| Index: net/quic/crypto/strike_register.cc
|
| diff --git a/net/quic/crypto/strike_register.cc b/net/quic/crypto/strike_register.cc
|
| deleted file mode 100644
|
| index c36d3701ae48d10558f7b340232f1d0c201fbb37..0000000000000000000000000000000000000000
|
| --- a/net/quic/crypto/strike_register.cc
|
| +++ /dev/null
|
| @@ -1,520 +0,0 @@
|
| -// Copyright (c) 2013 The Chromium Authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -#include "net/quic/crypto/strike_register.h"
|
| -
|
| -#include <limits>
|
| -
|
| -#include "base/logging.h"
|
| -
|
| -using std::max;
|
| -using std::min;
|
| -using std::pair;
|
| -using std::set;
|
| -using std::vector;
|
| -
|
| -namespace net {
|
| -
|
| -namespace {
|
| -
|
| -uint32 GetInitialHorizon(uint32 current_time_internal,
|
| - uint32 window_secs,
|
| - StrikeRegister::StartupType startup) {
|
| - if (startup == StrikeRegister::DENY_REQUESTS_AT_STARTUP) {
|
| - // The horizon is initially set |window_secs| into the future because, if
|
| - // we just crashed, then we may have accepted nonces in the span
|
| - // [current_time...current_time+window_secs] and so we conservatively
|
| - // reject the whole timespan unless |startup| tells us otherwise.
|
| - return current_time_internal + window_secs + 1;
|
| - } else { // startup == StrikeRegister::NO_STARTUP_PERIOD_NEEDED
|
| - // The orbit can be assumed to be globally unique. Use a horizon
|
| - // in the past.
|
| - return 0;
|
| - }
|
| -}
|
| -
|
| -} // namespace
|
| -
|
| -// static
|
| -const uint32 StrikeRegister::kExternalNodeSize = 24;
|
| -// static
|
| -const uint32 StrikeRegister::kNil = (1u << 31) | 1;
|
| -// static
|
| -const uint32 StrikeRegister::kExternalFlag = 1 << 23;
|
| -
|
| -// InternalNode represents a non-leaf node in the critbit tree. See the comment
|
| -// in the .h file for details.
|
| -class StrikeRegister::InternalNode {
|
| - public:
|
| - void SetChild(unsigned direction, uint32 child) {
|
| - data_[direction] = (data_[direction] & 0xff) | (child << 8);
|
| - }
|
| -
|
| - void SetCritByte(uint8 critbyte) {
|
| - data_[0] = (data_[0] & 0xffffff00) | critbyte;
|
| - }
|
| -
|
| - void SetOtherBits(uint8 otherbits) {
|
| - data_[1] = (data_[1] & 0xffffff00) | otherbits;
|
| - }
|
| -
|
| - void SetNextPtr(uint32 next) { data_[0] = next; }
|
| -
|
| - uint32 next() const { return data_[0]; }
|
| -
|
| - uint32 child(unsigned n) const { return data_[n] >> 8; }
|
| -
|
| - uint8 critbyte() const { return static_cast<uint8>(data_[0]); }
|
| -
|
| - uint8 otherbits() const { return static_cast<uint8>(data_[1]); }
|
| -
|
| - // These bytes are organised thus:
|
| - // <24 bits> left child
|
| - // <8 bits> crit-byte
|
| - // <24 bits> right child
|
| - // <8 bits> other-bits
|
| - uint32 data_[2];
|
| -};
|
| -
|
| -// kCreationTimeFromInternalEpoch contains the number of seconds between the
|
| -// start of the internal epoch and the creation time. This allows us
|
| -// to consider times that are before the creation time.
|
| -static const uint32 kCreationTimeFromInternalEpoch = 63115200; // 2 years.
|
| -
|
| -void StrikeRegister::ValidateStrikeRegisterConfig(unsigned max_entries) {
|
| - // We only have 23 bits of index available.
|
| - CHECK_LT(max_entries, 1u << 23);
|
| - CHECK_GT(max_entries, 1u); // There must be at least two entries.
|
| - CHECK_EQ(sizeof(InternalNode), 8u); // in case of compiler changes.
|
| -}
|
| -
|
| -StrikeRegister::StrikeRegister(unsigned max_entries,
|
| - uint32 current_time,
|
| - uint32 window_secs,
|
| - const uint8 orbit[8],
|
| - StartupType startup)
|
| - : max_entries_(max_entries),
|
| - window_secs_(window_secs),
|
| - internal_epoch_(current_time > kCreationTimeFromInternalEpoch
|
| - ? current_time - kCreationTimeFromInternalEpoch
|
| - : 0),
|
| - horizon_(GetInitialHorizon(
|
| - ExternalTimeToInternal(current_time), window_secs, startup)) {
|
| - memcpy(orbit_, orbit, sizeof(orbit_));
|
| -
|
| - ValidateStrikeRegisterConfig(max_entries);
|
| - internal_nodes_ = new InternalNode[max_entries];
|
| - external_nodes_.reset(new uint8[kExternalNodeSize * max_entries]);
|
| -
|
| - Reset();
|
| -}
|
| -
|
| -StrikeRegister::~StrikeRegister() { delete[] internal_nodes_; }
|
| -
|
| -void StrikeRegister::Reset() {
|
| - // Thread a free list through all of the internal nodes.
|
| - internal_node_free_head_ = 0;
|
| - for (unsigned i = 0; i < max_entries_ - 1; i++)
|
| - internal_nodes_[i].SetNextPtr(i + 1);
|
| - internal_nodes_[max_entries_ - 1].SetNextPtr(kNil);
|
| -
|
| - // Also thread a free list through the external nodes.
|
| - external_node_free_head_ = 0;
|
| - for (unsigned i = 0; i < max_entries_ - 1; i++)
|
| - external_node_next_ptr(i) = i + 1;
|
| - external_node_next_ptr(max_entries_ - 1) = kNil;
|
| -
|
| - // This is the root of the tree.
|
| - internal_node_head_ = kNil;
|
| -}
|
| -
|
| -InsertStatus StrikeRegister::Insert(const uint8 nonce[32],
|
| - uint32 current_time_external) {
|
| - // Make space for the insertion if the strike register is full.
|
| - while (external_node_free_head_ == kNil ||
|
| - internal_node_free_head_ == kNil) {
|
| - DropOldestNode();
|
| - }
|
| -
|
| - const uint32 current_time = ExternalTimeToInternal(current_time_external);
|
| -
|
| - // Check to see if the orbit is correct.
|
| - if (memcmp(nonce + sizeof(current_time), orbit_, sizeof(orbit_))) {
|
| - return NONCE_INVALID_ORBIT_FAILURE;
|
| - }
|
| -
|
| - const uint32 nonce_time = ExternalTimeToInternal(TimeFromBytes(nonce));
|
| -
|
| - // Check that the timestamp is in the valid range.
|
| - pair<uint32, uint32> valid_range =
|
| - StrikeRegister::GetValidRange(current_time);
|
| - if (nonce_time < valid_range.first || nonce_time > valid_range.second) {
|
| - return NONCE_INVALID_TIME_FAILURE;
|
| - }
|
| -
|
| - // We strip the orbit out of the nonce.
|
| - uint8 value[24];
|
| - memcpy(value, nonce, sizeof(nonce_time));
|
| - memcpy(value + sizeof(nonce_time),
|
| - nonce + sizeof(nonce_time) + sizeof(orbit_),
|
| - sizeof(value) - sizeof(nonce_time));
|
| -
|
| - // Find the best match to |value| in the crit-bit tree. The best match is
|
| - // simply the value which /could/ match |value|, if any does, so we still
|
| - // need a memcmp to check.
|
| - uint32 best_match_index = BestMatch(value);
|
| - if (best_match_index == kNil) {
|
| - // Empty tree. Just insert the new value at the root.
|
| - uint32 index = GetFreeExternalNode();
|
| - memcpy(external_node(index), value, sizeof(value));
|
| - internal_node_head_ = (index | kExternalFlag) << 8;
|
| - DCHECK_LE(horizon_, nonce_time);
|
| - return NONCE_OK;
|
| - }
|
| -
|
| - const uint8* best_match = external_node(best_match_index);
|
| - if (memcmp(best_match, value, sizeof(value)) == 0) {
|
| - // We found the value in the tree.
|
| - return NONCE_NOT_UNIQUE_FAILURE;
|
| - }
|
| -
|
| - // We are going to insert a new entry into the tree, so get the nodes now.
|
| - uint32 internal_node_index = GetFreeInternalNode();
|
| - uint32 external_node_index = GetFreeExternalNode();
|
| -
|
| - // If we just evicted the best match, then we have to try and match again.
|
| - // We know that we didn't just empty the tree because we require that
|
| - // max_entries_ >= 2. Also, we know that it doesn't match because, if it
|
| - // did, it would have been returned previously.
|
| - if (external_node_index == best_match_index) {
|
| - best_match_index = BestMatch(value);
|
| - best_match = external_node(best_match_index);
|
| - }
|
| -
|
| - // Now we need to find the first bit where we differ from |best_match|.
|
| - uint8 differing_byte;
|
| - uint8 new_other_bits;
|
| - for (differing_byte = 0; differing_byte < arraysize(value);
|
| - differing_byte++) {
|
| - new_other_bits = value[differing_byte] ^ best_match[differing_byte];
|
| - if (new_other_bits) {
|
| - break;
|
| - }
|
| - }
|
| -
|
| - // Once we have the XOR the of first differing byte in new_other_bits we need
|
| - // to find the most significant differing bit. We could do this with a simple
|
| - // for loop, testing bits 7..0. Instead we fold the bits so that we end up
|
| - // with a byte where all the bits below the most significant one, are set.
|
| - new_other_bits |= new_other_bits >> 1;
|
| - new_other_bits |= new_other_bits >> 2;
|
| - new_other_bits |= new_other_bits >> 4;
|
| - // Now this bit trick results in all the bits set, except the original
|
| - // most-significant one.
|
| - new_other_bits = (new_other_bits & ~(new_other_bits >> 1)) ^ 255;
|
| -
|
| - // Consider the effect of ORing against |new_other_bits|. If |value| did not
|
| - // have the critical bit set, the result is the same as |new_other_bits|. If
|
| - // it did, the result is all ones.
|
| -
|
| - unsigned newdirection;
|
| - if ((new_other_bits | value[differing_byte]) == 0xff) {
|
| - newdirection = 1;
|
| - } else {
|
| - newdirection = 0;
|
| - }
|
| -
|
| - memcpy(external_node(external_node_index), value, sizeof(value));
|
| - InternalNode* inode = &internal_nodes_[internal_node_index];
|
| -
|
| - inode->SetChild(newdirection, external_node_index | kExternalFlag);
|
| - inode->SetCritByte(differing_byte);
|
| - inode->SetOtherBits(new_other_bits);
|
| -
|
| - // |where_index| is a pointer to the uint32 which needs to be updated in
|
| - // order to insert the new internal node into the tree. The internal nodes
|
| - // store the child indexes in the top 24-bits of a 32-bit word and, to keep
|
| - // the code simple, we define that |internal_node_head_| is organised the
|
| - // same way.
|
| - DCHECK_EQ(internal_node_head_ & 0xff, 0u);
|
| - uint32* where_index = &internal_node_head_;
|
| - while (((*where_index >> 8) & kExternalFlag) == 0) {
|
| - InternalNode* node = &internal_nodes_[*where_index >> 8];
|
| - if (node->critbyte() > differing_byte) {
|
| - break;
|
| - }
|
| - if (node->critbyte() == differing_byte &&
|
| - node->otherbits() > new_other_bits) {
|
| - break;
|
| - }
|
| - if (node->critbyte() == differing_byte &&
|
| - node->otherbits() == new_other_bits) {
|
| - CHECK(false);
|
| - }
|
| -
|
| - uint8 c = value[node->critbyte()];
|
| - const int direction =
|
| - (1 + static_cast<unsigned>(node->otherbits() | c)) >> 8;
|
| - where_index = &node->data_[direction];
|
| - }
|
| -
|
| - inode->SetChild(newdirection ^ 1, *where_index >> 8);
|
| - *where_index = (*where_index & 0xff) | (internal_node_index << 8);
|
| -
|
| - DCHECK_LE(horizon_, nonce_time);
|
| - return NONCE_OK;
|
| -}
|
| -
|
| -const uint8* StrikeRegister::orbit() const {
|
| - return orbit_;
|
| -}
|
| -
|
| -uint32 StrikeRegister::GetCurrentValidWindowSecs(
|
| - uint32 current_time_external) const {
|
| - uint32 current_time = ExternalTimeToInternal(current_time_external);
|
| - pair<uint32, uint32> valid_range = StrikeRegister::GetValidRange(
|
| - current_time);
|
| - if (valid_range.second >= valid_range.first) {
|
| - return valid_range.second - current_time + 1;
|
| - } else {
|
| - return 0;
|
| - }
|
| -}
|
| -
|
| -void StrikeRegister::Validate() {
|
| - set<uint32> free_internal_nodes;
|
| - for (uint32 i = internal_node_free_head_; i != kNil;
|
| - i = internal_nodes_[i].next()) {
|
| - CHECK_LT(i, max_entries_);
|
| - CHECK_EQ(free_internal_nodes.count(i), 0u);
|
| - free_internal_nodes.insert(i);
|
| - }
|
| -
|
| - set<uint32> free_external_nodes;
|
| - for (uint32 i = external_node_free_head_; i != kNil;
|
| - i = external_node_next_ptr(i)) {
|
| - CHECK_LT(i, max_entries_);
|
| - CHECK_EQ(free_external_nodes.count(i), 0u);
|
| - free_external_nodes.insert(i);
|
| - }
|
| -
|
| - set<uint32> used_external_nodes;
|
| - set<uint32> used_internal_nodes;
|
| -
|
| - if (internal_node_head_ != kNil &&
|
| - ((internal_node_head_ >> 8) & kExternalFlag) == 0) {
|
| - vector<pair<unsigned, bool> > bits;
|
| - ValidateTree(internal_node_head_ >> 8, -1, bits, free_internal_nodes,
|
| - free_external_nodes, &used_internal_nodes,
|
| - &used_external_nodes);
|
| - }
|
| -}
|
| -
|
| -// static
|
| -uint32 StrikeRegister::TimeFromBytes(const uint8 d[4]) {
|
| - return static_cast<uint32>(d[0]) << 24 |
|
| - static_cast<uint32>(d[1]) << 16 |
|
| - static_cast<uint32>(d[2]) << 8 |
|
| - static_cast<uint32>(d[3]);
|
| -}
|
| -
|
| -pair<uint32, uint32> StrikeRegister::GetValidRange(
|
| - uint32 current_time_internal) const {
|
| - if (current_time_internal < horizon_) {
|
| - // Empty valid range.
|
| - return std::make_pair(std::numeric_limits<uint32>::max(), 0);
|
| - }
|
| -
|
| - uint32 lower_bound;
|
| - if (current_time_internal >= window_secs_) {
|
| - lower_bound = max(horizon_, current_time_internal - window_secs_);
|
| - } else {
|
| - lower_bound = horizon_;
|
| - }
|
| -
|
| - // Also limit the upper range based on horizon_. This makes the
|
| - // strike register reject inserts that are far in the future and
|
| - // would consume strike register resources for a long time. This
|
| - // allows the strike server to degrade optimally in cases where the
|
| - // insert rate exceeds |max_entries_ / (2 * window_secs_)| entries
|
| - // per second.
|
| - uint32 upper_bound =
|
| - current_time_internal + min(current_time_internal - horizon_,
|
| - window_secs_);
|
| -
|
| - return std::make_pair(lower_bound, upper_bound);
|
| -}
|
| -
|
| -uint32 StrikeRegister::ExternalTimeToInternal(uint32 external_time) const {
|
| - return external_time - internal_epoch_;
|
| -}
|
| -
|
| -uint32 StrikeRegister::BestMatch(const uint8 v[24]) const {
|
| - if (internal_node_head_ == kNil) {
|
| - return kNil;
|
| - }
|
| -
|
| - uint32 next = internal_node_head_ >> 8;
|
| - while ((next & kExternalFlag) == 0) {
|
| - InternalNode* node = &internal_nodes_[next];
|
| - uint8 b = v[node->critbyte()];
|
| - unsigned direction =
|
| - (1 + static_cast<unsigned>(node->otherbits() | b)) >> 8;
|
| - next = node->child(direction);
|
| - }
|
| -
|
| - return next & ~kExternalFlag;
|
| -}
|
| -
|
| -uint32& StrikeRegister::external_node_next_ptr(unsigned i) {
|
| - return *reinterpret_cast<uint32*>(&external_nodes_[i * kExternalNodeSize]);
|
| -}
|
| -
|
| -uint8* StrikeRegister::external_node(unsigned i) {
|
| - return &external_nodes_[i * kExternalNodeSize];
|
| -}
|
| -
|
| -uint32 StrikeRegister::GetFreeExternalNode() {
|
| - uint32 index = external_node_free_head_;
|
| - DCHECK(index != kNil);
|
| - external_node_free_head_ = external_node_next_ptr(index);
|
| - return index;
|
| -}
|
| -
|
| -uint32 StrikeRegister::GetFreeInternalNode() {
|
| - uint32 index = internal_node_free_head_;
|
| - DCHECK(index != kNil);
|
| - internal_node_free_head_ = internal_nodes_[index].next();
|
| - return index;
|
| -}
|
| -
|
| -void StrikeRegister::DropOldestNode() {
|
| - // DropOldestNode should never be called on an empty tree.
|
| - DCHECK(internal_node_head_ != kNil);
|
| -
|
| - // An internal node in a crit-bit tree always has exactly two children.
|
| - // This means that, if we are removing an external node (which is one of
|
| - // those children), then we also need to remove an internal node. In order
|
| - // to do that we keep pointers to the parent (wherep) and grandparent
|
| - // (whereq) when walking down the tree.
|
| -
|
| - uint32 p = internal_node_head_ >> 8, *wherep = &internal_node_head_,
|
| - *whereq = nullptr;
|
| - while ((p & kExternalFlag) == 0) {
|
| - whereq = wherep;
|
| - InternalNode* inode = &internal_nodes_[p];
|
| - // We always go left, towards the smallest element, exploiting the fact
|
| - // that the timestamp is big-endian and at the start of the value.
|
| - wherep = &inode->data_[0];
|
| - p = (*wherep) >> 8;
|
| - }
|
| -
|
| - const uint32 ext_index = p & ~kExternalFlag;
|
| - const uint8* ext_node = external_node(ext_index);
|
| - uint32 new_horizon = ExternalTimeToInternal(TimeFromBytes(ext_node)) + 1;
|
| - DCHECK_LE(horizon_, new_horizon);
|
| - horizon_ = new_horizon;
|
| -
|
| - if (!whereq) {
|
| - // We are removing the last element in a tree.
|
| - internal_node_head_ = kNil;
|
| - FreeExternalNode(ext_index);
|
| - return;
|
| - }
|
| -
|
| - // |wherep| points to the left child pointer in the parent so we can add
|
| - // one and dereference to get the right child.
|
| - const uint32 other_child = wherep[1];
|
| - FreeInternalNode((*whereq) >> 8);
|
| - *whereq = (*whereq & 0xff) | (other_child & 0xffffff00);
|
| - FreeExternalNode(ext_index);
|
| -}
|
| -
|
| -void StrikeRegister::FreeExternalNode(uint32 index) {
|
| - external_node_next_ptr(index) = external_node_free_head_;
|
| - external_node_free_head_ = index;
|
| -}
|
| -
|
| -void StrikeRegister::FreeInternalNode(uint32 index) {
|
| - internal_nodes_[index].SetNextPtr(internal_node_free_head_);
|
| - internal_node_free_head_ = index;
|
| -}
|
| -
|
| -void StrikeRegister::ValidateTree(
|
| - uint32 internal_node,
|
| - int last_bit,
|
| - const vector<pair<unsigned, bool> >& bits,
|
| - const set<uint32>& free_internal_nodes,
|
| - const set<uint32>& free_external_nodes,
|
| - set<uint32>* used_internal_nodes,
|
| - set<uint32>* used_external_nodes) {
|
| - CHECK_LT(internal_node, max_entries_);
|
| - const InternalNode* i = &internal_nodes_[internal_node];
|
| - unsigned bit = 0;
|
| - switch (i->otherbits()) {
|
| - case 0xff & ~(1 << 7):
|
| - bit = 0;
|
| - break;
|
| - case 0xff & ~(1 << 6):
|
| - bit = 1;
|
| - break;
|
| - case 0xff & ~(1 << 5):
|
| - bit = 2;
|
| - break;
|
| - case 0xff & ~(1 << 4):
|
| - bit = 3;
|
| - break;
|
| - case 0xff & ~(1 << 3):
|
| - bit = 4;
|
| - break;
|
| - case 0xff & ~(1 << 2):
|
| - bit = 5;
|
| - break;
|
| - case 0xff & ~(1 << 1):
|
| - bit = 6;
|
| - break;
|
| - case 0xff & ~1:
|
| - bit = 7;
|
| - break;
|
| - default:
|
| - CHECK(false);
|
| - }
|
| -
|
| - bit += 8 * i->critbyte();
|
| - if (last_bit > -1) {
|
| - CHECK_GT(bit, static_cast<unsigned>(last_bit));
|
| - }
|
| -
|
| - CHECK_EQ(free_internal_nodes.count(internal_node), 0u);
|
| -
|
| - for (unsigned child = 0; child < 2; child++) {
|
| - if (i->child(child) & kExternalFlag) {
|
| - uint32 ext = i->child(child) & ~kExternalFlag;
|
| - CHECK_EQ(free_external_nodes.count(ext), 0u);
|
| - CHECK_EQ(used_external_nodes->count(ext), 0u);
|
| - used_external_nodes->insert(ext);
|
| - const uint8* bytes = external_node(ext);
|
| - for (vector<pair<unsigned, bool> >::const_iterator i = bits.begin();
|
| - i != bits.end(); i++) {
|
| - unsigned byte = i->first / 8;
|
| - DCHECK_LE(byte, 0xffu);
|
| - unsigned bit = i->first % 8;
|
| - static const uint8 kMasks[8] =
|
| - {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};
|
| - CHECK_EQ((bytes[byte] & kMasks[bit]) != 0, i->second);
|
| - }
|
| - } else {
|
| - uint32 inter = i->child(child);
|
| - vector<pair<unsigned, bool> > new_bits(bits);
|
| - new_bits.push_back(pair<unsigned, bool>(bit, child != 0));
|
| - CHECK_EQ(free_internal_nodes.count(inter), 0u);
|
| - CHECK_EQ(used_internal_nodes->count(inter), 0u);
|
| - used_internal_nodes->insert(inter);
|
| - ValidateTree(inter, bit, bits, free_internal_nodes, free_external_nodes,
|
| - used_internal_nodes, used_external_nodes);
|
| - }
|
| - }
|
| -}
|
| -
|
| -} // namespace net
|
|
|