ subq(mask, Immediate(1)); // Make mask. |
| 2022 |
| 2023 // Calculate the entry in the number string cache. The hash value in the |
| 2024 // number string cache for smis is just the smi value, and the hash for |
| 2025 // doubles is the xor of the upper and lower words. See |
| 2026 // Heap::GetNumberStringCache. |
| 2027 Label is_smi; |
| 2028 Label load_result_from_cache; |
| 2029 if (!object_is_smi) { |
| 2030 __ JumpIfSmi(object, &is_smi); |
| 2031 __ CheckMap(object, Factory::heap_number_map(), not_found, true); |
| 2032 |
| 2033 STATIC_ASSERT(8 == kDoubleSize); |
| 2034 __ movl(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4)); |
| 2035 __ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset)); |
| 2036 GenerateConvertHashCodeToIndex(masm, scratch, mask); |
| 2037 |
| 2038 Register index = scratch; |
| 2039 Register probe = mask; |
| 2040 __ movq(probe, |
| 2041 FieldOperand(number_string_cache, |
| 2042 index, |
| 2043 times_1, |
| 2044 FixedArray::kHeaderSize)); |
| 2045 __ JumpIfSmi(probe, not_found); |
| 2046 ASSERT(CpuFeatures::IsSupported(SSE2)); |
| 2047 CpuFeatures::Scope fscope(SSE2); |
| 2048 __ movsd(xmm0, FieldOperand(object, HeapNumber::kValueOffset)); |
| 2049 __ movsd(xmm1, FieldOperand(probe, HeapNumber::kValueOffset)); |
| 2050 __ ucomisd(xmm0, xmm1); |
| 2051 __ j(parity_even, not_found); // Bail out if NaN is involved. |
| 2052 __ j(not_equal, not_found); // The cache did not contain this value. |
| 2053 __ jmp(&load_result_from_cache); |
| 2054 } |
| 2055 |
| 2056 __ bind(&is_smi); |
| 2057 __ SmiToInteger32(scratch, object); |
| 2058 GenerateConvertHashCodeToIndex(masm, scratch, mask); |
| 2059 |
| 2060 Register index = scratch; |
| 2061 // Check if the entry is the smi we are looking for. |
| 2062 __ cmpq(object, |
| 2063 FieldOperand(number_string_cache, |
| 2064 index, |
| 2065 times_1, |
| 2066 FixedArray::kHeaderSize)); |
| 2067 __ j(not_equal, not_found); |
| 2068 |
| 2069 // Get the result from the cache. |
| 2070 __ bind(&load_result_from_cache); |
| 2071 __ movq(result, |
| 2072 FieldOperand(number_string_cache, |
| 2073 index, |
| 2074 times_1, |
| 2075 FixedArray::kHeaderSize + kPointerSize)); |
| 2076 __ IncrementCounter(&Counters::number_to_string_native, 1); |
| 2077 } |
| 2078 |
| 2079 |
| 2080 void NumberToStringStub::GenerateConvertHashCodeToIndex(MacroAssembler* masm, |
| 2081 Register hash, |
| 2082 Register mask) { |
| 2083 __ and_(hash, mask); |
| 2084 // Each entry in string cache consists of two pointer sized fields, |
| 2085 // but times_twice_pointer_size (multiplication by 16) scale factor |
| 2086 // is not supported by addrmode on x64 platform. |
| 2087 // So we have to premultiply entry index before lookup. |
| 2088 __ shl(hash, Immediate(kPointerSizeLog2 + 1)); |
| 2089 } |
| 2090 |
| 2091 |
| 2092 void NumberToStringStub::Generate(MacroAssembler* masm) { |
| 2093 Label runtime; |
| 2094 |
| 2095 __ movq(rbx, Operand(rsp, kPointerSize)); |
| 2096 |
| 2097 // Generate code to lookup number in the number string cache. |
| 2098 GenerateLookupNumberStringCache(masm, rbx, rax, r8, r9, false, &runtime); |
| 2099 __ ret(1 * kPointerSize); |
| 2100 |
| 2101 __ bind(&runtime); |
| 2102 // Handle number to string in the runtime system if not found in the cache. |
| 2103 __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1); |
| 2104 } |
| 2105 |
| 2106 |
| 2107 static int NegativeComparisonResult(Condition cc) { |
| 2108 ASSERT(cc != equal); |
| 2109 ASSERT((cc == less) || (cc == less_equal) |
| 2110 || (cc == greater) || (cc == greater_equal)); |
| 2111 return (cc == greater || cc == greater_equal) ? LESS : GREATER; |
| 2112 } |
| 2113 |
| 2114 |
| 2115 void CompareStub::Generate(MacroAssembler* masm) { |
| 2116 ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); |
| 2117 |
| 2118 Label check_unequal_objects, done; |
| 2119 // The compare stub returns a positive, negative, or zero 64-bit integer |
| 2120 // value in rax, corresponding to result of comparing the two inputs. |
| 2121 // NOTICE! This code is only reached after a smi-fast-case check, so |
| 2122 // it is certain that at least one operand isn't a smi. |
| 2123 |
| 2124 // Two identical objects are equal unless they are both NaN or undefined. |
| 2125 { |
| 2126 Label not_identical; |
| 2127 __ cmpq(rax, rdx); |
| 2128 __ j(not_equal, ¬_identical); |
| 2129 |
| 2130 if (cc_ != equal) { |
| 2131 // Check for undefined. undefined OP undefined is false even though |
| 2132 // undefined == undefined. |
| 2133 Label check_for_nan; |
| 2134 __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex); |
| 2135 __ j(not_equal, &check_for_nan); |
| 2136 __ Set(rax, NegativeComparisonResult(cc_)); |
| 2137 __ ret(0); |
| 2138 __ bind(&check_for_nan); |
| 2139 } |
| 2140 |
| 2141 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), |
| 2142 // so we do the second best thing - test it ourselves. |
| 2143 // Note: if cc_ != equal, never_nan_nan_ is not used. |
| 2144 // We cannot set rax to EQUAL until just before return because |
| 2145 // rax must be unchanged on jump to not_identical. |
| 2146 |
| 2147 if (never_nan_nan_ && (cc_ == equal)) { |
| 2148 __ Set(rax, EQUAL); |
| 2149 __ ret(0); |
| 2150 } else { |
| 2151 Label heap_number; |
| 2152 // If it's not a heap number, then return equal for (in)equality operator. |
| 2153 __ Cmp(FieldOperand(rdx, HeapObject::kMapOffset), |
| 2154 Factory::heap_number_map()); |
| 2155 __ j(equal, &heap_number); |
| 2156 if (cc_ != equal) { |
| 2157 // Call runtime on identical JSObjects. Otherwise return equal. |
| 2158 __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx); |
| 2159 __ j(above_equal, ¬_identical); |
| 2160 } |
| 2161 __ Set(rax, EQUAL); |
| 2162 __ ret(0); |
| 2163 |
| 2164 __ bind(&heap_number); |
| 2165 // It is a heap number, so return equal if it's not NaN. |
| 2166 // For NaN, return 1 for every condition except greater and |
| 2167 // greater-equal. Return -1 for them, so the comparison yields |
| 2168 // false for all conditions except not-equal. |
| 2169 __ Set(rax, EQUAL); |
| 2170 __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); |
| 2171 __ ucomisd(xmm0, xmm0); |
| 2172 __ setcc(parity_even, rax); |
| 2173 // rax is 0 for equal non-NaN heapnumbers, 1 for NaNs. |
| 2174 if (cc_ == greater_equal || cc_ == greater) { |
| 2175 __ neg(rax); |
| 2176 } |
| 2177 __ ret(0); |
| 2178 } |
| 2179 |
| 2180 __ bind(¬_identical); |
| 2181 } |
| 2182 |
| 2183 if (cc_ == equal) { // Both strict and non-strict. |
| 2184 Label slow; // Fallthrough label. |
| 2185 |
| 2186 // If we're doing a strict equality comparison, we don't have to do |
| 2187 // type conversion, so we generate code to do fast comparison for objects |
| 2188 // and oddballs. Non-smi numbers and strings still go through the usual |
| 2189 // slow-case code. |
| 2190 if (strict_) { |
| 2191 // If either is a Smi (we know that not both are), then they can only |
| 2192 // be equal if the other is a HeapNumber. If so, use the slow case. |
| 2193 { |
| 2194 Label not_smis; |
| 2195 __ SelectNonSmi(rbx, rax, rdx, ¬_smis); |
| 2196 |
| 2197 // Check if the non-smi operand is a heap number. |
| 2198 __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset), |
| 2199 Factory::heap_number_map()); |
| 2200 // If heap number, handle it in the slow case. |
| 2201 __ j(equal, &slow); |
| 2202 // Return non-equal. ebx (the lower half of rbx) is not zero. |
| 2203 __ movq(rax, rbx); |
| 2204 __ ret(0); |
| 2205 |
| 2206 __ bind(¬_smis); |
| 2207 } |
| 2208 |
| 2209 // If either operand is a JSObject or an oddball value, then they are not |
| 2210 // equal since their pointers are different |
| 2211 // There is no test for undetectability in strict equality. |
| 2212 |
| 2213 // If the first object is a JS object, we have done pointer comparison. |
| 2214 STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
| 2215 Label first_non_object; |
| 2216 __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx); |
| 2217 __ j(below, &first_non_object); |
| 2218 // Return non-zero (eax (not rax) is not zero) |
| 2219 Label return_not_equal; |
| 2220 STATIC_ASSERT(kHeapObjectTag != 0); |
| 2221 __ bind(&return_not_equal); |
| 2222 __ ret(0); |
| 2223 |
| 2224 __ bind(&first_non_object); |
| 2225 // Check for oddballs: true, false, null, undefined. |
| 2226 __ CmpInstanceType(rcx, ODDBALL_TYPE); |
| 2227 __ j(equal, &return_not_equal); |
| 2228 |
| 2229 __ CmpObjectType(rdx, FIRST_JS_OBJECT_TYPE, rcx); |
| 2230 __ j(above_equal, &return_not_equal); |
| 2231 |
| 2232 // Check for oddballs: true, false, null, undefined. |
| 2233 __ CmpInstanceType(rcx, ODDBALL_TYPE); |
| 2234 __ j(equal, &return_not_equal); |
| 2235 |
| 2236 // Fall through to the general case. |
| 2237 } |
| 2238 __ bind(&slow); |
| 2239 } |
| 2240 |
| 2241 // Generate the number comparison code. |
| 2242 if (include_number_compare_) { |
| 2243 Label non_number_comparison; |
| 2244 Label unordered; |
| 2245 FloatingPointHelper::LoadSSE2UnknownOperands(masm, &non_number_comparison); |
| 2246 __ xorl(rax, rax); |
| 2247 __ xorl(rcx, rcx); |
| 2248 __ ucomisd(xmm0, xmm1); |
| 2249 |
| 2250 // Don't base result on EFLAGS when a NaN is involved. |
| 2251 __ j(parity_even, &unordered); |
| 2252 // Return a result of -1, 0, or 1, based on EFLAGS. |
| 2253 __ setcc(above, rax); |
| 2254 __ setcc(below, rcx); |
| 2255 __ subq(rax, rcx); |
| 2256 __ ret(0); |
| 2257 |
| 2258 // If one of the numbers was NaN, then the result is always false. |
| 2259 // The cc is never not-equal. |
| 2260 __ bind(&unordered); |
| 2261 ASSERT(cc_ != not_equal); |
| 2262 if (cc_ == less || cc_ == less_equal) { |
| 2263 __ Set(rax, 1); |
| 2264 } else { |
| 2265 __ Set(rax, -1); |
| 2266 } |
| 2267 __ ret(0); |
| 2268 |
| 2269 // The number comparison code did not provide a valid result. |
| 2270 __ bind(&non_number_comparison); |
| 2271 } |
| 2272 |
| 2273 // Fast negative check for symbol-to-symbol equality. |
| 2274 Label check_for_strings; |
| 2275 if (cc_ == equal) { |
| 2276 BranchIfNonSymbol(masm, &check_for_strings, rax, kScratchRegister); |
| 2277 BranchIfNonSymbol(masm, &check_for_strings, rdx, kScratchRegister); |
| 2278 |
| 2279 // We've already checked for object identity, so if both operands |
| 2280 // are symbols they aren't equal. Register eax (not rax) already holds a |
| 2281 // non-zero value, which indicates not equal, so just return. |
| 2282 __ ret(0); |
| 2283 } |
| 2284 |
| 2285 __ bind(&check_for_strings); |
| 2286 |
| 2287 __ JumpIfNotBothSequentialAsciiStrings( |
| 2288 rdx, rax, rcx, rbx, &check_unequal_objects); |
| 2289 |
| 2290 // Inline comparison of ascii strings. |
| 2291 StringCompareStub::GenerateCompareFlatAsciiStrings(masm, |
| 2292 rdx, |
| 2293 rax, |
| 2294 rcx, |
| 2295 rbx, |
| 2296 rdi, |
| 2297 r8); |
| 2298 |
| 2299 #ifdef DEBUG |
| 2300 __ Abort("Unexpected fall-through from string comparison"); |
| 2301 #endif |
| 2302 |
| 2303 __ bind(&check_unequal_objects); |
| 2304 if (cc_ == equal && !strict_) { |
| 2305 // Not strict equality. Objects are unequal if |
| 2306 // they are both JSObjects and not undetectable, |
| 2307 // and their pointers are different. |
| 2308 Label not_both_objects, return_unequal; |
| 2309 // At most one is a smi, so we can test for smi by adding the two. |
| 2310 // A smi plus a heap object has the low bit set, a heap object plus |
| 2311 // a heap object has the low bit clear. |
| 2312 STATIC_ASSERT(kSmiTag == 0); |
| 2313 STATIC_ASSERT(kSmiTagMask == 1); |
| 2314 __ lea(rcx, Operand(rax, rdx, times_1, 0)); |
| 2315 __ testb(rcx, Immediate(kSmiTagMask)); |
| 2316 __ j(not_zero, ¬_both_objects); |
| 2317 __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rbx); |
| 2318 __ j(below, ¬_both_objects); |
| 2319 __ CmpObjectType(rdx, FIRST_JS_OBJECT_TYPE, rcx); |
| 2320 __ j(below, ¬_both_objects); |
| 2321 __ testb(FieldOperand(rbx, Map::kBitFieldOffset), |
| 2322 Immediate(1 << Map::kIsUndetectable)); |
| 2323 __ j(zero, &return_unequal); |
| 2324 __ testb(FieldOperand(rcx, Map::kBitFieldOffset), |
| 2325 Immediate(1 << Map::kIsUndetectable)); |
| 2326 __ j(zero, &return_unequal); |
| 2327 // The objects are both undetectable, so they both compare as the value |
| 2328 // undefined, and are equal. |
| 2329 __ Set(rax, EQUAL); |
| 2330 __ bind(&return_unequal); |
| 2331 // Return non-equal by returning the non-zero object pointer in eax, |
| 2332 // or return equal if we fell through to here. |
| 2333 __ ret(0); |
| 2334 __ bind(¬_both_objects); |
| 2335 } |
| 2336 |
| 2337 // Push arguments below the return address to prepare jump to builtin. |
| 2338 __ pop(rcx); |
| 2339 __ push(rdx); |
| 2340 __ push(rax); |
| 2341 |
| 2342 // Figure out which native to call and setup the arguments. |
| 2343 Builtins::JavaScript builtin; |
| 2344 if (cc_ == equal) { |
| 2345 builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; |
| 2346 } else { |
| 2347 builtin = Builtins::COMPARE; |
| 2348 __ Push(Smi::FromInt(NegativeComparisonResult(cc_))); |
| 2349 } |
| 2350 |
| 2351 // Restore return address on the stack. |
| 2352 __ push(rcx); |
| 2353 |
| 2354 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) |
| 2355 // tagged as a small integer. |
| 2356 __ InvokeBuiltin(builtin, JUMP_FUNCTION); |
| 2357 } |
| 2358 |
| 2359 |
| 2360 void CompareStub::BranchIfNonSymbol(MacroAssembler* masm, |
| 2361 Label* label, |
| 2362 Register object, |
| 2363 Register scratch) { |
| 2364 __ JumpIfSmi(object, label); |
| 2365 __ movq(scratch, FieldOperand(object, HeapObject::kMapOffset)); |
| 2366 __ movzxbq(scratch, |
| 2367 FieldOperand(scratch, Map::kInstanceTypeOffset)); |
| 2368 // Ensure that no non-strings have the symbol bit set. |
| 2369 STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask); |
| 2370 STATIC_ASSERT(kSymbolTag != 0); |
| 2371 __ testb(scratch, Immediate(kIsSymbolMask)); |
| 2372 __ j(zero, label); |
| 2373 } |
| 2374 |
| 2375 |
| 2376 void StackCheckStub::Generate(MacroAssembler* masm) { |
| 2377 // Because builtins always remove the receiver from the stack, we |
| 2378 // have to fake one to avoid underflowing the stack. The receiver |
| 2379 // must be inserted below the return address on the stack so we |
| 2380 // temporarily store that in a register. |
| 2381 __ pop(rax); |
| 2382 __ Push(Smi::FromInt(0)); |
| 2383 __ push(rax); |
| 2384 |
| 2385 // Do tail-call to runtime routine. |
| 2386 __ TailCallRuntime(Runtime::kStackGuard, 1, 1); |
| 2387 } |
| 2388 |
| 2389 |
| 2390 void CallFunctionStub::Generate(MacroAssembler* masm) { |
| 2391 Label slow; |
| 2392 |
| 2393 // If the receiver might be a value (string, number or boolean) check for this |
| 2394 // and box it if it is. |
| 2395 if (ReceiverMightBeValue()) { |
| 2396 // Get the receiver from the stack. |
| 2397 // +1 ~ return address |
| 2398 Label receiver_is_value, receiver_is_js_object; |
| 2399 __ movq(rax, Operand(rsp, (argc_ + 1) * kPointerSize)); |
| 2400 |
| 2401 // Check if receiver is a smi (which is a number value). |
| 2402 __ JumpIfSmi(rax, &receiver_is_value); |
| 2403 |
| 2404 // Check if the receiver is a valid JS object. |
| 2405 __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rdi); |
| 2406 __ j(above_equal, &receiver_is_js_object); |
| 2407 |
| 2408 // Call the runtime to box the value. |
| 2409 __ bind(&receiver_is_value); |
| 2410 __ EnterInternalFrame(); |
| 2411 __ push(rax); |
| 2412 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); |
| 2413 __ LeaveInternalFrame(); |
| 2414 __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rax); |
| 2415 |
| 2416 __ bind(&receiver_is_js_object); |
| 2417 } |
| 2418 |
| 2419 // Get the function to call from the stack. |
| 2420 // +2 ~ receiver, return address |
| 2421 __ movq(rdi, Operand(rsp, (argc_ + 2) * kPointerSize)); |
| 2422 |
| 2423 // Check that the function really is a JavaScript function. |
| 2424 __ JumpIfSmi(rdi, &slow); |
| 2425 // Goto slow case if we do not have a function. |
| 2426 __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); |
| 2427 __ j(not_equal, &slow); |
| 2428 |
| 2429 // Fast-case: Just invoke the function. |
| 2430 ParameterCount actual(argc_); |
| 2431 __ InvokeFunction(rdi, actual, JUMP_FUNCTION); |
| 2432 |
| 2433 // Slow-case: Non-function called. |
| 2434 __ bind(&slow); |
| 2435 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead |
| 2436 // of the original receiver from the call site). |
| 2437 __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rdi); |
| 2438 __ Set(rax, argc_); |
| 2439 __ Set(rbx, 0); |
| 2440 __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION); |
| 2441 Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)); |
| 2442 __ Jump(adaptor, RelocInfo::CODE_TARGET); |
| 2443 } |
| 2444 |
| 2445 |
| 2446 void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) { |
| 2447 // Check that stack should contain next handler, frame pointer, state and |
| 2448 // return address in that order. |
| 2449 STATIC_ASSERT(StackHandlerConstants::kFPOffset + kPointerSize == |
| 2450 StackHandlerConstants::kStateOffset); |
| 2451 STATIC_ASSERT(StackHandlerConstants::kStateOffset + kPointerSize == |
| 2452 StackHandlerConstants::kPCOffset); |
| 2453 |
| 2454 ExternalReference handler_address(Top::k_handler_address); |
| 2455 __ movq(kScratchRegister, handler_address); |
| 2456 __ movq(rsp, Operand(kScratchRegister, 0)); |
| 2457 // get next in chain |
| 2458 __ pop(rcx); |
| 2459 __ movq(Operand(kScratchRegister, 0), rcx); |
| 2460 __ pop(rbp); // pop frame pointer |
| 2461 __ pop(rdx); // remove state |
| 2462 |
| 2463 // Before returning we restore the context from the frame pointer if not NULL. |
| 2464 // The frame pointer is NULL in the exception handler of a JS entry frame. |
| 2465 __ xor_(rsi, rsi); // tentatively set context pointer to NULL |
| 2466 Label skip; |
| 2467 __ cmpq(rbp, Immediate(0)); |
| 2468 __ j(equal, &skip); |
| 2469 __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); |
| 2470 __ bind(&skip); |
| 2471 __ ret(0); |
| 2472 } |
| 2473 |
| 2474 |
| 2475 void ApiGetterEntryStub::Generate(MacroAssembler* masm) { |
| 2476 Label empty_result; |
| 2477 Label prologue; |
| 2478 Label promote_scheduled_exception; |
| 2479 __ EnterApiExitFrame(ExitFrame::MODE_NORMAL, kStackSpace, 0); |
| 2480 ASSERT_EQ(kArgc, 4); |
| 2481 #ifdef _WIN64 |
| 2482 // All the parameters should be set up by a caller. |
| 2483 #else |
| 2484 // Set 1st parameter register with property name. |
| 2485 __ movq(rsi, rdx); |
| 2486 // Second parameter register rdi should be set with pointer to AccessorInfo |
| 2487 // by a caller. |
| 2488 #endif |
| 2489 // Call the api function! |
| 2490 __ movq(rax, |
| 2491 reinterpret_cast<int64_t>(fun()->address()), |
| 2492 RelocInfo::RUNTIME_ENTRY); |
| 2493 __ call(rax); |
| 2494 // Check if the function scheduled an exception. |
| 2495 ExternalReference scheduled_exception_address = |
| 2496 ExternalReference::scheduled_exception_address(); |
| 2497 __ movq(rsi, scheduled_exception_address); |
| 2498 __ Cmp(Operand(rsi, 0), Factory::the_hole_value()); |
| 2499 __ j(not_equal, &promote_scheduled_exception); |
| 2500 #ifdef _WIN64 |
| 2501 // rax keeps a pointer to v8::Handle, unpack it. |
| 2502 __ movq(rax, Operand(rax, 0)); |
| 2503 #endif |
| 2504 // Check if the result handle holds 0. |
| 2505 __ testq(rax, rax); |
| 2506 __ j(zero, &empty_result); |
| 2507 // It was non-zero. Dereference to get the result value. |
| 2508 __ movq(rax, Operand(rax, 0)); |
| 2509 __ bind(&prologue); |
| 2510 __ LeaveExitFrame(ExitFrame::MODE_NORMAL); |
| 2511 __ ret(0); |
| 2512 __ bind(&promote_scheduled_exception); |
| 2513 __ TailCallRuntime(Runtime::kPromoteScheduledException, 0, 1); |
| 2514 __ bind(&empty_result); |
| 2515 // It was zero; the result is undefined. |
| 2516 __ Move(rax, Factory::undefined_value()); |
| 2517 __ jmp(&prologue); |
| 2518 } |
| 2519 |
| 2520 |
| 2521 void CEntryStub::GenerateCore(MacroAssembler* masm, |
| 2522 Label* throw_normal_exception, |
| 2523 Label* throw_termination_exception, |
| 2524 Label* throw_out_of_memory_exception, |
| 2525 bool do_gc, |
| 2526 bool always_allocate_scope, |
| 2527 int /* alignment_skew */) { |
| 2528 // rax: result parameter for PerformGC, if any. |
| 2529 // rbx: pointer to C function (C callee-saved). |
| 2530 // rbp: frame pointer (restored after C call). |
| 2531 // rsp: stack pointer (restored after C call). |
| 2532 // r14: number of arguments including receiver (C callee-saved). |
| 2533 // r12: pointer to the first argument (C callee-saved). |
| 2534 // This pointer is reused in LeaveExitFrame(), so it is stored in a |
| 2535 // callee-saved register. |
| 2536 |
| 2537 // Simple results returned in rax (both AMD64 and Win64 calling conventions). |
| 2538 // Complex results must be written to address passed as first argument. |
| 2539 // AMD64 calling convention: a struct of two pointers in rax+rdx |
| 2540 |
| 2541 // Check stack alignment. |
| 2542 if (FLAG_debug_code) { |
| 2543 __ CheckStackAlignment(); |
| 2544 } |
| 2545 |
| 2546 if (do_gc) { |
| 2547 // Pass failure code returned from last attempt as first argument to |
| 2548 // PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the |
| 2549 // stack is known to be aligned. This function takes one argument which is |
| 2550 // passed in register. |
| 2551 #ifdef _WIN64 |
| 2552 __ movq(rcx, rax); |
| 2553 #else // _WIN64 |
| 2554 __ movq(rdi, rax); |
| 2555 #endif |
| 2556 __ movq(kScratchRegister, |
| 2557 FUNCTION_ADDR(Runtime::PerformGC), |
| 2558 RelocInfo::RUNTIME_ENTRY); |
| 2559 __ call(kScratchRegister); |
| 2560 } |
| 2561 |
| 2562 ExternalReference scope_depth = |
| 2563 ExternalReference::heap_always_allocate_scope_depth(); |
| 2564 if (always_allocate_scope) { |
| 2565 __ movq(kScratchRegister, scope_depth); |
| 2566 __ incl(Operand(kScratchRegister, 0)); |
| 2567 } |
| 2568 |
| 2569 // Call C function. |
| 2570 #ifdef _WIN64 |
| 2571 // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9 |
| 2572 // Store Arguments object on stack, below the 4 WIN64 ABI parameter slots. |
| 2573 __ movq(Operand(rsp, 4 * kPointerSize), r14); // argc. |
| 2574 __ movq(Operand(rsp, 5 * kPointerSize), r12); // argv. |
| 2575 if (result_size_ < 2) { |
| 2576 // Pass a pointer to the Arguments object as the first argument. |
| 2577 // Return result in single register (rax). |
| 2578 __ lea(rcx, Operand(rsp, 4 * kPointerSize)); |
| 2579 } else { |
| 2580 ASSERT_EQ(2, result_size_); |
| 2581 // Pass a pointer to the result location as the first argument. |
| 2582 __ lea(rcx, Operand(rsp, 6 * kPointerSize)); |
| 2583 // Pass a pointer to the Arguments object as the second argument. |
| 2584 __ lea(rdx, Operand(rsp, 4 * kPointerSize)); |
| 2585 } |
| 2586 |
| 2587 #else // _WIN64 |
| 2588 // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9. |
| 2589 __ movq(rdi, r14); // argc. |
| 2590 __ movq(rsi, r12); // argv. |
| 2591 #endif |
| 2592 __ call(rbx); |
| 2593 // Result is in rax - do not destroy this register! |
| 2594 |
| 2595 if (always_allocate_scope) { |
| 2596 __ movq(kScratchRegister, scope_depth); |
| 2597 __ decl(Operand(kScratchRegister, 0)); |
| 2598 } |
| 2599 |
| 2600 // Check for failure result. |
| 2601 Label failure_returned; |
| 2602 STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); |
| 2603 #ifdef _WIN64 |
| 2604 // If return value is on the stack, pop it to registers. |
| 2605 if (result_size_ > 1) { |
| 2606 ASSERT_EQ(2, result_size_); |
| 2607 // Read result values stored on stack. Result is stored |
| 2608 // above the four argument mirror slots and the two |
| 2609 // Arguments object slots. |
| 2610 __ movq(rax, Operand(rsp, 6 * kPointerSize)); |
| 2611 __ movq(rdx, Operand(rsp, 7 * kPointerSize)); |
| 2612 } |
| 2613 #endif |
| 2614 __ lea(rcx, Operand(rax, 1)); |
| 2615 // Lower 2 bits of rcx are 0 iff rax has failure tag. |
| 2616 __ testl(rcx, Immediate(kFailureTagMask)); |
| 2617 __ j(zero, &failure_returned); |
| 2618 |
| 2619 // Exit the JavaScript to C++ exit frame. |
| 2620 __ LeaveExitFrame(mode_, result_size_); |
| 2621 __ ret(0); |
| 2622 |
| 2623 // Handling of failure. |
| 2624 __ bind(&failure_returned); |
| 2625 |
| 2626 Label retry; |
| 2627 // If the returned exception is RETRY_AFTER_GC continue at retry label |
| 2628 STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0); |
| 2629 __ testl(rax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); |
| 2630 __ j(zero, &retry); |
| 2631 |
| 2632 // Special handling of out of memory exceptions. |
| 2633 __ movq(kScratchRegister, Failure::OutOfMemoryException(), RelocInfo::NONE); |
| 2634 __ cmpq(rax, kScratchRegister); |
| 2635 __ j(equal, throw_out_of_memory_exception); |
| 2636 |
| 2637 // Retrieve the pending exception and clear the variable. |
| 2638 ExternalReference pending_exception_address(Top::k_pending_exception_address); |
| 2639 __ movq(kScratchRegister, pending_exception_address); |
| 2640 __ movq(rax, Operand(kScratchRegister, 0)); |
| 2641 __ movq(rdx, ExternalReference::the_hole_value_location()); |
| 2642 __ movq(rdx, Operand(rdx, 0)); |
| 2643 __ movq(Operand(kScratchRegister, 0), rdx); |
| 2644 |
| 2645 // Special handling of termination exceptions which are uncatchable |
| 2646 // by javascript code. |
| 2647 __ CompareRoot(rax, Heap::kTerminationExceptionRootIndex); |
| 2648 __ j(equal, throw_termination_exception); |
| 2649 |
| 2650 // Handle normal exception. |
| 2651 __ jmp(throw_normal_exception); |
| 2652 |
| 2653 // Retry. |
| 2654 __ bind(&retry); |
| 2655 } |
| 2656 |
| 2657 |
| 2658 void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm, |
| 2659 UncatchableExceptionType type) { |
| 2660 // Fetch top stack handler. |
| 2661 ExternalReference handler_address(Top::k_handler_address); |
| 2662 __ movq(kScratchRegister, handler_address); |
| 2663 __ movq(rsp, Operand(kScratchRegister, 0)); |
| 2664 |
| 2665 // Unwind the handlers until the ENTRY handler is found. |
| 2666 Label loop, done; |
| 2667 __ bind(&loop); |
| 2668 // Load the type of the current stack handler. |
| 2669 const int kStateOffset = StackHandlerConstants::kStateOffset; |
| 2670 __ cmpq(Operand(rsp, kStateOffset), Immediate(StackHandler::ENTRY)); |
| 2671 __ j(equal, &done); |
| 2672 // Fetch the next handler in the list. |
| 2673 const int kNextOffset = StackHandlerConstants::kNextOffset; |
| 2674 __ movq(rsp, Operand(rsp, kNextOffset)); |
| 2675 __ jmp(&loop); |
| 2676 __ bind(&done); |
| 2677 |
| 2678 // Set the top handler address to next handler past the current ENTRY handler. |
| 2679 __ movq(kScratchRegister, handler_address); |
| 2680 __ pop(Operand(kScratchRegister, 0)); |
| 2681 |
| 2682 if (type == OUT_OF_MEMORY) { |
| 2683 // Set external caught exception to false. |
| 2684 ExternalReference external_caught(Top::k_external_caught_exception_address); |
| 2685 __ movq(rax, Immediate(false)); |
| 2686 __ store_rax(external_caught); |
| 2687 |
| 2688 // Set pending exception and rax to out of memory exception. |
| 2689 ExternalReference pending_exception(Top::k_pending_exception_address); |
| 2690 __ movq(rax, Failure::OutOfMemoryException(), RelocInfo::NONE); |
| 2691 __ store_rax(pending_exception); |
| 2692 } |
| 2693 |
| 2694 // Clear the context pointer. |
| 2695 __ xor_(rsi, rsi); |
| 2696 |
| 2697 // Restore registers from handler. |
| 2698 STATIC_ASSERT(StackHandlerConstants::kNextOffset + kPointerSize == |
| 2699 StackHandlerConstants::kFPOffset); |
| 2700 __ pop(rbp); // FP |
| 2701 STATIC_ASSERT(StackHandlerConstants::kFPOffset + kPointerSize == |
| 2702 StackHandlerConstants::kStateOffset); |
| 2703 __ pop(rdx); // State |
| 2704 |
| 2705 STATIC_ASSERT(StackHandlerConstants::kStateOffset + kPointerSize == |
| 2706 StackHandlerConstants::kPCOffset); |
| 2707 __ ret(0); |
| 2708 } |
| 2709 |
| 2710 |
| 2711 void CEntryStub::Generate(MacroAssembler* masm) { |
| 2712 // rax: number of arguments including receiver |
| 2713 // rbx: pointer to C function (C callee-saved) |
| 2714 // rbp: frame pointer of calling JS frame (restored after C call) |
| 2715 // rsp: stack pointer (restored after C call) |
| 2716 // rsi: current context (restored) |
| 2717 |
| 2718 // NOTE: Invocations of builtins may return failure objects |
| 2719 // instead of a proper result. The builtin entry handles |
| 2720 // this by performing a garbage collection and retrying the |
| 2721 // builtin once. |
| 2722 |
| 2723 // Enter the exit frame that transitions from JavaScript to C++. |
| 2724 __ EnterExitFrame(mode_, result_size_); |
| 2725 |
| 2726 // rax: Holds the context at this point, but should not be used. |
| 2727 // On entry to code generated by GenerateCore, it must hold |
| 2728 // a failure result if the collect_garbage argument to GenerateCore |
| 2729 // is true. This failure result can be the result of code |
| 2730 // generated by a previous call to GenerateCore. The value |
| 2731 // of rax is then passed to Runtime::PerformGC. |
| 2732 // rbx: pointer to builtin function (C callee-saved). |
| 2733 // rbp: frame pointer of exit frame (restored after C call). |
| 2734 // rsp: stack pointer (restored after C call). |
| 2735 // r14: number of arguments including receiver (C callee-saved). |
| 2736 // r12: argv pointer (C callee-saved). |
| 2737 |
| 2738 Label throw_normal_exception; |
| 2739 Label throw_termination_exception; |
| 2740 Label throw_out_of_memory_exception; |
| 2741 |
| 2742 // Call into the runtime system. |
| 2743 GenerateCore(masm, |
| 2744 &throw_normal_exception, |
| 2745 &throw_termination_exception, |
| 2746 &throw_out_of_memory_exception, |
| 2747 false, |
| 2748 false); |
| 2749 |
| 2750 // Do space-specific GC and retry runtime call. |
| 2751 GenerateCore(masm, |
| 2752 &throw_normal_exception, |
| 2753 &throw_termination_exception, |
| 2754 &throw_out_of_memory_exception, |
| 2755 true, |
| 2756 false); |
| 2757 |
| 2758 // Do full GC and retry runtime call one final time. |
| 2759 Failure* failure = Failure::InternalError(); |
| 2760 __ movq(rax, failure, RelocInfo::NONE); |
| 2761 GenerateCore(masm, |
| 2762 &throw_normal_exception, |
| 2763 &throw_termination_exception, |
| 2764 &throw_out_of_memory_exception, |
| 2765 true, |
| 2766 true); |
| 2767 |
| 2768 __ bind(&throw_out_of_memory_exception); |
| 2769 GenerateThrowUncatchable(masm, OUT_OF_MEMORY); |
| 2770 |
| 2771 __ bind(&throw_termination_exception); |
| 2772 GenerateThrowUncatchable(masm, TERMINATION); |
| 2773 |
| 2774 __ bind(&throw_normal_exception); |
| 2775 GenerateThrowTOS(masm); |
| 2776 } |
| 2777 |
| 2778 |
| 2779 void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { |
| 2780 Label invoke, exit; |
| 2781 #ifdef ENABLE_LOGGING_AND_PROFILING |
| 2782 Label not_outermost_js, not_outermost_js_2; |
| 2783 #endif |
| 2784 |
| 2785 // Setup frame. |
| 2786 __ push(rbp); |
| 2787 __ movq(rbp, rsp); |
| 2788 |
| 2789 // Push the stack frame type marker twice. |
| 2790 int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; |
| 2791 // Scratch register is neither callee-save, nor an argument register on any |
| 2792 // platform. It's free to use at this point. |
| 2793 // Cannot use smi-register for loading yet. |
| 2794 __ movq(kScratchRegister, |
| 2795 reinterpret_cast<uint64_t>(Smi::FromInt(marker)), |
| 2796 RelocInfo::NONE); |
| 2797 __ push(kScratchRegister); // context slot |
| 2798 __ push(kScratchRegister); // function slot |
| 2799 // Save callee-saved registers (X64/Win64 calling conventions). |
| 2800 __ push(r12); |
| 2801 __ push(r13); |
| 2802 __ push(r14); |
| 2803 __ push(r15); |
| 2804 #ifdef _WIN64 |
| 2805 __ push(rdi); // Only callee save in Win64 ABI, argument in AMD64 ABI. |
| 2806 __ push(rsi); // Only callee save in Win64 ABI, argument in AMD64 ABI. |
| 2807 #endif |
| 2808 __ push(rbx); |
| 2809 // TODO(X64): On Win64, if we ever use XMM6-XMM15, the low low 64 bits are |
| 2810 // callee save as well. |
| 2811 |
| 2812 // Save copies of the top frame descriptor on the stack. |
| 2813 ExternalReference c_entry_fp(Top::k_c_entry_fp_address); |
| 2814 __ load_rax(c_entry_fp); |
| 2815 __ push(rax); |
| 2816 |
| 2817 // Set up the roots and smi constant registers. |
| 2818 // Needs to be done before any further smi loads. |
| 2819 ExternalReference roots_address = ExternalReference::roots_address(); |
| 2820 __ movq(kRootRegister, roots_address); |
| 2821 __ InitializeSmiConstantRegister(); |
| 2822 |
| 2823 #ifdef ENABLE_LOGGING_AND_PROFILING |
| 2824 // If this is the outermost JS call, set js_entry_sp value. |
| 2825 ExternalReference js_entry_sp(Top::k_js_entry_sp_address); |
| 2826 __ load_rax(js_entry_sp); |
| 2827 __ testq(rax, rax); |
| 2828 __ j(not_zero, ¬_outermost_js); |
| 2829 __ movq(rax, rbp); |
| 2830 __ store_rax(js_entry_sp); |
| 2831 __ bind(¬_outermost_js); |
| 2832 #endif |
| 2833 |
| 2834 // Call a faked try-block that does the invoke. |
| 2835 __ call(&invoke); |
| 2836 |
| 2837 // Caught exception: Store result (exception) in the pending |
| 2838 // exception field in the JSEnv and return a failure sentinel. |
| 2839 ExternalReference pending_exception(Top::k_pending_exception_address); |
| 2840 __ store_rax(pending_exception); |
| 2841 __ movq(rax, Failure::Exception(), RelocInfo::NONE); |
| 2842 __ jmp(&exit); |
| 2843 |
| 2844 // Invoke: Link this frame into the handler chain. |
| 2845 __ bind(&invoke); |
| 2846 __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER); |
| 2847 |
| 2848 // Clear any pending exceptions. |
| 2849 __ load_rax(ExternalReference::the_hole_value_location()); |
| 2850 __ store_rax(pending_exception); |
| 2851 |
| 2852 // Fake a receiver (NULL). |
| 2853 __ push(Immediate(0)); // receiver |
| 2854 |
| 2855 // Invoke the function by calling through JS entry trampoline |
| 2856 // builtin and pop the faked function when we return. We load the address |
| 2857 // from an external reference instead of inlining the call target address |
| 2858 // directly in the code, because the builtin stubs may not have been |
| 2859 // generated yet at the time this code is generated. |
| 2860 if (is_construct) { |
| 2861 ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline); |
| 2862 __ load_rax(construct_entry); |
| 2863 } else { |
| 2864 ExternalReference entry(Builtins::JSEntryTrampoline); |
| 2865 __ load_rax(entry); |
| 2866 } |
| 2867 __ lea(kScratchRegister, FieldOperand(rax, Code::kHeaderSize)); |
| 2868 __ call(kScratchRegister); |
| 2869 |
| 2870 // Unlink this frame from the handler chain. |
| 2871 __ movq(kScratchRegister, ExternalReference(Top::k_handler_address)); |
| 2872 __ pop(Operand(kScratchRegister, 0)); |
| 2873 // Pop next_sp. |
| 2874 __ addq(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize)); |
| 2875 |
| 2876 #ifdef ENABLE_LOGGING_AND_PROFILING |
| 2877 // If current EBP value is the same as js_entry_sp value, it means that |
| 2878 // the current function is the outermost. |
| 2879 __ movq(kScratchRegister, js_entry_sp); |
| 2880 __ cmpq(rbp, Operand(kScratchRegister, 0)); |
| 2881 __ j(not_equal, ¬_outermost_js_2); |
| 2882 __ movq(Operand(kScratchRegister, 0), Immediate(0)); |
| 2883 __ bind(¬_outermost_js_2); |
| 2884 #endif |
| 2885 |
| 2886 // Restore the top frame descriptor from the stack. |
| 2887 __ bind(&exit); |
| 2888 __ movq(kScratchRegister, ExternalReference(Top::k_c_entry_fp_address)); |
| 2889 __ pop(Operand(kScratchRegister, 0)); |
| 2890 |
| 2891 // Restore callee-saved registers (X64 conventions). |
| 2892 __ pop(rbx); |
| 2893 #ifdef _WIN64 |
| 2894 // Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI. |
| 2895 __ pop(rsi); |
| 2896 __ pop(rdi); |
| 2897 #endif |
| 2898 __ pop(r15); |
| 2899 __ pop(r14); |
| 2900 __ pop(r13); |
| 2901 __ pop(r12); |
| 2902 __ addq(rsp, Immediate(2 * kPointerSize)); // remove markers |
| 2903 |
| 2904 // Restore frame pointer and return. |
| 2905 __ pop(rbp); |
| 2906 __ ret(0); |
| 2907 } |
| 2908 |
| 2909 |
| 2910 void InstanceofStub::Generate(MacroAssembler* masm) { |
| 2911 // Implements "value instanceof function" operator. |
| 2912 // Expected input state: |
| 2913 // rsp[0] : return address |
| 2914 // rsp[1] : function pointer |
| 2915 // rsp[2] : value |
| 2916 // Returns a bitwise zero to indicate that the value |
| 2917 // is and instance of the function and anything else to |
| 2918 // indicate that the value is not an instance. |
| 2919 |
| 2920 // Get the object - go slow case if it's a smi. |
| 2921 Label slow; |
| 2922 __ movq(rax, Operand(rsp, 2 * kPointerSize)); |
| 2923 __ JumpIfSmi(rax, &slow); |
| 2924 |
| 2925 // Check that the left hand is a JS object. Leave its map in rax. |
| 2926 __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rax); |
| 2927 __ j(below, &slow); |
| 2928 __ CmpInstanceType(rax, LAST_JS_OBJECT_TYPE); |
| 2929 __ j(above, &slow); |
| 2930 |
| 2931 // Get the prototype of the function. |
| 2932 __ movq(rdx, Operand(rsp, 1 * kPointerSize)); |
| 2933 // rdx is function, rax is map. |
| 2934 |
| 2935 // Look up the function and the map in the instanceof cache. |
| 2936 Label miss; |
| 2937 __ CompareRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex); |
| 2938 __ j(not_equal, &miss); |
| 2939 __ CompareRoot(rax, Heap::kInstanceofCacheMapRootIndex); |
| 2940 __ j(not_equal, &miss); |
| 2941 __ LoadRoot(rax, Heap::kInstanceofCacheAnswerRootIndex); |
| 2942 __ ret(2 * kPointerSize); |
| 2943 |
| 2944 __ bind(&miss); |
| 2945 __ TryGetFunctionPrototype(rdx, rbx, &slow); |
| 2946 |
| 2947 // Check that the function prototype is a JS object. |
| 2948 __ JumpIfSmi(rbx, &slow); |
| 2949 __ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, kScratchRegister); |
| 2950 __ j(below, &slow); |
| 2951 __ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE); |
| 2952 __ j(above, &slow); |
| 2953 |
| 2954 // Register mapping: |
| 2955 // rax is object map. |
| 2956 // rdx is function. |
| 2957 // rbx is function prototype. |
| 2958 __ StoreRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex); |
| 2959 __ StoreRoot(rax, Heap::kInstanceofCacheMapRootIndex); |
| 2960 |
| 2961 __ movq(rcx, FieldOperand(rax, Map::kPrototypeOffset)); |
| 2962 |
| 2963 // Loop through the prototype chain looking for the function prototype. |
| 2964 Label loop, is_instance, is_not_instance; |
| 2965 __ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex); |
| 2966 __ bind(&loop); |
| 2967 __ cmpq(rcx, rbx); |
| 2968 __ j(equal, &is_instance); |
| 2969 __ cmpq(rcx, kScratchRegister); |
| 2970 // The code at is_not_instance assumes that kScratchRegister contains a |
| 2971 // non-zero GCable value (the null object in this case). |
| 2972 __ j(equal, &is_not_instance); |
| 2973 __ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset)); |
| 2974 __ movq(rcx, FieldOperand(rcx, Map::kPrototypeOffset)); |
| 2975 __ jmp(&loop); |
| 2976 |
| 2977 __ bind(&is_instance); |
| 2978 __ xorl(rax, rax); |
| 2979 // Store bitwise zero in the cache. This is a Smi in GC terms. |
| 2980 STATIC_ASSERT(kSmiTag == 0); |
| 2981 __ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex); |
| 2982 __ ret(2 * kPointerSize); |
| 2983 |
| 2984 __ bind(&is_not_instance); |
| 2985 // We have to store a non-zero value in the cache. |
| 2986 __ StoreRoot(kScratchRegister, Heap::kInstanceofCacheAnswerRootIndex); |
| 2987 __ ret(2 * kPointerSize); |
| 2988 |
| 2989 // Slow-case: Go through the JavaScript implementation. |
| 2990 __ bind(&slow); |
| 2991 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); |
| 2992 } |
| 2993 |
| 2994 |
| 2995 int CompareStub::MinorKey() { |
| 2996 // Encode the three parameters in a unique 16 bit value. To avoid duplicate |
| 2997 // stubs the never NaN NaN condition is only taken into account if the |
| 2998 // condition is equals. |
| 2999 ASSERT(static_cast<unsigned>(cc_) < (1 << 12)); |
| 3000 ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); |
| 3001 return ConditionField::encode(static_cast<unsigned>(cc_)) |
| 3002 | RegisterField::encode(false) // lhs_ and rhs_ are not used |
| 3003 | StrictField::encode(strict_) |
| 3004 | NeverNanNanField::encode(cc_ == equal ? never_nan_nan_ : false) |
| 3005 | IncludeNumberCompareField::encode(include_number_compare_); |
| 3006 } |
| 3007 |
| 3008 |
| 3009 // Unfortunately you have to run without snapshots to see most of these |
| 3010 // names in the profile since most compare stubs end up in the snapshot. |
| 3011 const char* CompareStub::GetName() { |
| 3012 ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); |
| 3013 |
| 3014 if (name_ != NULL) return name_; |
| 3015 const int kMaxNameLength = 100; |
| 3016 name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength); |
| 3017 if (name_ == NULL) return "OOM"; |
| 3018 |
| 3019 const char* cc_name; |
| 3020 switch (cc_) { |
| 3021 case less: cc_name = "LT"; break; |
| 3022 case greater: cc_name = "GT"; break; |
| 3023 case less_equal: cc_name = "LE"; break; |
| 3024 case greater_equal: cc_name = "GE"; break; |
| 3025 case equal: cc_name = "EQ"; break; |
| 3026 case not_equal: cc_name = "NE"; break; |
| 3027 default: cc_name = "UnknownCondition"; break; |
| 3028 } |
| 3029 |
| 3030 const char* strict_name = ""; |
| 3031 if (strict_ && (cc_ == equal || cc_ == not_equal)) { |
| 3032 strict_name = "_STRICT"; |
| 3033 } |
| 3034 |
| 3035 const char* never_nan_nan_name = ""; |
| 3036 if (never_nan_nan_ && (cc_ == equal || cc_ == not_equal)) { |
| 3037 never_nan_nan_name = "_NO_NAN"; |
| 3038 } |
| 3039 |
| 3040 const char* include_number_compare_name = ""; |
| 3041 if (!include_number_compare_) { |
| 3042 include_number_compare_name = "_NO_NUMBER"; |
| 3043 } |
| 3044 |
| 3045 OS::SNPrintF(Vector<char>(name_, kMaxNameLength), |
| 3046 "CompareStub_%s%s%s%s", |
| 3047 cc_name, |
| 3048 strict_name, |
| 3049 never_nan_nan_name, |
| 3050 include_number_compare_name); |
| 3051 return name_; |
| 3052 } |
| 3053 |
| 3054 |
| 3055 // ------------------------------------------------------------------------- |
| 3056 // StringCharCodeAtGenerator |
| 3057 |
| 3058 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { |
| 3059 Label flat_string; |
| 3060 Label ascii_string; |
| 3061 Label got_char_code; |
| 3062 |
| 3063 // If the receiver is a smi trigger the non-string case. |
| 3064 __ JumpIfSmi(object_, receiver_not_string_); |
| 3065 |
| 3066 // Fetch the instance type of the receiver into result register. |
| 3067 __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset)); |
| 3068 __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); |
| 3069 // If the receiver is not a string trigger the non-string case. |
| 3070 __ testb(result_, Immediate(kIsNotStringMask)); |
| 3071 __ j(not_zero, receiver_not_string_); |
| 3072 |
| 3073 // If the index is non-smi trigger the non-smi case. |
| 3074 __ JumpIfNotSmi(index_, &index_not_smi_); |
| 3075 |
| 3076 // Put smi-tagged index into scratch register. |
| 3077 __ movq(scratch_, index_); |
| 3078 __ bind(&got_smi_index_); |
| 3079 |
| 3080 // Check for index out of range. |
| 3081 __ SmiCompare(scratch_, FieldOperand(object_, String::kLengthOffset)); |
| 3082 __ j(above_equal, index_out_of_range_); |
| 3083 |
| 3084 // We need special handling for non-flat strings. |
| 3085 STATIC_ASSERT(kSeqStringTag == 0); |
| 3086 __ testb(result_, Immediate(kStringRepresentationMask)); |
| 3087 __ j(zero, &flat_string); |
| 3088 |
| 3089 // Handle non-flat strings. |
| 3090 __ testb(result_, Immediate(kIsConsStringMask)); |
| 3091 __ j(zero, &call_runtime_); |
| 3092 |
| 3093 // ConsString. |
| 3094 // Check whether the right hand side is the empty string (i.e. if |
| 3095 // this is really a flat string in a cons string). If that is not |
| 3096 // the case we would rather go to the runtime system now to flatten |
| 3097 // the string. |
| 3098 __ CompareRoot(FieldOperand(object_, ConsString::kSecondOffset), |
| 3099 Heap::kEmptyStringRootIndex); |
| 3100 __ j(not_equal, &call_runtime_); |
| 3101 // Get the first of the two strings and load its instance type. |
| 3102 __ movq(object_, FieldOperand(object_, ConsString::kFirstOffset)); |
| 3103 __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset)); |
| 3104 __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); |
| 3105 // If the first cons component is also non-flat, then go to runtime. |
| 3106 STATIC_ASSERT(kSeqStringTag == 0); |
| 3107 __ testb(result_, Immediate(kStringRepresentationMask)); |
| 3108 __ j(not_zero, &call_runtime_); |
| 3109 |
| 3110 // Check for 1-byte or 2-byte string. |
| 3111 __ bind(&flat_string); |
| 3112 STATIC_ASSERT(kAsciiStringTag != 0); |
| 3113 __ testb(result_, Immediate(kStringEncodingMask)); |
| 3114 __ j(not_zero, &ascii_string); |
| 3115 |
| 3116 // 2-byte string. |
| 3117 // Load the 2-byte character code into the result register. |
| 3118 __ SmiToInteger32(scratch_, scratch_); |
| 3119 __ movzxwl(result_, FieldOperand(object_, |
| 3120 scratch_, times_2, |
| 3121 SeqTwoByteString::kHeaderSize)); |
| 3122 __ jmp(&got_char_code); |
| 3123 |
| 3124 // ASCII string. |
| 3125 // Load the byte into the result register. |
| 3126 __ bind(&ascii_string); |
| 3127 __ SmiToInteger32(scratch_, scratch_); |
| 3128 __ movzxbl(result_, FieldOperand(object_, |
| 3129 scratch_, times_1, |
| 3130 SeqAsciiString::kHeaderSize)); |
| 3131 __ bind(&got_char_code); |
| 3132 __ Integer32ToSmi(result_, result_); |
| 3133 __ bind(&exit_); |
| 3134 } |
| 3135 |
| 3136 |
| 3137 void StringCharCodeAtGenerator::GenerateSlow( |
| 3138 MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
| 3139 __ Abort("Unexpected fallthrough to CharCodeAt slow case"); |
| 3140 |
| 3141 // Index is not a smi. |
| 3142 __ bind(&index_not_smi_); |
| 3143 // If index is a heap number, try converting it to an integer. |
| 3144 __ CheckMap(index_, Factory::heap_number_map(), index_not_number_, true); |
| 3145 call_helper.BeforeCall(masm); |
| 3146 __ push(object_); |
| 3147 __ push(index_); |
| 3148 __ push(index_); // Consumed by runtime conversion function. |
| 3149 if (index_flags_ == STRING_INDEX_IS_NUMBER) { |
| 3150 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); |
| 3151 } else { |
| 3152 ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); |
| 3153 // NumberToSmi discards numbers that are not exact integers. |
| 3154 __ CallRuntime(Runtime::kNumberToSmi, 1); |
| 3155 } |
| 3156 if (!scratch_.is(rax)) { |
| 3157 // Save the conversion result before the pop instructions below |
| 3158 // have a chance to overwrite it. |
| 3159 __ movq(scratch_, rax); |
| 3160 } |
| 3161 __ pop(index_); |
| 3162 __ pop(object_); |
| 3163 // Reload the instance type. |
| 3164 __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset)); |
| 3165 __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); |
| 3166 call_helper.AfterCall(masm); |
| 3167 // If index is still not a smi, it must be out of range. |
| 3168 __ JumpIfNotSmi(scratch_, index_out_of_range_); |
| 3169 // Otherwise, return to the fast path. |
| 3170 __ jmp(&got_smi_index_); |
| 3171 |
| 3172 // Call runtime. We get here when the receiver is a string and the |
| 3173 // index is a number, but the code of getting the actual character |
| 3174 // is too complex (e.g., when the string needs to be flattened). |
| 3175 __ bind(&call_runtime_); |
| 3176 call_helper.BeforeCall(masm); |
| 3177 __ push(object_); |
| 3178 __ push(index_); |
| 3179 __ CallRuntime(Runtime::kStringCharCodeAt, 2); |
| 3180 if (!result_.is(rax)) { |
| 3181 __ movq(result_, rax); |
| 3182 } |
| 3183 call_helper.AfterCall(masm); |
| 3184 __ jmp(&exit_); |
| 3185 |
| 3186 __ Abort("Unexpected fallthrough from CharCodeAt slow case"); |
| 3187 } |
| 3188 |
| 3189 |
| 3190 // ------------------------------------------------------------------------- |
| 3191 // StringCharFromCodeGenerator |
| 3192 |
| 3193 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { |
| 3194 // Fast case of Heap::LookupSingleCharacterStringFromCode. |
| 3195 __ JumpIfNotSmi(code_, &slow_case_); |
| 3196 __ SmiCompare(code_, Smi::FromInt(String::kMaxAsciiCharCode)); |
| 3197 __ j(above, &slow_case_); |
| 3198 |
| 3199 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); |
| 3200 SmiIndex index = masm->SmiToIndex(kScratchRegister, code_, kPointerSizeLog2); |
| 3201 __ movq(result_, FieldOperand(result_, index.reg, index.scale, |
| 3202 FixedArray::kHeaderSize)); |
| 3203 __ CompareRoot(result_, Heap::kUndefinedValueRootIndex); |
| 3204 __ j(equal, &slow_case_); |
| 3205 __ bind(&exit_); |
| 3206 } |
| 3207 |
| 3208 |
| 3209 void StringCharFromCodeGenerator::GenerateSlow( |
| 3210 MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
| 3211 __ Abort("Unexpected fallthrough to CharFromCode slow case"); |
| 3212 |
| 3213 __ bind(&slow_case_); |
| 3214 call_helper.BeforeCall(masm); |
| 3215 __ push(code_); |
| 3216 __ CallRuntime(Runtime::kCharFromCode, 1); |
| 3217 if (!result_.is(rax)) { |
| 3218 __ movq(result_, rax); |
| 3219 } |
| 3220 call_helper.AfterCall(masm); |
| 3221 __ jmp(&exit_); |
| 3222 |
| 3223 __ Abort("Unexpected fallthrough from CharFromCode slow case"); |
| 3224 } |
| 3225 |
| 3226 |
| 3227 // ------------------------------------------------------------------------- |
| 3228 // StringCharAtGenerator |
| 3229 |
| 3230 void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) { |
| 3231 char_code_at_generator_.GenerateFast(masm); |
| 3232 char_from_code_generator_.GenerateFast(masm); |
| 3233 } |
| 3234 |
| 3235 |
| 3236 void StringCharAtGenerator::GenerateSlow( |
| 3237 MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
| 3238 char_code_at_generator_.GenerateSlow(masm, call_helper); |
| 3239 char_from_code_generator_.GenerateSlow(masm, call_helper); |
| 3240 } |
| 3241 |
| 3242 |
| 3243 void StringAddStub::Generate(MacroAssembler* masm) { |
| 3244 Label string_add_runtime; |
| 3245 |
| 3246 // Load the two arguments. |
| 3247 __ movq(rax, Operand(rsp, 2 * kPointerSize)); // First argument. |
| 3248 __ movq(rdx, Operand(rsp, 1 * kPointerSize)); // Second argument. |
| 3249 |
| 3250 // Make sure that both arguments are strings if not known in advance. |
| 3251 if (string_check_) { |
| 3252 Condition is_smi; |
| 3253 is_smi = masm->CheckSmi(rax); |
| 3254 __ j(is_smi, &string_add_runtime); |
| 3255 __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, r8); |
| 3256 __ j(above_equal, &string_add_runtime); |
| 3257 |
| 3258 // First argument is a a string, test second. |
| 3259 is_smi = masm->CheckSmi(rdx); |
| 3260 __ j(is_smi, &string_add_runtime); |
| 3261 __ CmpObjectType(rdx, FIRST_NONSTRING_TYPE, r9); |
| 3262 __ j(above_equal, &string_add_runtime); |
| 3263 } |
| 3264 |
| 3265 // Both arguments are strings. |
| 3266 // rax: first string |
| 3267 // rdx: second string |
| 3268 // Check if either of the strings are empty. In that case return the other. |
| 3269 Label second_not_zero_length, both_not_zero_length; |
| 3270 __ movq(rcx, FieldOperand(rdx, String::kLengthOffset)); |
| 3271 __ SmiTest(rcx); |
| 3272 __ j(not_zero, &second_not_zero_length); |
| 3273 // Second string is empty, result is first string which is already in rax. |
| 3274 __ IncrementCounter(&Counters::string_add_native, 1); |
| 3275 __ ret(2 * kPointerSize); |
| 3276 __ bind(&second_not_zero_length); |
| 3277 __ movq(rbx, FieldOperand(rax, String::kLengthOffset)); |
| 3278 __ SmiTest(rbx); |
| 3279 __ j(not_zero, &both_not_zero_length); |
| 3280 // First string is empty, result is second string which is in rdx. |
| 3281 __ movq(rax, rdx); |
| 3282 __ IncrementCounter(&Counters::string_add_native, 1); |
| 3283 __ ret(2 * kPointerSize); |
| 3284 |
| 3285 // Both strings are non-empty. |
| 3286 // rax: first string |
| 3287 // rbx: length of first string |
| 3288 // rcx: length of second string |
| 3289 // rdx: second string |
| 3290 // r8: map of first string if string check was performed above |
| 3291 // r9: map of second string if string check was performed above |
| 3292 Label string_add_flat_result, longer_than_two; |
| 3293 __ bind(&both_not_zero_length); |
| 3294 |
| 3295 // If arguments where known to be strings, maps are not loaded to r8 and r9 |
| 3296 // by the code above. |
| 3297 if (!string_check_) { |
| 3298 __ movq(r8, FieldOperand(rax, HeapObject::kMapOffset)); |
| 3299 __ movq(r9, FieldOperand(rdx, HeapObject::kMapOffset)); |
| 3300 } |
| 3301 // Get the instance types of the two strings as they will be needed soon. |
| 3302 __ movzxbl(r8, FieldOperand(r8, Map::kInstanceTypeOffset)); |
| 3303 __ movzxbl(r9, FieldOperand(r9, Map::kInstanceTypeOffset)); |
| 3304 |
| 3305 // Look at the length of the result of adding the two strings. |
| 3306 STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue / 2); |
| 3307 __ SmiAdd(rbx, rbx, rcx, NULL); |
| 3308 // Use the runtime system when adding two one character strings, as it |
| 3309 // contains optimizations for this specific case using the symbol table. |
| 3310 __ SmiCompare(rbx, Smi::FromInt(2)); |
| 3311 __ j(not_equal, &longer_than_two); |
| 3312 |
| 3313 // Check that both strings are non-external ascii strings. |
| 3314 __ JumpIfBothInstanceTypesAreNotSequentialAscii(r8, r9, rbx, rcx, |
| 3315 &string_add_runtime); |
| 3316 |
| 3317 // Get the two characters forming the sub string. |
| 3318 __ movzxbq(rbx, FieldOperand(rax, SeqAsciiString::kHeaderSize)); |
| 3319 __ movzxbq(rcx, FieldOperand(rdx, SeqAsciiString::kHeaderSize)); |
| 3320 |
| 3321 // Try to lookup two character string in symbol table. If it is not found |
| 3322 // just allocate a new one. |
| 3323 Label make_two_character_string, make_flat_ascii_string; |
| 3324 StringHelper::GenerateTwoCharacterSymbolTableProbe( |
| 3325 masm, rbx, rcx, r14, r11, rdi, r12, &make_two_character_string); |
| 3326 __ IncrementCounter(&Counters::string_add_native, 1); |
| 3327 __ ret(2 * kPointerSize); |
| 3328 |
| 3329 __ bind(&make_two_character_string); |
| 3330 __ Set(rbx, 2); |
| 3331 __ jmp(&make_flat_ascii_string); |
| 3332 |
| 3333 __ bind(&longer_than_two); |
| 3334 // Check if resulting string will be flat. |
| 3335 __ SmiCompare(rbx, Smi::FromInt(String::kMinNonFlatLength)); |
| 3336 __ j(below, &string_add_flat_result); |
| 3337 // Handle exceptionally long strings in the runtime system. |
| 3338 STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0); |
| 3339 __ SmiCompare(rbx, Smi::FromInt(String::kMaxLength)); |
| 3340 __ j(above, &string_add_runtime); |
| 3341 |
| 3342 // If result is not supposed to be flat, allocate a cons string object. If |
| 3343 // both strings are ascii the result is an ascii cons string. |
| 3344 // rax: first string |
| 3345 // rbx: length of resulting flat string |
| 3346 // rdx: second string |
| 3347 // r8: instance type of first string |
| 3348 // r9: instance type of second string |
| 3349 Label non_ascii, allocated, ascii_data; |
| 3350 __ movl(rcx, r8); |
| 3351 __ and_(rcx, r9); |
| 3352 STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag); |
| 3353 __ testl(rcx, Immediate(kAsciiStringTag)); |
| 3354 __ j(zero, &non_ascii); |
| 3355 __ bind(&ascii_data); |
| 3356 // Allocate an acsii cons string. |
| 3357 __ AllocateAsciiConsString(rcx, rdi, no_reg, &string_add_runtime); |
| 3358 __ bind(&allocated); |
| 3359 // Fill the fields of the cons string. |
| 3360 __ movq(FieldOperand(rcx, ConsString::kLengthOffset), rbx); |
| 3361 __ movq(FieldOperand(rcx, ConsString::kHashFieldOffset), |
| 3362 Immediate(String::kEmptyHashField)); |
| 3363 __ movq(FieldOperand(rcx, ConsString::kFirstOffset), rax); |
| 3364 __ movq(FieldOperand(rcx, ConsString::kSecondOffset), rdx); |
| 3365 __ movq(rax, rcx); |
| 3366 __ IncrementCounter(&Counters::string_add_native, 1); |
| 3367 __ ret(2 * kPointerSize); |
| 3368 __ bind(&non_ascii); |
| 3369 // At least one of the strings is two-byte. Check whether it happens |
| 3370 // to contain only ascii characters. |
| 3371 // rcx: first instance type AND second instance type. |
| 3372 // r8: first instance type. |
| 3373 // r9: second instance type. |
| 3374 __ testb(rcx, Immediate(kAsciiDataHintMask)); |
| 3375 __ j(not_zero, &ascii_data); |
| 3376 __ xor_(r8, r9); |
| 3377 STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0); |
| 3378 __ andb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag)); |
| 3379 __ cmpb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag)); |
| 3380 __ j(equal, &ascii_data); |
| 3381 // Allocate a two byte cons string. |
| 3382 __ AllocateConsString(rcx, rdi, no_reg, &string_add_runtime); |
| 3383 __ jmp(&allocated); |
| 3384 |
| 3385 // Handle creating a flat result. First check that both strings are not |
| 3386 // external strings. |
| 3387 // rax: first string |
| 3388 // rbx: length of resulting flat string as smi |
| 3389 // rdx: second string |
| 3390 // r8: instance type of first string |
| 3391 // r9: instance type of first string |
| 3392 __ bind(&string_add_flat_result); |
| 3393 __ SmiToInteger32(rbx, rbx); |
| 3394 __ movl(rcx, r8); |
| 3395 __ and_(rcx, Immediate(kStringRepresentationMask)); |
| 3396 __ cmpl(rcx, Immediate(kExternalStringTag)); |
| 3397 __ j(equal, &string_add_runtime); |
| 3398 __ movl(rcx, r9); |
| 3399 __ and_(rcx, Immediate(kStringRepresentationMask)); |
| 3400 __ cmpl(rcx, Immediate(kExternalStringTag)); |
| 3401 __ j(equal, &string_add_runtime); |
| 3402 // Now check if both strings are ascii strings. |
| 3403 // rax: first string |
| 3404 // rbx: length of resulting flat string |
| 3405 // rdx: second string |
| 3406 // r8: instance type of first string |
| 3407 // r9: instance type of second string |
| 3408 Label non_ascii_string_add_flat_result; |
| 3409 STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag); |
| 3410 __ testl(r8, Immediate(kAsciiStringTag)); |
| 3411 __ j(zero, &non_ascii_string_add_flat_result); |
| 3412 __ testl(r9, Immediate(kAsciiStringTag)); |
| 3413 __ j(zero, &string_add_runtime); |
| 3414 |
| 3415 __ bind(&make_flat_ascii_string); |
| 3416 // Both strings are ascii strings. As they are short they are both flat. |
| 3417 __ AllocateAsciiString(rcx, rbx, rdi, r14, r11, &string_add_runtime); |
| 3418 // rcx: result string |
| 3419 __ movq(rbx, rcx); |
| 3420 // Locate first character of result. |
| 3421 __ addq(rcx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| 3422 // Locate first character of first argument |
| 3423 __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset)); |
| 3424 __ addq(rax, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| 3425 // rax: first char of first argument |
| 3426 // rbx: result string |
| 3427 // rcx: first character of result |
| 3428 // rdx: second string |
| 3429 // rdi: length of first argument |
| 3430 StringHelper::GenerateCopyCharacters(masm, rcx, rax, rdi, true); |
| 3431 // Locate first character of second argument. |
| 3432 __ SmiToInteger32(rdi, FieldOperand(rdx, String::kLengthOffset)); |
| 3433 __ addq(rdx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| 3434 // rbx: result string |
| 3435 // rcx: next character of result |
| 3436 // rdx: first char of second argument |
| 3437 // rdi: length of second argument |
| 3438 StringHelper::GenerateCopyCharacters(masm, rcx, rdx, rdi, true); |
| 3439 __ movq(rax, rbx); |
| 3440 __ IncrementCounter(&Counters::string_add_native, 1); |
| 3441 __ ret(2 * kPointerSize); |
| 3442 |
| 3443 // Handle creating a flat two byte result. |
| 3444 // rax: first string - known to be two byte |
| 3445 // rbx: length of resulting flat string |
| 3446 // rdx: second string |
| 3447 // r8: instance type of first string |
| 3448 // r9: instance type of first string |
| 3449 __ bind(&non_ascii_string_add_flat_result); |
| 3450 __ and_(r9, Immediate(kAsciiStringTag)); |
| 3451 __ j(not_zero, &string_add_runtime); |
| 3452 // Both strings are two byte strings. As they are short they are both |
| 3453 // flat. |
| 3454 __ AllocateTwoByteString(rcx, rbx, rdi, r14, r11, &string_add_runtime); |
| 3455 // rcx: result string |
| 3456 __ movq(rbx, rcx); |
| 3457 // Locate first character of result. |
| 3458 __ addq(rcx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| 3459 // Locate first character of first argument. |
| 3460 __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset)); |
| 3461 __ addq(rax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| 3462 // rax: first char of first argument |
| 3463 // rbx: result string |
| 3464 // rcx: first character of result |
| 3465 // rdx: second argument |
| 3466 // rdi: length of first argument |
| 3467 StringHelper::GenerateCopyCharacters(masm, rcx, rax, rdi, false); |
| 3468 // Locate first character of second argument. |
| 3469 __ SmiToInteger32(rdi, FieldOperand(rdx, String::kLengthOffset)); |
| 3470 __ addq(rdx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| 3471 // rbx: result string |
| 3472 // rcx: next character of result |
| 3473 // rdx: first char of second argument |
| 3474 // rdi: length of second argument |
| 3475 StringHelper::GenerateCopyCharacters(masm, rcx, rdx, rdi, false); |
| 3476 __ movq(rax, rbx); |
| 3477 __ IncrementCounter(&Counters::string_add_native, 1); |
| 3478 __ ret(2 * kPointerSize); |
| 3479 |
| 3480 // Just jump to runtime to add the two strings. |
| 3481 __ bind(&string_add_runtime); |
| 3482 __ TailCallRuntime(Runtime::kStringAdd, 2, 1); |
| 3483 } |
| 3484 |
| 3485 |
| 3486 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, |
| 3487 Register dest, |
| 3488 Register src, |
| 3489 Register count, |
| 3490 bool ascii) { |
| 3491 Label loop; |
| 3492 __ bind(&loop); |
| 3493 // This loop just copies one character at a time, as it is only used for very |
| 3494 // short strings. |
| 3495 if (ascii) { |
| 3496 __ movb(kScratchRegister, Operand(src, 0)); |
| 3497 __ movb(Operand(dest, 0), kScratchRegister); |
| 3498 __ incq(src); |
| 3499 __ incq(dest); |
| 3500 } else { |
| 3501 __ movzxwl(kScratchRegister, Operand(src, 0)); |
| 3502 __ movw(Operand(dest, 0), kScratchRegister); |
| 3503 __ addq(src, Immediate(2)); |
| 3504 __ addq(dest, Immediate(2)); |
| 3505 } |
| 3506 __ decl(count); |
| 3507 __ j(not_zero, &loop); |
| 3508 } |
| 3509 |
| 3510 |
| 3511 void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm, |
| 3512 Register dest, |
| 3513 Register src, |
| 3514 Register count, |
| 3515 bool ascii) { |
| 3516 // Copy characters using rep movs of doublewords. Align destination on 4 byte |
| 3517 // boundary before starting rep movs. Copy remaining characters after running |
| 3518 // rep movs. |
| 3519 // Count is positive int32, dest and src are character pointers. |
| 3520 ASSERT(dest.is(rdi)); // rep movs destination |
| 3521 ASSERT(src.is(rsi)); // rep movs source |
| 3522 ASSERT(count.is(rcx)); // rep movs count |
| 3523 |
| 3524 // Nothing to do for zero characters. |
| 3525 Label done; |
| 3526 __ testl(count, count); |
| 3527 __ j(zero, &done); |
| 3528 |
| 3529 // Make count the number of bytes to copy. |
| 3530 if (!ascii) { |
| 3531 STATIC_ASSERT(2 == sizeof(uc16)); |
| 3532 __ addl(count, count); |
| 3533 } |
| 3534 |
| 3535 // Don't enter the rep movs if there are less than 4 bytes to copy. |
| 3536 Label last_bytes; |
| 3537 __ testl(count, Immediate(~7)); |
| 3538 __ j(zero, &last_bytes); |
| 3539 |
| 3540 // Copy from edi to esi using rep movs instruction. |
| 3541 __ movl(kScratchRegister, count); |
| 3542 __ shr(count, Immediate(3)); // Number of doublewords to copy. |
| 3543 __ repmovsq(); |
| 3544 |
| 3545 // Find number of bytes left. |
| 3546 __ movl(count, kScratchRegister); |
| 3547 __ and_(count, Immediate(7)); |
| 3548 |
| 3549 // Check if there are more bytes to copy. |
| 3550 __ bind(&last_bytes); |
| 3551 __ testl(count, count); |
| 3552 __ j(zero, &done); |
| 3553 |
| 3554 // Copy remaining characters. |
| 3555 Label loop; |
| 3556 __ bind(&loop); |
| 3557 __ movb(kScratchRegister, Operand(src, 0)); |
| 3558 __ movb(Operand(dest, 0), kScratchRegister); |
| 3559 __ incq(src); |
| 3560 __ incq(dest); |
| 3561 __ decl(count); |
| 3562 __ j(not_zero, &loop); |
| 3563 |
| 3564 __ bind(&done); |
| 3565 } |
| 3566 |
| 3567 void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, |
| 3568 Register c1, |
| 3569 Register c2, |
| 3570 Register scratch1, |
| 3571 Register scratch2, |
| 3572 Register scratch3, |
| 3573 Register scratch4, |
| 3574 Label* not_found) { |
| 3575 // Register scratch3 is the general scratch register in this function. |
| 3576 Register scratch = scratch3; |
| 3577 |
| 3578 // Make sure that both characters are not digits as such strings has a |
| 3579 // different hash algorithm. Don't try to look for these in the symbol table. |
| 3580 Label not_array_index; |
| 3581 __ leal(scratch, Operand(c1, -'0')); |
| 3582 __ cmpl(scratch, Immediate(static_cast<int>('9' - '0'))); |
| 3583 __ j(above, ¬_array_index); |
| 3584 __ leal(scratch, Operand(c2, -'0')); |
| 3585 __ cmpl(scratch, Immediate(static_cast<int>('9' - '0'))); |
| 3586 __ j(below_equal, not_found); |
| 3587 |
| 3588 __ bind(¬_array_index); |
| 3589 // Calculate the two character string hash. |
| 3590 Register hash = scratch1; |
| 3591 GenerateHashInit(masm, hash, c1, scratch); |
| 3592 GenerateHashAddCharacter(masm, hash, c2, scratch); |
| 3593 GenerateHashGetHash(masm, hash, scratch); |
| 3594 |
| 3595 // Collect the two characters in a register. |
| 3596 Register chars = c1; |
| 3597 __ shl(c2, Immediate(kBitsPerByte)); |
| 3598 __ orl(chars, c2); |
| 3599 |
| 3600 // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
| 3601 // hash: hash of two character string. |
| 3602 |
| 3603 // Load the symbol table. |
| 3604 Register symbol_table = c2; |
| 3605 __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex); |
| 3606 |
| 3607 // Calculate capacity mask from the symbol table capacity. |
| 3608 Register mask = scratch2; |
| 3609 __ SmiToInteger32(mask, |
| 3610 FieldOperand(symbol_table, SymbolTable::kCapacityOffset)); |
| 3611 __ decl(mask); |
| 3612 |
| 3613 Register undefined = scratch4; |
| 3614 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); |
| 3615 |
| 3616 // Registers |
| 3617 // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
| 3618 // hash: hash of two character string (32-bit int) |
| 3619 // symbol_table: symbol table |
| 3620 // mask: capacity mask (32-bit int) |
| 3621 // undefined: undefined value |
| 3622 // scratch: - |
| 3623 |
| 3624 // Perform a number of probes in the symbol table. |
| 3625 static const int kProbes = 4; |
| 3626 Label found_in_symbol_table; |
| 3627 Label next_probe[kProbes]; |
| 3628 for (int i = 0; i < kProbes; i++) { |
| 3629 // Calculate entry in symbol table. |
| 3630 __ movl(scratch, hash); |
| 3631 if (i > 0) { |
| 3632 __ addl(scratch, Immediate(SymbolTable::GetProbeOffset(i))); |
| 3633 } |
| 3634 __ andl(scratch, mask); |
| 3635 |
| 3636 // Load the entry from the symble table. |
| 3637 Register candidate = scratch; // Scratch register contains candidate. |
| 3638 STATIC_ASSERT(SymbolTable::kEntrySize == 1); |
| 3639 __ movq(candidate, |
| 3640 FieldOperand(symbol_table, |
| 3641 scratch, |
| 3642 times_pointer_size, |
| 3643 SymbolTable::kElementsStartOffset)); |
| 3644 |
| 3645 // If entry is undefined no string with this hash can be found. |
| 3646 __ cmpq(candidate, undefined); |
| 3647 __ j(equal, not_found); |
| 3648 |
| 3649 // If length is not 2 the string is not a candidate. |
| 3650 __ SmiCompare(FieldOperand(candidate, String::kLengthOffset), |
| 3651 Smi::FromInt(2)); |
| 3652 __ j(not_equal, &next_probe[i]); |
| 3653 |
| 3654 // We use kScratchRegister as a temporary register in assumption that |
| 3655 // JumpIfInstanceTypeIsNotSequentialAscii does not use it implicitly |
| 3656 Register temp = kScratchRegister; |
| 3657 |
| 3658 // Check that the candidate is a non-external ascii string. |
| 3659 __ movq(temp, FieldOperand(candidate, HeapObject::kMapOffset)); |
| 3660 __ movzxbl(temp, FieldOperand(temp, Map::kInstanceTypeOffset)); |
| 3661 __ JumpIfInstanceTypeIsNotSequentialAscii( |
| 3662 temp, temp, &next_probe[i]); |
| 3663 |
| 3664 // Check if the two characters match. |
| 3665 __ movl(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize)); |
| 3666 __ andl(temp, Immediate(0x0000ffff)); |
| 3667 __ cmpl(chars, temp); |
| 3668 __ j(equal, &found_in_symbol_table); |
| 3669 __ bind(&next_probe[i]); |
| 3670 } |
| 3671 |
| 3672 // No matching 2 character string found by probing. |
| 3673 __ jmp(not_found); |
| 3674 |
| 3675 // Scratch register contains result when we fall through to here. |
| 3676 Register result = scratch; |
| 3677 __ bind(&found_in_symbol_table); |
| 3678 if (!result.is(rax)) { |
| 3679 __ movq(rax, result); |
| 3680 } |
| 3681 } |
| 3682 |
| 3683 |
| 3684 void StringHelper::GenerateHashInit(MacroAssembler* masm, |
| 3685 Register hash, |
| 3686 Register character, |
| 3687 Register scratch) { |
| 3688 // hash = character + (character << 10); |
| 3689 __ movl(hash, character); |
| 3690 __ shll(hash, Immediate(10)); |
| 3691 __ addl(hash, character); |
| 3692 // hash ^= hash >> 6; |
| 3693 __ movl(scratch, hash); |
| 3694 __ sarl(scratch, Immediate(6)); |
| 3695 __ xorl(hash, scratch); |
| 3696 } |
| 3697 |
| 3698 |
| 3699 void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, |
| 3700 Register hash, |
| 3701 Register character, |
| 3702 Register scratch) { |
| 3703 // hash += character; |
| 3704 __ addl(hash, character); |
| 3705 // hash += hash << 10; |
| 3706 __ movl(scratch, hash); |
| 3707 __ shll(scratch, Immediate(10)); |
| 3708 __ addl(hash, scratch); |
| 3709 // hash ^= hash >> 6; |
| 3710 __ movl(scratch, hash); |
| 3711 __ sarl(scratch, Immediate(6)); |
| 3712 __ xorl(hash, scratch); |
| 3713 } |
| 3714 |
| 3715 |
| 3716 void StringHelper::GenerateHashGetHash(MacroAssembler* masm, |
| 3717 Register hash, |
| 3718 Register scratch) { |
| 3719 // hash += hash << 3; |
| 3720 __ leal(hash, Operand(hash, hash, times_8, 0)); |
| 3721 // hash ^= hash >> 11; |
| 3722 __ movl(scratch, hash); |
| 3723 __ sarl(scratch, Immediate(11)); |
| 3724 __ xorl(hash, scratch); |
| 3725 // hash += hash << 15; |
| 3726 __ movl(scratch, hash); |
| 3727 __ shll(scratch, Immediate(15)); |
| 3728 __ addl(hash, scratch); |
| 3729 |
| 3730 // if (hash == 0) hash = 27; |
| 3731 Label hash_not_zero; |
| 3732 __ j(not_zero, &hash_not_zero); |
| 3733 __ movl(hash, Immediate(27)); |
| 3734 __ bind(&hash_not_zero); |
| 3735 } |
| 3736 |
| 3737 void SubStringStub::Generate(MacroAssembler* masm) { |
| 3738 Label runtime; |
| 3739 |
| 3740 // Stack frame on entry. |
| 3741 // rsp[0]: return address |
| 3742 // rsp[8]: to |
| 3743 // rsp[16]: from |
| 3744 // rsp[24]: string |
| 3745 |
| 3746 const int kToOffset = 1 * kPointerSize; |
| 3747 const int kFromOffset = kToOffset + kPointerSize; |
| 3748 const int kStringOffset = kFromOffset + kPointerSize; |
| 3749 const int kArgumentsSize = (kStringOffset + kPointerSize) - kToOffset; |
| 3750 |
| 3751 // Make sure first argument is a string. |
| 3752 __ movq(rax, Operand(rsp, kStringOffset)); |
| 3753 STATIC_ASSERT(kSmiTag == 0); |
| 3754 __ testl(rax, Immediate(kSmiTagMask)); |
| 3755 __ j(zero, &runtime); |
| 3756 Condition is_string = masm->IsObjectStringType(rax, rbx, rbx); |
| 3757 __ j(NegateCondition(is_string), &runtime); |
| 3758 |
| 3759 // rax: string |
| 3760 // rbx: instance type |
| 3761 // Calculate length of sub string using the smi values. |
| 3762 Label result_longer_than_two; |
| 3763 __ movq(rcx, Operand(rsp, kToOffset)); |
| 3764 __ movq(rdx, Operand(rsp, kFromOffset)); |
| 3765 __ JumpIfNotBothPositiveSmi(rcx, rdx, &runtime); |
| 3766 |
| 3767 __ SmiSub(rcx, rcx, rdx, NULL); // Overflow doesn't happen. |
| 3768 __ cmpq(FieldOperand(rax, String::kLengthOffset), rcx); |
| 3769 Label return_rax; |
| 3770 __ j(equal, &return_rax); |
| 3771 // Special handling of sub-strings of length 1 and 2. One character strings |
| 3772 // are handled in the runtime system (looked up in the single character |
| 3773 // cache). Two character strings are looked for in the symbol cache. |
| 3774 __ SmiToInteger32(rcx, rcx); |
| 3775 __ cmpl(rcx, Immediate(2)); |
| 3776 __ j(greater, &result_longer_than_two); |
| 3777 __ j(less, &runtime); |
| 3778 |
| 3779 // Sub string of length 2 requested. |
| 3780 // rax: string |
| 3781 // rbx: instance type |
| 3782 // rcx: sub string length (value is 2) |
| 3783 // rdx: from index (smi) |
| 3784 __ JumpIfInstanceTypeIsNotSequentialAscii(rbx, rbx, &runtime); |
| 3785 |
| 3786 // Get the two characters forming the sub string. |
| 3787 __ SmiToInteger32(rdx, rdx); // From index is no longer smi. |
| 3788 __ movzxbq(rbx, FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize)); |
| 3789 __ movzxbq(rcx, |
| 3790 FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize + 1)); |
| 3791 |
| 3792 // Try to lookup two character string in symbol table. |
| 3793 Label make_two_character_string; |
| 3794 StringHelper::GenerateTwoCharacterSymbolTableProbe( |
| 3795 masm, rbx, rcx, rax, rdx, rdi, r14, &make_two_character_string); |
| 3796 __ ret(3 * kPointerSize); |
| 3797 |
| 3798 __ bind(&make_two_character_string); |
| 3799 // Setup registers for allocating the two character string. |
| 3800 __ movq(rax, Operand(rsp, kStringOffset)); |
| 3801 __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); |
| 3802 __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); |
| 3803 __ Set(rcx, 2); |
| 3804 |
| 3805 __ bind(&result_longer_than_two); |
| 3806 |
| 3807 // rax: string |
| 3808 // rbx: instance type |
| 3809 // rcx: result string length |
| 3810 // Check for flat ascii string |
| 3811 Label non_ascii_flat; |
| 3812 __ JumpIfInstanceTypeIsNotSequentialAscii(rbx, rbx, &non_ascii_flat); |
| 3813 |
| 3814 // Allocate the result. |
| 3815 __ AllocateAsciiString(rax, rcx, rbx, rdx, rdi, &runtime); |
| 3816 |
| 3817 // rax: result string |
| 3818 // rcx: result string length |
| 3819 __ movq(rdx, rsi); // esi used by following code. |
| 3820 // Locate first character of result. |
| 3821 __ lea(rdi, FieldOperand(rax, SeqAsciiString::kHeaderSize)); |
| 3822 // Load string argument and locate character of sub string start. |
| 3823 __ movq(rsi, Operand(rsp, kStringOffset)); |
| 3824 __ movq(rbx, Operand(rsp, kFromOffset)); |
| 3825 { |
| 3826 SmiIndex smi_as_index = masm->SmiToIndex(rbx, rbx, times_1); |
| 3827 __ lea(rsi, Operand(rsi, smi_as_index.reg, smi_as_index.scale, |
| 3828 SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| 3829 } |
| 3830 |
| 3831 // rax: result string |
| 3832 // rcx: result length |
| 3833 // rdx: original value of rsi |
| 3834 // rdi: first character of result |
| 3835 // rsi: character of sub string start |
| 3836 StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, true); |
| 3837 __ movq(rsi, rdx); // Restore rsi. |
| 3838 __ IncrementCounter(&Counters::sub_string_native, 1); |
| 3839 __ ret(kArgumentsSize); |
| 3840 |
| 3841 __ bind(&non_ascii_flat); |
| 3842 // rax: string |
| 3843 // rbx: instance type & kStringRepresentationMask | kStringEncodingMask |
| 3844 // rcx: result string length |
| 3845 // Check for sequential two byte string |
| 3846 __ cmpb(rbx, Immediate(kSeqStringTag | kTwoByteStringTag)); |
| 3847 __ j(not_equal, &runtime); |
| 3848 |
| 3849 // Allocate the result. |
| 3850 __ AllocateTwoByteString(rax, rcx, rbx, rdx, rdi, &runtime); |
| 3851 |
| 3852 // rax: result string |
| 3853 // rcx: result string length |
| 3854 __ movq(rdx, rsi); // esi used by following code. |
| 3855 // Locate first character of result. |
| 3856 __ lea(rdi, FieldOperand(rax, SeqTwoByteString::kHeaderSize)); |
| 3857 // Load string argument and locate character of sub string start. |
| 3858 __ movq(rsi, Operand(rsp, kStringOffset)); |
| 3859 __ movq(rbx, Operand(rsp, kFromOffset)); |
| 3860 { |
| 3861 SmiIndex smi_as_index = masm->SmiToIndex(rbx, rbx, times_2); |
| 3862 __ lea(rsi, Operand(rsi, smi_as_index.reg, smi_as_index.scale, |
| 3863 SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| 3864 } |
| 3865 |
| 3866 // rax: result string |
| 3867 // rcx: result length |
| 3868 // rdx: original value of rsi |
| 3869 // rdi: first character of result |
| 3870 // rsi: character of sub string start |
| 3871 StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, false); |
| 3872 __ movq(rsi, rdx); // Restore esi. |
| 3873 |
| 3874 __ bind(&return_rax); |
| 3875 __ IncrementCounter(&Counters::sub_string_native, 1); |
| 3876 __ ret(kArgumentsSize); |
| 3877 |
| 3878 // Just jump to runtime to create the sub string. |
| 3879 __ bind(&runtime); |
| 3880 __ TailCallRuntime(Runtime::kSubString, 3, 1); |
| 3881 } |
| 3882 |
| 3883 |
| 3884 void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, |
| 3885 Register left, |
| 3886 Register right, |
| 3887 Register scratch1, |
| 3888 Register scratch2, |
| 3889 Register scratch3, |
| 3890 Register scratch4) { |
| 3891 // Ensure that you can always subtract a string length from a non-negative |
| 3892 // number (e.g. another length). |
| 3893 STATIC_ASSERT(String::kMaxLength < 0x7fffffff); |
| 3894 |
| 3895 // Find minimum length and length difference. |
| 3896 __ movq(scratch1, FieldOperand(left, String::kLengthOffset)); |
| 3897 __ movq(scratch4, scratch1); |
| 3898 __ SmiSub(scratch4, |
| 3899 scratch4, |
| 3900 FieldOperand(right, String::kLengthOffset), |
| 3901 NULL); |
| 3902 // Register scratch4 now holds left.length - right.length. |
| 3903 const Register length_difference = scratch4; |
| 3904 Label left_shorter; |
| 3905 __ j(less, &left_shorter); |
| 3906 // The right string isn't longer that the left one. |
| 3907 // Get the right string's length by subtracting the (non-negative) difference |
| 3908 // from the left string's length. |
| 3909 __ SmiSub(scratch1, scratch1, length_difference, NULL); |
| 3910 __ bind(&left_shorter); |
| 3911 // Register scratch1 now holds Min(left.length, right.length). |
| 3912 const Register min_length = scratch1; |
| 3913 |
| 3914 Label compare_lengths; |
| 3915 // If min-length is zero, go directly to comparing lengths. |
| 3916 __ SmiTest(min_length); |
| 3917 __ j(zero, &compare_lengths); |
| 3918 |
| 3919 __ SmiToInteger32(min_length, min_length); |
| 3920 |
| 3921 // Registers scratch2 and scratch3 are free. |
| 3922 Label result_not_equal; |
| 3923 Label loop; |
| 3924 { |
| 3925 // Check characters 0 .. min_length - 1 in a loop. |
| 3926 // Use scratch3 as loop index, min_length as limit and scratch2 |
| 3927 // for computation. |
| 3928 const Register index = scratch3; |
| 3929 __ movl(index, Immediate(0)); // Index into strings. |
| 3930 __ bind(&loop); |
| 3931 // Compare characters. |
| 3932 // TODO(lrn): Could we load more than one character at a time? |
| 3933 __ movb(scratch2, FieldOperand(left, |
| 3934 index, |
| 3935 times_1, |
| 3936 SeqAsciiString::kHeaderSize)); |
| 3937 // Increment index and use -1 modifier on next load to give |
| 3938 // the previous load extra time to complete. |
| 3939 __ addl(index, Immediate(1)); |
| 3940 __ cmpb(scratch2, FieldOperand(right, |
| 3941 index, |
| 3942 times_1, |
| 3943 SeqAsciiString::kHeaderSize - 1)); |
| 3944 __ j(not_equal, &result_not_equal); |
| 3945 __ cmpl(index, min_length); |
| 3946 __ j(not_equal, &loop); |
| 3947 } |
| 3948 // Completed loop without finding different characters. |
| 3949 // Compare lengths (precomputed). |
| 3950 __ bind(&compare_lengths); |
| 3951 __ SmiTest(length_difference); |
| 3952 __ j(not_zero, &result_not_equal); |
| 3953 |
| 3954 // Result is EQUAL. |
| 3955 __ Move(rax, Smi::FromInt(EQUAL)); |
| 3956 __ ret(0); |
| 3957 |
| 3958 Label result_greater; |
| 3959 __ bind(&result_not_equal); |
| 3960 // Unequal comparison of left to right, either character or length. |
| 3961 __ j(greater, &result_greater); |
| 3962 |
| 3963 // Result is LESS. |
| 3964 __ Move(rax, Smi::FromInt(LESS)); |
| 3965 __ ret(0); |
| 3966 |
| 3967 // Result is GREATER. |
| 3968 __ bind(&result_greater); |
| 3969 __ Move(rax, Smi::FromInt(GREATER)); |
| 3970 __ ret(0); |
| 3971 } |
| 3972 |
| 3973 |
| 3974 void StringCompareStub::Generate(MacroAssembler* masm) { |
| 3975 Label runtime; |
| 3976 |
| 3977 // Stack frame on entry. |
| 3978 // rsp[0]: return address |
| 3979 // rsp[8]: right string |
| 3980 // rsp[16]: left string |
| 3981 |
| 3982 __ movq(rdx, Operand(rsp, 2 * kPointerSize)); // left |
| 3983 __ movq(rax, Operand(rsp, 1 * kPointerSize)); // right |
| 3984 |
| 3985 // Check for identity. |
| 3986 Label not_same; |
| 3987 __ cmpq(rdx, rax); |
| 3988 __ j(not_equal, ¬_same); |
| 3989 __ Move(rax, Smi::FromInt(EQUAL)); |
| 3990 __ IncrementCounter(&Counters::string_compare_native, 1); |
| 3991 __ ret(2 * kPointerSize); |
| 3992 |
| 3993 __ bind(¬_same); |
| 3994 |
| 3995 // Check that both are sequential ASCII strings. |
| 3996 __ JumpIfNotBothSequentialAsciiStrings(rdx, rax, rcx, rbx, &runtime); |
| 3997 |
| 3998 // Inline comparison of ascii strings. |
| 3999 __ IncrementCounter(&Counters::string_compare_native, 1); |
| 4000 // Drop arguments from the stack |
| 4001 __ pop(rcx); |
| 4002 __ addq(rsp, Immediate(2 * kPointerSize)); |
| 4003 __ push(rcx); |
| 4004 GenerateCompareFlatAsciiStrings(masm, rdx, rax, rcx, rbx, rdi, r8); |
| 4005 |
| 4006 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) |
| 4007 // tagged as a small integer. |
| 4008 __ bind(&runtime); |
| 4009 __ TailCallRuntime(Runtime::kStringCompare, 2, 1); |
| 4010 } |
| 4011 |
| 4012 #undef __ |
| 4013 |
| 4014 } } // namespace v8::internal |
| 4015 |
| 4016 #endif // V8_TARGET_ARCH_X64 |
OLD | NEW |