OLD | NEW |
| (Empty) |
1 // Copyright 2013 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "net/websockets/websocket_frame.h" | |
6 | |
7 #include <algorithm> | |
8 #include <vector> | |
9 | |
10 #include "base/basictypes.h" | |
11 #include "base/memory/aligned_memory.h" | |
12 #include "net/base/net_errors.h" | |
13 #include "testing/gtest/include/gtest/gtest.h" | |
14 | |
15 namespace net { | |
16 | |
17 namespace { | |
18 | |
19 TEST(WebSocketFrameHeaderTest, FrameLengths) { | |
20 struct TestCase { | |
21 const char* frame_header; | |
22 size_t frame_header_length; | |
23 uint64 frame_length; | |
24 }; | |
25 static const TestCase kTests[] = { | |
26 { "\x81\x00", 2, GG_UINT64_C(0) }, | |
27 { "\x81\x7D", 2, GG_UINT64_C(125) }, | |
28 { "\x81\x7E\x00\x7E", 4, GG_UINT64_C(126) }, | |
29 { "\x81\x7E\xFF\xFF", 4, GG_UINT64_C(0xFFFF) }, | |
30 { "\x81\x7F\x00\x00\x00\x00\x00\x01\x00\x00", 10, GG_UINT64_C(0x10000) }, | |
31 { "\x81\x7F\x7F\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 10, | |
32 GG_UINT64_C(0x7FFFFFFFFFFFFFFF) } | |
33 }; | |
34 static const int kNumTests = arraysize(kTests); | |
35 | |
36 for (int i = 0; i < kNumTests; ++i) { | |
37 WebSocketFrameHeader header(WebSocketFrameHeader::kOpCodeText); | |
38 header.final = true; | |
39 header.payload_length = kTests[i].frame_length; | |
40 | |
41 std::vector<char> expected_output( | |
42 kTests[i].frame_header, | |
43 kTests[i].frame_header + kTests[i].frame_header_length); | |
44 std::vector<char> output(expected_output.size()); | |
45 EXPECT_EQ(static_cast<int>(expected_output.size()), | |
46 WriteWebSocketFrameHeader( | |
47 header, NULL, &output.front(), output.size())); | |
48 EXPECT_EQ(expected_output, output); | |
49 } | |
50 } | |
51 | |
52 TEST(WebSocketFrameHeaderTest, FrameLengthsWithMasking) { | |
53 static const char kMaskingKey[] = "\xDE\xAD\xBE\xEF"; | |
54 static_assert( | |
55 arraysize(kMaskingKey) - 1 == WebSocketFrameHeader::kMaskingKeyLength, | |
56 "incorrect masking key size"); | |
57 | |
58 struct TestCase { | |
59 const char* frame_header; | |
60 size_t frame_header_length; | |
61 uint64 frame_length; | |
62 }; | |
63 static const TestCase kTests[] = { | |
64 { "\x81\x80\xDE\xAD\xBE\xEF", 6, GG_UINT64_C(0) }, | |
65 { "\x81\xFD\xDE\xAD\xBE\xEF", 6, GG_UINT64_C(125) }, | |
66 { "\x81\xFE\x00\x7E\xDE\xAD\xBE\xEF", 8, GG_UINT64_C(126) }, | |
67 { "\x81\xFE\xFF\xFF\xDE\xAD\xBE\xEF", 8, GG_UINT64_C(0xFFFF) }, | |
68 { "\x81\xFF\x00\x00\x00\x00\x00\x01\x00\x00\xDE\xAD\xBE\xEF", 14, | |
69 GG_UINT64_C(0x10000) }, | |
70 { "\x81\xFF\x7F\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xDE\xAD\xBE\xEF", 14, | |
71 GG_UINT64_C(0x7FFFFFFFFFFFFFFF) } | |
72 }; | |
73 static const int kNumTests = arraysize(kTests); | |
74 | |
75 WebSocketMaskingKey masking_key; | |
76 std::copy(kMaskingKey, | |
77 kMaskingKey + WebSocketFrameHeader::kMaskingKeyLength, | |
78 masking_key.key); | |
79 | |
80 for (int i = 0; i < kNumTests; ++i) { | |
81 WebSocketFrameHeader header(WebSocketFrameHeader::kOpCodeText); | |
82 header.final = true; | |
83 header.masked = true; | |
84 header.payload_length = kTests[i].frame_length; | |
85 | |
86 std::vector<char> expected_output( | |
87 kTests[i].frame_header, | |
88 kTests[i].frame_header + kTests[i].frame_header_length); | |
89 std::vector<char> output(expected_output.size()); | |
90 EXPECT_EQ(static_cast<int>(expected_output.size()), | |
91 WriteWebSocketFrameHeader( | |
92 header, &masking_key, &output.front(), output.size())); | |
93 EXPECT_EQ(expected_output, output); | |
94 } | |
95 } | |
96 | |
97 TEST(WebSocketFrameHeaderTest, FrameOpCodes) { | |
98 struct TestCase { | |
99 const char* frame_header; | |
100 size_t frame_header_length; | |
101 WebSocketFrameHeader::OpCode opcode; | |
102 }; | |
103 static const TestCase kTests[] = { | |
104 { "\x80\x00", 2, WebSocketFrameHeader::kOpCodeContinuation }, | |
105 { "\x81\x00", 2, WebSocketFrameHeader::kOpCodeText }, | |
106 { "\x82\x00", 2, WebSocketFrameHeader::kOpCodeBinary }, | |
107 { "\x88\x00", 2, WebSocketFrameHeader::kOpCodeClose }, | |
108 { "\x89\x00", 2, WebSocketFrameHeader::kOpCodePing }, | |
109 { "\x8A\x00", 2, WebSocketFrameHeader::kOpCodePong }, | |
110 // These are undefined opcodes, but the builder should accept them anyway. | |
111 { "\x83\x00", 2, 0x3 }, | |
112 { "\x84\x00", 2, 0x4 }, | |
113 { "\x85\x00", 2, 0x5 }, | |
114 { "\x86\x00", 2, 0x6 }, | |
115 { "\x87\x00", 2, 0x7 }, | |
116 { "\x8B\x00", 2, 0xB }, | |
117 { "\x8C\x00", 2, 0xC }, | |
118 { "\x8D\x00", 2, 0xD }, | |
119 { "\x8E\x00", 2, 0xE }, | |
120 { "\x8F\x00", 2, 0xF } | |
121 }; | |
122 static const int kNumTests = arraysize(kTests); | |
123 | |
124 for (int i = 0; i < kNumTests; ++i) { | |
125 WebSocketFrameHeader header(kTests[i].opcode); | |
126 header.final = true; | |
127 header.payload_length = 0; | |
128 | |
129 std::vector<char> expected_output( | |
130 kTests[i].frame_header, | |
131 kTests[i].frame_header + kTests[i].frame_header_length); | |
132 std::vector<char> output(expected_output.size()); | |
133 EXPECT_EQ(static_cast<int>(expected_output.size()), | |
134 WriteWebSocketFrameHeader( | |
135 header, NULL, &output.front(), output.size())); | |
136 EXPECT_EQ(expected_output, output); | |
137 } | |
138 } | |
139 | |
140 TEST(WebSocketFrameHeaderTest, FinalBitAndReservedBits) { | |
141 struct TestCase { | |
142 const char* frame_header; | |
143 size_t frame_header_length; | |
144 bool final; | |
145 bool reserved1; | |
146 bool reserved2; | |
147 bool reserved3; | |
148 }; | |
149 static const TestCase kTests[] = { | |
150 { "\x81\x00", 2, true, false, false, false }, | |
151 { "\x01\x00", 2, false, false, false, false }, | |
152 { "\xC1\x00", 2, true, true, false, false }, | |
153 { "\xA1\x00", 2, true, false, true, false }, | |
154 { "\x91\x00", 2, true, false, false, true }, | |
155 { "\x71\x00", 2, false, true, true, true }, | |
156 { "\xF1\x00", 2, true, true, true, true } | |
157 }; | |
158 static const int kNumTests = arraysize(kTests); | |
159 | |
160 for (int i = 0; i < kNumTests; ++i) { | |
161 WebSocketFrameHeader header(WebSocketFrameHeader::kOpCodeText); | |
162 header.final = kTests[i].final; | |
163 header.reserved1 = kTests[i].reserved1; | |
164 header.reserved2 = kTests[i].reserved2; | |
165 header.reserved3 = kTests[i].reserved3; | |
166 header.payload_length = 0; | |
167 | |
168 std::vector<char> expected_output( | |
169 kTests[i].frame_header, | |
170 kTests[i].frame_header + kTests[i].frame_header_length); | |
171 std::vector<char> output(expected_output.size()); | |
172 EXPECT_EQ(static_cast<int>(expected_output.size()), | |
173 WriteWebSocketFrameHeader( | |
174 header, NULL, &output.front(), output.size())); | |
175 EXPECT_EQ(expected_output, output); | |
176 } | |
177 } | |
178 | |
179 TEST(WebSocketFrameHeaderTest, InsufficientBufferSize) { | |
180 struct TestCase { | |
181 uint64 payload_length; | |
182 bool masked; | |
183 size_t expected_header_size; | |
184 }; | |
185 static const TestCase kTests[] = { | |
186 { GG_UINT64_C(0), false, 2u }, | |
187 { GG_UINT64_C(125), false, 2u }, | |
188 { GG_UINT64_C(126), false, 4u }, | |
189 { GG_UINT64_C(0xFFFF), false, 4u }, | |
190 { GG_UINT64_C(0x10000), false, 10u }, | |
191 { GG_UINT64_C(0x7FFFFFFFFFFFFFFF), false, 10u }, | |
192 { GG_UINT64_C(0), true, 6u }, | |
193 { GG_UINT64_C(125), true, 6u }, | |
194 { GG_UINT64_C(126), true, 8u }, | |
195 { GG_UINT64_C(0xFFFF), true, 8u }, | |
196 { GG_UINT64_C(0x10000), true, 14u }, | |
197 { GG_UINT64_C(0x7FFFFFFFFFFFFFFF), true, 14u } | |
198 }; | |
199 static const int kNumTests = arraysize(kTests); | |
200 | |
201 for (int i = 0; i < kNumTests; ++i) { | |
202 WebSocketFrameHeader header(WebSocketFrameHeader::kOpCodeText); | |
203 header.final = true; | |
204 header.opcode = WebSocketFrameHeader::kOpCodeText; | |
205 header.masked = kTests[i].masked; | |
206 header.payload_length = kTests[i].payload_length; | |
207 | |
208 char dummy_buffer[14]; | |
209 // Set an insufficient size to |buffer_size|. | |
210 EXPECT_EQ( | |
211 ERR_INVALID_ARGUMENT, | |
212 WriteWebSocketFrameHeader( | |
213 header, NULL, dummy_buffer, kTests[i].expected_header_size - 1)); | |
214 } | |
215 } | |
216 | |
217 TEST(WebSocketFrameTest, MaskPayload) { | |
218 struct TestCase { | |
219 const char* masking_key; | |
220 uint64 frame_offset; | |
221 const char* input; | |
222 const char* output; | |
223 size_t data_length; | |
224 }; | |
225 static const TestCase kTests[] = { | |
226 { "\xDE\xAD\xBE\xEF", 0, "FooBar", "\x98\xC2\xD1\xAD\xBF\xDF", 6 }, | |
227 { "\xDE\xAD\xBE\xEF", 1, "FooBar", "\xEB\xD1\x80\x9C\xCC\xCC", 6 }, | |
228 { "\xDE\xAD\xBE\xEF", 2, "FooBar", "\xF8\x80\xB1\xEF\xDF\x9D", 6 }, | |
229 { "\xDE\xAD\xBE\xEF", 3, "FooBar", "\xA9\xB1\xC2\xFC\x8E\xAC", 6 }, | |
230 { "\xDE\xAD\xBE\xEF", 4, "FooBar", "\x98\xC2\xD1\xAD\xBF\xDF", 6 }, | |
231 { "\xDE\xAD\xBE\xEF", 42, "FooBar", "\xF8\x80\xB1\xEF\xDF\x9D", 6 }, | |
232 { "\xDE\xAD\xBE\xEF", 0, "", "", 0 }, | |
233 { "\xDE\xAD\xBE\xEF", 0, "\xDE\xAD\xBE\xEF", "\x00\x00\x00\x00", 4 }, | |
234 { "\xDE\xAD\xBE\xEF", 0, "\x00\x00\x00\x00", "\xDE\xAD\xBE\xEF", 4 }, | |
235 { "\x00\x00\x00\x00", 0, "FooBar", "FooBar", 6 }, | |
236 { "\xFF\xFF\xFF\xFF", 0, "FooBar", "\xB9\x90\x90\xBD\x9E\x8D", 6 }, | |
237 }; | |
238 static const int kNumTests = arraysize(kTests); | |
239 | |
240 for (int i = 0; i < kNumTests; ++i) { | |
241 WebSocketMaskingKey masking_key; | |
242 std::copy(kTests[i].masking_key, | |
243 kTests[i].masking_key + WebSocketFrameHeader::kMaskingKeyLength, | |
244 masking_key.key); | |
245 std::vector<char> frame_data(kTests[i].input, | |
246 kTests[i].input + kTests[i].data_length); | |
247 std::vector<char> expected_output(kTests[i].output, | |
248 kTests[i].output + kTests[i].data_length); | |
249 MaskWebSocketFramePayload(masking_key, | |
250 kTests[i].frame_offset, | |
251 frame_data.empty() ? NULL : &frame_data.front(), | |
252 frame_data.size()); | |
253 EXPECT_EQ(expected_output, frame_data); | |
254 } | |
255 } | |
256 | |
257 // Check that all combinations of alignment, frame offset and chunk size work | |
258 // correctly for MaskWebSocketFramePayload(). This is mainly used to ensure that | |
259 // vectorisation optimisations don't break anything. We could take a "white box" | |
260 // approach and only test the edge cases, but since the exhaustive "black box" | |
261 // approach runs in acceptable time, we don't have to take the risk of being | |
262 // clever. | |
263 // | |
264 // This brute-force approach runs in O(N^3) time where N is the size of the | |
265 // maximum vector size we want to test again. This might need reconsidering if | |
266 // MaskWebSocketFramePayload() is ever optimised for a dedicated vector | |
267 // architecture. | |
268 TEST(WebSocketFrameTest, MaskPayloadAlignment) { | |
269 // This reflects what might be implemented in the future, rather than | |
270 // the current implementation. FMA3 and FMA4 support 256-bit vector ops. | |
271 static const size_t kMaxVectorSizeInBits = 256; | |
272 static const size_t kMaxVectorSize = kMaxVectorSizeInBits / 8; | |
273 static const size_t kMaxVectorAlignment = kMaxVectorSize; | |
274 static const size_t kMaskingKeyLength = | |
275 WebSocketFrameHeader::kMaskingKeyLength; | |
276 static const size_t kScratchBufferSize = | |
277 kMaxVectorAlignment + kMaxVectorSize * 2; | |
278 static const char kTestMask[] = "\xd2\xba\x5a\xbe"; | |
279 // We use 786 bits of random input to reduce the risk of correlated errors. | |
280 static const char kTestInput[] = { | |
281 "\x3d\x77\x1d\x1b\x19\x8c\x48\xa3\x19\x6d\xf7\xcc\x39\xe7\x57\x0b" | |
282 "\x69\x8c\xda\x4b\xfc\xac\x2c\xd3\x49\x96\x6e\x8a\x7b\x5a\x32\x76" | |
283 "\xd0\x11\x43\xa0\x89\xfc\x76\x2b\x10\x2f\x4c\x7b\x4f\xa6\xdd\xe4" | |
284 "\xfc\x8e\xd8\x72\xcf\x7e\x37\xcd\x31\xcd\xc1\xc0\x89\x0c\xa7\x4c" | |
285 "\xda\xa8\x4b\x75\xa1\xcb\xa9\x77\x19\x4d\x6e\xdf\xc8\x08\x1c\xb6" | |
286 "\x6d\xfb\x38\x04\x44\xd5\xba\x57\x9f\x76\xb0\x2e\x07\x91\xe6\xa8" | |
287 }; | |
288 static const size_t kTestInputSize = arraysize(kTestInput) - 1; | |
289 static const char kTestOutput[] = { | |
290 "\xef\xcd\x47\xa5\xcb\x36\x12\x1d\xcb\xd7\xad\x72\xeb\x5d\x0d\xb5" | |
291 "\xbb\x36\x80\xf5\x2e\x16\x76\x6d\x9b\x2c\x34\x34\xa9\xe0\x68\xc8" | |
292 "\x02\xab\x19\x1e\x5b\x46\x2c\x95\xc2\x95\x16\xc5\x9d\x1c\x87\x5a" | |
293 "\x2e\x34\x82\xcc\x1d\xc4\x6d\x73\xe3\x77\x9b\x7e\x5b\xb6\xfd\xf2" | |
294 "\x08\x12\x11\xcb\x73\x71\xf3\xc9\xcb\xf7\x34\x61\x1a\xb2\x46\x08" | |
295 "\xbf\x41\x62\xba\x96\x6f\xe0\xe9\x4d\xcc\xea\x90\xd5\x2b\xbc\x16" | |
296 }; | |
297 static_assert(arraysize(kTestInput) == arraysize(kTestOutput), | |
298 "output and input arrays should have the same length"); | |
299 scoped_ptr<char, base::AlignedFreeDeleter> scratch( | |
300 static_cast<char*>( | |
301 base::AlignedAlloc(kScratchBufferSize, kMaxVectorAlignment))); | |
302 WebSocketMaskingKey masking_key; | |
303 std::copy(kTestMask, kTestMask + kMaskingKeyLength, masking_key.key); | |
304 for (size_t frame_offset = 0; frame_offset < kMaskingKeyLength; | |
305 ++frame_offset) { | |
306 for (size_t alignment = 0; alignment < kMaxVectorAlignment; ++alignment) { | |
307 char* const aligned_scratch = scratch.get() + alignment; | |
308 const size_t aligned_len = std::min(kScratchBufferSize - alignment, | |
309 kTestInputSize - frame_offset); | |
310 for (size_t chunk_size = 1; chunk_size < kMaxVectorSize; ++chunk_size) { | |
311 memcpy(aligned_scratch, kTestInput + frame_offset, aligned_len); | |
312 for (size_t chunk_start = 0; chunk_start < aligned_len; | |
313 chunk_start += chunk_size) { | |
314 const size_t this_chunk_size = | |
315 std::min(chunk_size, aligned_len - chunk_start); | |
316 MaskWebSocketFramePayload(masking_key, | |
317 frame_offset + chunk_start, | |
318 aligned_scratch + chunk_start, | |
319 this_chunk_size); | |
320 } | |
321 // Stop the test if it fails, since we don't want to spew thousands of | |
322 // failures. | |
323 ASSERT_TRUE(std::equal(aligned_scratch, | |
324 aligned_scratch + aligned_len, | |
325 kTestOutput + frame_offset)) | |
326 << "Output failed to match for frame_offset=" << frame_offset | |
327 << ", alignment=" << alignment << ", chunk_size=" << chunk_size; | |
328 } | |
329 } | |
330 } | |
331 } | |
332 | |
333 // "IsKnownDataOpCode" is currently implemented in an "obviously correct" | |
334 // manner, but we test is anyway in case it changes to a more complex | |
335 // implementation in future. | |
336 TEST(WebSocketFrameHeaderTest, IsKnownDataOpCode) { | |
337 // Make the test less verbose. | |
338 typedef WebSocketFrameHeader Frame; | |
339 | |
340 // Known opcode, is used for data frames | |
341 EXPECT_TRUE(Frame::IsKnownDataOpCode(Frame::kOpCodeContinuation)); | |
342 EXPECT_TRUE(Frame::IsKnownDataOpCode(Frame::kOpCodeText)); | |
343 EXPECT_TRUE(Frame::IsKnownDataOpCode(Frame::kOpCodeBinary)); | |
344 | |
345 // Known opcode, is used for control frames | |
346 EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodeClose)); | |
347 EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodePing)); | |
348 EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodePong)); | |
349 | |
350 // Check that unused opcodes return false | |
351 EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodeDataUnused)); | |
352 EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodeControlUnused)); | |
353 | |
354 // Check that opcodes with the 4 bit set return false | |
355 EXPECT_FALSE(Frame::IsKnownDataOpCode(0x6)); | |
356 EXPECT_FALSE(Frame::IsKnownDataOpCode(0xF)); | |
357 | |
358 // Check that out-of-range opcodes return false | |
359 EXPECT_FALSE(Frame::IsKnownDataOpCode(-1)); | |
360 EXPECT_FALSE(Frame::IsKnownDataOpCode(0xFF)); | |
361 } | |
362 | |
363 // "IsKnownControlOpCode" is implemented in an "obviously correct" manner but | |
364 // might be optimised in future. | |
365 TEST(WebSocketFrameHeaderTest, IsKnownControlOpCode) { | |
366 // Make the test less verbose. | |
367 typedef WebSocketFrameHeader Frame; | |
368 | |
369 // Known opcode, is used for data frames | |
370 EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeContinuation)); | |
371 EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeText)); | |
372 EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeBinary)); | |
373 | |
374 // Known opcode, is used for control frames | |
375 EXPECT_TRUE(Frame::IsKnownControlOpCode(Frame::kOpCodeClose)); | |
376 EXPECT_TRUE(Frame::IsKnownControlOpCode(Frame::kOpCodePing)); | |
377 EXPECT_TRUE(Frame::IsKnownControlOpCode(Frame::kOpCodePong)); | |
378 | |
379 // Check that unused opcodes return false | |
380 EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeDataUnused)); | |
381 EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeControlUnused)); | |
382 | |
383 // Check that opcodes with the 4 bit set return false | |
384 EXPECT_FALSE(Frame::IsKnownControlOpCode(0x6)); | |
385 EXPECT_FALSE(Frame::IsKnownControlOpCode(0xF)); | |
386 | |
387 // Check that out-of-range opcodes return false | |
388 EXPECT_FALSE(Frame::IsKnownControlOpCode(-1)); | |
389 EXPECT_FALSE(Frame::IsKnownControlOpCode(0xFF)); | |
390 } | |
391 | |
392 } // namespace | |
393 | |
394 } // namespace net | |
OLD | NEW |