| Index: net/quic/quic_sent_packet_manager.cc
|
| diff --git a/net/quic/quic_sent_packet_manager.cc b/net/quic/quic_sent_packet_manager.cc
|
| deleted file mode 100644
|
| index 60fd0f5cf6b7b07e8723307cc15c59a77f468421..0000000000000000000000000000000000000000
|
| --- a/net/quic/quic_sent_packet_manager.cc
|
| +++ /dev/null
|
| @@ -1,1013 +0,0 @@
|
| -// Copyright 2013 The Chromium Authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -#include "net/quic/quic_sent_packet_manager.h"
|
| -
|
| -#include <algorithm>
|
| -
|
| -#include "base/logging.h"
|
| -#include "base/stl_util.h"
|
| -#include "net/quic/congestion_control/pacing_sender.h"
|
| -#include "net/quic/crypto/crypto_protocol.h"
|
| -#include "net/quic/quic_ack_notifier_manager.h"
|
| -#include "net/quic/quic_connection_stats.h"
|
| -#include "net/quic/quic_flags.h"
|
| -#include "net/quic/quic_utils_chromium.h"
|
| -
|
| -using std::max;
|
| -using std::min;
|
| -
|
| -namespace net {
|
| -
|
| -// The length of the recent min rtt window in seconds. Windowing is disabled for
|
| -// values less than or equal to 0.
|
| -int32 FLAGS_quic_recent_min_rtt_window_s = 60;
|
| -
|
| -namespace {
|
| -static const int64 kDefaultRetransmissionTimeMs = 500;
|
| -// TCP RFC calls for 1 second RTO however Linux differs from this default and
|
| -// define the minimum RTO to 200ms, we will use the same until we have data to
|
| -// support a higher or lower value.
|
| -static const int64 kMinRetransmissionTimeMs = 200;
|
| -static const int64 kMaxRetransmissionTimeMs = 60000;
|
| -// Maximum number of exponential backoffs used for RTO timeouts.
|
| -static const size_t kMaxRetransmissions = 10;
|
| -// Maximum number of packets retransmitted upon an RTO.
|
| -static const size_t kMaxRetransmissionsOnTimeout = 2;
|
| -
|
| -// Ensure the handshake timer isnt't faster than 10ms.
|
| -// This limits the tenth retransmitted packet to 10s after the initial CHLO.
|
| -static const int64 kMinHandshakeTimeoutMs = 10;
|
| -
|
| -// Sends up to two tail loss probes before firing an RTO,
|
| -// per draft RFC draft-dukkipati-tcpm-tcp-loss-probe.
|
| -static const size_t kDefaultMaxTailLossProbes = 2;
|
| -static const int64 kMinTailLossProbeTimeoutMs = 10;
|
| -
|
| -// Number of samples before we force a new recent min rtt to be captured.
|
| -static const size_t kNumMinRttSamplesAfterQuiescence = 2;
|
| -
|
| -// Number of unpaced packets to send after quiescence.
|
| -static const size_t kInitialUnpacedBurst = 10;
|
| -
|
| -// Fraction of the receive buffer that can be used for encrypted bytes.
|
| -// Allows a 5% overhead for IP and UDP framing, as well as ack only packets.
|
| -static const float kUsableRecieveBufferFraction = 0.95f;
|
| -
|
| -bool HasCryptoHandshake(const TransmissionInfo& transmission_info) {
|
| - if (transmission_info.retransmittable_frames == nullptr) {
|
| - return false;
|
| - }
|
| - return transmission_info.retransmittable_frames->HasCryptoHandshake() ==
|
| - IS_HANDSHAKE;
|
| -}
|
| -
|
| -} // namespace
|
| -
|
| -#define ENDPOINT (is_server_ ? "Server: " : " Client: ")
|
| -
|
| -QuicSentPacketManager::QuicSentPacketManager(
|
| - bool is_server,
|
| - const QuicClock* clock,
|
| - QuicConnectionStats* stats,
|
| - CongestionControlType congestion_control_type,
|
| - LossDetectionType loss_type,
|
| - bool is_secure)
|
| - : unacked_packets_(),
|
| - is_server_(is_server),
|
| - clock_(clock),
|
| - stats_(stats),
|
| - debug_delegate_(nullptr),
|
| - network_change_visitor_(nullptr),
|
| - initial_congestion_window_(is_secure ? kInitialCongestionWindowSecure
|
| - : kInitialCongestionWindowInsecure),
|
| - send_algorithm_(
|
| - SendAlgorithmInterface::Create(clock,
|
| - &rtt_stats_,
|
| - congestion_control_type,
|
| - stats,
|
| - initial_congestion_window_)),
|
| - loss_algorithm_(LossDetectionInterface::Create(loss_type)),
|
| - n_connection_simulation_(false),
|
| - receive_buffer_bytes_(kDefaultSocketReceiveBuffer),
|
| - least_packet_awaited_by_peer_(1),
|
| - first_rto_transmission_(0),
|
| - consecutive_rto_count_(0),
|
| - consecutive_tlp_count_(0),
|
| - consecutive_crypto_retransmission_count_(0),
|
| - pending_timer_transmission_count_(0),
|
| - max_tail_loss_probes_(kDefaultMaxTailLossProbes),
|
| - using_pacing_(false),
|
| - use_new_rto_(false),
|
| - handshake_confirmed_(false) {
|
| -}
|
| -
|
| -QuicSentPacketManager::~QuicSentPacketManager() {
|
| -}
|
| -
|
| -void QuicSentPacketManager::SetFromConfig(const QuicConfig& config) {
|
| - if (config.HasReceivedInitialRoundTripTimeUs() &&
|
| - config.ReceivedInitialRoundTripTimeUs() > 0) {
|
| - rtt_stats_.set_initial_rtt_us(
|
| - max(kMinInitialRoundTripTimeUs,
|
| - min(kMaxInitialRoundTripTimeUs,
|
| - config.ReceivedInitialRoundTripTimeUs())));
|
| - } else if (config.HasInitialRoundTripTimeUsToSend() &&
|
| - config.GetInitialRoundTripTimeUsToSend() > 0) {
|
| - rtt_stats_.set_initial_rtt_us(
|
| - max(kMinInitialRoundTripTimeUs,
|
| - min(kMaxInitialRoundTripTimeUs,
|
| - config.GetInitialRoundTripTimeUsToSend())));
|
| - }
|
| - // Initial RTT may have changed.
|
| - if (network_change_visitor_ != nullptr) {
|
| - network_change_visitor_->OnRttChange();
|
| - }
|
| - // TODO(ianswett): BBR is currently a server only feature.
|
| - if (FLAGS_quic_allow_bbr &&
|
| - config.HasReceivedConnectionOptions() &&
|
| - ContainsQuicTag(config.ReceivedConnectionOptions(), kTBBR)) {
|
| - if (FLAGS_quic_recent_min_rtt_window_s > 0) {
|
| - rtt_stats_.set_recent_min_rtt_window(
|
| - QuicTime::Delta::FromSeconds(FLAGS_quic_recent_min_rtt_window_s));
|
| - }
|
| - send_algorithm_.reset(SendAlgorithmInterface::Create(
|
| - clock_, &rtt_stats_, kBBR, stats_, initial_congestion_window_));
|
| - }
|
| - if (config.HasReceivedConnectionOptions() &&
|
| - ContainsQuicTag(config.ReceivedConnectionOptions(), kRENO)) {
|
| - send_algorithm_.reset(SendAlgorithmInterface::Create(
|
| - clock_, &rtt_stats_, kReno, stats_, initial_congestion_window_));
|
| - }
|
| - if (HasClientSentConnectionOption(config, kPACE) ||
|
| - FLAGS_quic_enable_pacing ||
|
| - (FLAGS_quic_allow_bbr && HasClientSentConnectionOption(config, kTBBR))) {
|
| - EnablePacing();
|
| - }
|
| - if (HasClientSentConnectionOption(config, k1CON)) {
|
| - send_algorithm_->SetNumEmulatedConnections(1);
|
| - }
|
| - if (HasClientSentConnectionOption(config, kNCON)) {
|
| - n_connection_simulation_ = true;
|
| - }
|
| - if (HasClientSentConnectionOption(config, kNTLP)) {
|
| - max_tail_loss_probes_ = 0;
|
| - }
|
| - if (HasClientSentConnectionOption(config, kNRTO)) {
|
| - use_new_rto_ = true;
|
| - }
|
| - if (config.HasReceivedConnectionOptions() &&
|
| - ContainsQuicTag(config.ReceivedConnectionOptions(), kTIME)) {
|
| - loss_algorithm_.reset(LossDetectionInterface::Create(kTime));
|
| - }
|
| - if (config.HasReceivedSocketReceiveBuffer()) {
|
| - receive_buffer_bytes_ =
|
| - max(kMinSocketReceiveBuffer,
|
| - static_cast<QuicByteCount>(config.ReceivedSocketReceiveBuffer()));
|
| - }
|
| - send_algorithm_->SetFromConfig(config, is_server_, using_pacing_);
|
| -
|
| - if (network_change_visitor_ != nullptr) {
|
| - network_change_visitor_->OnCongestionWindowChange();
|
| - }
|
| -}
|
| -
|
| -bool QuicSentPacketManager::ResumeConnectionState(
|
| - const CachedNetworkParameters& cached_network_params) {
|
| - if (cached_network_params.has_min_rtt_ms()) {
|
| - uint32 initial_rtt_us =
|
| - kNumMicrosPerMilli * cached_network_params.min_rtt_ms();
|
| - rtt_stats_.set_initial_rtt_us(
|
| - max(kMinInitialRoundTripTimeUs,
|
| - min(kMaxInitialRoundTripTimeUs, initial_rtt_us)));
|
| - }
|
| - return send_algorithm_->ResumeConnectionState(cached_network_params);
|
| -}
|
| -
|
| -void QuicSentPacketManager::SetNumOpenStreams(size_t num_streams) {
|
| - if (n_connection_simulation_) {
|
| - // Ensure the number of connections is between 1 and 5.
|
| - send_algorithm_->SetNumEmulatedConnections(
|
| - min<size_t>(5, max<size_t>(1, num_streams)));
|
| - }
|
| -}
|
| -
|
| -bool QuicSentPacketManager::HasClientSentConnectionOption(
|
| - const QuicConfig& config, QuicTag tag) const {
|
| - if (is_server_) {
|
| - if (config.HasReceivedConnectionOptions() &&
|
| - ContainsQuicTag(config.ReceivedConnectionOptions(), tag)) {
|
| - return true;
|
| - }
|
| - } else if (config.HasSendConnectionOptions() &&
|
| - ContainsQuicTag(config.SendConnectionOptions(), tag)) {
|
| - return true;
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -void QuicSentPacketManager::OnIncomingAck(const QuicAckFrame& ack_frame,
|
| - QuicTime ack_receive_time) {
|
| - QuicByteCount bytes_in_flight = unacked_packets_.bytes_in_flight();
|
| -
|
| - UpdatePacketInformationReceivedByPeer(ack_frame);
|
| - bool rtt_updated = MaybeUpdateRTT(ack_frame, ack_receive_time);
|
| - DCHECK_GE(ack_frame.largest_observed, unacked_packets_.largest_observed());
|
| - unacked_packets_.IncreaseLargestObserved(ack_frame.largest_observed);
|
| -
|
| - HandleAckForSentPackets(ack_frame);
|
| - InvokeLossDetection(ack_receive_time);
|
| - // Ignore losses in RTO mode.
|
| - if (FLAGS_quic_use_new_rto && consecutive_rto_count_ > 0 && !use_new_rto_) {
|
| - packets_lost_.clear();
|
| - }
|
| - MaybeInvokeCongestionEvent(rtt_updated, bytes_in_flight);
|
| - unacked_packets_.RemoveObsoletePackets();
|
| -
|
| - sustained_bandwidth_recorder_.RecordEstimate(
|
| - send_algorithm_->InRecovery(),
|
| - send_algorithm_->InSlowStart(),
|
| - send_algorithm_->BandwidthEstimate(),
|
| - ack_receive_time,
|
| - clock_->WallNow(),
|
| - rtt_stats_.smoothed_rtt());
|
| -
|
| - // If we have received a truncated ack, then we need to clear out some
|
| - // previous transmissions to allow the peer to actually ACK new packets.
|
| - if (ack_frame.is_truncated) {
|
| - unacked_packets_.ClearAllPreviousRetransmissions();
|
| - }
|
| -
|
| - // Anytime we are making forward progress and have a new RTT estimate, reset
|
| - // the backoff counters.
|
| - if (rtt_updated) {
|
| - if (FLAGS_quic_use_new_rto && consecutive_rto_count_ > 0) {
|
| - // If the ack acknowledges data sent prior to the RTO,
|
| - // the RTO was spurious.
|
| - if (ack_frame.largest_observed < first_rto_transmission_) {
|
| - // Replace SRTT with latest_rtt and increase the variance to prevent
|
| - // a spurious RTO from happening again.
|
| - rtt_stats_.ExpireSmoothedMetrics();
|
| - } else {
|
| - if (!use_new_rto_) {
|
| - send_algorithm_->OnRetransmissionTimeout(true);
|
| - }
|
| - }
|
| - }
|
| - // Reset all retransmit counters any time a new packet is acked.
|
| - consecutive_rto_count_ = 0;
|
| - consecutive_tlp_count_ = 0;
|
| - consecutive_crypto_retransmission_count_ = 0;
|
| - }
|
| -
|
| - if (debug_delegate_ != nullptr) {
|
| - debug_delegate_->OnIncomingAck(ack_frame, ack_receive_time,
|
| - unacked_packets_.largest_observed(),
|
| - rtt_updated, GetLeastUnacked());
|
| - }
|
| -}
|
| -
|
| -void QuicSentPacketManager::UpdatePacketInformationReceivedByPeer(
|
| - const QuicAckFrame& ack_frame) {
|
| - if (ack_frame.missing_packets.empty()) {
|
| - least_packet_awaited_by_peer_ = ack_frame.largest_observed + 1;
|
| - } else {
|
| - least_packet_awaited_by_peer_ = *(ack_frame.missing_packets.begin());
|
| - }
|
| -}
|
| -
|
| -void QuicSentPacketManager::MaybeInvokeCongestionEvent(
|
| - bool rtt_updated, QuicByteCount bytes_in_flight) {
|
| - if (!rtt_updated && packets_acked_.empty() && packets_lost_.empty()) {
|
| - return;
|
| - }
|
| - send_algorithm_->OnCongestionEvent(rtt_updated, bytes_in_flight,
|
| - packets_acked_, packets_lost_);
|
| - packets_acked_.clear();
|
| - packets_lost_.clear();
|
| - if (network_change_visitor_ != nullptr) {
|
| - network_change_visitor_->OnCongestionWindowChange();
|
| - }
|
| -}
|
| -
|
| -void QuicSentPacketManager::HandleAckForSentPackets(
|
| - const QuicAckFrame& ack_frame) {
|
| - // Go through the packets we have not received an ack for and see if this
|
| - // incoming_ack shows they've been seen by the peer.
|
| - QuicTime::Delta delta_largest_observed =
|
| - ack_frame.delta_time_largest_observed;
|
| - QuicPacketSequenceNumber sequence_number = unacked_packets_.GetLeastUnacked();
|
| - for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin();
|
| - it != unacked_packets_.end(); ++it, ++sequence_number) {
|
| - if (sequence_number > ack_frame.largest_observed) {
|
| - // These packets are still in flight.
|
| - break;
|
| - }
|
| -
|
| - if (ContainsKey(ack_frame.missing_packets, sequence_number)) {
|
| - // Don't continue to increase the nack count for packets not in flight.
|
| - if (!it->in_flight) {
|
| - continue;
|
| - }
|
| - // Consider it multiple nacks when there is a gap between the missing
|
| - // packet and the largest observed, since the purpose of a nack
|
| - // threshold is to tolerate re-ordering. This handles both StretchAcks
|
| - // and Forward Acks.
|
| - // The nack count only increases when the largest observed increases.
|
| - QuicPacketCount min_nacks = ack_frame.largest_observed - sequence_number;
|
| - // Truncated acks can nack the largest observed, so use a min of 1.
|
| - if (min_nacks == 0) {
|
| - min_nacks = 1;
|
| - }
|
| - unacked_packets_.NackPacket(sequence_number, min_nacks);
|
| - continue;
|
| - }
|
| - // Packet was acked, so remove it from our unacked packet list.
|
| - DVLOG(1) << ENDPOINT << "Got an ack for packet " << sequence_number;
|
| - // If data is associated with the most recent transmission of this
|
| - // packet, then inform the caller.
|
| - if (it->in_flight) {
|
| - packets_acked_.push_back(std::make_pair(sequence_number, *it));
|
| - }
|
| - MarkPacketHandled(sequence_number, *it, delta_largest_observed);
|
| - }
|
| -
|
| - // Discard any retransmittable frames associated with revived packets.
|
| - for (SequenceNumberSet::const_iterator revived_it =
|
| - ack_frame.revived_packets.begin();
|
| - revived_it != ack_frame.revived_packets.end(); ++revived_it) {
|
| - MarkPacketRevived(*revived_it, delta_largest_observed);
|
| - }
|
| -}
|
| -
|
| -bool QuicSentPacketManager::HasRetransmittableFrames(
|
| - QuicPacketSequenceNumber sequence_number) const {
|
| - return unacked_packets_.HasRetransmittableFrames(sequence_number);
|
| -}
|
| -
|
| -void QuicSentPacketManager::RetransmitUnackedPackets(
|
| - TransmissionType retransmission_type) {
|
| - DCHECK(retransmission_type == ALL_UNACKED_RETRANSMISSION ||
|
| - retransmission_type == ALL_INITIAL_RETRANSMISSION);
|
| - QuicPacketSequenceNumber sequence_number = unacked_packets_.GetLeastUnacked();
|
| - for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin();
|
| - it != unacked_packets_.end(); ++it, ++sequence_number) {
|
| - const RetransmittableFrames* frames = it->retransmittable_frames;
|
| - if (frames != nullptr &&
|
| - (retransmission_type == ALL_UNACKED_RETRANSMISSION ||
|
| - frames->encryption_level() == ENCRYPTION_INITIAL)) {
|
| - MarkForRetransmission(sequence_number, retransmission_type);
|
| - } else if (it->is_fec_packet) {
|
| - // Remove FEC packets from the packet map, since we can't retransmit them.
|
| - unacked_packets_.RemoveFromInFlight(sequence_number);
|
| - }
|
| - }
|
| -}
|
| -
|
| -void QuicSentPacketManager::NeuterUnencryptedPackets() {
|
| - QuicPacketSequenceNumber sequence_number = unacked_packets_.GetLeastUnacked();
|
| - for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin();
|
| - it != unacked_packets_.end(); ++it, ++sequence_number) {
|
| - const RetransmittableFrames* frames = it->retransmittable_frames;
|
| - if (frames != nullptr && frames->encryption_level() == ENCRYPTION_NONE) {
|
| - // Once you're forward secure, no unencrypted packets will be sent, crypto
|
| - // or otherwise. Unencrypted packets are neutered and abandoned, to ensure
|
| - // they are not retransmitted or considered lost from a congestion control
|
| - // perspective.
|
| - pending_retransmissions_.erase(sequence_number);
|
| - unacked_packets_.RemoveFromInFlight(sequence_number);
|
| - unacked_packets_.RemoveRetransmittability(sequence_number);
|
| - }
|
| - }
|
| -}
|
| -
|
| -void QuicSentPacketManager::MarkForRetransmission(
|
| - QuicPacketSequenceNumber sequence_number,
|
| - TransmissionType transmission_type) {
|
| - const TransmissionInfo& transmission_info =
|
| - unacked_packets_.GetTransmissionInfo(sequence_number);
|
| - LOG_IF(DFATAL, transmission_info.retransmittable_frames == nullptr);
|
| - // Both TLP and the new RTO leave the packets in flight and let the loss
|
| - // detection decide if packets are lost.
|
| - if (transmission_type != TLP_RETRANSMISSION &&
|
| - (!FLAGS_quic_use_new_rto || transmission_type != RTO_RETRANSMISSION)) {
|
| - unacked_packets_.RemoveFromInFlight(sequence_number);
|
| - }
|
| - // TODO(ianswett): Currently the RTO can fire while there are pending NACK
|
| - // retransmissions for the same data, which is not ideal.
|
| - if (ContainsKey(pending_retransmissions_, sequence_number)) {
|
| - return;
|
| - }
|
| -
|
| - pending_retransmissions_[sequence_number] = transmission_type;
|
| -}
|
| -
|
| -void QuicSentPacketManager::RecordSpuriousRetransmissions(
|
| - const SequenceNumberList& all_transmissions,
|
| - QuicPacketSequenceNumber acked_sequence_number) {
|
| - if (!FLAGS_quic_use_new_rto &&
|
| - acked_sequence_number < first_rto_transmission_) {
|
| - // Cancel all pending RTO transmissions and restore their in flight status.
|
| - // Replace SRTT with latest_rtt and increase the variance to prevent
|
| - // a spurious RTO from happening again.
|
| - rtt_stats_.ExpireSmoothedMetrics();
|
| - for (PendingRetransmissionMap::const_iterator it =
|
| - pending_retransmissions_.begin();
|
| - it != pending_retransmissions_.end(); ++it) {
|
| - DCHECK_EQ(it->second, RTO_RETRANSMISSION);
|
| - unacked_packets_.RestoreInFlight(it->first);
|
| - }
|
| - pending_retransmissions_.clear();
|
| - send_algorithm_->RevertRetransmissionTimeout();
|
| - first_rto_transmission_ = 0;
|
| - ++stats_->spurious_rto_count;
|
| - }
|
| - for (SequenceNumberList::const_reverse_iterator it =
|
| - all_transmissions.rbegin();
|
| - it != all_transmissions.rend() && *it > acked_sequence_number; ++it) {
|
| - const TransmissionInfo& retransmit_info =
|
| - unacked_packets_.GetTransmissionInfo(*it);
|
| -
|
| - stats_->bytes_spuriously_retransmitted += retransmit_info.bytes_sent;
|
| - ++stats_->packets_spuriously_retransmitted;
|
| - if (debug_delegate_ != nullptr) {
|
| - debug_delegate_->OnSpuriousPacketRetransmission(
|
| - retransmit_info.transmission_type, retransmit_info.bytes_sent);
|
| - }
|
| - }
|
| -}
|
| -
|
| -bool QuicSentPacketManager::HasPendingRetransmissions() const {
|
| - return !pending_retransmissions_.empty();
|
| -}
|
| -
|
| -QuicSentPacketManager::PendingRetransmission
|
| - QuicSentPacketManager::NextPendingRetransmission() {
|
| - LOG_IF(DFATAL, pending_retransmissions_.empty())
|
| - << "Unexpected call to PendingRetransmissions() with empty pending "
|
| - << "retransmission list. Corrupted memory usage imminent.";
|
| - QuicPacketSequenceNumber sequence_number =
|
| - pending_retransmissions_.begin()->first;
|
| - TransmissionType transmission_type = pending_retransmissions_.begin()->second;
|
| - if (unacked_packets_.HasPendingCryptoPackets()) {
|
| - // Ensure crypto packets are retransmitted before other packets.
|
| - PendingRetransmissionMap::const_iterator it =
|
| - pending_retransmissions_.begin();
|
| - do {
|
| - if (HasCryptoHandshake(unacked_packets_.GetTransmissionInfo(it->first))) {
|
| - sequence_number = it->first;
|
| - transmission_type = it->second;
|
| - break;
|
| - }
|
| - ++it;
|
| - } while (it != pending_retransmissions_.end());
|
| - }
|
| - DCHECK(unacked_packets_.IsUnacked(sequence_number)) << sequence_number;
|
| - const TransmissionInfo& transmission_info =
|
| - unacked_packets_.GetTransmissionInfo(sequence_number);
|
| - DCHECK(transmission_info.retransmittable_frames);
|
| -
|
| - return PendingRetransmission(sequence_number,
|
| - transmission_type,
|
| - *transmission_info.retransmittable_frames,
|
| - transmission_info.sequence_number_length);
|
| -}
|
| -
|
| -void QuicSentPacketManager::MarkPacketRevived(
|
| - QuicPacketSequenceNumber sequence_number,
|
| - QuicTime::Delta delta_largest_observed) {
|
| - if (!unacked_packets_.IsUnacked(sequence_number)) {
|
| - return;
|
| - }
|
| -
|
| - const TransmissionInfo& transmission_info =
|
| - unacked_packets_.GetTransmissionInfo(sequence_number);
|
| - QuicPacketSequenceNumber newest_transmission =
|
| - transmission_info.all_transmissions == nullptr
|
| - ? sequence_number
|
| - : *transmission_info.all_transmissions->rbegin();
|
| - // This packet has been revived at the receiver. If we were going to
|
| - // retransmit it, do not retransmit it anymore.
|
| - pending_retransmissions_.erase(newest_transmission);
|
| -
|
| - // The AckNotifierManager needs to be notified for revived packets,
|
| - // since it indicates the packet arrived from the appliction's perspective.
|
| - if (FLAGS_quic_attach_ack_notifiers_to_packets ||
|
| - transmission_info.retransmittable_frames) {
|
| - ack_notifier_manager_.OnPacketAcked(newest_transmission,
|
| - delta_largest_observed);
|
| - }
|
| -
|
| - unacked_packets_.RemoveRetransmittability(sequence_number);
|
| -}
|
| -
|
| -void QuicSentPacketManager::MarkPacketHandled(
|
| - QuicPacketSequenceNumber sequence_number,
|
| - const TransmissionInfo& info,
|
| - QuicTime::Delta delta_largest_observed) {
|
| - QuicPacketSequenceNumber newest_transmission =
|
| - info.all_transmissions == nullptr ?
|
| - sequence_number : *info.all_transmissions->rbegin();
|
| - // Remove the most recent packet, if it is pending retransmission.
|
| - pending_retransmissions_.erase(newest_transmission);
|
| -
|
| - // The AckNotifierManager needs to be notified about the most recent
|
| - // transmission, since that's the one only one it tracks.
|
| - ack_notifier_manager_.OnPacketAcked(newest_transmission,
|
| - delta_largest_observed);
|
| - if (newest_transmission != sequence_number) {
|
| - RecordSpuriousRetransmissions(*info.all_transmissions, sequence_number);
|
| - // Remove the most recent packet from flight if it's a crypto handshake
|
| - // packet, since they won't be acked now that one has been processed.
|
| - // Other crypto handshake packets won't be in flight, only the newest
|
| - // transmission of a crypto packet is in flight at once.
|
| - // TODO(ianswett): Instead of handling all crypto packets special,
|
| - // only handle nullptr encrypted packets in a special way.
|
| - if (HasCryptoHandshake(
|
| - unacked_packets_.GetTransmissionInfo(newest_transmission))) {
|
| - unacked_packets_.RemoveFromInFlight(newest_transmission);
|
| - }
|
| - }
|
| -
|
| - unacked_packets_.RemoveFromInFlight(sequence_number);
|
| - unacked_packets_.RemoveRetransmittability(sequence_number);
|
| -}
|
| -
|
| -bool QuicSentPacketManager::IsUnacked(
|
| - QuicPacketSequenceNumber sequence_number) const {
|
| - return unacked_packets_.IsUnacked(sequence_number);
|
| -}
|
| -
|
| -bool QuicSentPacketManager::HasUnackedPackets() const {
|
| - return unacked_packets_.HasUnackedPackets();
|
| -}
|
| -
|
| -QuicPacketSequenceNumber
|
| -QuicSentPacketManager::GetLeastUnacked() const {
|
| - return unacked_packets_.GetLeastUnacked();
|
| -}
|
| -
|
| -bool QuicSentPacketManager::OnPacketSent(
|
| - SerializedPacket* serialized_packet,
|
| - QuicPacketSequenceNumber original_sequence_number,
|
| - QuicTime sent_time,
|
| - QuicByteCount bytes,
|
| - TransmissionType transmission_type,
|
| - HasRetransmittableData has_retransmittable_data) {
|
| - QuicPacketSequenceNumber sequence_number = serialized_packet->sequence_number;
|
| - DCHECK_LT(0u, sequence_number);
|
| - DCHECK(!unacked_packets_.IsUnacked(sequence_number));
|
| - LOG_IF(DFATAL, bytes == 0) << "Cannot send empty packets.";
|
| -
|
| - if (original_sequence_number != 0) {
|
| - PendingRetransmissionMap::iterator it =
|
| - pending_retransmissions_.find(original_sequence_number);
|
| - if (it != pending_retransmissions_.end()) {
|
| - pending_retransmissions_.erase(it);
|
| - } else {
|
| - DLOG(DFATAL) << "Expected sequence number to be in "
|
| - << "pending_retransmissions_. sequence_number: "
|
| - << original_sequence_number;
|
| - }
|
| - // Inform the ack notifier of retransmissions so it can calculate the
|
| - // retransmit rate.
|
| - ack_notifier_manager_.OnPacketRetransmitted(original_sequence_number,
|
| - sequence_number, bytes);
|
| - }
|
| -
|
| - if (pending_timer_transmission_count_ > 0) {
|
| - --pending_timer_transmission_count_;
|
| - }
|
| -
|
| - if (unacked_packets_.bytes_in_flight() == 0) {
|
| - // TODO(ianswett): Consider being less aggressive to force a new
|
| - // recent_min_rtt, likely by not discarding a relatively new sample.
|
| - DVLOG(1) << "Sampling a new recent min rtt within 2 samples. currently:"
|
| - << rtt_stats_.recent_min_rtt().ToMilliseconds() << "ms";
|
| - rtt_stats_.SampleNewRecentMinRtt(kNumMinRttSamplesAfterQuiescence);
|
| - }
|
| -
|
| - // Only track packets as in flight that the send algorithm wants us to track.
|
| - // Since FEC packets should also be counted towards the congestion window,
|
| - // consider them as retransmittable for the purposes of congestion control.
|
| - HasRetransmittableData has_congestion_controlled_data =
|
| - serialized_packet->is_fec_packet ? HAS_RETRANSMITTABLE_DATA
|
| - : has_retransmittable_data;
|
| - const bool in_flight =
|
| - send_algorithm_->OnPacketSent(sent_time,
|
| - unacked_packets_.bytes_in_flight(),
|
| - sequence_number,
|
| - bytes,
|
| - has_congestion_controlled_data);
|
| -
|
| - unacked_packets_.AddSentPacket(*serialized_packet,
|
| - original_sequence_number,
|
| - transmission_type,
|
| - sent_time,
|
| - bytes,
|
| - in_flight);
|
| -
|
| - // Take ownership of the retransmittable frames before exiting.
|
| - serialized_packet->retransmittable_frames = nullptr;
|
| - // Reset the retransmission timer anytime a pending packet is sent.
|
| - return in_flight;
|
| -}
|
| -
|
| -void QuicSentPacketManager::OnRetransmissionTimeout() {
|
| - DCHECK(unacked_packets_.HasInFlightPackets());
|
| - DCHECK_EQ(0u, pending_timer_transmission_count_);
|
| - // Handshake retransmission, timer based loss detection, TLP, and RTO are
|
| - // implemented with a single alarm. The handshake alarm is set when the
|
| - // handshake has not completed, the loss alarm is set when the loss detection
|
| - // algorithm says to, and the TLP and RTO alarms are set after that.
|
| - // The TLP alarm is always set to run for under an RTO.
|
| - switch (GetRetransmissionMode()) {
|
| - case HANDSHAKE_MODE:
|
| - ++stats_->crypto_retransmit_count;
|
| - RetransmitCryptoPackets();
|
| - return;
|
| - case LOSS_MODE: {
|
| - ++stats_->loss_timeout_count;
|
| - QuicByteCount bytes_in_flight = unacked_packets_.bytes_in_flight();
|
| - InvokeLossDetection(clock_->Now());
|
| - MaybeInvokeCongestionEvent(false, bytes_in_flight);
|
| - return;
|
| - }
|
| - case TLP_MODE:
|
| - // If no tail loss probe can be sent, because there are no retransmittable
|
| - // packets, execute a conventional RTO to abandon old packets.
|
| - ++stats_->tlp_count;
|
| - ++consecutive_tlp_count_;
|
| - pending_timer_transmission_count_ = 1;
|
| - // TLPs prefer sending new data instead of retransmitting data, so
|
| - // give the connection a chance to write before completing the TLP.
|
| - return;
|
| - case RTO_MODE:
|
| - ++stats_->rto_count;
|
| - if (FLAGS_quic_use_new_rto) {
|
| - RetransmitRtoPackets();
|
| - } else {
|
| - RetransmitAllPackets();
|
| - }
|
| - return;
|
| - }
|
| -}
|
| -
|
| -void QuicSentPacketManager::RetransmitCryptoPackets() {
|
| - DCHECK_EQ(HANDSHAKE_MODE, GetRetransmissionMode());
|
| - ++consecutive_crypto_retransmission_count_;
|
| - bool packet_retransmitted = false;
|
| - QuicPacketSequenceNumber sequence_number = unacked_packets_.GetLeastUnacked();
|
| - for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin();
|
| - it != unacked_packets_.end(); ++it, ++sequence_number) {
|
| - // Only retransmit frames which are in flight, and therefore have been sent.
|
| - if (!it->in_flight || it->retransmittable_frames == nullptr ||
|
| - it->retransmittable_frames->HasCryptoHandshake() != IS_HANDSHAKE) {
|
| - continue;
|
| - }
|
| - packet_retransmitted = true;
|
| - MarkForRetransmission(sequence_number, HANDSHAKE_RETRANSMISSION);
|
| - ++pending_timer_transmission_count_;
|
| - }
|
| - DCHECK(packet_retransmitted) << "No crypto packets found to retransmit.";
|
| -}
|
| -
|
| -bool QuicSentPacketManager::MaybeRetransmitTailLossProbe() {
|
| - if (pending_timer_transmission_count_ == 0) {
|
| - return false;
|
| - }
|
| - QuicPacketSequenceNumber sequence_number = unacked_packets_.GetLeastUnacked();
|
| - for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin();
|
| - it != unacked_packets_.end(); ++it, ++sequence_number) {
|
| - // Only retransmit frames which are in flight, and therefore have been sent.
|
| - if (!it->in_flight || it->retransmittable_frames == nullptr) {
|
| - continue;
|
| - }
|
| - if (!handshake_confirmed_) {
|
| - DCHECK_NE(IS_HANDSHAKE, it->retransmittable_frames->HasCryptoHandshake());
|
| - }
|
| - MarkForRetransmission(sequence_number, TLP_RETRANSMISSION);
|
| - return true;
|
| - }
|
| - DLOG(FATAL)
|
| - << "No retransmittable packets, so RetransmitOldestPacket failed.";
|
| - return false;
|
| -}
|
| -
|
| -void QuicSentPacketManager::RetransmitRtoPackets() {
|
| - LOG_IF(DFATAL, pending_timer_transmission_count_ > 0)
|
| - << "Retransmissions already queued:" << pending_timer_transmission_count_;
|
| - // Mark two packets for retransmission.
|
| - QuicPacketSequenceNumber sequence_number = unacked_packets_.GetLeastUnacked();
|
| - for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin();
|
| - it != unacked_packets_.end(); ++it, ++sequence_number) {
|
| - if (it->retransmittable_frames != nullptr &&
|
| - pending_timer_transmission_count_ < kMaxRetransmissionsOnTimeout) {
|
| - MarkForRetransmission(sequence_number, RTO_RETRANSMISSION);
|
| - ++pending_timer_transmission_count_;
|
| - }
|
| - // Abandon non-retransmittable data that's in flight to ensure it doesn't
|
| - // fill up the congestion window.
|
| - if (it->retransmittable_frames == nullptr && it->in_flight &&
|
| - it->all_transmissions == nullptr) {
|
| - unacked_packets_.RemoveFromInFlight(sequence_number);
|
| - }
|
| - }
|
| - if (pending_timer_transmission_count_ > 0) {
|
| - if (consecutive_rto_count_ == 0) {
|
| - first_rto_transmission_ = unacked_packets_.largest_sent_packet() + 1;
|
| - }
|
| - ++consecutive_rto_count_;
|
| - }
|
| -}
|
| -
|
| -void QuicSentPacketManager::RetransmitAllPackets() {
|
| - DVLOG(1) << "RetransmitAllPackets() called with "
|
| - << unacked_packets_.GetNumUnackedPacketsDebugOnly()
|
| - << " unacked packets.";
|
| - // Request retransmission of all retransmittable packets when the RTO
|
| - // fires, and let the congestion manager decide how many to send
|
| - // immediately and the remaining packets will be queued.
|
| - // Abandon any non-retransmittable packets that are sufficiently old.
|
| - bool packets_retransmitted = false;
|
| - QuicPacketSequenceNumber sequence_number = unacked_packets_.GetLeastUnacked();
|
| - for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin();
|
| - it != unacked_packets_.end(); ++it, ++sequence_number) {
|
| - if (it->retransmittable_frames != nullptr) {
|
| - packets_retransmitted = true;
|
| - MarkForRetransmission(sequence_number, RTO_RETRANSMISSION);
|
| - } else {
|
| - unacked_packets_.RemoveFromInFlight(sequence_number);
|
| - }
|
| - }
|
| -
|
| - send_algorithm_->OnRetransmissionTimeout(packets_retransmitted);
|
| - if (packets_retransmitted) {
|
| - if (consecutive_rto_count_ == 0) {
|
| - first_rto_transmission_ = unacked_packets_.largest_sent_packet() + 1;
|
| - }
|
| - ++consecutive_rto_count_;
|
| - }
|
| -
|
| - if (network_change_visitor_ != nullptr) {
|
| - network_change_visitor_->OnCongestionWindowChange();
|
| - }
|
| -}
|
| -
|
| -QuicSentPacketManager::RetransmissionTimeoutMode
|
| - QuicSentPacketManager::GetRetransmissionMode() const {
|
| - DCHECK(unacked_packets_.HasInFlightPackets());
|
| - if (!handshake_confirmed_ && unacked_packets_.HasPendingCryptoPackets()) {
|
| - return HANDSHAKE_MODE;
|
| - }
|
| - if (loss_algorithm_->GetLossTimeout() != QuicTime::Zero()) {
|
| - return LOSS_MODE;
|
| - }
|
| - if (consecutive_tlp_count_ < max_tail_loss_probes_) {
|
| - if (unacked_packets_.HasUnackedRetransmittableFrames()) {
|
| - return TLP_MODE;
|
| - }
|
| - }
|
| - return RTO_MODE;
|
| -}
|
| -
|
| -void QuicSentPacketManager::InvokeLossDetection(QuicTime time) {
|
| - SequenceNumberSet lost_packets =
|
| - loss_algorithm_->DetectLostPackets(unacked_packets_,
|
| - time,
|
| - unacked_packets_.largest_observed(),
|
| - rtt_stats_);
|
| - for (SequenceNumberSet::const_iterator it = lost_packets.begin();
|
| - it != lost_packets.end(); ++it) {
|
| - QuicPacketSequenceNumber sequence_number = *it;
|
| - const TransmissionInfo& transmission_info =
|
| - unacked_packets_.GetTransmissionInfo(sequence_number);
|
| - // TODO(ianswett): If it's expected the FEC packet may repair the loss, it
|
| - // should be recorded as a loss to the send algorithm, but not retransmitted
|
| - // until it's known whether the FEC packet arrived.
|
| - ++stats_->packets_lost;
|
| - packets_lost_.push_back(std::make_pair(sequence_number, transmission_info));
|
| - DVLOG(1) << ENDPOINT << "Lost packet " << sequence_number;
|
| -
|
| - if (transmission_info.retransmittable_frames != nullptr) {
|
| - MarkForRetransmission(sequence_number, LOSS_RETRANSMISSION);
|
| - } else {
|
| - // Since we will not retransmit this, we need to remove it from
|
| - // unacked_packets_. This is either the current transmission of
|
| - // a packet whose previous transmission has been acked, a packet that has
|
| - // been TLP retransmitted, or an FEC packet.
|
| - unacked_packets_.RemoveFromInFlight(sequence_number);
|
| - }
|
| - }
|
| -}
|
| -
|
| -bool QuicSentPacketManager::MaybeUpdateRTT(
|
| - const QuicAckFrame& ack_frame,
|
| - const QuicTime& ack_receive_time) {
|
| - // We rely on delta_time_largest_observed to compute an RTT estimate, so we
|
| - // only update rtt when the largest observed gets acked.
|
| - // NOTE: If ack is a truncated ack, then the largest observed is in fact
|
| - // unacked, and may cause an RTT sample to be taken.
|
| - if (!unacked_packets_.IsUnacked(ack_frame.largest_observed)) {
|
| - return false;
|
| - }
|
| - // We calculate the RTT based on the highest ACKed sequence number, the lower
|
| - // sequence numbers will include the ACK aggregation delay.
|
| - const TransmissionInfo& transmission_info =
|
| - unacked_packets_.GetTransmissionInfo(ack_frame.largest_observed);
|
| - // Ensure the packet has a valid sent time.
|
| - if (transmission_info.sent_time == QuicTime::Zero()) {
|
| - LOG(DFATAL) << "Acked packet has zero sent time, largest_observed:"
|
| - << ack_frame.largest_observed;
|
| - return false;
|
| - }
|
| -
|
| - QuicTime::Delta send_delta =
|
| - ack_receive_time.Subtract(transmission_info.sent_time);
|
| - rtt_stats_.UpdateRtt(
|
| - send_delta, ack_frame.delta_time_largest_observed, ack_receive_time);
|
| -
|
| - if (network_change_visitor_ != nullptr) {
|
| - network_change_visitor_->OnRttChange();
|
| - }
|
| -
|
| - return true;
|
| -}
|
| -
|
| -QuicTime::Delta QuicSentPacketManager::TimeUntilSend(
|
| - QuicTime now,
|
| - HasRetransmittableData retransmittable) {
|
| - // The TLP logic is entirely contained within QuicSentPacketManager, so the
|
| - // send algorithm does not need to be consulted.
|
| - if (pending_timer_transmission_count_ > 0) {
|
| - return QuicTime::Delta::Zero();
|
| - }
|
| - if (unacked_packets_.bytes_in_flight() >=
|
| - kUsableRecieveBufferFraction * receive_buffer_bytes_) {
|
| - return QuicTime::Delta::Infinite();
|
| - }
|
| - return send_algorithm_->TimeUntilSend(
|
| - now, unacked_packets_.bytes_in_flight(), retransmittable);
|
| -}
|
| -
|
| -// Uses a 25ms delayed ack timer. Also helps with better signaling
|
| -// in low-bandwidth (< ~384 kbps), where an ack is sent per packet.
|
| -// Ensures that the Delayed Ack timer is always set to a value lesser
|
| -// than the retransmission timer's minimum value (MinRTO). We want the
|
| -// delayed ack to get back to the QUIC peer before the sender's
|
| -// retransmission timer triggers. Since we do not know the
|
| -// reverse-path one-way delay, we assume equal delays for forward and
|
| -// reverse paths, and ensure that the timer is set to less than half
|
| -// of the MinRTO.
|
| -// There may be a value in making this delay adaptive with the help of
|
| -// the sender and a signaling mechanism -- if the sender uses a
|
| -// different MinRTO, we may get spurious retransmissions. May not have
|
| -// any benefits, but if the delayed ack becomes a significant source
|
| -// of (likely, tail) latency, then consider such a mechanism.
|
| -const QuicTime::Delta QuicSentPacketManager::DelayedAckTime() const {
|
| - return QuicTime::Delta::FromMilliseconds(min(kMaxDelayedAckTimeMs,
|
| - kMinRetransmissionTimeMs / 2));
|
| -}
|
| -
|
| -const QuicTime QuicSentPacketManager::GetRetransmissionTime() const {
|
| - // Don't set the timer if there are no packets in flight or we've already
|
| - // queued a tlp transmission and it hasn't been sent yet.
|
| - if (!unacked_packets_.HasInFlightPackets() ||
|
| - pending_timer_transmission_count_ > 0) {
|
| - return QuicTime::Zero();
|
| - }
|
| - switch (GetRetransmissionMode()) {
|
| - case HANDSHAKE_MODE:
|
| - return clock_->ApproximateNow().Add(GetCryptoRetransmissionDelay());
|
| - case LOSS_MODE:
|
| - return loss_algorithm_->GetLossTimeout();
|
| - case TLP_MODE: {
|
| - // TODO(ianswett): When CWND is available, it would be preferable to
|
| - // set the timer based on the earliest retransmittable packet.
|
| - // Base the updated timer on the send time of the last packet.
|
| - const QuicTime sent_time = unacked_packets_.GetLastPacketSentTime();
|
| - const QuicTime tlp_time = sent_time.Add(GetTailLossProbeDelay());
|
| - // Ensure the TLP timer never gets set to a time in the past.
|
| - return QuicTime::Max(clock_->ApproximateNow(), tlp_time);
|
| - }
|
| - case RTO_MODE: {
|
| - // The RTO is based on the first outstanding packet.
|
| - const QuicTime sent_time =
|
| - FLAGS_quic_rto_uses_last_sent
|
| - ? unacked_packets_.GetLastPacketSentTime()
|
| - : unacked_packets_.GetFirstInFlightPacketSentTime();
|
| - QuicTime rto_time = sent_time.Add(GetRetransmissionDelay());
|
| - // Wait for TLP packets to be acked before an RTO fires.
|
| - QuicTime tlp_time =
|
| - unacked_packets_.GetLastPacketSentTime().Add(GetTailLossProbeDelay());
|
| - return QuicTime::Max(tlp_time, rto_time);
|
| - }
|
| - }
|
| - DCHECK(false);
|
| - return QuicTime::Zero();
|
| -}
|
| -
|
| -const QuicTime::Delta QuicSentPacketManager::GetCryptoRetransmissionDelay()
|
| - const {
|
| - // This is equivalent to the TailLossProbeDelay, but slightly more aggressive
|
| - // because crypto handshake messages don't incur a delayed ack time.
|
| - QuicTime::Delta srtt = rtt_stats_.smoothed_rtt();
|
| - if (srtt.IsZero()) {
|
| - srtt = QuicTime::Delta::FromMicroseconds(rtt_stats_.initial_rtt_us());
|
| - }
|
| - int64 delay_ms = max(kMinHandshakeTimeoutMs,
|
| - static_cast<int64>(1.5 * srtt.ToMilliseconds()));
|
| - return QuicTime::Delta::FromMilliseconds(
|
| - delay_ms << consecutive_crypto_retransmission_count_);
|
| -}
|
| -
|
| -const QuicTime::Delta QuicSentPacketManager::GetTailLossProbeDelay() const {
|
| - QuicTime::Delta srtt = rtt_stats_.smoothed_rtt();
|
| - if (srtt.IsZero()) {
|
| - srtt = QuicTime::Delta::FromMicroseconds(rtt_stats_.initial_rtt_us());
|
| - }
|
| - if (!unacked_packets_.HasMultipleInFlightPackets()) {
|
| - return QuicTime::Delta::Max(
|
| - srtt.Multiply(2), srtt.Multiply(1.5).Add(
|
| - QuicTime::Delta::FromMilliseconds(kMinRetransmissionTimeMs / 2)));
|
| - }
|
| - return QuicTime::Delta::FromMilliseconds(
|
| - max(kMinTailLossProbeTimeoutMs,
|
| - static_cast<int64>(2 * srtt.ToMilliseconds())));
|
| -}
|
| -
|
| -const QuicTime::Delta QuicSentPacketManager::GetRetransmissionDelay() const {
|
| - QuicTime::Delta retransmission_delay = send_algorithm_->RetransmissionDelay();
|
| - // TODO(rch): This code should move to |send_algorithm_|.
|
| - if (retransmission_delay.IsZero()) {
|
| - // We are in the initial state, use default timeout values.
|
| - retransmission_delay =
|
| - QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs);
|
| - } else if (retransmission_delay.ToMilliseconds() < kMinRetransmissionTimeMs) {
|
| - retransmission_delay =
|
| - QuicTime::Delta::FromMilliseconds(kMinRetransmissionTimeMs);
|
| - }
|
| -
|
| - // Calculate exponential back off.
|
| - retransmission_delay = retransmission_delay.Multiply(
|
| - 1 << min<size_t>(consecutive_rto_count_, kMaxRetransmissions));
|
| -
|
| - if (retransmission_delay.ToMilliseconds() > kMaxRetransmissionTimeMs) {
|
| - return QuicTime::Delta::FromMilliseconds(kMaxRetransmissionTimeMs);
|
| - }
|
| - return retransmission_delay;
|
| -}
|
| -
|
| -const RttStats* QuicSentPacketManager::GetRttStats() const {
|
| - return &rtt_stats_;
|
| -}
|
| -
|
| -QuicBandwidth QuicSentPacketManager::BandwidthEstimate() const {
|
| - // TODO(ianswett): Remove BandwidthEstimate from SendAlgorithmInterface
|
| - // and implement the logic here.
|
| - return send_algorithm_->BandwidthEstimate();
|
| -}
|
| -
|
| -bool QuicSentPacketManager::HasReliableBandwidthEstimate() const {
|
| - return send_algorithm_->HasReliableBandwidthEstimate();
|
| -}
|
| -
|
| -const QuicSustainedBandwidthRecorder&
|
| -QuicSentPacketManager::SustainedBandwidthRecorder() const {
|
| - return sustained_bandwidth_recorder_;
|
| -}
|
| -
|
| -QuicPacketCount QuicSentPacketManager::EstimateMaxPacketsInFlight(
|
| - QuicByteCount max_packet_length) const {
|
| - return send_algorithm_->GetCongestionWindow() / max_packet_length;
|
| -}
|
| -
|
| -QuicPacketCount QuicSentPacketManager::GetCongestionWindowInTcpMss() const {
|
| - return send_algorithm_->GetCongestionWindow() / kDefaultTCPMSS;
|
| -}
|
| -
|
| -QuicPacketCount QuicSentPacketManager::GetSlowStartThresholdInTcpMss() const {
|
| - return send_algorithm_->GetSlowStartThreshold() / kDefaultTCPMSS;
|
| -}
|
| -
|
| -void QuicSentPacketManager::OnSerializedPacket(
|
| - const SerializedPacket& serialized_packet) {
|
| - ack_notifier_manager_.OnSerializedPacket(serialized_packet);
|
| -}
|
| -
|
| -void QuicSentPacketManager::EnablePacing() {
|
| - if (using_pacing_) {
|
| - return;
|
| - }
|
| -
|
| - // Set up a pacing sender with a 1 millisecond alarm granularity, the same as
|
| - // the default granularity of the Linux kernel's FQ qdisc.
|
| - using_pacing_ = true;
|
| - send_algorithm_.reset(
|
| - new PacingSender(send_algorithm_.release(),
|
| - QuicTime::Delta::FromMilliseconds(1),
|
| - kInitialUnpacedBurst));
|
| -}
|
| -
|
| -} // namespace net
|
|
|