| Index: gcc/mpfr/mpn_exp.c
|
| diff --git a/gcc/mpfr/mpn_exp.c b/gcc/mpfr/mpn_exp.c
|
| deleted file mode 100644
|
| index 402b5e6bd372d83aef1b58e5273fac74ba5e1aec..0000000000000000000000000000000000000000
|
| --- a/gcc/mpfr/mpn_exp.c
|
| +++ /dev/null
|
| @@ -1,175 +0,0 @@
|
| -/* mpfr_mpn_exp -- auxiliary function for mpfr_get_str and mpfr_set_str
|
| -
|
| -Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
|
| -Contributed by the Arenaire and Cacao projects, INRIA.
|
| -Contributed by Alain Delplanque and Paul Zimmermann.
|
| -
|
| -This file is part of the GNU MPFR Library.
|
| -
|
| -The GNU MPFR Library is free software; you can redistribute it and/or modify
|
| -it under the terms of the GNU Lesser General Public License as published by
|
| -the Free Software Foundation; either version 2.1 of the License, or (at your
|
| -option) any later version.
|
| -
|
| -The GNU MPFR Library is distributed in the hope that it will be useful, but
|
| -WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
| -or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
| -License for more details.
|
| -
|
| -You should have received a copy of the GNU Lesser General Public License
|
| -along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to
|
| -the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
|
| -MA 02110-1301, USA. */
|
| -
|
| -
|
| -#define MPFR_NEED_LONGLONG_H
|
| -#include "mpfr-impl.h"
|
| -
|
| -/* this function computes an approximation of b^e in {a, n}, with exponent
|
| - stored in exp_r. The computed value is rounded towards zero (truncated).
|
| - It returns an integer f such that the final error is bounded by 2^f ulps,
|
| - that is:
|
| - a*2^exp_r <= b^e <= 2^exp_r (a + 2^f),
|
| - where a represents {a, n}, i.e. the integer
|
| - a[0] + a[1]*B + ... + a[n-1]*B^(n-1) where B=2^BITS_PER_MP_LIMB
|
| -
|
| - Return -1 is the result is exact.
|
| - Return -2 if an overflow occurred in the computation of exp_r.
|
| -*/
|
| -
|
| -long
|
| -mpfr_mpn_exp (mp_limb_t *a, mp_exp_t *exp_r, int b, mp_exp_t e, size_t n)
|
| -{
|
| - mp_limb_t *c, B;
|
| - mp_exp_t f, h;
|
| - int i;
|
| - unsigned long t; /* number of bits in e */
|
| - unsigned long bits;
|
| - size_t n1;
|
| - unsigned int error; /* (number - 1) of loop a^2b inexact */
|
| - /* error == t means no error */
|
| - int err_s_a2 = 0;
|
| - int err_s_ab = 0; /* number of error when shift A^2, AB */
|
| - MPFR_TMP_DECL(marker);
|
| -
|
| - MPFR_ASSERTN(e > 0);
|
| - MPFR_ASSERTN((2 <= b) && (b <= 36));
|
| -
|
| - MPFR_TMP_MARK(marker);
|
| -
|
| - /* initialization of a, b, f, h */
|
| -
|
| - /* normalize the base */
|
| - B = (mp_limb_t) b;
|
| - count_leading_zeros (h, B);
|
| -
|
| - bits = BITS_PER_MP_LIMB - h;
|
| -
|
| - B = B << h;
|
| - h = - h;
|
| -
|
| - /* allocate space for A and set it to B */
|
| - c = (mp_limb_t*) MPFR_TMP_ALLOC(2 * n * BYTES_PER_MP_LIMB);
|
| - a [n - 1] = B;
|
| - MPN_ZERO (a, n - 1);
|
| - /* initial exponent for A: invariant is A = {a, n} * 2^f */
|
| - f = h - (n - 1) * BITS_PER_MP_LIMB;
|
| -
|
| - /* determine number of bits in e */
|
| - count_leading_zeros (t, (mp_limb_t) e);
|
| -
|
| - t = BITS_PER_MP_LIMB - t; /* number of bits of exponent e */
|
| -
|
| - error = t; /* error <= BITS_PER_MP_LIMB */
|
| -
|
| - MPN_ZERO (c, 2 * n);
|
| -
|
| - for (i = t - 2; i >= 0; i--)
|
| - {
|
| -
|
| - /* determine precision needed */
|
| - bits = n * BITS_PER_MP_LIMB - mpn_scan1 (a, 0);
|
| - n1 = (n * BITS_PER_MP_LIMB - bits) / BITS_PER_MP_LIMB;
|
| -
|
| - /* square of A : {c+2n1, 2(n-n1)} = {a+n1, n-n1}^2 */
|
| - mpn_sqr_n (c + 2 * n1, a + n1, n - n1);
|
| -
|
| - /* set {c+n, 2n1-n} to 0 : {c, n} = {a, n}^2*K^n */
|
| -
|
| - /* check overflow on f */
|
| - if (MPFR_UNLIKELY(f < MPFR_EXP_MIN/2 || f > MPFR_EXP_MAX/2))
|
| - {
|
| - overflow:
|
| - MPFR_TMP_FREE(marker);
|
| - return -2;
|
| - }
|
| - /* FIXME: Could f = 2*f + n * BITS_PER_MP_LIMB be used? */
|
| - f = 2*f;
|
| - MPFR_SADD_OVERFLOW (f, f, n * BITS_PER_MP_LIMB,
|
| - mp_exp_t, mp_exp_unsigned_t,
|
| - MPFR_EXP_MIN, MPFR_EXP_MAX,
|
| - goto overflow, goto overflow);
|
| - if ((c[2*n - 1] & MPFR_LIMB_HIGHBIT) == 0)
|
| - {
|
| - /* shift A by one bit to the left */
|
| - mpn_lshift (a, c + n, n, 1);
|
| - a[0] |= mpn_lshift (c + n - 1, c + n - 1, 1, 1);
|
| - f --;
|
| - if (error != t)
|
| - err_s_a2 ++;
|
| - }
|
| - else
|
| - MPN_COPY (a, c + n, n);
|
| -
|
| - if ((error == t) && (2 * n1 <= n) &&
|
| - (mpn_scan1 (c + 2 * n1, 0) < (n - 2 * n1) * BITS_PER_MP_LIMB))
|
| - error = i;
|
| -
|
| - if (e & ((mp_exp_t) 1 << i))
|
| - {
|
| - /* multiply A by B */
|
| - c[2 * n - 1] = mpn_mul_1 (c + n - 1, a, n, B);
|
| - f += h + BITS_PER_MP_LIMB;
|
| - if ((c[2 * n - 1] & MPFR_LIMB_HIGHBIT) == 0)
|
| - { /* shift A by one bit to the left */
|
| - mpn_lshift (a, c + n, n, 1);
|
| - a[0] |= mpn_lshift (c + n - 1, c + n - 1, 1, 1);
|
| - f --;
|
| - }
|
| - else
|
| - {
|
| - MPN_COPY (a, c + n, n);
|
| - if (error != t)
|
| - err_s_ab ++;
|
| - }
|
| - if ((error == t) && (c[n - 1] != 0))
|
| - error = i;
|
| - }
|
| - }
|
| -
|
| - MPFR_TMP_FREE(marker);
|
| -
|
| - *exp_r = f;
|
| -
|
| - if (error == t)
|
| - return -1; /* result is exact */
|
| - else /* error <= t-2 <= BITS_PER_MP_LIMB-2
|
| - err_s_ab, err_s_a2 <= t-1 */
|
| - {
|
| - /* if there are p loops after the first inexact result, with
|
| - j shifts in a^2 and l shifts in a*b, then the final error is
|
| - at most 2^(p+ceil((j+1)/2)+l+1)*ulp(res).
|
| - This is bounded by 2^(5/2*t-1/2) where t is the number of bits of e.
|
| - */
|
| - error = error + err_s_ab + err_s_a2 / 2 + 3; /* <= 5t/2-1/2 */
|
| -#if 0
|
| - if ((error - 1) >= ((n * BITS_PER_MP_LIMB - 1) / 2))
|
| - error = n * BITS_PER_MP_LIMB; /* result is completely wrong:
|
| - this is very unlikely since error is
|
| - at most 5/2*log_2(e), and
|
| - n * BITS_PER_MP_LIMB is at least
|
| - 3*log_2(e) */
|
| -#endif
|
| - return error;
|
| - }
|
| -}
|
|
|