| Index: third_party/re2/re2/bitstate.cc
|
| diff --git a/third_party/re2/re2/bitstate.cc b/third_party/re2/re2/bitstate.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..518d6420127aa1e41dcb6a77625b7b19fc313616
|
| --- /dev/null
|
| +++ b/third_party/re2/re2/bitstate.cc
|
| @@ -0,0 +1,378 @@
|
| +// Copyright 2008 The RE2 Authors. All Rights Reserved.
|
| +// Use of this source code is governed by a BSD-style
|
| +// license that can be found in the LICENSE file.
|
| +
|
| +// Tested by search_test.cc, exhaustive_test.cc, tester.cc
|
| +
|
| +// Prog::SearchBitState is a regular expression search with submatch
|
| +// tracking for small regular expressions and texts. Like
|
| +// testing/backtrack.cc, it allocates a bit vector with (length of
|
| +// text) * (length of prog) bits, to make sure it never explores the
|
| +// same (character position, instruction) state multiple times. This
|
| +// limits the search to run in time linear in the length of the text.
|
| +//
|
| +// Unlike testing/backtrack.cc, SearchBitState is not recursive
|
| +// on the text.
|
| +//
|
| +// SearchBitState is a fast replacement for the NFA code on small
|
| +// regexps and texts when SearchOnePass cannot be used.
|
| +
|
| +#include "re2/prog.h"
|
| +#include "re2/regexp.h"
|
| +
|
| +namespace re2 {
|
| +
|
| +struct Job {
|
| + int id;
|
| + int arg;
|
| + const char* p;
|
| +};
|
| +
|
| +class BitState {
|
| + public:
|
| + explicit BitState(Prog* prog);
|
| + ~BitState();
|
| +
|
| + // The usual Search prototype.
|
| + // Can only call Search once per BitState.
|
| + bool Search(const StringPiece& text, const StringPiece& context,
|
| + bool anchored, bool longest,
|
| + StringPiece* submatch, int nsubmatch);
|
| +
|
| + private:
|
| + inline bool ShouldVisit(int id, const char* p);
|
| + void Push(int id, const char* p, int arg);
|
| + bool GrowStack();
|
| + bool TrySearch(int id, const char* p);
|
| +
|
| + // Search parameters
|
| + Prog* prog_; // program being run
|
| + StringPiece text_; // text being searched
|
| + StringPiece context_; // greater context of text being searched
|
| + bool anchored_; // whether search is anchored at text.begin()
|
| + bool longest_; // whether search wants leftmost-longest match
|
| + bool endmatch_; // whether match must end at text.end()
|
| + StringPiece *submatch_; // submatches to fill in
|
| + int nsubmatch_; // # of submatches to fill in
|
| +
|
| + // Search state
|
| + const char** cap_; // capture registers
|
| + int ncap_;
|
| +
|
| + static const int VisitedBits = 32;
|
| + uint32 *visited_; // bitmap: (Inst*, char*) pairs already backtracked
|
| + int nvisited_; // # of words in bitmap
|
| +
|
| + Job *job_; // stack of text positions to explore
|
| + int njob_;
|
| + int maxjob_;
|
| +};
|
| +
|
| +BitState::BitState(Prog* prog)
|
| + : prog_(prog),
|
| + anchored_(false),
|
| + longest_(false),
|
| + endmatch_(false),
|
| + submatch_(NULL),
|
| + nsubmatch_(0),
|
| + cap_(NULL),
|
| + ncap_(0),
|
| + visited_(NULL),
|
| + nvisited_(0),
|
| + job_(NULL),
|
| + njob_(0),
|
| + maxjob_(0) {
|
| +}
|
| +
|
| +BitState::~BitState() {
|
| + delete[] visited_;
|
| + delete[] job_;
|
| + delete[] cap_;
|
| +}
|
| +
|
| +// Should the search visit the pair ip, p?
|
| +// If so, remember that it was visited so that the next time,
|
| +// we don't repeat the visit.
|
| +bool BitState::ShouldVisit(int id, const char* p) {
|
| + uint n = id * (text_.size() + 1) + (p - text_.begin());
|
| + if (visited_[n/VisitedBits] & (1 << (n & (VisitedBits-1))))
|
| + return false;
|
| + visited_[n/VisitedBits] |= 1 << (n & (VisitedBits-1));
|
| + return true;
|
| +}
|
| +
|
| +// Grow the stack.
|
| +bool BitState::GrowStack() {
|
| + // VLOG(0) << "Reallocate.";
|
| + maxjob_ *= 2;
|
| + Job* newjob = new Job[maxjob_];
|
| + memmove(newjob, job_, njob_*sizeof job_[0]);
|
| + delete[] job_;
|
| + job_ = newjob;
|
| + if (njob_ >= maxjob_) {
|
| + LOG(DFATAL) << "Job stack overflow.";
|
| + return false;
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +// Push the triple (id, p, arg) onto the stack, growing it if necessary.
|
| +void BitState::Push(int id, const char* p, int arg) {
|
| + if (njob_ >= maxjob_) {
|
| + if (!GrowStack())
|
| + return;
|
| + }
|
| + int op = prog_->inst(id)->opcode();
|
| + if (op == kInstFail)
|
| + return;
|
| +
|
| + // Only check ShouldVisit when arg == 0.
|
| + // When arg > 0, we are continuing a previous visit.
|
| + if (arg == 0 && !ShouldVisit(id, p))
|
| + return;
|
| +
|
| + Job* j = &job_[njob_++];
|
| + j->id = id;
|
| + j->p = p;
|
| + j->arg = arg;
|
| +}
|
| +
|
| +// Try a search from instruction id0 in state p0.
|
| +// Return whether it succeeded.
|
| +bool BitState::TrySearch(int id0, const char* p0) {
|
| + bool matched = false;
|
| + const char* end = text_.end();
|
| + njob_ = 0;
|
| + Push(id0, p0, 0);
|
| + while (njob_ > 0) {
|
| + // Pop job off stack.
|
| + --njob_;
|
| + int id = job_[njob_].id;
|
| + const char* p = job_[njob_].p;
|
| + int arg = job_[njob_].arg;
|
| +
|
| + // Optimization: rather than push and pop,
|
| + // code that is going to Push and continue
|
| + // the loop simply updates ip, p, and arg
|
| + // and jumps to CheckAndLoop. We have to
|
| + // do the ShouldVisit check that Push
|
| + // would have, but we avoid the stack
|
| + // manipulation.
|
| + if (0) {
|
| + CheckAndLoop:
|
| + if (!ShouldVisit(id, p))
|
| + continue;
|
| + }
|
| +
|
| + // Visit ip, p.
|
| + // VLOG(0) << "Job: " << ip->id() << " "
|
| + // << (p - text_.begin()) << " " << arg;
|
| + Prog::Inst* ip = prog_->inst(id);
|
| + switch (ip->opcode()) {
|
| + case kInstFail:
|
| + default:
|
| + LOG(DFATAL) << "Unexpected opcode: " << ip->opcode() << " arg " << arg;
|
| + return false;
|
| +
|
| + case kInstAlt:
|
| + // Cannot just
|
| + // Push(ip->out1(), p, 0);
|
| + // Push(ip->out(), p, 0);
|
| + // If, during the processing of ip->out(), we encounter
|
| + // ip->out1() via another path, we want to process it then.
|
| + // Pushing it here will inhibit that. Instead, re-push
|
| + // ip with arg==1 as a reminder to push ip->out1() later.
|
| + switch (arg) {
|
| + case 0:
|
| + Push(id, p, 1); // come back when we're done
|
| + id = ip->out();
|
| + goto CheckAndLoop;
|
| +
|
| + case 1:
|
| + // Finished ip->out(); try ip->out1().
|
| + arg = 0;
|
| + id = ip->out1();
|
| + goto CheckAndLoop;
|
| + }
|
| + LOG(DFATAL) << "Bad arg in kInstCapture: " << arg;
|
| + continue;
|
| +
|
| + case kInstAltMatch:
|
| + // One opcode is byte range; the other leads to match.
|
| + if (ip->greedy(prog_)) {
|
| + // out1 is the match
|
| + Push(ip->out1(), p, 0);
|
| + id = ip->out1();
|
| + p = end;
|
| + goto CheckAndLoop;
|
| + }
|
| + // out is the match - non-greedy
|
| + Push(ip->out(), end, 0);
|
| + id = ip->out();
|
| + goto CheckAndLoop;
|
| +
|
| + case kInstByteRange: {
|
| + int c = -1;
|
| + if (p < end)
|
| + c = *p & 0xFF;
|
| + if (ip->Matches(c)) {
|
| + id = ip->out();
|
| + p++;
|
| + goto CheckAndLoop;
|
| + }
|
| + continue;
|
| + }
|
| +
|
| + case kInstCapture:
|
| + switch (arg) {
|
| + case 0:
|
| + if (0 <= ip->cap() && ip->cap() < ncap_) {
|
| + // Capture p to register, but save old value.
|
| + Push(id, cap_[ip->cap()], 1); // come back when we're done
|
| + cap_[ip->cap()] = p;
|
| + }
|
| + // Continue on.
|
| + id = ip->out();
|
| + goto CheckAndLoop;
|
| + case 1:
|
| + // Finished ip->out(); restore the old value.
|
| + cap_[ip->cap()] = p;
|
| + continue;
|
| + }
|
| + LOG(DFATAL) << "Bad arg in kInstCapture: " << arg;
|
| + continue;
|
| +
|
| + case kInstEmptyWidth:
|
| + if (ip->empty() & ~Prog::EmptyFlags(context_, p))
|
| + continue;
|
| + id = ip->out();
|
| + goto CheckAndLoop;
|
| +
|
| + case kInstNop:
|
| + id = ip->out();
|
| + goto CheckAndLoop;
|
| +
|
| + case kInstMatch: {
|
| + if (endmatch_ && p != text_.end())
|
| + continue;
|
| +
|
| + // VLOG(0) << "Found match.";
|
| + // We found a match. If the caller doesn't care
|
| + // where the match is, no point going further.
|
| + if (nsubmatch_ == 0)
|
| + return true;
|
| +
|
| + // Record best match so far.
|
| + // Only need to check end point, because this entire
|
| + // call is only considering one start position.
|
| + matched = true;
|
| + cap_[1] = p;
|
| + if (submatch_[0].data() == NULL ||
|
| + (longest_ && p > submatch_[0].end())) {
|
| + for (int i = 0; i < nsubmatch_; i++)
|
| + submatch_[i] = StringPiece(cap_[2*i], cap_[2*i+1] - cap_[2*i]);
|
| + }
|
| +
|
| + // If going for first match, we're done.
|
| + if (!longest_)
|
| + return true;
|
| +
|
| + // If we used the entire text, no longer match is possible.
|
| + if (p == text_.end())
|
| + return true;
|
| +
|
| + // Otherwise, continue on in hope of a longer match.
|
| + continue;
|
| + }
|
| + }
|
| + }
|
| + return matched;
|
| +}
|
| +
|
| +// Search text (within context) for prog_.
|
| +bool BitState::Search(const StringPiece& text, const StringPiece& context,
|
| + bool anchored, bool longest,
|
| + StringPiece* submatch, int nsubmatch) {
|
| + // Search parameters.
|
| + text_ = text;
|
| + context_ = context;
|
| + if (context_.begin() == NULL)
|
| + context_ = text;
|
| + if (prog_->anchor_start() && context_.begin() != text.begin())
|
| + return false;
|
| + if (prog_->anchor_end() && context_.end() != text.end())
|
| + return false;
|
| + anchored_ = anchored || prog_->anchor_start();
|
| + longest_ = longest || prog_->anchor_end();
|
| + endmatch_ = prog_->anchor_end();
|
| + submatch_ = submatch;
|
| + nsubmatch_ = nsubmatch;
|
| + for (int i = 0; i < nsubmatch_; i++)
|
| + submatch_[i] = NULL;
|
| +
|
| + // Allocate scratch space.
|
| + nvisited_ = (prog_->size() * (text.size()+1) + VisitedBits-1) / VisitedBits;
|
| + visited_ = new uint32[nvisited_];
|
| + memset(visited_, 0, nvisited_*sizeof visited_[0]);
|
| + // VLOG(0) << "nvisited_ = " << nvisited_;
|
| +
|
| + ncap_ = 2*nsubmatch;
|
| + if (ncap_ < 2)
|
| + ncap_ = 2;
|
| + cap_ = new const char*[ncap_];
|
| + memset(cap_, 0, ncap_*sizeof cap_[0]);
|
| +
|
| + maxjob_ = 256;
|
| + job_ = new Job[maxjob_];
|
| +
|
| + // Anchored search must start at text.begin().
|
| + if (anchored_) {
|
| + cap_[0] = text.begin();
|
| + return TrySearch(prog_->start(), text.begin());
|
| + }
|
| +
|
| + // Unanchored search, starting from each possible text position.
|
| + // Notice that we have to try the empty string at the end of
|
| + // the text, so the loop condition is p <= text.end(), not p < text.end().
|
| + // This looks like it's quadratic in the size of the text,
|
| + // but we are not clearing visited_ between calls to TrySearch,
|
| + // so no work is duplicated and it ends up still being linear.
|
| + for (const char* p = text.begin(); p <= text.end(); p++) {
|
| + cap_[0] = p;
|
| + if (TrySearch(prog_->start(), p)) // Match must be leftmost; done.
|
| + return true;
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +// Bit-state search.
|
| +bool Prog::SearchBitState(const StringPiece& text,
|
| + const StringPiece& context,
|
| + Anchor anchor,
|
| + MatchKind kind,
|
| + StringPiece* match,
|
| + int nmatch) {
|
| + // If full match, we ask for an anchored longest match
|
| + // and then check that match[0] == text.
|
| + // So make sure match[0] exists.
|
| + StringPiece sp0;
|
| + if (kind == kFullMatch) {
|
| + anchor = kAnchored;
|
| + if (nmatch < 1) {
|
| + match = &sp0;
|
| + nmatch = 1;
|
| + }
|
| + }
|
| +
|
| + // Run the search.
|
| + BitState b(this);
|
| + bool anchored = anchor == kAnchored;
|
| + bool longest = kind != kFirstMatch;
|
| + if (!b.Search(text, context, anchored, longest, match, nmatch))
|
| + return false;
|
| + if (kind == kFullMatch && match[0].end() != text.end())
|
| + return false;
|
| + return true;
|
| +}
|
| +
|
| +} // namespace re2
|
|
|