Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(962)

Unified Diff: third_party/cld/bar/toolbar/cld/i18n/encodings/compact_lang_det/cldutil.cc

Issue 122007: [chromium-reviews] Add Compact Language Detection (CLD) library to Chrome. This works in Windows... (Closed) Base URL: svn://chrome-svn/chrome/trunk/src/
Patch Set: '' Created 11 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: third_party/cld/bar/toolbar/cld/i18n/encodings/compact_lang_det/cldutil.cc
===================================================================
--- third_party/cld/bar/toolbar/cld/i18n/encodings/compact_lang_det/cldutil.cc (revision 0)
+++ third_party/cld/bar/toolbar/cld/i18n/encodings/compact_lang_det/cldutil.cc (revision 0)
@@ -0,0 +1,879 @@
+// Copyright (c) 2006-2009 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include <string>
+#include "third_party/cld/bar/toolbar/cld/i18n/encodings/compact_lang_det/cldutil.h"
+#include "third_party/cld/bar/toolbar/cld/i18n/encodings/compact_lang_det/cldutil_dbg.h"
+#include "third_party/cld/bar/toolbar/cld/i18n/encodings/compact_lang_det/compact_lang_det_generated_meanscore.h"
+#include "third_party/cld/bar/toolbar/cld/i18n/encodings/compact_lang_det/utf8propletterscriptnum.h"
+#include "third_party/cld/bar/toolbar/cld/i18n/encodings/compact_lang_det/win/cld_commandlineflags.h"
+#include "third_party/cld/bar/toolbar/cld/i18n/encodings/compact_lang_det/win/cld_logging.h"
+#include "third_party/cld/bar/toolbar/cld/i18n/encodings/compact_lang_det/win/cld_unilib.h"
+#include "third_party/cld/bar/toolbar/cld/i18n/encodings/compact_lang_det/win/cld_utf.h"
+#include "third_party/cld/bar/toolbar/cld/i18n/encodings/compact_lang_det/win/cld_utf8statetable.h"
+
+// Runtime routines for hashing, looking up, and scoring
+// unigrams (CJK), bigrams (CJK), quadgrams, and octagrams.
+// Unigrams and bigrams are for CJK languages only, including simplified/
+// traditional Chinese, Japanese, Korean, Vietnamese Han characters, and
+// Zhuang Han characters. Surrounding spaces are not considered.
+// Quadgrams and octagrams for for non-CJK and include two bits indicating
+// preceding and trailing spaces (word boundaries).
+
+
+// Indicator bits for leading/trailing space around quad/octagram
+// NOTE: 4444 bits are chosen to flip constant bits in hash of four chars of
+// 1-, 2-, or 3-bytes each.
+static const uint32 kPreSpaceIndicator = 0x00004444;
+static const uint32 kPostSpaceIndicator = 0x44440000;
+
+// Little-endian masks for 0..24 bytes picked up as uint32's
+static const uint32 kWordMask0[4] = {
+ 0xFFFFFFFF, 0x000000FF, 0x0000FFFF, 0x00FFFFFF
+};
+
+static const int kMinCJKUTF8CharBytes = 3;
+
+static const int kMinGramCount = 3;
+static const int kMaxGramCount = 16;
+
+
+
+
+// Routines to access a hash table of <key:wordhash, value:probs> pairs
+// Buckets have 4-byte wordhash for sizes < 32K buckets, but only
+// 2-byte wordhash for sizes >= 32K buckets, with other wordhash bits used as
+// bucket subscript.
+// Probs is a packed: three languages plus a subscript for probability table
+// Buckets have all the keys together, then all the values.Key array never
+// crosses a cache-line boundary, so no-match case takes exactly one cache miss.
+// Match case may sometimes take an additional cache miss on value access.
+//
+// Other possibilites include 5 or 10 6-byte entries plus pad to make 32 or 64
+// byte buckets with single cache miss.
+// Or 2-byte key and 6-byte value, allowing 5 languages instead of three.
+//------------------------------------------------------------------------------
+
+
+//------------------------------------------------------------------------------
+// Hashing groups of 1/2/4/8 letters, perhaps with spaces or underscores
+//------------------------------------------------------------------------------
+
+// Design principles for these hash functions
+// - Few operations
+// - Handle 1-, 2-, and 3-byte UTF-8 scripts, ignoring intermixing except in
+// Latin script expect 1- and 2-byte mixtures.
+// - Last byte of each character has about 5 bits of information
+// - Spread good bits around so they can interact in at least two ways
+// with other characters
+// - Use add for additional mixing thorugh carries
+
+// CJK Three-byte bigram
+// ....dddd..cccccc..bbbbbb....aaaa
+// ..................ffffff..eeeeee
+// make
+// ....dddd..cccccc..bbbbbb....aaaa
+// 000....dddd..cccccc..bbbbbb....a
+// ..................ffffff..eeeeee
+// ffffff..eeeeee000000000000000000
+//
+// CJK Four-byte bigram
+// ..dddddd..cccccc....bbbb....aaaa
+// ..hhhhhh..gggggg....ffff....eeee
+// make
+// ..dddddd..cccccc....bbbb....aaaa
+// 000..dddddd..cccccc....bbbb....a
+// ..hhhhhh..gggggg....ffff....eeee
+// ..ffff....eeee000000000000000000
+
+// BIGRAM
+// Pick up 1..8 bytes and hash them via mask/shift/add. NO pre/post
+// OVERSHOOTS up to 3 bytes
+// For runtime use of tables
+uint32 cld::BiHashV25(const char* word_ptr, int bytecount) {
+ const uint32* word_ptr32 = reinterpret_cast<const uint32*>(word_ptr);
+ uint32 word0, word1;
+ if (bytecount <= 4) {
+ word0 = word_ptr32[0] & kWordMask0[bytecount & 3];
+ word0 = word0 ^ (word0 >> 3);
+ return word0;
+ }
+ // Else do 8 bytes
+ word0 = word_ptr32[0];
+ word0 = word0 ^ (word0 >> 3);
+ word1 = word_ptr32[1] & kWordMask0[bytecount & 3];
+ word1 = word1 ^ (word1 << 18);
+ return word0 + word1;
+}
+
+//
+// Ascii-7 One-byte chars
+// ...ddddd...ccccc...bbbbb...aaaaa
+// make
+// ...ddddd...ccccc...bbbbb...aaaaa
+// 000...ddddd...ccccc...bbbbb...aa
+//
+// Latin 1- and 2-byte chars
+// ...ddddd...ccccc...bbbbb...aaaaa
+// ...................fffff...eeeee
+// make
+// ...ddddd...ccccc...bbbbb...aaaaa
+// 000...ddddd...ccccc...bbbbb...aa
+// ...................fffff...eeeee
+// ...............fffff...eeeee0000
+//
+// Non-CJK Two-byte chars
+// ...ddddd...........bbbbb........
+// ...hhhhh...........fffff........
+// make
+// ...ddddd...........bbbbb........
+// 000...ddddd...........bbbbb.....
+// ...hhhhh...........fffff........
+// hhhh...........fffff........0000
+//
+// Non-CJK Three-byte chars
+// ...........ccccc................
+// ...................fffff........
+// ...lllll...................iiiii
+// make
+// ...........ccccc................
+// 000...........ccccc.............
+// ...................fffff........
+// ...............fffff........0000
+// ...lllll...................iiiii
+// .lllll...................iiiii00
+//
+
+// QUADGRAM
+// Pick up 1..12 bytes plus pre/post space and hash them via mask/shift/add
+// OVERSHOOTS up to 3 bytes
+// For runtime use of tables
+uint32 QuadHashV25Mix(const char* word_ptr, int bytecount, uint32 prepost) {
+ const uint32* word_ptr32 = reinterpret_cast<const uint32*>(word_ptr);
+ uint32 word0, word1, word2;
+ if (bytecount <= 4) {
+ word0 = word_ptr32[0] & kWordMask0[bytecount & 3];
+ word0 = word0 ^ (word0 >> 3);
+ return word0 ^ prepost;
+ } else if (bytecount <= 8) {
+ word0 = word_ptr32[0];
+ word0 = word0 ^ (word0 >> 3);
+ word1 = word_ptr32[1] & kWordMask0[bytecount & 3];
+ word1 = word1 ^ (word1 << 4);
+ return (word0 ^ prepost) + word1;
+ }
+ // else do 12 bytes
+ word0 = word_ptr32[0];
+ word0 = word0 ^ (word0 >> 3);
+ word1 = word_ptr32[1];
+ word1 = word1 ^ (word1 << 4);
+ word2 = word_ptr32[2] & kWordMask0[bytecount & 3];
+ word2 = word2 ^ (word2 << 2);
+ return (word0 ^ prepost) + word1 + word2;
+}
+
+
+// QUADGRAM wrapper with surrounding spaces
+// Pick up 1..12 bytes plus pre/post space and hash them via mask/shift/add
+// UNDERSHOOTS 1 byte, OVERSHOOTS up to 3 bytes
+// For runtime use of tables
+uint32 cld::QuadHashV25(const char* word_ptr, int bytecount) {
+ uint32 prepost = 0;
+ if (word_ptr[-1] == ' ') {prepost |= kPreSpaceIndicator;}
+ if (word_ptr[bytecount] == ' ') {prepost |= kPostSpaceIndicator;}
+ return QuadHashV25Mix(word_ptr, bytecount, prepost);
+}
+
+// QUADGRAM wrapper with surrounding underscores (offline use)
+// Pick up 1..12 bytes plus pre/post '_' and hash them via mask/shift/add
+// OVERSHOOTS up to 3 bytes
+// For offline construction of tables
+uint32 cld::QuadHashV25Underscore(const char* word_ptr, int bytecount) {
+ const char* local_word_ptr = word_ptr;
+ int local_bytecount = bytecount;
+ uint32 prepost = 0;
+ if (local_word_ptr[0] == '_') {
+ prepost |= kPreSpaceIndicator;
+ ++local_word_ptr;
+ --local_bytecount;
+ }
+ if (local_word_ptr[local_bytecount - 1] == '_') {
+ prepost |= kPostSpaceIndicator;
+ --local_bytecount;
+ }
+ return QuadHashV25Mix(local_word_ptr, local_bytecount, prepost);
+}
+
+
+// OCTAGRAM
+// Pick up 1..24 bytes plus pre/post space and hash them via mask/shift/add
+// UNDERSHOOTS 1 byte, OVERSHOOTS up to 3 bytes
+//
+// The low 32 bits follow the pattern from above, tuned to different scripts
+// The high 8 bits are a simple sum of all bytes, shifted by 0/1/2/3 bits each
+// For runtime use of tables V3
+uint64 OctaHash40Mix(const char* word_ptr, int bytecount, uint64 prepost) {
+ const uint32* word_ptr32 = reinterpret_cast<const uint32*>(word_ptr);
+ uint64 word0;
+ uint64 word1;
+ uint64 sum;
+
+ if (word_ptr[-1] == ' ') {prepost |= kPreSpaceIndicator;}
+ if (word_ptr[bytecount] == ' ') {prepost |= kPostSpaceIndicator;}
+ switch ((bytecount - 1) >> 2) {
+ case 0: // 1..4 bytes
+ word0 = word_ptr32[0] & kWordMask0[bytecount & 3];
+ sum = word0;
+ word0 = word0 ^ (word0 >> 3);
+ break;
+ case 1: // 5..8 bytes
+ word0 = word_ptr32[0];
+ sum = word0;
+ word0 = word0 ^ (word0 >> 3);
+ word1 = word_ptr32[1] & kWordMask0[bytecount & 3];
+ sum += word1;
+ word1 = word1 ^ (word1 << 4);
+ word0 += word1;
+ break;
+ case 2: // 9..12 bytes
+ word0 = word_ptr32[0];
+ sum = word0;
+ word0 = word0 ^ (word0 >> 3);
+ word1 = word_ptr32[1];
+ sum += word1;
+ word1 = word1 ^ (word1 << 4);
+ word0 += word1;
+ word1 = word_ptr32[2] & kWordMask0[bytecount & 3];
+ sum += word1;
+ word1 = word1 ^ (word1 << 2);
+ word0 += word1;
+ break;
+ case 3: // 13..16 bytes
+ word0 = word_ptr32[0];
+ sum = word0;
+ word0 = word0 ^ (word0 >> 3);
+ word1 = word_ptr32[1];
+ sum += word1;
+ word1 = word1 ^ (word1 << 4);
+ word0 += word1;
+ word1 = word_ptr32[2];
+ sum += word1;
+ word1 = word1 ^ (word1 << 2);
+ word0 += word1;
+ word1 = word_ptr32[3] & kWordMask0[bytecount & 3];
+ sum += word1;
+ word1 = word1 ^ (word1 >> 8);
+ word0 += word1;
+ break;
+ case 4: // 17..20 bytes
+ word0 = word_ptr32[0];
+ sum = word0;
+ word0 = word0 ^ (word0 >> 3);
+ word1 = word_ptr32[1];
+ sum += word1;
+ word1 = word1 ^ (word1 << 4);
+ word0 += word1;
+ word1 = word_ptr32[2];
+ sum += word1;
+ word1 = word1 ^ (word1 << 2);
+ word0 += word1;
+ word1 = word_ptr32[3];
+ sum += word1;
+ word1 = word1 ^ (word1 >> 8);
+ word0 += word1;
+ word1 = word_ptr32[4] & kWordMask0[bytecount & 3];
+ sum += word1;
+ word1 = word1 ^ (word1 >> 4);
+ word0 += word1;
+ break;
+ default: // 21..24 bytes and higher (ignores beyond 24)
+ word0 = word_ptr32[0];
+ sum = word0;
+ word0 = word0 ^ (word0 >> 3);
+ word1 = word_ptr32[1];
+ sum += word1;
+ word1 = word1 ^ (word1 << 4);
+ word0 += word1;
+ word1 = word_ptr32[2];
+ sum += word1;
+ word1 = word1 ^ (word1 << 2);
+ word0 += word1;
+ word1 = word_ptr32[3];
+ sum += word1;
+ word1 = word1 ^ (word1 >> 8);
+ word0 += word1;
+ word1 = word_ptr32[4];
+ sum += word1;
+ word1 = word1 ^ (word1 >> 4);
+ word0 += word1;
+ word1 = word_ptr32[5] & kWordMask0[bytecount & 3];
+ sum += word1;
+ word1 = word1 ^ (word1 >> 6);
+ word0 += word1;
+ break;
+ }
+
+ sum += (sum >> 17); // extra 1-bit shift for bytes 2 & 3
+ sum += (sum >> 9); // extra 1-bit shift for bytes 1 & 3
+ sum = (sum & 0xff) << 32;
+ return (word0 ^ prepost) + sum;
+}
+
+// OCTAGRAM wrapper with surrounding spaces
+// Pick up 1..24 bytes plus pre/post space and hash them via mask/shift/add
+// UNDERSHOOTS 1 byte, OVERSHOOTS up to 3 bytes
+//
+// The low 32 bits follow the pattern from above, tuned to different scripts
+// The high 8 bits are a simple sum of all bytes, shifted by 0/1/2/3 bits each
+// For runtime use of tables V3
+uint64 cld::OctaHash40(const char* word_ptr, int bytecount) {
+ uint64 prepost = 0;
+ if (word_ptr[-1] == ' ') {prepost |= kPreSpaceIndicator;}
+ if (word_ptr[bytecount] == ' ') {prepost |= kPostSpaceIndicator;}
+ return OctaHash40Mix(word_ptr, bytecount, prepost);
+}
+
+
+// OCTAGRAM wrapper with surrounding underscores (offline use)
+// Pick up 1..24 bytes plus pre/post space and hash them via mask/shift/add
+// UNDERSHOOTS 1 byte, OVERSHOOTS up to 3 bytes
+//
+// The low 32 bits follow the pattern from above, tuned to different scripts
+// The high 8 bits are a simple sum of all bytes, shifted by 0/1/2/3 bits each
+// For offline construction of tables
+uint64 cld::OctaHash40underscore(const char* word_ptr, int bytecount) {
+ const char* local_word_ptr = word_ptr;
+ int local_bytecount = bytecount;
+ uint64 prepost = 0;
+ if (local_word_ptr[0] == '_') {
+ prepost |= kPreSpaceIndicator;
+ ++local_word_ptr;
+ --local_bytecount;
+ }
+ if (local_word_ptr[local_bytecount - 1] == '_') {
+ prepost |= kPostSpaceIndicator;
+ --local_bytecount;
+ }
+ return OctaHash40Mix(local_word_ptr, local_bytecount, prepost);
+}
+
+
+
+
+//------------------------------------------------------------------------------
+// Scoring single groups of letters
+//------------------------------------------------------------------------------
+
+// UNIGRAM score one => tote
+// Input: 1-byte entry of subscript into unigram probs, plus
+// an accumulator tote.
+// Output: running sums in tote updated
+void cld::ProcessProbV25UniTote(int propval, Tote* tote) {
+ tote->AddGram();
+ const UnigramProbArray* pa = &kTargetCTJKVZProbs[propval];
+ if (pa->probs[0] > 0) {tote->Add(cld::PackLanguage(CHINESE), pa->probs[0]);}
+ if (pa->probs[1] > 0) {tote->Add(cld::PackLanguage(CHINESE_T), pa->probs[1]);}
+ if (pa->probs[2] > 0) {tote->Add(cld::PackLanguage(JAPANESE), pa->probs[2]);}
+ if (pa->probs[3] > 0) {tote->Add(cld::PackLanguage(KOREAN), pa->probs[3]);}
+ if (pa->probs[4] > 0) {tote->Add(cld::PackLanguage(VIETNAMESE), pa->probs[4]);}
+ if (pa->probs[5] > 0) {tote->Add(cld::PackLanguage(ZHUANG), pa->probs[5]);}
+}
+
+// BIGRAM, QUADGRAM, OCTAGRAM score one => tote
+// Input: 4-byte entry of 3 language numbers and one probability subscript, plus
+// an accumulator tote. (language 0 means unused entry)
+// Output: running sums in tote updated
+void cld::ProcessProbV25Tote(uint32 probs, Tote* tote) {
+ tote->AddGram();
+ uint8 prob123 = (probs >> 0) & 0xff;
+ const uint8* prob123_entry = cld::LgProb2TblEntry(prob123);
+
+ uint8 top1 = (probs >> 8) & 0xff;
+ if (top1 > 0) {tote->Add(top1, cld::LgProb3(prob123_entry, 0));}
+ uint8 top2 = (probs >> 16) & 0xff;
+ if (top2 > 0) {tote->Add(top2, cld::LgProb3(prob123_entry, 1));}
+ uint8 top3 = (probs >> 24) & 0xff;
+ if (top3 > 0) {tote->Add(top3, cld::LgProb3(prob123_entry, 2));}
+}
+
+
+//------------------------------------------------------------------------------
+// Routines to accumulate probabilities
+//------------------------------------------------------------------------------
+
+
+// UNIGRAM, using UTF-8 property table, advancing by 1/2/4/8 chars
+// Caller supplies table, such as compact_lang_det_generated_ctjkvz_b1_obj
+// Score up to n unigrams, returning number of bytes consumed
+// Updates tote_grams
+int cld::DoUniScoreV3(const UTF8PropObj* unigram_obj,
+ const char* isrc, int srclen, int advance_by,
+ int* tote_grams, int gram_limit, Tote* chunk_tote) {
+ const char* src = isrc;
+ if (FLAGS_dbgscore) {DbgScoreInit(src, srclen);}
+
+ // Property-based CJK unigram lookup
+ if (src[0] == ' ') {++src; --srclen;}
+
+ const uint8* usrc = reinterpret_cast<const uint8*>(src);
+ int usrclen = srclen;
+
+ while (usrclen > 0) {
+ int len = kAdvanceOneChar[usrc[0]];
+ // Look up property of one UTF-8 character and advance over it
+ // Return 0 if input length is zero
+ // Return 0 and advance one byte if input is ill-formed
+
+ int propval = UTF8GenericPropertyBigOneByte(unigram_obj, &usrc, &usrclen);
+
+ if (FLAGS_dbglookup) {
+ DbgUniTermToStderr(propval, usrc, len);
+ }
+
+ if (propval > 0) {
+ ProcessProbV25UniTote(propval, chunk_tote);
+ ++(*tote_grams);
+ if (FLAGS_dbgscore) {DbgScoreRecordUni((const char*)usrc, propval, len);}
+ }
+
+ // Advance by 1/2/4/8 characters (half of quad advance)
+ if (advance_by == 2) {
+ // Already advanced by 1
+ } else if (advance_by == 4) {
+ // Advance by 2 chars total, if not at end
+ if (UTFmax <= usrclen) {
+ int n = kAdvanceOneChar[*usrc]; usrc += n; usrclen -= n;
+ }
+ } else if (advance_by == 8) {
+ // Advance by 4 chars total, if not at end
+ if ((UTFmax * 3) <= usrclen) {
+ int n = kAdvanceOneChar[*usrc]; usrc += n; usrclen -= n;
+ n = kAdvanceOneChar[*usrc]; usrc += n; usrclen -= n;
+ n = kAdvanceOneChar[*usrc]; usrc += n; usrclen -= n;
+ }
+ } else {
+ // Advance by 8 chars total, if not at end
+ if ((UTFmax * 7) <= usrclen) {
+ int n = kAdvanceOneChar[*usrc]; usrc += n; usrclen -= n;
+ n = kAdvanceOneChar[*usrc]; usrc += n; usrclen -= n;
+ n = kAdvanceOneChar[*usrc]; usrc += n; usrclen -= n;
+ n = kAdvanceOneChar[*usrc]; usrc += n; usrclen -= n;
+ n = kAdvanceOneChar[*usrc]; usrc += n; usrclen -= n;
+ n = kAdvanceOneChar[*usrc]; usrc += n; usrclen -= n;
+ n = kAdvanceOneChar[*usrc]; usrc += n; usrclen -= n;
+ }
+ }
+ DCHECK(usrclen >= 0);
+
+ if (*tote_grams >= gram_limit) {
+ break;
+ }
+ }
+ if (FLAGS_dbgscore) {
+ // With advance_by>2, we consume more input to get the same number of quads
+ int len = src - isrc;
+ DbgScoreTop(src, (len * 2) / advance_by, chunk_tote);
+ DbgScoreFlush();
+ }
+
+ int consumed2 = reinterpret_cast<const char*>(usrc) - isrc;
+ return consumed2;
+}
+
+
+// BIGRAM, using hash table, always advancing by 1 char
+// Caller supplies table, such as &kCjkBiTable_obj or &kGibberishTable_obj
+// Score all bigrams in isrc, using languages that have bigrams (CJK)
+// Return number of bigrams that hit in the hash table
+int cld::DoBigramScoreV3(const cld::CLDTableSummary* bigram_obj,
+ const char* isrc, int srclen, Tote* chunk_tote) {
+ int hit_count = 0;
+ const char* src = isrc;
+
+ // Hashtable-based CJK bigram lookup
+ const uint8* usrc = reinterpret_cast<const uint8*>(src);
+ const uint8* usrclimit1 = usrc + srclen - UTFmax;
+ if (FLAGS_dbgscore) {
+ fprintf(stderr, " " );
+ }
+
+ while (usrc < usrclimit1) {
+ int len = kAdvanceOneChar[usrc[0]];
+ int len2 = kAdvanceOneChar[usrc[len]] + len;
+
+ if ((kMinCJKUTF8CharBytes * 2) <= len2) { // Two CJK chars possible
+ // Lookup and score this bigram
+ // Always ignore pre/post spaces
+ uint32 bihash = BiHashV25(reinterpret_cast<const char*>(usrc), len2);
+ uint32 probs = QuadHashV3Lookup4(bigram_obj, bihash);
+ // Now go indirect on the subscript
+ probs = bigram_obj->kCLDTableInd[probs &
+ ~bigram_obj->kCLDTableKeyMask];
+
+ // Process the bigram
+ if (FLAGS_dbglookup) {
+ const char* ssrc = reinterpret_cast<const char*>(usrc);
+ DbgBiTermToStderr(bihash, probs, ssrc, len2);
+ DbgScoreRecord(NULL, probs, len2);
+ } else if (FLAGS_dbgscore && (probs != 0)) {
+ const char* ssrc = reinterpret_cast<const char*>(usrc);
+ DbgScoreRecord(NULL, probs, len2);
+ string temp(ssrc, len2);
+ fprintf(stderr, "%s ", temp.c_str());
+ }
+
+ if (probs != 0) {
+ ProcessProbV25Tote(probs, chunk_tote);
+ ++hit_count;
+ }
+ }
+ usrc += len; // Advance by one char
+ }
+
+ if (FLAGS_dbgscore) {
+ fprintf(stderr, "[%d bigrams scored]\n", hit_count);
+ DbgScoreState();
+ }
+ return hit_count;
+}
+
+
+
+// QUADGRAM, using hash table, advancing by 2/4/8/16 chars
+// Caller supplies table, such as &kQuadTable_obj or &kGibberishTable_obj
+// Score up to n quadgrams, returning number of bytes consumed
+// Updates tote_grams
+int cld::DoQuadScoreV3(const cld::CLDTableSummary* quadgram_obj,
+ const char* isrc, int srclen, int advance_by,
+ int* tote_grams, int gram_limit, Tote* chunk_tote) {
+ const char* src = isrc;
+ const char* srclimit = src + srclen;
+ // Limit is end, which has extra 20 20 20 00 past len
+ const char* srclimit7 = src + srclen - (UTFmax * 7);
+ const char* srclimit15 = src + srclen - (UTFmax * 15);
+
+ if (FLAGS_dbgscore) {DbgScoreInit(src, srclen);}
+
+ // Visit all quadgrams
+ if (src[0] == ' ') {++src;}
+ while (src < srclimit) {
+ // Find one quadgram
+ const char* src_end = src;
+ src_end += kAdvanceOneCharButSpace[(uint8)src_end[0]];
+ src_end += kAdvanceOneCharButSpace[(uint8)src_end[0]];
+ const char* src_mid = src_end;
+ src_end += kAdvanceOneCharButSpace[(uint8)src_end[0]];
+ src_end += kAdvanceOneCharButSpace[(uint8)src_end[0]];
+ int len = src_end - src;
+
+ // Lookup and score this quadgram
+ uint32 quadhash = QuadHashV25(src, len);
+ uint32 probs = QuadHashV3Lookup4(quadgram_obj, quadhash);
+ // Now go indirect on the subscript
+ probs = quadgram_obj->kCLDTableInd[probs &
+ ~quadgram_obj->kCLDTableKeyMask];
+
+ // Process the quadgram
+ if (FLAGS_dbglookup) {
+ DbgQuadTermToStderr(quadhash, probs, src, len);
+ }
+ if (probs != 0) {
+ ProcessProbV25Tote(probs, chunk_tote);
+ ++(*tote_grams);
+ if (FLAGS_dbgscore) {DbgScoreRecord(src, probs, len);}
+ }
+
+ // Advance all the way past word if at end-of-word
+ if (src_end[0] == ' ') {
+ src_mid = src_end;
+ }
+
+ // Advance by 2/4/8/16 characters
+ if (advance_by == 2) {
+ src = src_mid;
+ } else if (advance_by == 4) {
+ src = src_end;
+ } else if (advance_by == 8) {
+ // Advance by 8 chars total (4 more), if not at end
+ if (src < srclimit7) {
+ src_end += kAdvanceOneChar[(uint8)src_end[0]];
+ src_end += kAdvanceOneChar[(uint8)src_end[0]];
+ src_end += kAdvanceOneChar[(uint8)src_end[0]];
+ src_end += kAdvanceOneChar[(uint8)src_end[0]];
+ }
+ src = src_end;
+ } else {
+ // Advance by 16 chars total (12 more), if not at end
+ if (src < srclimit15) {
+ // Advance by ~16 chars by adding 3 * current bytelen
+ int fourcharlen = src_end - src;
+ src = src_end + (3 * fourcharlen);
+ // Advance a bit more if mid-character
+ src += kAdvanceOneCharSpaceVowel[(uint8)src[0]];
+ src += kAdvanceOneCharSpaceVowel[(uint8)src[0]];
+ } else {
+ src = src_end;
+ }
+ }
+ DCHECK(src < srclimit);
+ src += kAdvanceOneCharSpaceVowel[(uint8)src[0]];
+
+ if (*tote_grams >= gram_limit) {
+ break;
+ }
+ }
+
+ if (FLAGS_dbgscore) {
+ // With advance_by>2, we consume more input to get the same number of quads
+ int len = src - isrc;
+ DbgScoreTop(src, (len * 2) / advance_by, chunk_tote);
+ DbgScoreFlush();
+ }
+
+ int consumed = src - isrc;
+
+ // If advancing by more than 2, src may have overshot srclimit
+ if (consumed > srclen) {
+ consumed = srclen;
+ }
+
+ return consumed;
+}
+
+
+// OCTAGRAM, using hash table, always advancing by 1 word
+// Caller supplies table, such as &kLongWord8Table_obj
+// Score all words in isrc, using languages that have quadgrams
+// We don't normally use this routine except on the first quadgram run,
+// but it can be used to resolve unreliable pages.
+// This routine does not have an optimized advance_by
+// SOON: Uses indirect language/probability longword
+//
+// Return number of words that hit in the hash table
+int cld::DoOctaScoreV3(const cld::CLDTableSummary* octagram_obj,
+ const char* isrc, int srclen, Tote* chunk_tote) {
+ int hit_count = 0;
+ const char* src = isrc;
+ const char* srclimit = src + srclen + 1;
+ // Limit is end+1, to include extra space char (0x20) off the end
+ //
+ // Score all words truncated to 8 characters
+ int charcount = 0;
+ // Skip any initial space
+ if (src[0] == ' ') {++src;}
+ const char* word_ptr = src;
+ const char* word_end = word_ptr;
+ if (FLAGS_dbgscore) {
+ fprintf(stderr, " " );
+ }
+ while (src < srclimit) {
+ // Terminate previous word or continue current word
+ if (src[0] == ' ') {
+ int bytecount = word_end - word_ptr;
+ // Lookup and score this word
+ uint64 wordhash40 = OctaHash40(word_ptr, bytecount);
+ uint32 probs = OctaHashV3Lookup4(octagram_obj, wordhash40);
+ // Now go indirect on the subscript
+ probs = octagram_obj->kCLDTableInd[probs &
+ ~octagram_obj->kCLDTableKeyMask];
+
+ // // Lookup and score this word
+ // uint32 wordhash = QuadHashV25(word_ptr, bytecount);
+ // uint32 probs = WordHashLookup4(wordhash, kLongWord8Table,
+ // kLongWord8TableSize);
+ //
+ if (FLAGS_dbglookup) {
+ DbgWordTermToStderr(wordhash40, probs, word_ptr, bytecount);
+ DbgScoreRecord(NULL, probs, bytecount);
+ } else if (FLAGS_dbgscore && (probs != 0)) {
+ DbgScoreRecord(NULL, probs, bytecount);
+ string temp(word_ptr, bytecount);
+ fprintf(stderr, "%s ", temp.c_str());
+ }
+
+ if (probs != 0) {
+ ProcessProbV25Tote(probs, chunk_tote);
+ ++hit_count;
+ }
+ charcount = 0;
+ word_ptr = src + 1; // Over the space
+ word_end = word_ptr;
+ } else {
+ ++charcount;
+ }
+
+ // Advance to next char
+ src += cld_UniLib::OneCharLen(src);
+ if (charcount <= 8) {
+ word_end = src;
+ }
+ }
+
+ if (FLAGS_dbgscore) {
+ fprintf(stderr, "[%d words scored]\n", hit_count);
+ DbgScoreState();
+ }
+ return hit_count;
+}
+
+
+
+//------------------------------------------------------------------------------
+// Reliability calculations, for single language and between languages
+//------------------------------------------------------------------------------
+
+// Return reliablity of result 0..100 for top two scores
+// delta==0 is 0% reliable, delta==fully_reliable_thresh is 100% reliable
+// (on a scale where +1 is a factor of 2 ** 1.6 = 3.02)
+// Threshold is uni/quadgram increment count, bounded above and below.
+//
+// Requiring a factor of 3 improvement (e.g. +1 log base 3)
+// for each scored quadgram is too stringent, so I've backed this off to a
+// factor of 2 (e.g. +5/8 log base 3).
+//
+// I also somewhat lowered the Min/MaxGramCount limits above
+//
+// Added: if fewer than 8 quads/unis, max reliability is 12*n percent
+//
+int cld::ReliabilityDelta(int value1, int value2, int gramcount) {
+ int max_reliability_percent = 100;
+ if (gramcount < 8) {
+ max_reliability_percent = 12 * gramcount;
+ }
+ int fully_reliable_thresh = (gramcount * 5) >> 3; // see note above
+ if (fully_reliable_thresh < kMinGramCount) { // Fully = 3..16
+ fully_reliable_thresh = kMinGramCount;
+ } else if (fully_reliable_thresh > kMaxGramCount) {
+ fully_reliable_thresh = kMaxGramCount;
+ }
+
+ int delta = value1 - value2;
+ if (delta >= fully_reliable_thresh) {return max_reliability_percent;}
+ if (delta <= 0) {return 0;}
+ return cld::minint(max_reliability_percent,
+ (100 * delta) / fully_reliable_thresh);
+}
+
+// Return reliablity of result 0..100 for top score vs. mainsteam score
+// Values are score per 1024 bytes of input
+// ratio = max(top/mainstream, mainstream/top)
+// ratio > 4.0 is 0% reliable, <= 2.0 is 100% reliable
+// Change: short-text word scoring can give unusually good results.
+// Let top exceed mainstream by 4x at 50% reliable
+int cld::ReliabilityMainstream(int topscore, int len, int mean_score) {
+ if (mean_score == 0) {return 100;} // No reliability data available yet
+ if (topscore == 0) {return 0;} // zero score = unreliable
+ if (len == 0) {return 0;} // zero len = unreliable
+ int top_kb = (topscore << 10) / len;
+ double ratio;
+ double ratio_cutoff;
+ if (top_kb > mean_score) {
+ ratio = (1.0 * top_kb) / mean_score;
+ ratio_cutoff = 5.0; // ramp down from 100% to 0%: 3.0-5.0
+ } else {
+ ratio = (1.0 * mean_score) / top_kb;
+ ratio_cutoff = 4.0; // ramp down from 100% to 0%: 2.0-4.0
+ }
+ if (ratio <= ratio_cutoff - 2.0) {return 100;}
+ if (ratio > ratio_cutoff) {return 0;}
+
+ int iratio = static_cast<int>(100 * (ratio_cutoff - ratio) / 2.0);
+ return iratio;
+}
+
+// Calculate ratio of score per 1KB vs. expected score per 1KB
+double cld::GetNormalizedScore(Language lang, UnicodeLScript lscript,
+ int bytes, int score) {
+ // Average training-data score for this language-script combo, per 1KB
+ int expected_score = kMeanScore[lang * 4 + LScript4(lscript)];
+ if (lscript == ULScript_Common) {
+ // We don't know the script (only happens with second-chance score)
+ // Look for first non-zero mean value
+ for (int i = 0; i < 3; ++i) {
+ if (kMeanScore[lang * 4 + i] > 0) {
+ expected_score = kMeanScore[lang * 4 + i];
+ }
+ }
+ }
+ if (expected_score < 100) {
+ expected_score = 1000;
+ }
+
+ // Our score per 1KB
+ double our_score = (score << 10) / (bytes ? bytes : 1); // Avoid zdiv
+ double ratio = our_score / expected_score;
+
+ // Just the raw count normalized as though each language has mean=1000;
+ ratio = (score * 1000.0) / expected_score;
+ return ratio;
+}
+
+// Calculate reliablity of len bytes of script lscript with chunk_tote
+int cld::GetReliability(int len, UnicodeLScript lscript,
+ const Tote* chunk_tote) {
+ Language cur_lang = UnpackLanguage(chunk_tote->Key(0));
+ // Average score for this language-script combo
+ int mean_score = kMeanScore[cur_lang * 4 + LScript4(lscript)];
+ if (lscript == ULScript_Common) {
+ // We don't know the script (only happens with second-chance score)
+ // Look for first non-zero mean value
+ for (int i = 0; i < 3; ++i) {
+ if (kMeanScore[cur_lang * 4 + i] > 0) {
+ mean_score = kMeanScore[cur_lang * 4 + i];
+ }
+ }
+ }
+ int reliability_delta = ReliabilityDelta(chunk_tote->Value(0),
+ chunk_tote->Value(1),
+ chunk_tote->GetGramCount());
+
+ int reliability_main = ReliabilityMainstream(chunk_tote->Value(0),
+ len,
+ mean_score);
+
+ int reliability_min = minint(reliability_delta, reliability_main);
+
+
+ if (FLAGS_dbgreli) {
+ char temp1[4];
+ char temp2[4];
+ cld::DbgLangName3(UnpackLanguage(chunk_tote->Key(0)), temp1);
+ if (temp1[2] == ' ') {temp1[2] = '\0';}
+ cld::DbgLangName3(UnpackLanguage(chunk_tote->Key(1)), temp2);
+ if (temp2[2] == ' ') {temp2[2] = '\0';}
+ int srclen = len;
+ fprintf(stderr, "CALC GetReliability gram=%d incr=%d srclen=%d, %s=%d %s=%d "
+ "top/KB=%d mean/KB=%d del=%d%% reli=%d%% "
+ "lang/lscript %d %d\n",
+ chunk_tote->GetGramCount(),
+ chunk_tote->GetIncrCount(),
+ srclen,
+ temp1, chunk_tote->Value(0),
+ temp2, chunk_tote->Value(1),
+ (chunk_tote->Value(0) << 10) / (srclen ? srclen : 1),
+ mean_score,
+ reliability_delta,
+ reliability_main,
+ cur_lang, lscript);
+ }
+
+ return reliability_min;
+}
+
+
+//------------------------------------------------------------------------------
+// Miscellaneous
+//------------------------------------------------------------------------------
+
+// Demote all languages except Top40 and plus_one
+// Do this just before sorting chunk_tote results
+void cld::DemoteNotTop40(Tote* chunk_tote, int packed_plus_one) {
+ for (int sub = 0; sub < chunk_tote->MaxSize(); ++sub) {
+ if (chunk_tote->Key(sub) == 0) continue;
+ if (chunk_tote->Key(sub) == packed_plus_one) continue;
+ if (kIsPackedTop40[chunk_tote->Key(sub)]) continue;
+ // Quarter the score of others
+ chunk_tote->SetValue(sub, chunk_tote->Value(sub) >> 2);
+ }
+}
Property changes on: third_party\cld\bar\toolbar\cld\i18n\encodings\compact_lang_det\cldutil.cc
___________________________________________________________________
Added: svn:eol-style
+ LF

Powered by Google App Engine
This is Rietveld 408576698