Index: cc/math_util_unittest.cc |
diff --git a/cc/math_util_unittest.cc b/cc/math_util_unittest.cc |
index c29bb1257712a6b9f244f9319c42098bc4b929d3..93a980ffa92f589ca36ff8b615a05fb5583e3b61 100644 |
--- a/cc/math_util_unittest.cc |
+++ b/cc/math_util_unittest.cc |
@@ -180,5 +180,914 @@ TEST(MathUtilTest, vectorProjection) |
projectedVector.y() / targetVector.y()); |
} |
+// TODO(shawnsingh): these macros are redundant with those from |
+// web_transformation_matrix_unittests, but for now they |
+// are different enough to be appropriate here. |
+ |
+#define EXPECT_ROW1_EQ(a, b, c, d, transform) \ |
+ EXPECT_FLOAT_EQ((a), (transform).matrix().getDouble(0, 0)); \ |
+ EXPECT_FLOAT_EQ((b), (transform).matrix().getDouble(0, 1)); \ |
+ EXPECT_FLOAT_EQ((c), (transform).matrix().getDouble(0, 2)); \ |
+ EXPECT_FLOAT_EQ((d), (transform).matrix().getDouble(0, 3)); |
+ |
+#define EXPECT_ROW2_EQ(a, b, c, d, transform) \ |
+ EXPECT_FLOAT_EQ((a), (transform).matrix().getDouble(1, 0)); \ |
+ EXPECT_FLOAT_EQ((b), (transform).matrix().getDouble(1, 1)); \ |
+ EXPECT_FLOAT_EQ((c), (transform).matrix().getDouble(1, 2)); \ |
+ EXPECT_FLOAT_EQ((d), (transform).matrix().getDouble(1, 3)); |
+ |
+#define EXPECT_ROW3_EQ(a, b, c, d, transform) \ |
+ EXPECT_FLOAT_EQ((a), (transform).matrix().getDouble(2, 0)); \ |
+ EXPECT_FLOAT_EQ((b), (transform).matrix().getDouble(2, 1)); \ |
+ EXPECT_FLOAT_EQ((c), (transform).matrix().getDouble(2, 2)); \ |
+ EXPECT_FLOAT_EQ((d), (transform).matrix().getDouble(2, 3)); |
+ |
+#define EXPECT_ROW4_EQ(a, b, c, d, transform) \ |
+ EXPECT_FLOAT_EQ((a), (transform).matrix().getDouble(3, 0)); \ |
+ EXPECT_FLOAT_EQ((b), (transform).matrix().getDouble(3, 1)); \ |
+ EXPECT_FLOAT_EQ((c), (transform).matrix().getDouble(3, 2)); \ |
+ EXPECT_FLOAT_EQ((d), (transform).matrix().getDouble(3, 3)); |
+ |
+// Checking float values for equality close to zero is not robust using EXPECT_FLOAT_EQ |
+// (see gtest documentation). So, to verify rotation matrices, we must use a looser |
+// absolute error threshold in some places. |
+#define EXPECT_ROW1_NEAR(a, b, c, d, transform, errorThreshold) \ |
+ EXPECT_NEAR((a), (transform).matrix().getDouble(0, 0), (errorThreshold)); \ |
+ EXPECT_NEAR((b), (transform).matrix().getDouble(0, 1), (errorThreshold)); \ |
+ EXPECT_NEAR((c), (transform).matrix().getDouble(0, 2), (errorThreshold)); \ |
+ EXPECT_NEAR((d), (transform).matrix().getDouble(0, 3), (errorThreshold)); |
+ |
+#define EXPECT_ROW2_NEAR(a, b, c, d, transform, errorThreshold) \ |
+ EXPECT_NEAR((a), (transform).matrix().getDouble(1, 0), (errorThreshold)); \ |
+ EXPECT_NEAR((b), (transform).matrix().getDouble(1, 1), (errorThreshold)); \ |
+ EXPECT_NEAR((c), (transform).matrix().getDouble(1, 2), (errorThreshold)); \ |
+ EXPECT_NEAR((d), (transform).matrix().getDouble(1, 3), (errorThreshold)); |
+ |
+#define EXPECT_ROW3_NEAR(a, b, c, d, transform, errorThreshold) \ |
+ EXPECT_NEAR((a), (transform).matrix().getDouble(2, 0), (errorThreshold)); \ |
+ EXPECT_NEAR((b), (transform).matrix().getDouble(2, 1), (errorThreshold)); \ |
+ EXPECT_NEAR((c), (transform).matrix().getDouble(2, 2), (errorThreshold)); \ |
+ EXPECT_NEAR((d), (transform).matrix().getDouble(2, 3), (errorThreshold)); |
+ |
+#define ERROR_THRESHOLD 1e-14 |
+#define LOOSE_ERROR_THRESHOLD 1e-7 |
+ |
+static void initializeTestMatrix(gfx::Transform* transform) |
+{ |
+ SkMatrix44& matrix = transform->matrix(); |
+ matrix.setDouble(0, 0, 10); |
+ matrix.setDouble(1, 0, 11); |
+ matrix.setDouble(2, 0, 12); |
+ matrix.setDouble(3, 0, 13); |
+ matrix.setDouble(0, 1, 14); |
+ matrix.setDouble(1, 1, 15); |
+ matrix.setDouble(2, 1, 16); |
+ matrix.setDouble(3, 1, 17); |
+ matrix.setDouble(0, 2, 18); |
+ matrix.setDouble(1, 2, 19); |
+ matrix.setDouble(2, 2, 20); |
+ matrix.setDouble(3, 2, 21); |
+ matrix.setDouble(0, 3, 22); |
+ matrix.setDouble(1, 3, 23); |
+ matrix.setDouble(2, 3, 24); |
+ matrix.setDouble(3, 3, 25); |
+ |
+ // Sanity check |
+ EXPECT_ROW1_EQ(10, 14, 18, 22, (*transform)); |
+ EXPECT_ROW2_EQ(11, 15, 19, 23, (*transform)); |
+ EXPECT_ROW3_EQ(12, 16, 20, 24, (*transform)); |
+ EXPECT_ROW4_EQ(13, 17, 21, 25, (*transform)); |
+} |
+ |
+static void initializeTestMatrix2(gfx::Transform* transform) |
+{ |
+ SkMatrix44& matrix = transform->matrix(); |
+ matrix.setDouble(0, 0, 30); |
+ matrix.setDouble(1, 0, 31); |
+ matrix.setDouble(2, 0, 32); |
+ matrix.setDouble(3, 0, 33); |
+ matrix.setDouble(0, 1, 34); |
+ matrix.setDouble(1, 1, 35); |
+ matrix.setDouble(2, 1, 36); |
+ matrix.setDouble(3, 1, 37); |
+ matrix.setDouble(0, 2, 38); |
+ matrix.setDouble(1, 2, 39); |
+ matrix.setDouble(2, 2, 40); |
+ matrix.setDouble(3, 2, 41); |
+ matrix.setDouble(0, 3, 42); |
+ matrix.setDouble(1, 3, 43); |
+ matrix.setDouble(2, 3, 44); |
+ matrix.setDouble(3, 3, 45); |
+ |
+ // Sanity check |
+ EXPECT_ROW1_EQ(30, 34, 38, 42, (*transform)); |
+ EXPECT_ROW2_EQ(31, 35, 39, 43, (*transform)); |
+ EXPECT_ROW3_EQ(32, 36, 40, 44, (*transform)); |
+ EXPECT_ROW4_EQ(33, 37, 41, 45, (*transform)); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifyDefaultConstructorCreatesIdentityMatrix) |
+{ |
+ gfx::Transform A; |
+ EXPECT_ROW1_EQ(1, 0, 0, 0, A); |
+ EXPECT_ROW2_EQ(0, 1, 0, 0, A); |
+ EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+ EXPECT_TRUE(MathUtil::isIdentity(A)); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifyCreateGfxTransformFor2dElements) |
+{ |
+ gfx::Transform A = MathUtil::createGfxTransform(1, 2, 3, 4, 5, 6); |
+ EXPECT_ROW1_EQ(1, 3, 0, 5, A); |
+ EXPECT_ROW2_EQ(2, 4, 0, 6, A); |
+ EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifyCreateGfxTransformForAllElements) |
+{ |
+ gfx::Transform A = MathUtil::createGfxTransform(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
+ EXPECT_ROW1_EQ(1, 5, 9, 13, A); |
+ EXPECT_ROW2_EQ(2, 6, 10, 14, A); |
+ EXPECT_ROW3_EQ(3, 7, 11, 15, A); |
+ EXPECT_ROW4_EQ(4, 8, 12, 16, A); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifyCopyConstructor) |
+{ |
+ gfx::Transform A; |
+ initializeTestMatrix(&A); |
+ |
+ // Copy constructor should produce exact same elements as matrix A. |
+ gfx::Transform B(A); |
+ EXPECT_ROW1_EQ(10, 14, 18, 22, B); |
+ EXPECT_ROW2_EQ(11, 15, 19, 23, B); |
+ EXPECT_ROW3_EQ(12, 16, 20, 24, B); |
+ EXPECT_ROW4_EQ(13, 17, 21, 25, B); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifyMatrixInversion) |
+{ |
+ // Invert a translation |
+ gfx::Transform translation; |
+ translation.PreconcatTranslate3d(2, 3, 4); |
+ EXPECT_TRUE(MathUtil::isInvertible(translation)); |
+ |
+ gfx::Transform inverseTranslation = MathUtil::inverse(translation); |
+ EXPECT_ROW1_EQ(1, 0, 0, -2, inverseTranslation); |
+ EXPECT_ROW2_EQ(0, 1, 0, -3, inverseTranslation); |
+ EXPECT_ROW3_EQ(0, 0, 1, -4, inverseTranslation); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, inverseTranslation); |
+ |
+ // Note that inversion should not have changed the original matrix. |
+ EXPECT_ROW1_EQ(1, 0, 0, 2, translation); |
+ EXPECT_ROW2_EQ(0, 1, 0, 3, translation); |
+ EXPECT_ROW3_EQ(0, 0, 1, 4, translation); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, translation); |
+ |
+ // Invert a non-uniform scale |
+ gfx::Transform scale; |
+ scale.PreconcatScale3d(4, 10, 100); |
+ EXPECT_TRUE(MathUtil::isInvertible(scale)); |
+ |
+ gfx::Transform inverseScale = MathUtil::inverse(scale); |
+ EXPECT_ROW1_EQ(0.25, 0, 0, 0, inverseScale); |
+ EXPECT_ROW2_EQ(0, .1f, 0, 0, inverseScale); |
+ EXPECT_ROW3_EQ(0, 0, .01f, 0, inverseScale); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, inverseScale); |
+ |
+ // Try to invert a matrix that is not invertible. |
+ // The inverse() function should simply return an identity matrix. |
+ gfx::Transform notInvertible; |
+ notInvertible.matrix().setDouble(0, 0, 0); |
+ notInvertible.matrix().setDouble(1, 1, 0); |
+ notInvertible.matrix().setDouble(2, 2, 0); |
+ notInvertible.matrix().setDouble(3, 3, 0); |
+ EXPECT_FALSE(MathUtil::isInvertible(notInvertible)); |
+ |
+ gfx::Transform inverseOfNotInvertible; |
+ initializeTestMatrix(&inverseOfNotInvertible); // initialize this to something non-identity, to make sure that assignment below actually took place. |
+ inverseOfNotInvertible = MathUtil::inverse(notInvertible); |
+ EXPECT_TRUE(MathUtil::isIdentity(inverseOfNotInvertible)); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifyTo2DTransform) |
+{ |
+ gfx::Transform A; |
+ initializeTestMatrix(&A); |
+ |
+ gfx::Transform B = MathUtil::to2dTransform(A); |
+ |
+ EXPECT_ROW1_EQ(10, 14, 0, 22, B); |
+ EXPECT_ROW2_EQ(11, 15, 0, 23, B); |
+ EXPECT_ROW3_EQ(0, 0, 1, 0, B); |
+ EXPECT_ROW4_EQ(13, 17, 0, 25, B); |
+ |
+ // Note that to2DTransform should not have changed the original matrix. |
+ EXPECT_ROW1_EQ(10, 14, 18, 22, A); |
+ EXPECT_ROW2_EQ(11, 15, 19, 23, A); |
+ EXPECT_ROW3_EQ(12, 16, 20, 24, A); |
+ EXPECT_ROW4_EQ(13, 17, 21, 25, A); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifyAssignmentOperator) |
+{ |
+ gfx::Transform A; |
+ initializeTestMatrix(&A); |
+ gfx::Transform B; |
+ initializeTestMatrix2(&B); |
+ gfx::Transform C; |
+ initializeTestMatrix2(&C); |
+ C = B = A; |
+ |
+ // Both B and C should now have been re-assigned to the value of A. |
+ EXPECT_ROW1_EQ(10, 14, 18, 22, B); |
+ EXPECT_ROW2_EQ(11, 15, 19, 23, B); |
+ EXPECT_ROW3_EQ(12, 16, 20, 24, B); |
+ EXPECT_ROW4_EQ(13, 17, 21, 25, B); |
+ |
+ EXPECT_ROW1_EQ(10, 14, 18, 22, C); |
+ EXPECT_ROW2_EQ(11, 15, 19, 23, C); |
+ EXPECT_ROW3_EQ(12, 16, 20, 24, C); |
+ EXPECT_ROW4_EQ(13, 17, 21, 25, C); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifyEqualsBooleanOperator) |
+{ |
+ gfx::Transform A; |
+ initializeTestMatrix(&A); |
+ |
+ gfx::Transform B; |
+ initializeTestMatrix(&B); |
+ EXPECT_TRUE(A == B); |
+ |
+ // Modifying multiple elements should cause equals operator to return false. |
+ gfx::Transform C; |
+ initializeTestMatrix2(&C); |
+ EXPECT_FALSE(A == C); |
+ |
+ // Modifying any one individual element should cause equals operator to return false. |
+ gfx::Transform D; |
+ D = A; |
+ D.matrix().setDouble(0, 0, 0); |
+ EXPECT_FALSE(A == D); |
+ |
+ D = A; |
+ D.matrix().setDouble(1, 0, 0); |
+ EXPECT_FALSE(A == D); |
+ |
+ D = A; |
+ D.matrix().setDouble(2, 0, 0); |
+ EXPECT_FALSE(A == D); |
+ |
+ D = A; |
+ D.matrix().setDouble(3, 0, 0); |
+ EXPECT_FALSE(A == D); |
+ |
+ D = A; |
+ D.matrix().setDouble(0, 1, 0); |
+ EXPECT_FALSE(A == D); |
+ |
+ D = A; |
+ D.matrix().setDouble(1, 1, 0); |
+ EXPECT_FALSE(A == D); |
+ |
+ D = A; |
+ D.matrix().setDouble(2, 1, 0); |
+ EXPECT_FALSE(A == D); |
+ |
+ D = A; |
+ D.matrix().setDouble(3, 1, 0); |
+ EXPECT_FALSE(A == D); |
+ |
+ D = A; |
+ D.matrix().setDouble(0, 2, 0); |
+ EXPECT_FALSE(A == D); |
+ |
+ D = A; |
+ D.matrix().setDouble(1, 2, 0); |
+ EXPECT_FALSE(A == D); |
+ |
+ D = A; |
+ D.matrix().setDouble(2, 2, 0); |
+ EXPECT_FALSE(A == D); |
+ |
+ D = A; |
+ D.matrix().setDouble(3, 2, 0); |
+ EXPECT_FALSE(A == D); |
+ |
+ D = A; |
+ D.matrix().setDouble(0, 3, 0); |
+ EXPECT_FALSE(A == D); |
+ |
+ D = A; |
+ D.matrix().setDouble(1, 3, 0); |
+ EXPECT_FALSE(A == D); |
+ |
+ D = A; |
+ D.matrix().setDouble(2, 3, 0); |
+ EXPECT_FALSE(A == D); |
+ |
+ D = A; |
+ D.matrix().setDouble(3, 3, 0); |
+ EXPECT_FALSE(A == D); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifyMultiplyOperator) |
+{ |
+ gfx::Transform A; |
+ initializeTestMatrix(&A); |
+ |
+ gfx::Transform B; |
+ initializeTestMatrix2(&B); |
+ |
+ gfx::Transform C = A * B; |
+ EXPECT_ROW1_EQ(2036, 2292, 2548, 2804, C); |
+ EXPECT_ROW2_EQ(2162, 2434, 2706, 2978, C); |
+ EXPECT_ROW3_EQ(2288, 2576, 2864, 3152, C); |
+ EXPECT_ROW4_EQ(2414, 2718, 3022, 3326, C); |
+ |
+ // Just an additional sanity check; matrix multiplication is not commutative. |
+ EXPECT_FALSE(A * B == B * A); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifyMatrixMultiplication) |
+{ |
+ gfx::Transform A; |
+ initializeTestMatrix(&A); |
+ |
+ gfx::Transform B; |
+ initializeTestMatrix2(&B); |
+ |
+ A.PreconcatTransform(B); |
+ EXPECT_ROW1_EQ(2036, 2292, 2548, 2804, A); |
+ EXPECT_ROW2_EQ(2162, 2434, 2706, 2978, A); |
+ EXPECT_ROW3_EQ(2288, 2576, 2864, 3152, A); |
+ EXPECT_ROW4_EQ(2414, 2718, 3022, 3326, A); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifyMakeIdentiy) |
+{ |
+ gfx::Transform A; |
+ initializeTestMatrix(&A); |
+ MathUtil::makeIdentity(&A); |
+ EXPECT_ROW1_EQ(1, 0, 0, 0, A); |
+ EXPECT_ROW2_EQ(0, 1, 0, 0, A); |
+ EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+ EXPECT_TRUE(MathUtil::isIdentity(A)); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifyTranslate) |
+{ |
+ gfx::Transform A; |
+ A.PreconcatTranslate(2, 3); |
+ EXPECT_ROW1_EQ(1, 0, 0, 2, A); |
+ EXPECT_ROW2_EQ(0, 1, 0, 3, A); |
+ EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+ |
+ // Verify that PreconcatTranslate() post-multiplies the existing matrix. |
+ MathUtil::makeIdentity(&A); |
+ A.PreconcatScale(5, 5); |
+ A.PreconcatTranslate(2, 3); |
+ EXPECT_ROW1_EQ(5, 0, 0, 10, A); |
+ EXPECT_ROW2_EQ(0, 5, 0, 15, A); |
+ EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifyTranslate3d) |
+{ |
+ gfx::Transform A; |
+ A.PreconcatTranslate3d(2, 3, 4); |
+ EXPECT_ROW1_EQ(1, 0, 0, 2, A); |
+ EXPECT_ROW2_EQ(0, 1, 0, 3, A); |
+ EXPECT_ROW3_EQ(0, 0, 1, 4, A); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+ |
+ // Verify that PreconcatTranslate3d() post-multiplies the existing matrix. |
+ MathUtil::makeIdentity(&A); |
+ A.PreconcatScale3d(6, 7, 8); |
+ A.PreconcatTranslate3d(2, 3, 4); |
+ EXPECT_ROW1_EQ(6, 0, 0, 12, A); |
+ EXPECT_ROW2_EQ(0, 7, 0, 21, A); |
+ EXPECT_ROW3_EQ(0, 0, 8, 32, A); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifyScale) |
+{ |
+ gfx::Transform A; |
+ A.PreconcatScale(6, 7); |
+ EXPECT_ROW1_EQ(6, 0, 0, 0, A); |
+ EXPECT_ROW2_EQ(0, 7, 0, 0, A); |
+ EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+ |
+ // Verify that PreconcatScale() post-multiplies the existing matrix. |
+ MathUtil::makeIdentity(&A); |
+ A.PreconcatTranslate3d(2, 3, 4); |
+ A.PreconcatScale(6, 7); |
+ EXPECT_ROW1_EQ(6, 0, 0, 2, A); |
+ EXPECT_ROW2_EQ(0, 7, 0, 3, A); |
+ EXPECT_ROW3_EQ(0, 0, 1, 4, A); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifyScale3d) |
+{ |
+ gfx::Transform A; |
+ A.PreconcatScale3d(6, 7, 8); |
+ EXPECT_ROW1_EQ(6, 0, 0, 0, A); |
+ EXPECT_ROW2_EQ(0, 7, 0, 0, A); |
+ EXPECT_ROW3_EQ(0, 0, 8, 0, A); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+ |
+ // Verify that scale3d() post-multiplies the existing matrix. |
+ MathUtil::makeIdentity(&A); |
+ A.PreconcatTranslate3d(2, 3, 4); |
+ A.PreconcatScale3d(6, 7, 8); |
+ EXPECT_ROW1_EQ(6, 0, 0, 2, A); |
+ EXPECT_ROW2_EQ(0, 7, 0, 3, A); |
+ EXPECT_ROW3_EQ(0, 0, 8, 4, A); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifyRotate) |
+{ |
+ gfx::Transform A; |
+ A.PreconcatRotate(90); |
+ EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD); |
+ EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD); |
+ EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+ |
+ // Verify that PreconcatRotate() post-multiplies the existing matrix. |
+ MathUtil::makeIdentity(&A); |
+ A.PreconcatScale3d(6, 7, 8); |
+ A.PreconcatRotate(90); |
+ EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD); |
+ EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD); |
+ EXPECT_ROW3_EQ(0, 0, 8, 0, A); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifyRotateEulerAngles) |
+{ |
+ gfx::Transform A; |
+ |
+ // Check rotation about z-axis |
+ MathUtil::makeIdentity(&A); |
+ MathUtil::rotateEulerAngles(&A, 0, 0, 90); |
+ EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD); |
+ EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD); |
+ EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+ |
+ // Check rotation about x-axis |
+ MathUtil::makeIdentity(&A); |
+ MathUtil::rotateEulerAngles(&A, 90, 0, 0); |
+ EXPECT_ROW1_EQ(1, 0, 0, 0, A); |
+ EXPECT_ROW2_NEAR(0, 0, -1, 0, A, ERROR_THRESHOLD); |
+ EXPECT_ROW3_NEAR(0, 1, 0, 0, A, ERROR_THRESHOLD); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+ |
+ // Check rotation about y-axis. |
+ // Note carefully, the expected pattern is inverted compared to rotating about x axis or z axis. |
+ MathUtil::makeIdentity(&A); |
+ MathUtil::rotateEulerAngles(&A, 0, 90, 0); |
+ EXPECT_ROW1_NEAR(0, 0, 1, 0, A, ERROR_THRESHOLD); |
+ EXPECT_ROW2_EQ(0, 1, 0, 0, A); |
+ EXPECT_ROW3_NEAR(-1, 0, 0, 0, A, ERROR_THRESHOLD); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+ |
+ // Verify that rotate3d(rx, ry, rz) post-multiplies the existing matrix. |
+ MathUtil::makeIdentity(&A); |
+ A.PreconcatScale3d(6, 7, 8); |
+ MathUtil::rotateEulerAngles(&A, 0, 0, 90); |
+ EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD); |
+ EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD); |
+ EXPECT_ROW3_EQ(0, 0, 8, 0, A); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifyRotateEulerAnglesOrderOfCompositeRotations) |
+{ |
+ // Rotate3d(degreesX, degreesY, degreesZ) is actually composite transform consiting of |
+ // three primitive rotations. This test verifies that the ordering of those three |
+ // transforms is the intended ordering. |
+ // |
+ // The correct ordering for this test case should be: |
+ // 1. rotate by 30 degrees about z-axis |
+ // 2. rotate by 20 degrees about y-axis |
+ // 3. rotate by 10 degrees about x-axis |
+ // |
+ // Note: there are 6 possible orderings of 3 transforms. For the specific transforms |
+ // used in this test, all 6 combinations produce a unique matrix that is different |
+ // from the other orderings. That way, this test verifies the exact ordering. |
+ |
+ gfx::Transform A; |
+ MathUtil::makeIdentity(&A); |
+ MathUtil::rotateEulerAngles(&A, 10, 20, 30); |
+ |
+ EXPECT_ROW1_NEAR(0.8137976813493738026394908, |
+ -0.4409696105298823720630708, |
+ 0.3785223063697923939763257, |
+ 0, A, ERROR_THRESHOLD); |
+ EXPECT_ROW2_NEAR(0.4698463103929541584413698, |
+ 0.8825641192593856043657752, |
+ 0.0180283112362972230968694, |
+ 0, A, ERROR_THRESHOLD); |
+ EXPECT_ROW3_NEAR(-0.3420201433256686573969318, |
+ 0.1631759111665348205288950, |
+ 0.9254165783983233639631294, |
+ 0, A, ERROR_THRESHOLD); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifyRotateAxisAngleForAlignedAxes) |
+{ |
+ gfx::Transform A; |
+ |
+ // Check rotation about z-axis |
+ MathUtil::makeIdentity(&A); |
+ MathUtil::rotateAxisAngle(&A, 0, 0, 1, 90); |
+ EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD); |
+ EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD); |
+ EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+ |
+ // Check rotation about x-axis |
+ MathUtil::makeIdentity(&A); |
+ MathUtil::rotateAxisAngle(&A, 1, 0, 0, 90); |
+ EXPECT_ROW1_EQ(1, 0, 0, 0, A); |
+ EXPECT_ROW2_NEAR(0, 0, -1, 0, A, ERROR_THRESHOLD); |
+ EXPECT_ROW3_NEAR(0, 1, 0, 0, A, ERROR_THRESHOLD); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+ |
+ // Check rotation about y-axis. |
+ // Note carefully, the expected pattern is inverted compared to rotating about x axis or z axis. |
+ MathUtil::makeIdentity(&A); |
+ MathUtil::rotateAxisAngle(&A, 0, 1, 0, 90); |
+ EXPECT_ROW1_NEAR(0, 0, 1, 0, A, ERROR_THRESHOLD); |
+ EXPECT_ROW2_EQ(0, 1, 0, 0, A); |
+ EXPECT_ROW3_NEAR(-1, 0, 0, 0, A, ERROR_THRESHOLD); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+ |
+ // Verify that rotate3d(axis, angle) post-multiplies the existing matrix. |
+ MathUtil::makeIdentity(&A); |
+ A.PreconcatScale3d(6, 7, 8); |
+ MathUtil::rotateAxisAngle(&A, 0, 0, 1, 90); |
+ EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD); |
+ EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD); |
+ EXPECT_ROW3_EQ(0, 0, 8, 0, A); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifyRotateAxisAngleForArbitraryAxis) |
+{ |
+ // Check rotation about an arbitrary non-axis-aligned vector. |
+ gfx::Transform A; |
+ MathUtil::rotateAxisAngle(&A, 1, 1, 1, 90); |
+ EXPECT_ROW1_NEAR(0.3333333333333334258519187, |
+ -0.2440169358562924717404030, |
+ 0.9106836025229592124219380, |
+ 0, A, ERROR_THRESHOLD); |
+ EXPECT_ROW2_NEAR(0.9106836025229592124219380, |
+ 0.3333333333333334258519187, |
+ -0.2440169358562924717404030, |
+ 0, A, ERROR_THRESHOLD); |
+ EXPECT_ROW3_NEAR(-0.2440169358562924717404030, |
+ 0.9106836025229592124219380, |
+ 0.3333333333333334258519187, |
+ 0, A, ERROR_THRESHOLD); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifyRotateAxisAngleForDegenerateAxis) |
+{ |
+ // Check rotation about a degenerate zero vector. |
+ // It is expected to skip applying the rotation. |
+ gfx::Transform A; |
+ |
+ MathUtil::rotateAxisAngle(&A, 0, 0, 0, 45); |
+ // Verify that A remains unchanged. |
+ EXPECT_TRUE(MathUtil::isIdentity(A)); |
+ |
+ initializeTestMatrix(&A); |
+ MathUtil::rotateAxisAngle(&A, 0, 0, 0, 35); |
+ |
+ // Verify that A remains unchanged. |
+ EXPECT_ROW1_EQ(10, 14, 18, 22, A); |
+ EXPECT_ROW2_EQ(11, 15, 19, 23, A); |
+ EXPECT_ROW3_EQ(12, 16, 20, 24, A); |
+ EXPECT_ROW4_EQ(13, 17, 21, 25, A); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifySkewX) |
+{ |
+ gfx::Transform A; |
+ A.PreconcatSkewX(45); |
+ EXPECT_ROW1_EQ(1, 1, 0, 0, A); |
+ EXPECT_ROW2_EQ(0, 1, 0, 0, A); |
+ EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+ |
+ // Verify that skewX() post-multiplies the existing matrix. |
+ // Row 1, column 2, would incorrectly have value "7" if the matrix is pre-multiplied instead of post-multiplied. |
+ MathUtil::makeIdentity(&A); |
+ A.PreconcatScale3d(6, 7, 8); |
+ A.PreconcatSkewX(45); |
+ EXPECT_ROW1_EQ(6, 6, 0, 0, A); |
+ EXPECT_ROW2_EQ(0, 7, 0, 0, A); |
+ EXPECT_ROW3_EQ(0, 0, 8, 0, A); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifySkewY) |
+{ |
+ gfx::Transform A; |
+ A.PreconcatSkewY(45); |
+ EXPECT_ROW1_EQ(1, 0, 0, 0, A); |
+ EXPECT_ROW2_EQ(1, 1, 0, 0, A); |
+ EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+ |
+ // Verify that skewY() post-multiplies the existing matrix. |
+ // Row 2, column 1, would incorrectly have value "6" if the matrix is pre-multiplied instead of post-multiplied. |
+ MathUtil::makeIdentity(&A); |
+ A.PreconcatScale3d(6, 7, 8); |
+ A.PreconcatSkewY(45); |
+ EXPECT_ROW1_EQ(6, 0, 0, 0, A); |
+ EXPECT_ROW2_EQ(7, 7, 0, 0, A); |
+ EXPECT_ROW3_EQ(0, 0, 8, 0, A); |
+ EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifyPerspectiveDepth) |
+{ |
+ gfx::Transform A; |
+ A.PreconcatPerspectiveDepth(1); |
+ EXPECT_ROW1_EQ(1, 0, 0, 0, A); |
+ EXPECT_ROW2_EQ(0, 1, 0, 0, A); |
+ EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
+ EXPECT_ROW4_EQ(0, 0, -1, 1, A); |
+ |
+ // Verify that PreconcatPerspectiveDepth() post-multiplies the existing matrix. |
+ MathUtil::makeIdentity(&A); |
+ A.PreconcatTranslate3d(2, 3, 4); |
+ A.PreconcatPerspectiveDepth(1); |
+ EXPECT_ROW1_EQ(1, 0, -2, 2, A); |
+ EXPECT_ROW2_EQ(0, 1, -3, 3, A); |
+ EXPECT_ROW3_EQ(0, 0, -3, 4, A); |
+ EXPECT_ROW4_EQ(0, 0, -1, 1, A); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifyHasPerspective) |
+{ |
+ gfx::Transform A; |
+ A.PreconcatPerspectiveDepth(1); |
+ EXPECT_TRUE(MathUtil::hasPerspective(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.PreconcatPerspectiveDepth(0); |
+ EXPECT_FALSE(MathUtil::hasPerspective(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(3, 0, -1); |
+ EXPECT_TRUE(MathUtil::hasPerspective(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(3, 1, -1); |
+ EXPECT_TRUE(MathUtil::hasPerspective(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(3, 2, -0.3); |
+ EXPECT_TRUE(MathUtil::hasPerspective(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(3, 3, 0.5); |
+ EXPECT_TRUE(MathUtil::hasPerspective(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(3, 3, 0); |
+ EXPECT_TRUE(MathUtil::hasPerspective(A)); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifyIsInvertible) |
+{ |
+ gfx::Transform A; |
+ |
+ // Translations, rotations, scales, skews and arbitrary combinations of them are invertible. |
+ MathUtil::makeIdentity(&A); |
+ EXPECT_TRUE(MathUtil::isInvertible(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.PreconcatTranslate3d(2, 3, 4); |
+ EXPECT_TRUE(MathUtil::isInvertible(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.PreconcatScale3d(6, 7, 8); |
+ EXPECT_TRUE(MathUtil::isInvertible(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ MathUtil::rotateEulerAngles(&A, 10, 20, 30); |
+ EXPECT_TRUE(MathUtil::isInvertible(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.PreconcatSkewX(45); |
+ EXPECT_TRUE(MathUtil::isInvertible(A)); |
+ |
+ // A perspective matrix (projection plane at z=0) is invertible. The intuitive |
+ // explanation is that perspective is eqivalent to a skew of the w-axis; skews are |
+ // invertible. |
+ MathUtil::makeIdentity(&A); |
+ A.PreconcatPerspectiveDepth(1); |
+ EXPECT_TRUE(MathUtil::isInvertible(A)); |
+ |
+ // A "pure" perspective matrix derived by similar triangles, with m44() set to zero |
+ // (i.e. camera positioned at the origin), is not invertible. |
+ MathUtil::makeIdentity(&A); |
+ A.PreconcatPerspectiveDepth(1); |
+ A.matrix().setDouble(3, 3, 0); |
+ EXPECT_FALSE(MathUtil::isInvertible(A)); |
+ |
+ // Adding more to a non-invertible matrix will not make it invertible in the general case. |
+ MathUtil::makeIdentity(&A); |
+ A.PreconcatPerspectiveDepth(1); |
+ A.matrix().setDouble(3, 3, 0); |
+ A.PreconcatScale3d(6, 7, 8); |
+ MathUtil::rotateEulerAngles(&A, 10, 20, 30); |
+ A.PreconcatTranslate3d(6, 7, 8); |
+ EXPECT_FALSE(MathUtil::isInvertible(A)); |
+ |
+ // A degenerate matrix of all zeros is not invertible. |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(0, 0, 0); |
+ A.matrix().setDouble(1, 1, 0); |
+ A.matrix().setDouble(2, 2, 0); |
+ A.matrix().setDouble(3, 3, 0); |
+ EXPECT_FALSE(MathUtil::isInvertible(A)); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifyIsIdentity) |
+{ |
+ gfx::Transform A; |
+ |
+ initializeTestMatrix(&A); |
+ EXPECT_FALSE(MathUtil::isIdentity(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ EXPECT_TRUE(MathUtil::isIdentity(A)); |
+ |
+ // Modifying any one individual element should cause the matrix to no longer be identity. |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(0, 0, 2); |
+ EXPECT_FALSE(MathUtil::isIdentity(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(1, 0, 2); |
+ EXPECT_FALSE(MathUtil::isIdentity(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(2, 0, 2); |
+ EXPECT_FALSE(MathUtil::isIdentity(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(3, 0, 2); |
+ EXPECT_FALSE(MathUtil::isIdentity(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(0, 1, 2); |
+ EXPECT_FALSE(MathUtil::isIdentity(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(1, 1, 2); |
+ EXPECT_FALSE(MathUtil::isIdentity(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(2, 1, 2); |
+ EXPECT_FALSE(MathUtil::isIdentity(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(3, 1, 2); |
+ EXPECT_FALSE(MathUtil::isIdentity(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(0, 2, 2); |
+ EXPECT_FALSE(MathUtil::isIdentity(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(1, 2, 2); |
+ EXPECT_FALSE(MathUtil::isIdentity(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(2, 2, 2); |
+ EXPECT_FALSE(MathUtil::isIdentity(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(3, 2, 2); |
+ EXPECT_FALSE(MathUtil::isIdentity(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(0, 3, 2); |
+ EXPECT_FALSE(MathUtil::isIdentity(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(1, 3, 2); |
+ EXPECT_FALSE(MathUtil::isIdentity(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(2, 3, 2); |
+ EXPECT_FALSE(MathUtil::isIdentity(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(3, 3, 2); |
+ EXPECT_FALSE(MathUtil::isIdentity(A)); |
+} |
+ |
+TEST(MathUtilGfxTransformTest, verifyIsIdentityOrTranslation) |
+{ |
+ gfx::Transform A; |
+ |
+ initializeTestMatrix(&A); |
+ EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ EXPECT_TRUE(MathUtil::isIdentityOrTranslation(A)); |
+ |
+ // Modifying any non-translation components should cause isIdentityOrTranslation() to |
+ // return false. NOTE: (0, 3), (1, 3), and (2, 3) are the translation components, so |
+ // modifying them should still return true for isIdentityOrTranslation(). |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(0, 0, 2); |
+ EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(1, 0, 2); |
+ EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(2, 0, 2); |
+ EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(3, 0, 2); |
+ EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(0, 0, 2); |
+ EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(1, 1, 2); |
+ EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(2, 1, 2); |
+ EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(3, 1, 2); |
+ EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(0, 2, 2); |
+ EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(1, 2, 2); |
+ EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(2, 2, 2); |
+ EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(3, 2, 2); |
+ EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
+ |
+ // Note carefully - expecting true here. |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(0, 3, 2); |
+ EXPECT_TRUE(MathUtil::isIdentityOrTranslation(A)); |
+ |
+ // Note carefully - expecting true here. |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(1, 3, 2); |
+ EXPECT_TRUE(MathUtil::isIdentityOrTranslation(A)); |
+ |
+ // Note carefully - expecting true here. |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(2, 3, 2); |
+ EXPECT_TRUE(MathUtil::isIdentityOrTranslation(A)); |
+ |
+ MathUtil::makeIdentity(&A); |
+ A.matrix().setDouble(3, 3, 2); |
+ EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
+} |
+ |
} // namespace |
} // namespace cc |