Index: base/gfx/image_operations.cc |
=================================================================== |
--- base/gfx/image_operations.cc (revision 6142) |
+++ base/gfx/image_operations.cc (working copy) |
@@ -1,362 +0,0 @@ |
-// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
-// |
-#define _USE_MATH_DEFINES |
-#include <cmath> |
-#include <limits> |
-#include <vector> |
- |
-#include "base/gfx/image_operations.h" |
- |
-#include "base/gfx/convolver.h" |
-#include "base/gfx/rect.h" |
-#include "base/gfx/size.h" |
-#include "base/logging.h" |
-#include "base/stack_container.h" |
-#include "SkBitmap.h" |
- |
-namespace gfx { |
- |
-namespace { |
- |
-// Returns the ceiling/floor as an integer. |
-inline int CeilInt(float val) { |
- return static_cast<int>(ceil(val)); |
-} |
-inline int FloorInt(float val) { |
- return static_cast<int>(floor(val)); |
-} |
- |
-// Filter function computation ------------------------------------------------- |
- |
-// Evaluates the box filter, which goes from -0.5 to +0.5. |
-float EvalBox(float x) { |
- return (x >= -0.5f && x < 0.5f) ? 1.0f : 0.0f; |
-} |
- |
-// Evaluates the Lanczos filter of the given filter size window for the given |
-// position. |
-// |
-// |filter_size| is the width of the filter (the "window"), outside of which |
-// the value of the function is 0. Inside of the window, the value is the |
-// normalized sinc function: |
-// lanczos(x) = sinc(x) * sinc(x / filter_size); |
-// where |
-// sinc(x) = sin(pi*x) / (pi*x); |
-float EvalLanczos(int filter_size, float x) { |
- if (x <= -filter_size || x >= filter_size) |
- return 0.0f; // Outside of the window. |
- if (x > -std::numeric_limits<float>::epsilon() && |
- x < std::numeric_limits<float>::epsilon()) |
- return 1.0f; // Special case the discontinuity at the origin. |
- float xpi = x * static_cast<float>(M_PI); |
- return (sin(xpi) / xpi) * // sinc(x) |
- sin(xpi / filter_size) / (xpi / filter_size); // sinc(x/filter_size) |
-} |
- |
-// ResizeFilter ---------------------------------------------------------------- |
- |
-// Encapsulates computation and storage of the filters required for one complete |
-// resize operation. |
-class ResizeFilter { |
- public: |
- ResizeFilter(ImageOperations::ResizeMethod method, |
- const Size& src_full_size, |
- const Size& dest_size, |
- const Rect& dest_subset); |
- |
- // Returns the bounds in the input bitmap of data that is used in the output. |
- // The filter offsets are within this rectangle. |
- const Rect& src_depend() { return src_depend_; } |
- |
- // Returns the filled filter values. |
- const ConvolusionFilter1D& x_filter() { return x_filter_; } |
- const ConvolusionFilter1D& y_filter() { return y_filter_; } |
- |
- private: |
- // Returns the number of pixels that the filer spans, in filter space (the |
- // destination image). |
- float GetFilterSupport(float scale) { |
- switch (method_) { |
- case ImageOperations::RESIZE_BOX: |
- // The box filter just scales with the image scaling. |
- return 0.5f; // Only want one side of the filter = /2. |
- case ImageOperations::RESIZE_LANCZOS3: |
- // The lanczos filter takes as much space in the source image in |
- // each direction as the size of the window = 3 for Lanczos3. |
- return 3.0f; |
- default: |
- NOTREACHED(); |
- return 1.0f; |
- } |
- } |
- |
- // Computes one set of filters either horizontally or vertically. The caller |
- // will specify the "min" and "max" rather than the bottom/top and |
- // right/bottom so that the same code can be re-used in each dimension. |
- // |
- // |src_depend_lo| and |src_depend_size| gives the range for the source |
- // depend rectangle (horizontally or vertically at the caller's discretion |
- // -- see above for what this means). |
- // |
- // Likewise, the range of destination values to compute and the scale factor |
- // for the transform is also specified. |
- void ComputeFilters(int src_size, |
- int dest_subset_lo, int dest_subset_size, |
- float scale, float src_support, |
- ConvolusionFilter1D* output); |
- |
- // Computes the filter value given the coordinate in filter space. |
- inline float ComputeFilter(float pos) { |
- switch (method_) { |
- case ImageOperations::RESIZE_BOX: |
- return EvalBox(pos); |
- case ImageOperations::RESIZE_LANCZOS3: |
- return EvalLanczos(3, pos); |
- default: |
- NOTREACHED(); |
- return 0; |
- } |
- } |
- |
- ImageOperations::ResizeMethod method_; |
- |
- // Subset of source the filters will touch. |
- Rect src_depend_; |
- |
- // Size of the filter support on one side only in the destination space. |
- // See GetFilterSupport. |
- float x_filter_support_; |
- float y_filter_support_; |
- |
- // Subset of scaled destination bitmap to compute. |
- Rect out_bounds_; |
- |
- ConvolusionFilter1D x_filter_; |
- ConvolusionFilter1D y_filter_; |
- |
- DISALLOW_EVIL_CONSTRUCTORS(ResizeFilter); |
-}; |
- |
-ResizeFilter::ResizeFilter(ImageOperations::ResizeMethod method, |
- const Size& src_full_size, |
- const Size& dest_size, |
- const Rect& dest_subset) |
- : method_(method), |
- out_bounds_(dest_subset) { |
- float scale_x = static_cast<float>(dest_size.width()) / |
- static_cast<float>(src_full_size.width()); |
- float scale_y = static_cast<float>(dest_size.height()) / |
- static_cast<float>(src_full_size.height()); |
- |
- x_filter_support_ = GetFilterSupport(scale_x); |
- y_filter_support_ = GetFilterSupport(scale_y); |
- |
- gfx::Rect src_full(0, 0, src_full_size.width(), src_full_size.height()); |
- gfx::Rect dest_full(0, 0, |
- static_cast<int>(src_full_size.width() * scale_x + 0.5), |
- static_cast<int>(src_full_size.height() * scale_y + 0.5)); |
- |
- // Support of the filter in source space. |
- float src_x_support = x_filter_support_ / scale_x; |
- float src_y_support = y_filter_support_ / scale_y; |
- |
- ComputeFilters(src_full_size.width(), dest_subset.x(), dest_subset.width(), |
- scale_x, src_x_support, &x_filter_); |
- ComputeFilters(src_full_size.height(), dest_subset.y(), dest_subset.height(), |
- scale_y, src_y_support, &y_filter_); |
-} |
- |
-void ResizeFilter::ComputeFilters(int src_size, |
- int dest_subset_lo, int dest_subset_size, |
- float scale, float src_support, |
- ConvolusionFilter1D* output) { |
- int dest_subset_hi = dest_subset_lo + dest_subset_size; // [lo, hi) |
- |
- // When we're doing a magnification, the scale will be larger than one. This |
- // means the destination pixels are much smaller than the source pixels, and |
- // that the range covered by the filter won't necessarily cover any source |
- // pixel boundaries. Therefore, we use these clamped values (max of 1) for |
- // some computations. |
- float clamped_scale = std::min(1.0f, scale); |
- |
- // Speed up the divisions below by turning them into multiplies. |
- float inv_scale = 1.0f / scale; |
- |
- StackVector<float, 64> filter_values; |
- StackVector<int16, 64> fixed_filter_values; |
- |
- // Loop over all pixels in the output range. We will generate one set of |
- // filter values for each one. Those values will tell us how to blend the |
- // source pixels to compute the destination pixel. |
- for (int dest_subset_i = dest_subset_lo; dest_subset_i < dest_subset_hi; |
- dest_subset_i++) { |
- // Reset the arrays. We don't declare them inside so they can re-use the |
- // same malloc-ed buffer. |
- filter_values->clear(); |
- fixed_filter_values->clear(); |
- |
- // This is the pixel in the source directly under the pixel in the dest. |
- float src_pixel = dest_subset_i * inv_scale; |
- |
- // Compute the (inclusive) range of source pixels the filter covers. |
- int src_begin = std::max(0, FloorInt(src_pixel - src_support)); |
- int src_end = std::min(src_size - 1, CeilInt(src_pixel + src_support)); |
- |
- // Compute the unnormalized filter value at each location of the source |
- // it covers. |
- float filter_sum = 0.0f; // Sub of the filter values for normalizing. |
- for (int cur_filter_pixel = src_begin; cur_filter_pixel <= src_end; |
- cur_filter_pixel++) { |
- // Distance from the center of the filter, this is the filter coordinate |
- // in source space. |
- float src_filter_pos = cur_filter_pixel - src_pixel; |
- |
- // Since the filter really exists in dest space, map it there. |
- float dest_filter_pos = src_filter_pos * clamped_scale; |
- |
- // Compute the filter value at that location. |
- float filter_value = ComputeFilter(dest_filter_pos); |
- filter_values->push_back(filter_value); |
- |
- filter_sum += filter_value; |
- } |
- DCHECK(!filter_values->empty()) << "We should always get a filter!"; |
- |
- // The filter must be normalized so that we don't affect the brightness of |
- // the image. Convert to normalized fixed point. |
- int16 fixed_sum = 0; |
- for (size_t i = 0; i < filter_values->size(); i++) { |
- int16 cur_fixed = output->FloatToFixed(filter_values[i] / filter_sum); |
- fixed_sum += cur_fixed; |
- fixed_filter_values->push_back(cur_fixed); |
- } |
- |
- // The conversion to fixed point will leave some rounding errors, which |
- // we add back in to avoid affecting the brightness of the image. We |
- // arbitrarily add this to the center of the filter array (this won't always |
- // be the center of the filter function since it could get clipped on the |
- // edges, but it doesn't matter enough to worry about that case). |
- int16 leftovers = output->FloatToFixed(1.0f) - fixed_sum; |
- fixed_filter_values[fixed_filter_values->size() / 2] += leftovers; |
- |
- // Now it's ready to go. |
- output->AddFilter(src_begin, &fixed_filter_values[0], |
- static_cast<int>(fixed_filter_values->size())); |
- } |
-} |
- |
-} // namespace |
- |
-// Resize ---------------------------------------------------------------------- |
- |
-// static |
-SkBitmap ImageOperations::Resize(const SkBitmap& source, |
- ResizeMethod method, |
- const Size& dest_size, |
- const Rect& dest_subset) { |
- DCHECK(Rect(dest_size.width(), dest_size.height()).Contains(dest_subset)) << |
- "The supplied subset does not fall within the destination image."; |
- |
- // If the size of source or destination is 0, i.e. 0x0, 0xN or Nx0, just |
- // return empty |
- if (source.width() < 1 || source.height() < 1 || |
- dest_size.width() < 1 || dest_size.height() < 1) |
- return SkBitmap(); |
- |
- SkAutoLockPixels locker(source); |
- |
- ResizeFilter filter(method, Size(source.width(), source.height()), |
- dest_size, dest_subset); |
- |
- // Get a source bitmap encompassing this touched area. We construct the |
- // offsets and row strides such that it looks like a new bitmap, while |
- // referring to the old data. |
- const uint8* source_subset = |
- reinterpret_cast<const uint8*>(source.getPixels()); |
- |
- // Convolve into the result. |
- SkBitmap result; |
- result.setConfig(SkBitmap::kARGB_8888_Config, |
- dest_subset.width(), dest_subset.height()); |
- result.allocPixels(); |
- BGRAConvolve2D(source_subset, static_cast<int>(source.rowBytes()), |
- !source.isOpaque(), filter.x_filter(), filter.y_filter(), |
- static_cast<unsigned char*>(result.getPixels())); |
- |
- // Preserve the "opaque" flag for use as an optimization later. |
- result.setIsOpaque(source.isOpaque()); |
- |
- return result; |
-} |
- |
-// static |
-SkBitmap ImageOperations::Resize(const SkBitmap& source, |
- ResizeMethod method, |
- const Size& dest_size) { |
- Rect dest_subset(0, 0, dest_size.width(), dest_size.height()); |
- return Resize(source, method, dest_size, dest_subset); |
-} |
- |
-// static |
-SkBitmap ImageOperations::CreateBlendedBitmap(const SkBitmap& first, |
- const SkBitmap& second, |
- double alpha) { |
- DCHECK(alpha <= 1 && alpha >= 0); |
- DCHECK(first.width() == second.width()); |
- DCHECK(first.height() == second.height()); |
- DCHECK(first.bytesPerPixel() == second.bytesPerPixel()); |
- DCHECK(first.config() == SkBitmap::kARGB_8888_Config); |
- |
- // Optimize for case where we won't need to blend anything. |
- static const double alpha_min = 1.0 / 255; |
- static const double alpha_max = 254.0 / 255; |
- if (alpha < alpha_min) { |
- return first; |
- } else if (alpha > alpha_max) { |
- return second; |
- } |
- |
- SkAutoLockPixels lock_first(first); |
- SkAutoLockPixels lock_second(second); |
- |
- SkBitmap blended; |
- blended.setConfig(SkBitmap::kARGB_8888_Config, first.width(), |
- first.height(), 0); |
- blended.allocPixels(); |
- blended.eraseARGB(0, 0, 0, 0); |
- |
- double first_alpha = 1 - alpha; |
- |
- for (int y = 0; y < first.height(); y++) { |
- uint32* first_row = first.getAddr32(0, y); |
- uint32* second_row = second.getAddr32(0, y); |
- uint32* dst_row = blended.getAddr32(0, y); |
- |
- for (int x = 0; x < first.width(); x++) { |
- uint32 first_pixel = first_row[x]; |
- uint32 second_pixel = second_row[x]; |
- |
- int a = static_cast<int>( |
- SkColorGetA(first_pixel) * first_alpha + |
- SkColorGetA(second_pixel) * alpha); |
- int r = static_cast<int>( |
- SkColorGetR(first_pixel) * first_alpha + |
- SkColorGetR(second_pixel) * alpha); |
- int g = static_cast<int>( |
- SkColorGetG(first_pixel) * first_alpha + |
- SkColorGetG(second_pixel) * alpha); |
- int b = static_cast<int>( |
- SkColorGetB(first_pixel) * first_alpha + |
- SkColorGetB(second_pixel) * alpha); |
- |
- dst_row[x] = SkColorSetARGB(a, r, g, b); |
- } |
- } |
- |
- return blended; |
-} |
- |
-} // namespace gfx |
- |