Index: gcc/mpfr/mul.c |
diff --git a/gcc/mpfr/mul.c b/gcc/mpfr/mul.c |
deleted file mode 100644 |
index ec1f757e5381514c20961d1810f3cfd4fcdc5d16..0000000000000000000000000000000000000000 |
--- a/gcc/mpfr/mul.c |
+++ /dev/null |
@@ -1,513 +0,0 @@ |
-/* mpfr_mul -- multiply two floating-point numbers |
- |
-Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. |
-Contributed by the Arenaire and Cacao projects, INRIA. |
- |
-This file is part of the GNU MPFR Library. |
- |
-The GNU MPFR Library is free software; you can redistribute it and/or modify |
-it under the terms of the GNU Lesser General Public License as published by |
-the Free Software Foundation; either version 2.1 of the License, or (at your |
-option) any later version. |
- |
-The GNU MPFR Library is distributed in the hope that it will be useful, but |
-WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
-or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public |
-License for more details. |
- |
-You should have received a copy of the GNU Lesser General Public License |
-along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to |
-the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, |
-MA 02110-1301, USA. */ |
- |
-#define MPFR_NEED_LONGLONG_H |
-#include "mpfr-impl.h" |
- |
- |
-/********* BEGINNING CHECK *************/ |
- |
-/* Check if we have to check the result of mpfr_mul. |
- TODO: Find a better (and faster?) check than using old implementation */ |
-#ifdef WANT_ASSERT |
-# if WANT_ASSERT >= 3 |
- |
-int mpfr_mul2 (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mp_rnd_t rnd_mode); |
-static int |
-mpfr_mul3 (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mp_rnd_t rnd_mode) |
-{ |
- /* Old implementation */ |
- int sign_product, cc, inexact; |
- mp_exp_t ax; |
- mp_limb_t *tmp; |
- mp_limb_t b1; |
- mp_prec_t bq, cq; |
- mp_size_t bn, cn, tn, k; |
- MPFR_TMP_DECL(marker); |
- |
- /* deal with special cases */ |
- if (MPFR_ARE_SINGULAR(b,c)) |
- { |
- if (MPFR_IS_NAN(b) || MPFR_IS_NAN(c)) |
- { |
- MPFR_SET_NAN(a); |
- MPFR_RET_NAN; |
- } |
- sign_product = MPFR_MULT_SIGN( MPFR_SIGN(b) , MPFR_SIGN(c) ); |
- if (MPFR_IS_INF(b)) |
- { |
- if (MPFR_IS_INF(c) || MPFR_NOTZERO(c)) |
- { |
- MPFR_SET_SIGN(a,sign_product); |
- MPFR_SET_INF(a); |
- MPFR_RET(0); /* exact */ |
- } |
- else |
- { |
- MPFR_SET_NAN(a); |
- MPFR_RET_NAN; |
- } |
- } |
- else if (MPFR_IS_INF(c)) |
- { |
- if (MPFR_NOTZERO(b)) |
- { |
- MPFR_SET_SIGN(a, sign_product); |
- MPFR_SET_INF(a); |
- MPFR_RET(0); /* exact */ |
- } |
- else |
- { |
- MPFR_SET_NAN(a); |
- MPFR_RET_NAN; |
- } |
- } |
- else |
- { |
- MPFR_ASSERTD(MPFR_IS_ZERO(b) || MPFR_IS_ZERO(c)); |
- MPFR_SET_SIGN(a, sign_product); |
- MPFR_SET_ZERO(a); |
- MPFR_RET(0); /* 0 * 0 is exact */ |
- } |
- } |
- MPFR_CLEAR_FLAGS(a); |
- sign_product = MPFR_MULT_SIGN( MPFR_SIGN(b) , MPFR_SIGN(c) ); |
- |
- ax = MPFR_GET_EXP (b) + MPFR_GET_EXP (c); |
- |
- bq = MPFR_PREC(b); |
- cq = MPFR_PREC(c); |
- |
- MPFR_ASSERTD(bq+cq > bq); /* PREC_MAX is /2 so no integer overflow */ |
- |
- bn = (bq+BITS_PER_MP_LIMB-1)/BITS_PER_MP_LIMB; /* number of limbs of b */ |
- cn = (cq+BITS_PER_MP_LIMB-1)/BITS_PER_MP_LIMB; /* number of limbs of c */ |
- k = bn + cn; /* effective nb of limbs used by b*c (= tn or tn+1) below */ |
- tn = (bq + cq + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB; |
- /* <= k, thus no int overflow */ |
- MPFR_ASSERTD(tn <= k); |
- |
- /* Check for no size_t overflow*/ |
- MPFR_ASSERTD((size_t) k <= ((size_t) -1) / BYTES_PER_MP_LIMB); |
- MPFR_TMP_MARK(marker); |
- tmp = (mp_limb_t *) MPFR_TMP_ALLOC((size_t) k * BYTES_PER_MP_LIMB); |
- |
- /* multiplies two mantissa in temporary allocated space */ |
- b1 = (MPFR_LIKELY(bn >= cn)) ? |
- mpn_mul (tmp, MPFR_MANT(b), bn, MPFR_MANT(c), cn) |
- : mpn_mul (tmp, MPFR_MANT(c), cn, MPFR_MANT(b), bn); |
- |
- /* now tmp[0]..tmp[k-1] contains the product of both mantissa, |
- with tmp[k-1]>=2^(BITS_PER_MP_LIMB-2) */ |
- b1 >>= BITS_PER_MP_LIMB - 1; /* msb from the product */ |
- |
- /* if the mantissas of b and c are uniformly distributed in ]1/2, 1], |
- then their product is in ]1/4, 1/2] with probability 2*ln(2)-1 ~ 0.386 |
- and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */ |
- tmp += k - tn; |
- if (MPFR_UNLIKELY(b1 == 0)) |
- mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */ |
- cc = mpfr_round_raw (MPFR_MANT (a), tmp, bq + cq, |
- MPFR_IS_NEG_SIGN(sign_product), |
- MPFR_PREC (a), rnd_mode, &inexact); |
- |
- /* cc = 1 ==> result is a power of two */ |
- if (MPFR_UNLIKELY(cc)) |
- MPFR_MANT(a)[MPFR_LIMB_SIZE(a)-1] = MPFR_LIMB_HIGHBIT; |
- |
- MPFR_TMP_FREE(marker); |
- |
- { |
- mp_exp_t ax2 = ax + (mp_exp_t) (b1 - 1 + cc); |
- if (MPFR_UNLIKELY( ax2 > __gmpfr_emax)) |
- return mpfr_overflow (a, rnd_mode, sign_product); |
- if (MPFR_UNLIKELY( ax2 < __gmpfr_emin)) |
- { |
- /* In the rounding to the nearest mode, if the exponent of the exact |
- result (i.e. before rounding, i.e. without taking cc into account) |
- is < __gmpfr_emin - 1 or the exact result is a power of 2 (i.e. if |
- both arguments are powers of 2), then round to zero. */ |
- if (rnd_mode == GMP_RNDN && |
- (ax + (mp_exp_t) b1 < __gmpfr_emin || |
- (mpfr_powerof2_raw (b) && mpfr_powerof2_raw (c)))) |
- rnd_mode = GMP_RNDZ; |
- return mpfr_underflow (a, rnd_mode, sign_product); |
- } |
- MPFR_SET_EXP (a, ax2); |
- MPFR_SET_SIGN(a, sign_product); |
- } |
- MPFR_RET (inexact); |
-} |
- |
-int |
-mpfr_mul (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mp_rnd_t rnd_mode) |
-{ |
- mpfr_t ta, tb, tc; |
- int inexact1, inexact2; |
- |
- mpfr_init2 (ta, MPFR_PREC (a)); |
- mpfr_init2 (tb, MPFR_PREC (b)); |
- mpfr_init2 (tc, MPFR_PREC (c)); |
- MPFR_ASSERTN (mpfr_set (tb, b, GMP_RNDN) == 0); |
- MPFR_ASSERTN (mpfr_set (tc, c, GMP_RNDN) == 0); |
- |
- inexact2 = mpfr_mul3 (ta, tb, tc, rnd_mode); |
- inexact1 = mpfr_mul2 (a, b, c, rnd_mode); |
- if (mpfr_cmp (ta, a) || inexact1*inexact2 < 0 |
- || (inexact1*inexact2 == 0 && (inexact1|inexact2) != 0)) |
- { |
- fprintf (stderr, "mpfr_mul return different values for %s\n" |
- "Prec_a = %lu, Prec_b = %lu, Prec_c = %lu\nB = ", |
- mpfr_print_rnd_mode (rnd_mode), |
- MPFR_PREC (a), MPFR_PREC (b), MPFR_PREC (c)); |
- mpfr_out_str (stderr, 16, 0, tb, GMP_RNDN); |
- fprintf (stderr, "\nC = "); |
- mpfr_out_str (stderr, 16, 0, tc, GMP_RNDN); |
- fprintf (stderr, "\nOldMul: "); |
- mpfr_out_str (stderr, 16, 0, ta, GMP_RNDN); |
- fprintf (stderr, "\nNewMul: "); |
- mpfr_out_str (stderr, 16, 0, a, GMP_RNDN); |
- fprintf (stderr, "\nNewInexact = %d | OldInexact = %d\n", |
- inexact1, inexact2); |
- MPFR_ASSERTN(0); |
- } |
- |
- mpfr_clears (ta, tb, tc, (mpfr_ptr) 0); |
- return inexact1; |
-} |
- |
-# define mpfr_mul mpfr_mul2 |
-# endif |
-#endif |
- |
-/****** END OF CHECK *******/ |
- |
-/* Multiply 2 mpfr_t */ |
- |
-int |
-mpfr_mul (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mp_rnd_t rnd_mode) |
-{ |
- int sign, inexact; |
- mp_exp_t ax, ax2; |
- mp_limb_t *tmp; |
- mp_limb_t b1; |
- mp_prec_t bq, cq; |
- mp_size_t bn, cn, tn, k; |
- MPFR_TMP_DECL (marker); |
- |
- MPFR_LOG_FUNC (("b[%#R]=%R c[%#R]=%R rnd=%d", b, b, c, c, rnd_mode), |
- ("a[%#R]=%R inexact=%d", a, a, inexact)); |
- |
- /* deal with special cases */ |
- if (MPFR_ARE_SINGULAR (b, c)) |
- { |
- if (MPFR_IS_NAN (b) || MPFR_IS_NAN (c)) |
- { |
- MPFR_SET_NAN (a); |
- MPFR_RET_NAN; |
- } |
- sign = MPFR_MULT_SIGN (MPFR_SIGN (b), MPFR_SIGN (c)); |
- if (MPFR_IS_INF (b)) |
- { |
- if (!MPFR_IS_ZERO (c)) |
- { |
- MPFR_SET_SIGN (a, sign); |
- MPFR_SET_INF (a); |
- MPFR_RET (0); |
- } |
- else |
- { |
- MPFR_SET_NAN (a); |
- MPFR_RET_NAN; |
- } |
- } |
- else if (MPFR_IS_INF (c)) |
- { |
- if (!MPFR_IS_ZERO (b)) |
- { |
- MPFR_SET_SIGN (a, sign); |
- MPFR_SET_INF (a); |
- MPFR_RET(0); |
- } |
- else |
- { |
- MPFR_SET_NAN (a); |
- MPFR_RET_NAN; |
- } |
- } |
- else |
- { |
- MPFR_ASSERTD (MPFR_IS_ZERO(b) || MPFR_IS_ZERO(c)); |
- MPFR_SET_SIGN (a, sign); |
- MPFR_SET_ZERO (a); |
- MPFR_RET (0); |
- } |
- } |
- MPFR_CLEAR_FLAGS (a); |
- sign = MPFR_MULT_SIGN (MPFR_SIGN (b), MPFR_SIGN (c)); |
- |
- ax = MPFR_GET_EXP (b) + MPFR_GET_EXP (c); |
- /* Note: the exponent of the exact result will be e = bx + cx + ec with |
- ec in {-1,0,1} and the following assumes that e is representable. */ |
- |
- /* FIXME: Useful since we do an exponent check after ? |
- * It is useful iff the precision is big, there is an overflow |
- * and we are doing further mults...*/ |
-#ifdef HUGE |
- if (MPFR_UNLIKELY (ax > __gmpfr_emax + 1)) |
- return mpfr_overflow (a, rnd_mode, sign); |
- if (MPFR_UNLIKELY (ax < __gmpfr_emin - 2)) |
- return mpfr_underflow (a, rnd_mode == GMP_RNDN ? GMP_RNDZ : rnd_mode, |
- sign); |
-#endif |
- |
- bq = MPFR_PREC (b); |
- cq = MPFR_PREC (c); |
- |
- MPFR_ASSERTD (bq+cq > bq); /* PREC_MAX is /2 so no integer overflow */ |
- |
- bn = (bq+BITS_PER_MP_LIMB-1)/BITS_PER_MP_LIMB; /* number of limbs of b */ |
- cn = (cq+BITS_PER_MP_LIMB-1)/BITS_PER_MP_LIMB; /* number of limbs of c */ |
- k = bn + cn; /* effective nb of limbs used by b*c (= tn or tn+1) below */ |
- tn = (bq + cq + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB; |
- MPFR_ASSERTD (tn <= k); /* tn <= k, thus no int overflow */ |
- |
- /* Check for no size_t overflow*/ |
- MPFR_ASSERTD ((size_t) k <= ((size_t) -1) / BYTES_PER_MP_LIMB); |
- MPFR_TMP_MARK (marker); |
- tmp = (mp_limb_t *) MPFR_TMP_ALLOC ((size_t) k * BYTES_PER_MP_LIMB); |
- |
- /* multiplies two mantissa in temporary allocated space */ |
- if (MPFR_UNLIKELY (bn < cn)) |
- { |
- mpfr_srcptr z = b; |
- mp_size_t zn = bn; |
- b = c; |
- bn = cn; |
- c = z; |
- cn = zn; |
- } |
- MPFR_ASSERTD (bn >= cn); |
- if (MPFR_LIKELY (bn <= 2)) |
- { |
- if (bn == 1) |
- { |
- /* 1 limb * 1 limb */ |
- umul_ppmm (tmp[1], tmp[0], MPFR_MANT (b)[0], MPFR_MANT (c)[0]); |
- b1 = tmp[1]; |
- } |
- else if (MPFR_UNLIKELY (cn == 1)) |
- { |
- /* 2 limbs * 1 limb */ |
- mp_limb_t t; |
- umul_ppmm (tmp[1], tmp[0], MPFR_MANT (b)[0], MPFR_MANT (c)[0]); |
- umul_ppmm (tmp[2], t, MPFR_MANT (b)[1], MPFR_MANT (c)[0]); |
- add_ssaaaa (tmp[2], tmp[1], tmp[2], tmp[1], 0, t); |
- b1 = tmp[2]; |
- } |
- else |
- { |
- /* 2 limbs * 2 limbs */ |
- mp_limb_t t1, t2, t3; |
- /* First 2 limbs * 1 limb */ |
- umul_ppmm (tmp[1], tmp[0], MPFR_MANT (b)[0], MPFR_MANT (c)[0]); |
- umul_ppmm (tmp[2], t1, MPFR_MANT (b)[1], MPFR_MANT (c)[0]); |
- add_ssaaaa (tmp[2], tmp[1], tmp[2], tmp[1], 0, t1); |
- /* Second, the other 2 limbs * 1 limb product */ |
- umul_ppmm (t1, t2, MPFR_MANT (b)[0], MPFR_MANT (c)[1]); |
- umul_ppmm (tmp[3], t3, MPFR_MANT (b)[1], MPFR_MANT (c)[1]); |
- add_ssaaaa (tmp[3], t1, tmp[3], t1, 0, t3); |
- /* Sum those two partial products */ |
- add_ssaaaa (tmp[2], tmp[1], tmp[2], tmp[1], t1, t2); |
- tmp[3] += (tmp[2] < t1); |
- b1 = tmp[3]; |
- } |
- b1 >>= (BITS_PER_MP_LIMB - 1); |
- tmp += k - tn; |
- if (MPFR_UNLIKELY (b1 == 0)) |
- mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */ |
- } |
- else |
- /* Mulders' mulhigh. Disable if squaring, since it is not tuned for |
- such a case */ |
- if (MPFR_UNLIKELY (bn > MPFR_MUL_THRESHOLD && b != c)) |
- { |
- mp_limb_t *bp, *cp; |
- mp_size_t n; |
- mp_prec_t p; |
- |
- /* Fist check if we can reduce the precision of b or c: |
- exact values are a nightmare for the short product trick */ |
- bp = MPFR_MANT (b); |
- cp = MPFR_MANT (c); |
- MPFR_ASSERTN (MPFR_MUL_THRESHOLD >= 1); |
- if (MPFR_UNLIKELY ((bp[0] == 0 && bp[1] == 0) || |
- (cp[0] == 0 && cp[1] == 0))) |
- { |
- mpfr_t b_tmp, c_tmp; |
- |
- MPFR_TMP_FREE (marker); |
- /* Check for b */ |
- while (*bp == 0) |
- { |
- bp++; |
- bn--; |
- MPFR_ASSERTD (bn > 0); |
- } /* This must end since the MSL is != 0 */ |
- |
- /* Check for c too */ |
- while (*cp == 0) |
- { |
- cp++; |
- cn--; |
- MPFR_ASSERTD (cn > 0); |
- } /* This must end since the MSL is != 0 */ |
- |
- /* It is not the faster way, but it is safer */ |
- MPFR_SET_SAME_SIGN (b_tmp, b); |
- MPFR_SET_EXP (b_tmp, MPFR_GET_EXP (b)); |
- MPFR_PREC (b_tmp) = bn * BITS_PER_MP_LIMB; |
- MPFR_MANT (b_tmp) = bp; |
- |
- MPFR_SET_SAME_SIGN (c_tmp, c); |
- MPFR_SET_EXP (c_tmp, MPFR_GET_EXP (c)); |
- MPFR_PREC (c_tmp) = cn * BITS_PER_MP_LIMB; |
- MPFR_MANT (c_tmp) = cp; |
- |
- /* Call again mpfr_mul with the fixed arguments */ |
- return mpfr_mul (a, b_tmp, c_tmp, rnd_mode); |
- } |
- |
- /* Compute estimated precision of mulhigh. |
- We could use `+ (n < cn) + (n < bn)' instead of `+ 2', |
- but does it worth it? */ |
- n = MPFR_LIMB_SIZE (a) + 1; |
- n = MIN (n, cn); |
- MPFR_ASSERTD (n >= 1 && 2*n <= k && n <= cn && n <= bn); |
- p = n * BITS_PER_MP_LIMB - MPFR_INT_CEIL_LOG2 (n + 2); |
- bp += bn - n; |
- cp += cn - n; |
- |
- /* Check if MulHigh can produce a roundable result. |
- We may lost 1 bit due to RNDN, 1 due to final shift. */ |
- if (MPFR_UNLIKELY (MPFR_PREC (a) > p - 5)) |
- { |
- if (MPFR_UNLIKELY (MPFR_PREC (a) > p - 5 + BITS_PER_MP_LIMB |
- || bn <= MPFR_MUL_THRESHOLD+1)) |
- { |
- /* MulHigh can't produce a roundable result. */ |
- MPFR_LOG_MSG (("mpfr_mulhigh can't be used (%lu VS %lu)\n", |
- MPFR_PREC (a), p)); |
- goto full_multiply; |
- } |
- /* Add one extra limb to mantissa of b and c. */ |
- if (bn > n) |
- bp --; |
- else |
- { |
- bp = (mp_limb_t*) MPFR_TMP_ALLOC ((n+1) * sizeof (mp_limb_t)); |
- bp[0] = 0; |
- MPN_COPY (bp + 1, MPFR_MANT (b) + bn - n, n); |
- } |
- if (cn > n) |
- cp --; /* FIXME: Could this happen? */ |
- else |
- { |
- cp = (mp_limb_t*) MPFR_TMP_ALLOC ((n+1) * sizeof (mp_limb_t)); |
- cp[0] = 0; |
- MPN_COPY (cp + 1, MPFR_MANT (c) + cn - n, n); |
- } |
- /* We will compute with one extra limb */ |
- n++; |
- p = n * BITS_PER_MP_LIMB - MPFR_INT_CEIL_LOG2 (n + 2); |
- /* Due to some nasty reasons we can have only 4 bits */ |
- MPFR_ASSERTD (MPFR_PREC (a) <= p - 4); |
- |
- if (MPFR_LIKELY (k < 2*n)) |
- { |
- tmp = (mp_limb_t*) MPFR_TMP_ALLOC (2 * n * sizeof (mp_limb_t)); |
- tmp += 2*n-k; /* `tmp' still points to an area of `k' limbs */ |
- } |
- } |
- MPFR_LOG_MSG (("Use mpfr_mulhigh (%lu VS %lu)\n", MPFR_PREC (a), p)); |
- /* Compute an approximation of the product of b and c */ |
- mpfr_mulhigh_n (tmp + k - 2 * n, bp, cp, n); |
- /* now tmp[0]..tmp[k-1] contains the product of both mantissa, |
- with tmp[k-1]>=2^(BITS_PER_MP_LIMB-2) */ |
- b1 = tmp[k-1] >> (BITS_PER_MP_LIMB - 1); /* msb from the product */ |
- |
- /* If the mantissas of b and c are uniformly distributed in (1/2, 1], |
- then their product is in (1/4, 1/2] with probability 2*ln(2)-1 |
- ~ 0.386 and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */ |
- if (MPFR_UNLIKELY (b1 == 0)) |
- /* Warning: the mpfr_mulhigh_n call above only surely affects |
- tmp[k-n-1..k-1], thus we shift only those limbs */ |
- mpn_lshift (tmp + k - n - 1, tmp + k - n - 1, n + 1, 1); |
- tmp += k - tn; |
- MPFR_ASSERTD (MPFR_LIMB_MSB (tmp[tn-1]) != 0); |
- |
- if (MPFR_UNLIKELY (!mpfr_round_p (tmp, tn, p+b1-1, MPFR_PREC(a) |
- + (rnd_mode == GMP_RNDN)))) |
- { |
- tmp -= k - tn; /* tmp may have changed, FIX IT!!!!! */ |
- goto full_multiply; |
- } |
- } |
- else |
- { |
- full_multiply: |
- MPFR_LOG_MSG (("Use mpn_mul\n", 0)); |
- b1 = mpn_mul (tmp, MPFR_MANT (b), bn, MPFR_MANT (c), cn); |
- |
- /* now tmp[0]..tmp[k-1] contains the product of both mantissa, |
- with tmp[k-1]>=2^(BITS_PER_MP_LIMB-2) */ |
- b1 >>= BITS_PER_MP_LIMB - 1; /* msb from the product */ |
- |
- /* if the mantissas of b and c are uniformly distributed in (1/2, 1], |
- then their product is in (1/4, 1/2] with probability 2*ln(2)-1 |
- ~ 0.386 and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */ |
- tmp += k - tn; |
- if (MPFR_UNLIKELY (b1 == 0)) |
- mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */ |
- } |
- |
- ax2 = ax + (mp_exp_t) (b1 - 1); |
- MPFR_RNDRAW (inexact, a, tmp, bq+cq, rnd_mode, sign, ax2++); |
- MPFR_TMP_FREE (marker); |
- MPFR_EXP (a) = ax2; /* Can't use MPFR_SET_EXP: Expo may be out of range */ |
- MPFR_SET_SIGN (a, sign); |
- if (MPFR_UNLIKELY (ax2 > __gmpfr_emax)) |
- return mpfr_overflow (a, rnd_mode, sign); |
- if (MPFR_UNLIKELY (ax2 < __gmpfr_emin)) |
- { |
- /* In the rounding to the nearest mode, if the exponent of the exact |
- result (i.e. before rounding, i.e. without taking cc into account) |
- is < __gmpfr_emin - 1 or the exact result is a power of 2 (i.e. if |
- both arguments are powers of 2), then round to zero. */ |
- if (rnd_mode == GMP_RNDN |
- && (ax + (mp_exp_t) b1 < __gmpfr_emin |
- || (mpfr_powerof2_raw (b) && mpfr_powerof2_raw (c)))) |
- rnd_mode = GMP_RNDZ; |
- return mpfr_underflow (a, rnd_mode, sign); |
- } |
- MPFR_RET (inexact); |
-} |