OLD | NEW |
| (Empty) |
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "net/quic/congestion_control/cubic.h" | |
6 | |
7 #include <algorithm> | |
8 #include <cmath> | |
9 | |
10 #include "base/basictypes.h" | |
11 #include "base/logging.h" | |
12 #include "base/time/time.h" | |
13 #include "net/quic/quic_flags.h" | |
14 #include "net/quic/quic_protocol.h" | |
15 | |
16 using std::max; | |
17 | |
18 namespace net { | |
19 | |
20 namespace { | |
21 | |
22 // Constants based on TCP defaults. | |
23 // The following constants are in 2^10 fractions of a second instead of ms to | |
24 // allow a 10 shift right to divide. | |
25 const int kCubeScale = 40; // 1024*1024^3 (first 1024 is from 0.100^3) | |
26 // where 0.100 is 100 ms which is the scaling | |
27 // round trip time. | |
28 const int kCubeCongestionWindowScale = 410; | |
29 const uint64 kCubeFactor = (GG_UINT64_C(1) << kCubeScale) / | |
30 kCubeCongestionWindowScale; | |
31 | |
32 const uint32 kDefaultNumConnections = 2; | |
33 const float kBeta = 0.7f; // Default Cubic backoff factor. | |
34 // Additional backoff factor when loss occurs in the concave part of the Cubic | |
35 // curve. This additional backoff factor is expected to give up bandwidth to | |
36 // new concurrent flows and speed up convergence. | |
37 const float kBetaLastMax = 0.85f; | |
38 | |
39 } // namespace | |
40 | |
41 Cubic::Cubic(const QuicClock* clock, QuicConnectionStats* stats) | |
42 : clock_(clock), | |
43 num_connections_(kDefaultNumConnections), | |
44 epoch_(QuicTime::Zero()), | |
45 last_update_time_(QuicTime::Zero()), | |
46 stats_(stats) { | |
47 Reset(); | |
48 } | |
49 | |
50 void Cubic::SetNumConnections(int num_connections) { | |
51 num_connections_ = num_connections; | |
52 } | |
53 | |
54 float Cubic::Alpha() const { | |
55 // TCPFriendly alpha is described in Section 3.3 of the CUBIC paper. Note that | |
56 // beta here is a cwnd multiplier, and is equal to 1-beta from the paper. | |
57 // We derive the equivalent alpha for an N-connection emulation as: | |
58 const float beta = Beta(); | |
59 return 3 * num_connections_ * num_connections_ * (1 - beta) / (1 + beta); | |
60 } | |
61 | |
62 float Cubic::Beta() const { | |
63 // kNConnectionBeta is the backoff factor after loss for our N-connection | |
64 // emulation, which emulates the effective backoff of an ensemble of N | |
65 // TCP-Reno connections on a single loss event. The effective multiplier is | |
66 // computed as: | |
67 return (num_connections_ - 1 + kBeta) / num_connections_; | |
68 } | |
69 | |
70 void Cubic::Reset() { | |
71 epoch_ = QuicTime::Zero(); // Reset time. | |
72 last_update_time_ = QuicTime::Zero(); // Reset time. | |
73 last_congestion_window_ = 0; | |
74 last_max_congestion_window_ = 0; | |
75 acked_packets_count_ = 0; | |
76 estimated_tcp_congestion_window_ = 0; | |
77 origin_point_congestion_window_ = 0; | |
78 time_to_origin_point_ = 0; | |
79 last_target_congestion_window_ = 0; | |
80 } | |
81 | |
82 void Cubic::UpdateCongestionControlStats(QuicPacketCount new_cubic_mode_cwnd, | |
83 QuicPacketCount new_reno_mode_cwnd) { | |
84 QuicPacketCount highest_new_cwnd = max(new_cubic_mode_cwnd, | |
85 new_reno_mode_cwnd); | |
86 if (last_congestion_window_ < highest_new_cwnd) { | |
87 // cwnd will increase to highest_new_cwnd. | |
88 stats_->cwnd_increase_congestion_avoidance += | |
89 highest_new_cwnd - last_congestion_window_; | |
90 if (new_cubic_mode_cwnd > new_reno_mode_cwnd) { | |
91 // This cwnd increase is due to cubic mode. | |
92 stats_->cwnd_increase_cubic_mode += | |
93 new_cubic_mode_cwnd - last_congestion_window_; | |
94 } | |
95 } | |
96 } | |
97 | |
98 QuicPacketCount Cubic::CongestionWindowAfterPacketLoss( | |
99 QuicPacketCount current_congestion_window) { | |
100 if (current_congestion_window < last_max_congestion_window_) { | |
101 // We never reached the old max, so assume we are competing with another | |
102 // flow. Use our extra back off factor to allow the other flow to go up. | |
103 last_max_congestion_window_ = | |
104 static_cast<int>(kBetaLastMax * current_congestion_window); | |
105 } else { | |
106 last_max_congestion_window_ = current_congestion_window; | |
107 } | |
108 epoch_ = QuicTime::Zero(); // Reset time. | |
109 return static_cast<int>(current_congestion_window * Beta()); | |
110 } | |
111 | |
112 QuicPacketCount Cubic::CongestionWindowAfterAck( | |
113 QuicPacketCount current_congestion_window, | |
114 QuicTime::Delta delay_min) { | |
115 acked_packets_count_ += 1; // Packets acked. | |
116 QuicTime current_time = clock_->ApproximateNow(); | |
117 | |
118 // Cubic is "independent" of RTT, the update is limited by the time elapsed. | |
119 if (last_congestion_window_ == current_congestion_window && | |
120 (current_time.Subtract(last_update_time_) <= MaxCubicTimeInterval())) { | |
121 return max(last_target_congestion_window_, | |
122 estimated_tcp_congestion_window_); | |
123 } | |
124 last_congestion_window_ = current_congestion_window; | |
125 last_update_time_ = current_time; | |
126 | |
127 if (!epoch_.IsInitialized()) { | |
128 // First ACK after a loss event. | |
129 DVLOG(1) << "Start of epoch"; | |
130 epoch_ = current_time; // Start of epoch. | |
131 acked_packets_count_ = 1; // Reset count. | |
132 // Reset estimated_tcp_congestion_window_ to be in sync with cubic. | |
133 estimated_tcp_congestion_window_ = current_congestion_window; | |
134 if (last_max_congestion_window_ <= current_congestion_window) { | |
135 time_to_origin_point_ = 0; | |
136 origin_point_congestion_window_ = current_congestion_window; | |
137 } else { | |
138 time_to_origin_point_ = | |
139 static_cast<uint32>(cbrt(kCubeFactor * (last_max_congestion_window_ - | |
140 current_congestion_window))); | |
141 origin_point_congestion_window_ = | |
142 last_max_congestion_window_; | |
143 } | |
144 } | |
145 // Change the time unit from microseconds to 2^10 fractions per second. Take | |
146 // the round trip time in account. This is done to allow us to use shift as a | |
147 // divide operator. | |
148 int64 elapsed_time = | |
149 (current_time.Add(delay_min).Subtract(epoch_).ToMicroseconds() << 10) / | |
150 base::Time::kMicrosecondsPerSecond; | |
151 | |
152 int64 offset = time_to_origin_point_ - elapsed_time; | |
153 QuicPacketCount delta_congestion_window = (kCubeCongestionWindowScale | |
154 * offset * offset * offset) >> kCubeScale; | |
155 | |
156 QuicPacketCount target_congestion_window = | |
157 origin_point_congestion_window_ - delta_congestion_window; | |
158 | |
159 DCHECK_LT(0u, estimated_tcp_congestion_window_); | |
160 // With dynamic beta/alpha based on number of active streams, it is possible | |
161 // for the required_ack_count to become much lower than acked_packets_count_ | |
162 // suddenly, leading to more than one iteration through the following loop. | |
163 while (true) { | |
164 // Update estimated TCP congestion_window. | |
165 QuicPacketCount required_ack_count = static_cast<QuicPacketCount>( | |
166 estimated_tcp_congestion_window_ / Alpha()); | |
167 if (acked_packets_count_ < required_ack_count) { | |
168 break; | |
169 } | |
170 acked_packets_count_ -= required_ack_count; | |
171 estimated_tcp_congestion_window_++; | |
172 } | |
173 | |
174 // Update cubic mode and reno mode stats in QuicConnectionStats. | |
175 UpdateCongestionControlStats(target_congestion_window, | |
176 estimated_tcp_congestion_window_); | |
177 | |
178 // We have a new cubic congestion window. | |
179 last_target_congestion_window_ = target_congestion_window; | |
180 | |
181 // Compute target congestion_window based on cubic target and estimated TCP | |
182 // congestion_window, use highest (fastest). | |
183 if (target_congestion_window < estimated_tcp_congestion_window_) { | |
184 target_congestion_window = estimated_tcp_congestion_window_; | |
185 } | |
186 | |
187 DVLOG(1) << "Target congestion_window: " << target_congestion_window; | |
188 return target_congestion_window; | |
189 } | |
190 | |
191 } // namespace net | |
OLD | NEW |