OLD | NEW |
| (Empty) |
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "base/basictypes.h" | |
6 #include "base/bind.h" | |
7 #include "base/bind_helpers.h" | |
8 #include "base/files/file.h" | |
9 #include "base/files/file_util.h" | |
10 #include "base/strings/string_util.h" | |
11 #include "base/strings/stringprintf.h" | |
12 #include "base/threading/platform_thread.h" | |
13 #include "net/base/completion_callback.h" | |
14 #include "net/base/io_buffer.h" | |
15 #include "net/base/net_errors.h" | |
16 #include "net/base/test_completion_callback.h" | |
17 #include "net/disk_cache/blockfile/backend_impl.h" | |
18 #include "net/disk_cache/blockfile/entry_impl.h" | |
19 #include "net/disk_cache/disk_cache_test_base.h" | |
20 #include "net/disk_cache/disk_cache_test_util.h" | |
21 #include "net/disk_cache/memory/mem_entry_impl.h" | |
22 #include "net/disk_cache/simple/simple_entry_format.h" | |
23 #include "net/disk_cache/simple/simple_entry_impl.h" | |
24 #include "net/disk_cache/simple/simple_synchronous_entry.h" | |
25 #include "net/disk_cache/simple/simple_test_util.h" | |
26 #include "net/disk_cache/simple/simple_util.h" | |
27 #include "testing/gtest/include/gtest/gtest.h" | |
28 | |
29 using base::Time; | |
30 using disk_cache::ScopedEntryPtr; | |
31 | |
32 // Tests that can run with different types of caches. | |
33 class DiskCacheEntryTest : public DiskCacheTestWithCache { | |
34 public: | |
35 void InternalSyncIOBackground(disk_cache::Entry* entry); | |
36 void ExternalSyncIOBackground(disk_cache::Entry* entry); | |
37 | |
38 protected: | |
39 void InternalSyncIO(); | |
40 void InternalAsyncIO(); | |
41 void ExternalSyncIO(); | |
42 void ExternalAsyncIO(); | |
43 void ReleaseBuffer(int stream_index); | |
44 void StreamAccess(); | |
45 void GetKey(); | |
46 void GetTimes(int stream_index); | |
47 void GrowData(int stream_index); | |
48 void TruncateData(int stream_index); | |
49 void ZeroLengthIO(int stream_index); | |
50 void Buffering(); | |
51 void SizeAtCreate(); | |
52 void SizeChanges(int stream_index); | |
53 void ReuseEntry(int size, int stream_index); | |
54 void InvalidData(int stream_index); | |
55 void ReadWriteDestroyBuffer(int stream_index); | |
56 void DoomNormalEntry(); | |
57 void DoomEntryNextToOpenEntry(); | |
58 void DoomedEntry(int stream_index); | |
59 void BasicSparseIO(); | |
60 void HugeSparseIO(); | |
61 void GetAvailableRange(); | |
62 void CouldBeSparse(); | |
63 void UpdateSparseEntry(); | |
64 void DoomSparseEntry(); | |
65 void PartialSparseEntry(); | |
66 bool SimpleCacheMakeBadChecksumEntry(const std::string& key, int* data_size); | |
67 bool SimpleCacheThirdStreamFileExists(const char* key); | |
68 void SyncDoomEntry(const char* key); | |
69 }; | |
70 | |
71 // This part of the test runs on the background thread. | |
72 void DiskCacheEntryTest::InternalSyncIOBackground(disk_cache::Entry* entry) { | |
73 const int kSize1 = 10; | |
74 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1)); | |
75 CacheTestFillBuffer(buffer1->data(), kSize1, false); | |
76 EXPECT_EQ( | |
77 0, | |
78 entry->ReadData(0, 0, buffer1.get(), kSize1, net::CompletionCallback())); | |
79 base::strlcpy(buffer1->data(), "the data", kSize1); | |
80 EXPECT_EQ(10, | |
81 entry->WriteData( | |
82 0, 0, buffer1.get(), kSize1, net::CompletionCallback(), false)); | |
83 memset(buffer1->data(), 0, kSize1); | |
84 EXPECT_EQ( | |
85 10, | |
86 entry->ReadData(0, 0, buffer1.get(), kSize1, net::CompletionCallback())); | |
87 EXPECT_STREQ("the data", buffer1->data()); | |
88 | |
89 const int kSize2 = 5000; | |
90 const int kSize3 = 10000; | |
91 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2)); | |
92 scoped_refptr<net::IOBuffer> buffer3(new net::IOBuffer(kSize3)); | |
93 memset(buffer3->data(), 0, kSize3); | |
94 CacheTestFillBuffer(buffer2->data(), kSize2, false); | |
95 base::strlcpy(buffer2->data(), "The really big data goes here", kSize2); | |
96 EXPECT_EQ( | |
97 5000, | |
98 entry->WriteData( | |
99 1, 1500, buffer2.get(), kSize2, net::CompletionCallback(), false)); | |
100 memset(buffer2->data(), 0, kSize2); | |
101 EXPECT_EQ(4989, | |
102 entry->ReadData( | |
103 1, 1511, buffer2.get(), kSize2, net::CompletionCallback())); | |
104 EXPECT_STREQ("big data goes here", buffer2->data()); | |
105 EXPECT_EQ( | |
106 5000, | |
107 entry->ReadData(1, 0, buffer2.get(), kSize2, net::CompletionCallback())); | |
108 EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 1500)); | |
109 EXPECT_EQ(1500, | |
110 entry->ReadData( | |
111 1, 5000, buffer2.get(), kSize2, net::CompletionCallback())); | |
112 | |
113 EXPECT_EQ(0, | |
114 entry->ReadData( | |
115 1, 6500, buffer2.get(), kSize2, net::CompletionCallback())); | |
116 EXPECT_EQ( | |
117 6500, | |
118 entry->ReadData(1, 0, buffer3.get(), kSize3, net::CompletionCallback())); | |
119 EXPECT_EQ(8192, | |
120 entry->WriteData( | |
121 1, 0, buffer3.get(), 8192, net::CompletionCallback(), false)); | |
122 EXPECT_EQ( | |
123 8192, | |
124 entry->ReadData(1, 0, buffer3.get(), kSize3, net::CompletionCallback())); | |
125 EXPECT_EQ(8192, entry->GetDataSize(1)); | |
126 | |
127 // We need to delete the memory buffer on this thread. | |
128 EXPECT_EQ(0, entry->WriteData( | |
129 0, 0, NULL, 0, net::CompletionCallback(), true)); | |
130 EXPECT_EQ(0, entry->WriteData( | |
131 1, 0, NULL, 0, net::CompletionCallback(), true)); | |
132 } | |
133 | |
134 // We need to support synchronous IO even though it is not a supported operation | |
135 // from the point of view of the disk cache's public interface, because we use | |
136 // it internally, not just by a few tests, but as part of the implementation | |
137 // (see sparse_control.cc, for example). | |
138 void DiskCacheEntryTest::InternalSyncIO() { | |
139 disk_cache::Entry* entry = NULL; | |
140 ASSERT_EQ(net::OK, CreateEntry("the first key", &entry)); | |
141 ASSERT_TRUE(NULL != entry); | |
142 | |
143 // The bulk of the test runs from within the callback, on the cache thread. | |
144 RunTaskForTest(base::Bind(&DiskCacheEntryTest::InternalSyncIOBackground, | |
145 base::Unretained(this), | |
146 entry)); | |
147 | |
148 | |
149 entry->Doom(); | |
150 entry->Close(); | |
151 FlushQueueForTest(); | |
152 EXPECT_EQ(0, cache_->GetEntryCount()); | |
153 } | |
154 | |
155 TEST_F(DiskCacheEntryTest, InternalSyncIO) { | |
156 InitCache(); | |
157 InternalSyncIO(); | |
158 } | |
159 | |
160 TEST_F(DiskCacheEntryTest, MemoryOnlyInternalSyncIO) { | |
161 SetMemoryOnlyMode(); | |
162 InitCache(); | |
163 InternalSyncIO(); | |
164 } | |
165 | |
166 void DiskCacheEntryTest::InternalAsyncIO() { | |
167 disk_cache::Entry* entry = NULL; | |
168 ASSERT_EQ(net::OK, CreateEntry("the first key", &entry)); | |
169 ASSERT_TRUE(NULL != entry); | |
170 | |
171 // Avoid using internal buffers for the test. We have to write something to | |
172 // the entry and close it so that we flush the internal buffer to disk. After | |
173 // that, IO operations will be really hitting the disk. We don't care about | |
174 // the content, so just extending the entry is enough (all extensions zero- | |
175 // fill any holes). | |
176 EXPECT_EQ(0, WriteData(entry, 0, 15 * 1024, NULL, 0, false)); | |
177 EXPECT_EQ(0, WriteData(entry, 1, 15 * 1024, NULL, 0, false)); | |
178 entry->Close(); | |
179 ASSERT_EQ(net::OK, OpenEntry("the first key", &entry)); | |
180 | |
181 MessageLoopHelper helper; | |
182 // Let's verify that each IO goes to the right callback object. | |
183 CallbackTest callback1(&helper, false); | |
184 CallbackTest callback2(&helper, false); | |
185 CallbackTest callback3(&helper, false); | |
186 CallbackTest callback4(&helper, false); | |
187 CallbackTest callback5(&helper, false); | |
188 CallbackTest callback6(&helper, false); | |
189 CallbackTest callback7(&helper, false); | |
190 CallbackTest callback8(&helper, false); | |
191 CallbackTest callback9(&helper, false); | |
192 CallbackTest callback10(&helper, false); | |
193 CallbackTest callback11(&helper, false); | |
194 CallbackTest callback12(&helper, false); | |
195 CallbackTest callback13(&helper, false); | |
196 | |
197 const int kSize1 = 10; | |
198 const int kSize2 = 5000; | |
199 const int kSize3 = 10000; | |
200 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1)); | |
201 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2)); | |
202 scoped_refptr<net::IOBuffer> buffer3(new net::IOBuffer(kSize3)); | |
203 CacheTestFillBuffer(buffer1->data(), kSize1, false); | |
204 CacheTestFillBuffer(buffer2->data(), kSize2, false); | |
205 CacheTestFillBuffer(buffer3->data(), kSize3, false); | |
206 | |
207 EXPECT_EQ(0, | |
208 entry->ReadData( | |
209 0, | |
210 15 * 1024, | |
211 buffer1.get(), | |
212 kSize1, | |
213 base::Bind(&CallbackTest::Run, base::Unretained(&callback1)))); | |
214 base::strlcpy(buffer1->data(), "the data", kSize1); | |
215 int expected = 0; | |
216 int ret = entry->WriteData( | |
217 0, | |
218 0, | |
219 buffer1.get(), | |
220 kSize1, | |
221 base::Bind(&CallbackTest::Run, base::Unretained(&callback2)), | |
222 false); | |
223 EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret); | |
224 if (net::ERR_IO_PENDING == ret) | |
225 expected++; | |
226 | |
227 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | |
228 memset(buffer2->data(), 0, kSize2); | |
229 ret = entry->ReadData( | |
230 0, | |
231 0, | |
232 buffer2.get(), | |
233 kSize1, | |
234 base::Bind(&CallbackTest::Run, base::Unretained(&callback3))); | |
235 EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret); | |
236 if (net::ERR_IO_PENDING == ret) | |
237 expected++; | |
238 | |
239 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | |
240 EXPECT_STREQ("the data", buffer2->data()); | |
241 | |
242 base::strlcpy(buffer2->data(), "The really big data goes here", kSize2); | |
243 ret = entry->WriteData( | |
244 1, | |
245 1500, | |
246 buffer2.get(), | |
247 kSize2, | |
248 base::Bind(&CallbackTest::Run, base::Unretained(&callback4)), | |
249 true); | |
250 EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret); | |
251 if (net::ERR_IO_PENDING == ret) | |
252 expected++; | |
253 | |
254 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | |
255 memset(buffer3->data(), 0, kSize3); | |
256 ret = entry->ReadData( | |
257 1, | |
258 1511, | |
259 buffer3.get(), | |
260 kSize2, | |
261 base::Bind(&CallbackTest::Run, base::Unretained(&callback5))); | |
262 EXPECT_TRUE(4989 == ret || net::ERR_IO_PENDING == ret); | |
263 if (net::ERR_IO_PENDING == ret) | |
264 expected++; | |
265 | |
266 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | |
267 EXPECT_STREQ("big data goes here", buffer3->data()); | |
268 ret = entry->ReadData( | |
269 1, | |
270 0, | |
271 buffer2.get(), | |
272 kSize2, | |
273 base::Bind(&CallbackTest::Run, base::Unretained(&callback6))); | |
274 EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret); | |
275 if (net::ERR_IO_PENDING == ret) | |
276 expected++; | |
277 | |
278 memset(buffer3->data(), 0, kSize3); | |
279 | |
280 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | |
281 EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 1500)); | |
282 ret = entry->ReadData( | |
283 1, | |
284 5000, | |
285 buffer2.get(), | |
286 kSize2, | |
287 base::Bind(&CallbackTest::Run, base::Unretained(&callback7))); | |
288 EXPECT_TRUE(1500 == ret || net::ERR_IO_PENDING == ret); | |
289 if (net::ERR_IO_PENDING == ret) | |
290 expected++; | |
291 | |
292 ret = entry->ReadData( | |
293 1, | |
294 0, | |
295 buffer3.get(), | |
296 kSize3, | |
297 base::Bind(&CallbackTest::Run, base::Unretained(&callback9))); | |
298 EXPECT_TRUE(6500 == ret || net::ERR_IO_PENDING == ret); | |
299 if (net::ERR_IO_PENDING == ret) | |
300 expected++; | |
301 | |
302 ret = entry->WriteData( | |
303 1, | |
304 0, | |
305 buffer3.get(), | |
306 8192, | |
307 base::Bind(&CallbackTest::Run, base::Unretained(&callback10)), | |
308 true); | |
309 EXPECT_TRUE(8192 == ret || net::ERR_IO_PENDING == ret); | |
310 if (net::ERR_IO_PENDING == ret) | |
311 expected++; | |
312 | |
313 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | |
314 ret = entry->ReadData( | |
315 1, | |
316 0, | |
317 buffer3.get(), | |
318 kSize3, | |
319 base::Bind(&CallbackTest::Run, base::Unretained(&callback11))); | |
320 EXPECT_TRUE(8192 == ret || net::ERR_IO_PENDING == ret); | |
321 if (net::ERR_IO_PENDING == ret) | |
322 expected++; | |
323 | |
324 EXPECT_EQ(8192, entry->GetDataSize(1)); | |
325 | |
326 ret = entry->ReadData( | |
327 0, | |
328 0, | |
329 buffer1.get(), | |
330 kSize1, | |
331 base::Bind(&CallbackTest::Run, base::Unretained(&callback12))); | |
332 EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret); | |
333 if (net::ERR_IO_PENDING == ret) | |
334 expected++; | |
335 | |
336 ret = entry->ReadData( | |
337 1, | |
338 0, | |
339 buffer2.get(), | |
340 kSize2, | |
341 base::Bind(&CallbackTest::Run, base::Unretained(&callback13))); | |
342 EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret); | |
343 if (net::ERR_IO_PENDING == ret) | |
344 expected++; | |
345 | |
346 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | |
347 | |
348 EXPECT_FALSE(helper.callback_reused_error()); | |
349 | |
350 entry->Doom(); | |
351 entry->Close(); | |
352 FlushQueueForTest(); | |
353 EXPECT_EQ(0, cache_->GetEntryCount()); | |
354 } | |
355 | |
356 TEST_F(DiskCacheEntryTest, InternalAsyncIO) { | |
357 InitCache(); | |
358 InternalAsyncIO(); | |
359 } | |
360 | |
361 TEST_F(DiskCacheEntryTest, MemoryOnlyInternalAsyncIO) { | |
362 SetMemoryOnlyMode(); | |
363 InitCache(); | |
364 InternalAsyncIO(); | |
365 } | |
366 | |
367 // This part of the test runs on the background thread. | |
368 void DiskCacheEntryTest::ExternalSyncIOBackground(disk_cache::Entry* entry) { | |
369 const int kSize1 = 17000; | |
370 const int kSize2 = 25000; | |
371 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1)); | |
372 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2)); | |
373 CacheTestFillBuffer(buffer1->data(), kSize1, false); | |
374 CacheTestFillBuffer(buffer2->data(), kSize2, false); | |
375 base::strlcpy(buffer1->data(), "the data", kSize1); | |
376 EXPECT_EQ(17000, | |
377 entry->WriteData( | |
378 0, 0, buffer1.get(), kSize1, net::CompletionCallback(), false)); | |
379 memset(buffer1->data(), 0, kSize1); | |
380 EXPECT_EQ( | |
381 17000, | |
382 entry->ReadData(0, 0, buffer1.get(), kSize1, net::CompletionCallback())); | |
383 EXPECT_STREQ("the data", buffer1->data()); | |
384 | |
385 base::strlcpy(buffer2->data(), "The really big data goes here", kSize2); | |
386 EXPECT_EQ( | |
387 25000, | |
388 entry->WriteData( | |
389 1, 10000, buffer2.get(), kSize2, net::CompletionCallback(), false)); | |
390 memset(buffer2->data(), 0, kSize2); | |
391 EXPECT_EQ(24989, | |
392 entry->ReadData( | |
393 1, 10011, buffer2.get(), kSize2, net::CompletionCallback())); | |
394 EXPECT_STREQ("big data goes here", buffer2->data()); | |
395 EXPECT_EQ( | |
396 25000, | |
397 entry->ReadData(1, 0, buffer2.get(), kSize2, net::CompletionCallback())); | |
398 EXPECT_EQ(5000, | |
399 entry->ReadData( | |
400 1, 30000, buffer2.get(), kSize2, net::CompletionCallback())); | |
401 | |
402 EXPECT_EQ(0, | |
403 entry->ReadData( | |
404 1, 35000, buffer2.get(), kSize2, net::CompletionCallback())); | |
405 EXPECT_EQ( | |
406 17000, | |
407 entry->ReadData(1, 0, buffer1.get(), kSize1, net::CompletionCallback())); | |
408 EXPECT_EQ( | |
409 17000, | |
410 entry->WriteData( | |
411 1, 20000, buffer1.get(), kSize1, net::CompletionCallback(), false)); | |
412 EXPECT_EQ(37000, entry->GetDataSize(1)); | |
413 | |
414 // We need to delete the memory buffer on this thread. | |
415 EXPECT_EQ(0, entry->WriteData( | |
416 0, 0, NULL, 0, net::CompletionCallback(), true)); | |
417 EXPECT_EQ(0, entry->WriteData( | |
418 1, 0, NULL, 0, net::CompletionCallback(), true)); | |
419 } | |
420 | |
421 void DiskCacheEntryTest::ExternalSyncIO() { | |
422 disk_cache::Entry* entry; | |
423 ASSERT_EQ(net::OK, CreateEntry("the first key", &entry)); | |
424 | |
425 // The bulk of the test runs from within the callback, on the cache thread. | |
426 RunTaskForTest(base::Bind(&DiskCacheEntryTest::ExternalSyncIOBackground, | |
427 base::Unretained(this), | |
428 entry)); | |
429 | |
430 entry->Doom(); | |
431 entry->Close(); | |
432 FlushQueueForTest(); | |
433 EXPECT_EQ(0, cache_->GetEntryCount()); | |
434 } | |
435 | |
436 TEST_F(DiskCacheEntryTest, ExternalSyncIO) { | |
437 InitCache(); | |
438 ExternalSyncIO(); | |
439 } | |
440 | |
441 TEST_F(DiskCacheEntryTest, ExternalSyncIONoBuffer) { | |
442 InitCache(); | |
443 cache_impl_->SetFlags(disk_cache::kNoBuffering); | |
444 ExternalSyncIO(); | |
445 } | |
446 | |
447 TEST_F(DiskCacheEntryTest, MemoryOnlyExternalSyncIO) { | |
448 SetMemoryOnlyMode(); | |
449 InitCache(); | |
450 ExternalSyncIO(); | |
451 } | |
452 | |
453 void DiskCacheEntryTest::ExternalAsyncIO() { | |
454 disk_cache::Entry* entry; | |
455 ASSERT_EQ(net::OK, CreateEntry("the first key", &entry)); | |
456 | |
457 int expected = 0; | |
458 | |
459 MessageLoopHelper helper; | |
460 // Let's verify that each IO goes to the right callback object. | |
461 CallbackTest callback1(&helper, false); | |
462 CallbackTest callback2(&helper, false); | |
463 CallbackTest callback3(&helper, false); | |
464 CallbackTest callback4(&helper, false); | |
465 CallbackTest callback5(&helper, false); | |
466 CallbackTest callback6(&helper, false); | |
467 CallbackTest callback7(&helper, false); | |
468 CallbackTest callback8(&helper, false); | |
469 CallbackTest callback9(&helper, false); | |
470 | |
471 const int kSize1 = 17000; | |
472 const int kSize2 = 25000; | |
473 const int kSize3 = 25000; | |
474 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1)); | |
475 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2)); | |
476 scoped_refptr<net::IOBuffer> buffer3(new net::IOBuffer(kSize3)); | |
477 CacheTestFillBuffer(buffer1->data(), kSize1, false); | |
478 CacheTestFillBuffer(buffer2->data(), kSize2, false); | |
479 CacheTestFillBuffer(buffer3->data(), kSize3, false); | |
480 base::strlcpy(buffer1->data(), "the data", kSize1); | |
481 int ret = entry->WriteData( | |
482 0, | |
483 0, | |
484 buffer1.get(), | |
485 kSize1, | |
486 base::Bind(&CallbackTest::Run, base::Unretained(&callback1)), | |
487 false); | |
488 EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret); | |
489 if (net::ERR_IO_PENDING == ret) | |
490 expected++; | |
491 | |
492 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | |
493 | |
494 memset(buffer2->data(), 0, kSize1); | |
495 ret = entry->ReadData( | |
496 0, | |
497 0, | |
498 buffer2.get(), | |
499 kSize1, | |
500 base::Bind(&CallbackTest::Run, base::Unretained(&callback2))); | |
501 EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret); | |
502 if (net::ERR_IO_PENDING == ret) | |
503 expected++; | |
504 | |
505 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | |
506 EXPECT_STREQ("the data", buffer2->data()); | |
507 | |
508 base::strlcpy(buffer2->data(), "The really big data goes here", kSize2); | |
509 ret = entry->WriteData( | |
510 1, | |
511 10000, | |
512 buffer2.get(), | |
513 kSize2, | |
514 base::Bind(&CallbackTest::Run, base::Unretained(&callback3)), | |
515 false); | |
516 EXPECT_TRUE(25000 == ret || net::ERR_IO_PENDING == ret); | |
517 if (net::ERR_IO_PENDING == ret) | |
518 expected++; | |
519 | |
520 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | |
521 | |
522 memset(buffer3->data(), 0, kSize3); | |
523 ret = entry->ReadData( | |
524 1, | |
525 10011, | |
526 buffer3.get(), | |
527 kSize3, | |
528 base::Bind(&CallbackTest::Run, base::Unretained(&callback4))); | |
529 EXPECT_TRUE(24989 == ret || net::ERR_IO_PENDING == ret); | |
530 if (net::ERR_IO_PENDING == ret) | |
531 expected++; | |
532 | |
533 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | |
534 EXPECT_STREQ("big data goes here", buffer3->data()); | |
535 ret = entry->ReadData( | |
536 1, | |
537 0, | |
538 buffer2.get(), | |
539 kSize2, | |
540 base::Bind(&CallbackTest::Run, base::Unretained(&callback5))); | |
541 EXPECT_TRUE(25000 == ret || net::ERR_IO_PENDING == ret); | |
542 if (net::ERR_IO_PENDING == ret) | |
543 expected++; | |
544 | |
545 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | |
546 memset(buffer3->data(), 0, kSize3); | |
547 EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 10000)); | |
548 ret = entry->ReadData( | |
549 1, | |
550 30000, | |
551 buffer2.get(), | |
552 kSize2, | |
553 base::Bind(&CallbackTest::Run, base::Unretained(&callback6))); | |
554 EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret); | |
555 if (net::ERR_IO_PENDING == ret) | |
556 expected++; | |
557 | |
558 EXPECT_EQ(0, | |
559 entry->ReadData( | |
560 1, | |
561 35000, | |
562 buffer2.get(), | |
563 kSize2, | |
564 base::Bind(&CallbackTest::Run, base::Unretained(&callback7)))); | |
565 ret = entry->ReadData( | |
566 1, | |
567 0, | |
568 buffer1.get(), | |
569 kSize1, | |
570 base::Bind(&CallbackTest::Run, base::Unretained(&callback8))); | |
571 EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret); | |
572 if (net::ERR_IO_PENDING == ret) | |
573 expected++; | |
574 ret = entry->WriteData( | |
575 1, | |
576 20000, | |
577 buffer3.get(), | |
578 kSize1, | |
579 base::Bind(&CallbackTest::Run, base::Unretained(&callback9)), | |
580 false); | |
581 EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret); | |
582 if (net::ERR_IO_PENDING == ret) | |
583 expected++; | |
584 | |
585 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | |
586 EXPECT_EQ(37000, entry->GetDataSize(1)); | |
587 | |
588 EXPECT_FALSE(helper.callback_reused_error()); | |
589 | |
590 entry->Doom(); | |
591 entry->Close(); | |
592 FlushQueueForTest(); | |
593 EXPECT_EQ(0, cache_->GetEntryCount()); | |
594 } | |
595 | |
596 TEST_F(DiskCacheEntryTest, ExternalAsyncIO) { | |
597 InitCache(); | |
598 ExternalAsyncIO(); | |
599 } | |
600 | |
601 TEST_F(DiskCacheEntryTest, ExternalAsyncIONoBuffer) { | |
602 InitCache(); | |
603 cache_impl_->SetFlags(disk_cache::kNoBuffering); | |
604 ExternalAsyncIO(); | |
605 } | |
606 | |
607 TEST_F(DiskCacheEntryTest, MemoryOnlyExternalAsyncIO) { | |
608 SetMemoryOnlyMode(); | |
609 InitCache(); | |
610 ExternalAsyncIO(); | |
611 } | |
612 | |
613 // Tests that IOBuffers are not referenced after IO completes. | |
614 void DiskCacheEntryTest::ReleaseBuffer(int stream_index) { | |
615 disk_cache::Entry* entry = NULL; | |
616 ASSERT_EQ(net::OK, CreateEntry("the first key", &entry)); | |
617 ASSERT_TRUE(NULL != entry); | |
618 | |
619 const int kBufferSize = 1024; | |
620 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kBufferSize)); | |
621 CacheTestFillBuffer(buffer->data(), kBufferSize, false); | |
622 | |
623 net::ReleaseBufferCompletionCallback cb(buffer.get()); | |
624 int rv = entry->WriteData( | |
625 stream_index, 0, buffer.get(), kBufferSize, cb.callback(), false); | |
626 EXPECT_EQ(kBufferSize, cb.GetResult(rv)); | |
627 entry->Close(); | |
628 } | |
629 | |
630 TEST_F(DiskCacheEntryTest, ReleaseBuffer) { | |
631 InitCache(); | |
632 cache_impl_->SetFlags(disk_cache::kNoBuffering); | |
633 ReleaseBuffer(0); | |
634 } | |
635 | |
636 TEST_F(DiskCacheEntryTest, MemoryOnlyReleaseBuffer) { | |
637 SetMemoryOnlyMode(); | |
638 InitCache(); | |
639 ReleaseBuffer(0); | |
640 } | |
641 | |
642 void DiskCacheEntryTest::StreamAccess() { | |
643 disk_cache::Entry* entry = NULL; | |
644 ASSERT_EQ(net::OK, CreateEntry("the first key", &entry)); | |
645 ASSERT_TRUE(NULL != entry); | |
646 | |
647 const int kBufferSize = 1024; | |
648 const int kNumStreams = 3; | |
649 scoped_refptr<net::IOBuffer> reference_buffers[kNumStreams]; | |
650 for (int i = 0; i < kNumStreams; i++) { | |
651 reference_buffers[i] = new net::IOBuffer(kBufferSize); | |
652 CacheTestFillBuffer(reference_buffers[i]->data(), kBufferSize, false); | |
653 } | |
654 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kBufferSize)); | |
655 for (int i = 0; i < kNumStreams; i++) { | |
656 EXPECT_EQ( | |
657 kBufferSize, | |
658 WriteData(entry, i, 0, reference_buffers[i].get(), kBufferSize, false)); | |
659 memset(buffer1->data(), 0, kBufferSize); | |
660 EXPECT_EQ(kBufferSize, ReadData(entry, i, 0, buffer1.get(), kBufferSize)); | |
661 EXPECT_EQ( | |
662 0, memcmp(reference_buffers[i]->data(), buffer1->data(), kBufferSize)); | |
663 } | |
664 EXPECT_EQ(net::ERR_INVALID_ARGUMENT, | |
665 ReadData(entry, kNumStreams, 0, buffer1.get(), kBufferSize)); | |
666 entry->Close(); | |
667 | |
668 // Open the entry and read it in chunks, including a read past the end. | |
669 ASSERT_EQ(net::OK, OpenEntry("the first key", &entry)); | |
670 ASSERT_TRUE(NULL != entry); | |
671 const int kReadBufferSize = 600; | |
672 const int kFinalReadSize = kBufferSize - kReadBufferSize; | |
673 static_assert(kFinalReadSize < kReadBufferSize, | |
674 "should be exactly two reads"); | |
675 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kReadBufferSize)); | |
676 for (int i = 0; i < kNumStreams; i++) { | |
677 memset(buffer2->data(), 0, kReadBufferSize); | |
678 EXPECT_EQ(kReadBufferSize, | |
679 ReadData(entry, i, 0, buffer2.get(), kReadBufferSize)); | |
680 EXPECT_EQ( | |
681 0, | |
682 memcmp(reference_buffers[i]->data(), buffer2->data(), kReadBufferSize)); | |
683 | |
684 memset(buffer2->data(), 0, kReadBufferSize); | |
685 EXPECT_EQ( | |
686 kFinalReadSize, | |
687 ReadData(entry, i, kReadBufferSize, buffer2.get(), kReadBufferSize)); | |
688 EXPECT_EQ(0, | |
689 memcmp(reference_buffers[i]->data() + kReadBufferSize, | |
690 buffer2->data(), | |
691 kFinalReadSize)); | |
692 } | |
693 | |
694 entry->Close(); | |
695 } | |
696 | |
697 TEST_F(DiskCacheEntryTest, StreamAccess) { | |
698 InitCache(); | |
699 StreamAccess(); | |
700 } | |
701 | |
702 TEST_F(DiskCacheEntryTest, MemoryOnlyStreamAccess) { | |
703 SetMemoryOnlyMode(); | |
704 InitCache(); | |
705 StreamAccess(); | |
706 } | |
707 | |
708 void DiskCacheEntryTest::GetKey() { | |
709 std::string key("the first key"); | |
710 disk_cache::Entry* entry; | |
711 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
712 EXPECT_EQ(key, entry->GetKey()) << "short key"; | |
713 entry->Close(); | |
714 | |
715 int seed = static_cast<int>(Time::Now().ToInternalValue()); | |
716 srand(seed); | |
717 char key_buffer[20000]; | |
718 | |
719 CacheTestFillBuffer(key_buffer, 3000, true); | |
720 key_buffer[1000] = '\0'; | |
721 | |
722 key = key_buffer; | |
723 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
724 EXPECT_TRUE(key == entry->GetKey()) << "1000 bytes key"; | |
725 entry->Close(); | |
726 | |
727 key_buffer[1000] = 'p'; | |
728 key_buffer[3000] = '\0'; | |
729 key = key_buffer; | |
730 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
731 EXPECT_TRUE(key == entry->GetKey()) << "medium size key"; | |
732 entry->Close(); | |
733 | |
734 CacheTestFillBuffer(key_buffer, sizeof(key_buffer), true); | |
735 key_buffer[19999] = '\0'; | |
736 | |
737 key = key_buffer; | |
738 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
739 EXPECT_TRUE(key == entry->GetKey()) << "long key"; | |
740 entry->Close(); | |
741 | |
742 CacheTestFillBuffer(key_buffer, 0x4000, true); | |
743 key_buffer[0x4000] = '\0'; | |
744 | |
745 key = key_buffer; | |
746 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
747 EXPECT_TRUE(key == entry->GetKey()) << "16KB key"; | |
748 entry->Close(); | |
749 } | |
750 | |
751 TEST_F(DiskCacheEntryTest, GetKey) { | |
752 InitCache(); | |
753 GetKey(); | |
754 } | |
755 | |
756 TEST_F(DiskCacheEntryTest, MemoryOnlyGetKey) { | |
757 SetMemoryOnlyMode(); | |
758 InitCache(); | |
759 GetKey(); | |
760 } | |
761 | |
762 void DiskCacheEntryTest::GetTimes(int stream_index) { | |
763 std::string key("the first key"); | |
764 disk_cache::Entry* entry; | |
765 | |
766 Time t1 = Time::Now(); | |
767 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
768 EXPECT_TRUE(entry->GetLastModified() >= t1); | |
769 EXPECT_TRUE(entry->GetLastModified() == entry->GetLastUsed()); | |
770 | |
771 AddDelay(); | |
772 Time t2 = Time::Now(); | |
773 EXPECT_TRUE(t2 > t1); | |
774 EXPECT_EQ(0, WriteData(entry, stream_index, 200, NULL, 0, false)); | |
775 if (type_ == net::APP_CACHE) { | |
776 EXPECT_TRUE(entry->GetLastModified() < t2); | |
777 } else { | |
778 EXPECT_TRUE(entry->GetLastModified() >= t2); | |
779 } | |
780 EXPECT_TRUE(entry->GetLastModified() == entry->GetLastUsed()); | |
781 | |
782 AddDelay(); | |
783 Time t3 = Time::Now(); | |
784 EXPECT_TRUE(t3 > t2); | |
785 const int kSize = 200; | |
786 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize)); | |
787 EXPECT_EQ(kSize, ReadData(entry, stream_index, 0, buffer.get(), kSize)); | |
788 if (type_ == net::APP_CACHE) { | |
789 EXPECT_TRUE(entry->GetLastUsed() < t2); | |
790 EXPECT_TRUE(entry->GetLastModified() < t2); | |
791 } else if (type_ == net::SHADER_CACHE) { | |
792 EXPECT_TRUE(entry->GetLastUsed() < t3); | |
793 EXPECT_TRUE(entry->GetLastModified() < t3); | |
794 } else { | |
795 EXPECT_TRUE(entry->GetLastUsed() >= t3); | |
796 EXPECT_TRUE(entry->GetLastModified() < t3); | |
797 } | |
798 entry->Close(); | |
799 } | |
800 | |
801 TEST_F(DiskCacheEntryTest, GetTimes) { | |
802 InitCache(); | |
803 GetTimes(0); | |
804 } | |
805 | |
806 TEST_F(DiskCacheEntryTest, MemoryOnlyGetTimes) { | |
807 SetMemoryOnlyMode(); | |
808 InitCache(); | |
809 GetTimes(0); | |
810 } | |
811 | |
812 TEST_F(DiskCacheEntryTest, AppCacheGetTimes) { | |
813 SetCacheType(net::APP_CACHE); | |
814 InitCache(); | |
815 GetTimes(0); | |
816 } | |
817 | |
818 TEST_F(DiskCacheEntryTest, ShaderCacheGetTimes) { | |
819 SetCacheType(net::SHADER_CACHE); | |
820 InitCache(); | |
821 GetTimes(0); | |
822 } | |
823 | |
824 void DiskCacheEntryTest::GrowData(int stream_index) { | |
825 std::string key1("the first key"); | |
826 disk_cache::Entry* entry; | |
827 ASSERT_EQ(net::OK, CreateEntry(key1, &entry)); | |
828 | |
829 const int kSize = 20000; | |
830 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize)); | |
831 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize)); | |
832 CacheTestFillBuffer(buffer1->data(), kSize, false); | |
833 memset(buffer2->data(), 0, kSize); | |
834 | |
835 base::strlcpy(buffer1->data(), "the data", kSize); | |
836 EXPECT_EQ(10, WriteData(entry, stream_index, 0, buffer1.get(), 10, false)); | |
837 EXPECT_EQ(10, ReadData(entry, stream_index, 0, buffer2.get(), 10)); | |
838 EXPECT_STREQ("the data", buffer2->data()); | |
839 EXPECT_EQ(10, entry->GetDataSize(stream_index)); | |
840 | |
841 EXPECT_EQ(2000, | |
842 WriteData(entry, stream_index, 0, buffer1.get(), 2000, false)); | |
843 EXPECT_EQ(2000, entry->GetDataSize(stream_index)); | |
844 EXPECT_EQ(2000, ReadData(entry, stream_index, 0, buffer2.get(), 2000)); | |
845 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 2000)); | |
846 | |
847 EXPECT_EQ(20000, | |
848 WriteData(entry, stream_index, 0, buffer1.get(), kSize, false)); | |
849 EXPECT_EQ(20000, entry->GetDataSize(stream_index)); | |
850 EXPECT_EQ(20000, ReadData(entry, stream_index, 0, buffer2.get(), kSize)); | |
851 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), kSize)); | |
852 entry->Close(); | |
853 | |
854 memset(buffer2->data(), 0, kSize); | |
855 std::string key2("Second key"); | |
856 ASSERT_EQ(net::OK, CreateEntry(key2, &entry)); | |
857 EXPECT_EQ(10, WriteData(entry, stream_index, 0, buffer1.get(), 10, false)); | |
858 EXPECT_EQ(10, entry->GetDataSize(stream_index)); | |
859 entry->Close(); | |
860 | |
861 // Go from an internal address to a bigger block size. | |
862 ASSERT_EQ(net::OK, OpenEntry(key2, &entry)); | |
863 EXPECT_EQ(2000, | |
864 WriteData(entry, stream_index, 0, buffer1.get(), 2000, false)); | |
865 EXPECT_EQ(2000, entry->GetDataSize(stream_index)); | |
866 EXPECT_EQ(2000, ReadData(entry, stream_index, 0, buffer2.get(), 2000)); | |
867 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 2000)); | |
868 entry->Close(); | |
869 memset(buffer2->data(), 0, kSize); | |
870 | |
871 // Go from an internal address to an external one. | |
872 ASSERT_EQ(net::OK, OpenEntry(key2, &entry)); | |
873 EXPECT_EQ(20000, | |
874 WriteData(entry, stream_index, 0, buffer1.get(), kSize, false)); | |
875 EXPECT_EQ(20000, entry->GetDataSize(stream_index)); | |
876 EXPECT_EQ(20000, ReadData(entry, stream_index, 0, buffer2.get(), kSize)); | |
877 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), kSize)); | |
878 entry->Close(); | |
879 | |
880 // Double check the size from disk. | |
881 ASSERT_EQ(net::OK, OpenEntry(key2, &entry)); | |
882 EXPECT_EQ(20000, entry->GetDataSize(stream_index)); | |
883 | |
884 // Now extend the entry without actual data. | |
885 EXPECT_EQ(0, WriteData(entry, stream_index, 45500, buffer1.get(), 0, false)); | |
886 entry->Close(); | |
887 | |
888 // And check again from disk. | |
889 ASSERT_EQ(net::OK, OpenEntry(key2, &entry)); | |
890 EXPECT_EQ(45500, entry->GetDataSize(stream_index)); | |
891 entry->Close(); | |
892 } | |
893 | |
894 TEST_F(DiskCacheEntryTest, GrowData) { | |
895 InitCache(); | |
896 GrowData(0); | |
897 } | |
898 | |
899 TEST_F(DiskCacheEntryTest, GrowDataNoBuffer) { | |
900 InitCache(); | |
901 cache_impl_->SetFlags(disk_cache::kNoBuffering); | |
902 GrowData(0); | |
903 } | |
904 | |
905 TEST_F(DiskCacheEntryTest, MemoryOnlyGrowData) { | |
906 SetMemoryOnlyMode(); | |
907 InitCache(); | |
908 GrowData(0); | |
909 } | |
910 | |
911 void DiskCacheEntryTest::TruncateData(int stream_index) { | |
912 std::string key("the first key"); | |
913 disk_cache::Entry* entry; | |
914 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
915 | |
916 const int kSize1 = 20000; | |
917 const int kSize2 = 20000; | |
918 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1)); | |
919 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2)); | |
920 | |
921 CacheTestFillBuffer(buffer1->data(), kSize1, false); | |
922 memset(buffer2->data(), 0, kSize2); | |
923 | |
924 // Simple truncation: | |
925 EXPECT_EQ(200, WriteData(entry, stream_index, 0, buffer1.get(), 200, false)); | |
926 EXPECT_EQ(200, entry->GetDataSize(stream_index)); | |
927 EXPECT_EQ(100, WriteData(entry, stream_index, 0, buffer1.get(), 100, false)); | |
928 EXPECT_EQ(200, entry->GetDataSize(stream_index)); | |
929 EXPECT_EQ(100, WriteData(entry, stream_index, 0, buffer1.get(), 100, true)); | |
930 EXPECT_EQ(100, entry->GetDataSize(stream_index)); | |
931 EXPECT_EQ(0, WriteData(entry, stream_index, 50, buffer1.get(), 0, true)); | |
932 EXPECT_EQ(50, entry->GetDataSize(stream_index)); | |
933 EXPECT_EQ(0, WriteData(entry, stream_index, 0, buffer1.get(), 0, true)); | |
934 EXPECT_EQ(0, entry->GetDataSize(stream_index)); | |
935 entry->Close(); | |
936 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
937 | |
938 // Go to an external file. | |
939 EXPECT_EQ(20000, | |
940 WriteData(entry, stream_index, 0, buffer1.get(), 20000, true)); | |
941 EXPECT_EQ(20000, entry->GetDataSize(stream_index)); | |
942 EXPECT_EQ(20000, ReadData(entry, stream_index, 0, buffer2.get(), 20000)); | |
943 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 20000)); | |
944 memset(buffer2->data(), 0, kSize2); | |
945 | |
946 // External file truncation | |
947 EXPECT_EQ(18000, | |
948 WriteData(entry, stream_index, 0, buffer1.get(), 18000, false)); | |
949 EXPECT_EQ(20000, entry->GetDataSize(stream_index)); | |
950 EXPECT_EQ(18000, | |
951 WriteData(entry, stream_index, 0, buffer1.get(), 18000, true)); | |
952 EXPECT_EQ(18000, entry->GetDataSize(stream_index)); | |
953 EXPECT_EQ(0, WriteData(entry, stream_index, 17500, buffer1.get(), 0, true)); | |
954 EXPECT_EQ(17500, entry->GetDataSize(stream_index)); | |
955 | |
956 // And back to an internal block. | |
957 EXPECT_EQ(600, | |
958 WriteData(entry, stream_index, 1000, buffer1.get(), 600, true)); | |
959 EXPECT_EQ(1600, entry->GetDataSize(stream_index)); | |
960 EXPECT_EQ(600, ReadData(entry, stream_index, 1000, buffer2.get(), 600)); | |
961 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 600)); | |
962 EXPECT_EQ(1000, ReadData(entry, stream_index, 0, buffer2.get(), 1000)); | |
963 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 1000)) | |
964 << "Preserves previous data"; | |
965 | |
966 // Go from external file to zero length. | |
967 EXPECT_EQ(20000, | |
968 WriteData(entry, stream_index, 0, buffer1.get(), 20000, true)); | |
969 EXPECT_EQ(20000, entry->GetDataSize(stream_index)); | |
970 EXPECT_EQ(0, WriteData(entry, stream_index, 0, buffer1.get(), 0, true)); | |
971 EXPECT_EQ(0, entry->GetDataSize(stream_index)); | |
972 | |
973 entry->Close(); | |
974 } | |
975 | |
976 TEST_F(DiskCacheEntryTest, TruncateData) { | |
977 InitCache(); | |
978 TruncateData(0); | |
979 } | |
980 | |
981 TEST_F(DiskCacheEntryTest, TruncateDataNoBuffer) { | |
982 InitCache(); | |
983 cache_impl_->SetFlags(disk_cache::kNoBuffering); | |
984 TruncateData(0); | |
985 } | |
986 | |
987 TEST_F(DiskCacheEntryTest, MemoryOnlyTruncateData) { | |
988 SetMemoryOnlyMode(); | |
989 InitCache(); | |
990 TruncateData(0); | |
991 } | |
992 | |
993 void DiskCacheEntryTest::ZeroLengthIO(int stream_index) { | |
994 std::string key("the first key"); | |
995 disk_cache::Entry* entry; | |
996 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
997 | |
998 EXPECT_EQ(0, ReadData(entry, stream_index, 0, NULL, 0)); | |
999 EXPECT_EQ(0, WriteData(entry, stream_index, 0, NULL, 0, false)); | |
1000 | |
1001 // This write should extend the entry. | |
1002 EXPECT_EQ(0, WriteData(entry, stream_index, 1000, NULL, 0, false)); | |
1003 EXPECT_EQ(0, ReadData(entry, stream_index, 500, NULL, 0)); | |
1004 EXPECT_EQ(0, ReadData(entry, stream_index, 2000, NULL, 0)); | |
1005 EXPECT_EQ(1000, entry->GetDataSize(stream_index)); | |
1006 | |
1007 EXPECT_EQ(0, WriteData(entry, stream_index, 100000, NULL, 0, true)); | |
1008 EXPECT_EQ(0, ReadData(entry, stream_index, 50000, NULL, 0)); | |
1009 EXPECT_EQ(100000, entry->GetDataSize(stream_index)); | |
1010 | |
1011 // Let's verify the actual content. | |
1012 const int kSize = 20; | |
1013 const char zeros[kSize] = {}; | |
1014 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize)); | |
1015 | |
1016 CacheTestFillBuffer(buffer->data(), kSize, false); | |
1017 EXPECT_EQ(kSize, ReadData(entry, stream_index, 500, buffer.get(), kSize)); | |
1018 EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize)); | |
1019 | |
1020 CacheTestFillBuffer(buffer->data(), kSize, false); | |
1021 EXPECT_EQ(kSize, ReadData(entry, stream_index, 5000, buffer.get(), kSize)); | |
1022 EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize)); | |
1023 | |
1024 CacheTestFillBuffer(buffer->data(), kSize, false); | |
1025 EXPECT_EQ(kSize, ReadData(entry, stream_index, 50000, buffer.get(), kSize)); | |
1026 EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize)); | |
1027 | |
1028 entry->Close(); | |
1029 } | |
1030 | |
1031 TEST_F(DiskCacheEntryTest, ZeroLengthIO) { | |
1032 InitCache(); | |
1033 ZeroLengthIO(0); | |
1034 } | |
1035 | |
1036 TEST_F(DiskCacheEntryTest, ZeroLengthIONoBuffer) { | |
1037 InitCache(); | |
1038 cache_impl_->SetFlags(disk_cache::kNoBuffering); | |
1039 ZeroLengthIO(0); | |
1040 } | |
1041 | |
1042 TEST_F(DiskCacheEntryTest, MemoryOnlyZeroLengthIO) { | |
1043 SetMemoryOnlyMode(); | |
1044 InitCache(); | |
1045 ZeroLengthIO(0); | |
1046 } | |
1047 | |
1048 // Tests that we handle the content correctly when buffering, a feature of the | |
1049 // standard cache that permits fast responses to certain reads. | |
1050 void DiskCacheEntryTest::Buffering() { | |
1051 std::string key("the first key"); | |
1052 disk_cache::Entry* entry; | |
1053 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
1054 | |
1055 const int kSize = 200; | |
1056 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize)); | |
1057 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize)); | |
1058 CacheTestFillBuffer(buffer1->data(), kSize, true); | |
1059 CacheTestFillBuffer(buffer2->data(), kSize, true); | |
1060 | |
1061 EXPECT_EQ(kSize, WriteData(entry, 1, 0, buffer1.get(), kSize, false)); | |
1062 entry->Close(); | |
1063 | |
1064 // Write a little more and read what we wrote before. | |
1065 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
1066 EXPECT_EQ(kSize, WriteData(entry, 1, 5000, buffer1.get(), kSize, false)); | |
1067 EXPECT_EQ(kSize, ReadData(entry, 1, 0, buffer2.get(), kSize)); | |
1068 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); | |
1069 | |
1070 // Now go to an external file. | |
1071 EXPECT_EQ(kSize, WriteData(entry, 1, 18000, buffer1.get(), kSize, false)); | |
1072 entry->Close(); | |
1073 | |
1074 // Write something else and verify old data. | |
1075 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
1076 EXPECT_EQ(kSize, WriteData(entry, 1, 10000, buffer1.get(), kSize, false)); | |
1077 CacheTestFillBuffer(buffer2->data(), kSize, true); | |
1078 EXPECT_EQ(kSize, ReadData(entry, 1, 5000, buffer2.get(), kSize)); | |
1079 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); | |
1080 CacheTestFillBuffer(buffer2->data(), kSize, true); | |
1081 EXPECT_EQ(kSize, ReadData(entry, 1, 0, buffer2.get(), kSize)); | |
1082 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); | |
1083 CacheTestFillBuffer(buffer2->data(), kSize, true); | |
1084 EXPECT_EQ(kSize, ReadData(entry, 1, 18000, buffer2.get(), kSize)); | |
1085 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); | |
1086 | |
1087 // Extend the file some more. | |
1088 EXPECT_EQ(kSize, WriteData(entry, 1, 23000, buffer1.get(), kSize, false)); | |
1089 entry->Close(); | |
1090 | |
1091 // And now make sure that we can deal with data in both places (ram/disk). | |
1092 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
1093 EXPECT_EQ(kSize, WriteData(entry, 1, 17000, buffer1.get(), kSize, false)); | |
1094 | |
1095 // We should not overwrite the data at 18000 with this. | |
1096 EXPECT_EQ(kSize, WriteData(entry, 1, 19000, buffer1.get(), kSize, false)); | |
1097 CacheTestFillBuffer(buffer2->data(), kSize, true); | |
1098 EXPECT_EQ(kSize, ReadData(entry, 1, 18000, buffer2.get(), kSize)); | |
1099 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); | |
1100 CacheTestFillBuffer(buffer2->data(), kSize, true); | |
1101 EXPECT_EQ(kSize, ReadData(entry, 1, 17000, buffer2.get(), kSize)); | |
1102 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); | |
1103 | |
1104 EXPECT_EQ(kSize, WriteData(entry, 1, 22900, buffer1.get(), kSize, false)); | |
1105 CacheTestFillBuffer(buffer2->data(), kSize, true); | |
1106 EXPECT_EQ(100, ReadData(entry, 1, 23000, buffer2.get(), kSize)); | |
1107 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + 100, 100)); | |
1108 | |
1109 CacheTestFillBuffer(buffer2->data(), kSize, true); | |
1110 EXPECT_EQ(100, ReadData(entry, 1, 23100, buffer2.get(), kSize)); | |
1111 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + 100, 100)); | |
1112 | |
1113 // Extend the file again and read before without closing the entry. | |
1114 EXPECT_EQ(kSize, WriteData(entry, 1, 25000, buffer1.get(), kSize, false)); | |
1115 EXPECT_EQ(kSize, WriteData(entry, 1, 45000, buffer1.get(), kSize, false)); | |
1116 CacheTestFillBuffer(buffer2->data(), kSize, true); | |
1117 EXPECT_EQ(kSize, ReadData(entry, 1, 25000, buffer2.get(), kSize)); | |
1118 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); | |
1119 CacheTestFillBuffer(buffer2->data(), kSize, true); | |
1120 EXPECT_EQ(kSize, ReadData(entry, 1, 45000, buffer2.get(), kSize)); | |
1121 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); | |
1122 | |
1123 entry->Close(); | |
1124 } | |
1125 | |
1126 TEST_F(DiskCacheEntryTest, Buffering) { | |
1127 InitCache(); | |
1128 Buffering(); | |
1129 } | |
1130 | |
1131 TEST_F(DiskCacheEntryTest, BufferingNoBuffer) { | |
1132 InitCache(); | |
1133 cache_impl_->SetFlags(disk_cache::kNoBuffering); | |
1134 Buffering(); | |
1135 } | |
1136 | |
1137 // Checks that entries are zero length when created. | |
1138 void DiskCacheEntryTest::SizeAtCreate() { | |
1139 const char key[] = "the first key"; | |
1140 disk_cache::Entry* entry; | |
1141 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
1142 | |
1143 const int kNumStreams = 3; | |
1144 for (int i = 0; i < kNumStreams; ++i) | |
1145 EXPECT_EQ(0, entry->GetDataSize(i)); | |
1146 entry->Close(); | |
1147 } | |
1148 | |
1149 TEST_F(DiskCacheEntryTest, SizeAtCreate) { | |
1150 InitCache(); | |
1151 SizeAtCreate(); | |
1152 } | |
1153 | |
1154 TEST_F(DiskCacheEntryTest, MemoryOnlySizeAtCreate) { | |
1155 SetMemoryOnlyMode(); | |
1156 InitCache(); | |
1157 SizeAtCreate(); | |
1158 } | |
1159 | |
1160 // Some extra tests to make sure that buffering works properly when changing | |
1161 // the entry size. | |
1162 void DiskCacheEntryTest::SizeChanges(int stream_index) { | |
1163 std::string key("the first key"); | |
1164 disk_cache::Entry* entry; | |
1165 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
1166 | |
1167 const int kSize = 200; | |
1168 const char zeros[kSize] = {}; | |
1169 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize)); | |
1170 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize)); | |
1171 CacheTestFillBuffer(buffer1->data(), kSize, true); | |
1172 CacheTestFillBuffer(buffer2->data(), kSize, true); | |
1173 | |
1174 EXPECT_EQ(kSize, | |
1175 WriteData(entry, stream_index, 0, buffer1.get(), kSize, true)); | |
1176 EXPECT_EQ(kSize, | |
1177 WriteData(entry, stream_index, 17000, buffer1.get(), kSize, true)); | |
1178 EXPECT_EQ(kSize, | |
1179 WriteData(entry, stream_index, 23000, buffer1.get(), kSize, true)); | |
1180 entry->Close(); | |
1181 | |
1182 // Extend the file and read between the old size and the new write. | |
1183 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
1184 EXPECT_EQ(23000 + kSize, entry->GetDataSize(stream_index)); | |
1185 EXPECT_EQ(kSize, | |
1186 WriteData(entry, stream_index, 25000, buffer1.get(), kSize, true)); | |
1187 EXPECT_EQ(25000 + kSize, entry->GetDataSize(stream_index)); | |
1188 EXPECT_EQ(kSize, ReadData(entry, stream_index, 24000, buffer2.get(), kSize)); | |
1189 EXPECT_TRUE(!memcmp(buffer2->data(), zeros, kSize)); | |
1190 | |
1191 // Read at the end of the old file size. | |
1192 EXPECT_EQ( | |
1193 kSize, | |
1194 ReadData(entry, stream_index, 23000 + kSize - 35, buffer2.get(), kSize)); | |
1195 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + kSize - 35, 35)); | |
1196 | |
1197 // Read slightly before the last write. | |
1198 CacheTestFillBuffer(buffer2->data(), kSize, true); | |
1199 EXPECT_EQ(kSize, ReadData(entry, stream_index, 24900, buffer2.get(), kSize)); | |
1200 EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100)); | |
1201 EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100)); | |
1202 | |
1203 // Extend the entry a little more. | |
1204 EXPECT_EQ(kSize, | |
1205 WriteData(entry, stream_index, 26000, buffer1.get(), kSize, true)); | |
1206 EXPECT_EQ(26000 + kSize, entry->GetDataSize(stream_index)); | |
1207 CacheTestFillBuffer(buffer2->data(), kSize, true); | |
1208 EXPECT_EQ(kSize, ReadData(entry, stream_index, 25900, buffer2.get(), kSize)); | |
1209 EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100)); | |
1210 EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100)); | |
1211 | |
1212 // And now reduce the size. | |
1213 EXPECT_EQ(kSize, | |
1214 WriteData(entry, stream_index, 25000, buffer1.get(), kSize, true)); | |
1215 EXPECT_EQ(25000 + kSize, entry->GetDataSize(stream_index)); | |
1216 EXPECT_EQ( | |
1217 28, | |
1218 ReadData(entry, stream_index, 25000 + kSize - 28, buffer2.get(), kSize)); | |
1219 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + kSize - 28, 28)); | |
1220 | |
1221 // Reduce the size with a buffer that is not extending the size. | |
1222 EXPECT_EQ(kSize, | |
1223 WriteData(entry, stream_index, 24000, buffer1.get(), kSize, false)); | |
1224 EXPECT_EQ(25000 + kSize, entry->GetDataSize(stream_index)); | |
1225 EXPECT_EQ(kSize, | |
1226 WriteData(entry, stream_index, 24500, buffer1.get(), kSize, true)); | |
1227 EXPECT_EQ(24500 + kSize, entry->GetDataSize(stream_index)); | |
1228 EXPECT_EQ(kSize, ReadData(entry, stream_index, 23900, buffer2.get(), kSize)); | |
1229 EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100)); | |
1230 EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100)); | |
1231 | |
1232 // And now reduce the size below the old size. | |
1233 EXPECT_EQ(kSize, | |
1234 WriteData(entry, stream_index, 19000, buffer1.get(), kSize, true)); | |
1235 EXPECT_EQ(19000 + kSize, entry->GetDataSize(stream_index)); | |
1236 EXPECT_EQ(kSize, ReadData(entry, stream_index, 18900, buffer2.get(), kSize)); | |
1237 EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100)); | |
1238 EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100)); | |
1239 | |
1240 // Verify that the actual file is truncated. | |
1241 entry->Close(); | |
1242 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
1243 EXPECT_EQ(19000 + kSize, entry->GetDataSize(stream_index)); | |
1244 | |
1245 // Extend the newly opened file with a zero length write, expect zero fill. | |
1246 EXPECT_EQ( | |
1247 0, | |
1248 WriteData(entry, stream_index, 20000 + kSize, buffer1.get(), 0, false)); | |
1249 EXPECT_EQ(kSize, | |
1250 ReadData(entry, stream_index, 19000 + kSize, buffer1.get(), kSize)); | |
1251 EXPECT_EQ(0, memcmp(buffer1->data(), zeros, kSize)); | |
1252 | |
1253 entry->Close(); | |
1254 } | |
1255 | |
1256 TEST_F(DiskCacheEntryTest, SizeChanges) { | |
1257 InitCache(); | |
1258 SizeChanges(1); | |
1259 } | |
1260 | |
1261 TEST_F(DiskCacheEntryTest, SizeChangesNoBuffer) { | |
1262 InitCache(); | |
1263 cache_impl_->SetFlags(disk_cache::kNoBuffering); | |
1264 SizeChanges(1); | |
1265 } | |
1266 | |
1267 // Write more than the total cache capacity but to a single entry. |size| is the | |
1268 // amount of bytes to write each time. | |
1269 void DiskCacheEntryTest::ReuseEntry(int size, int stream_index) { | |
1270 std::string key1("the first key"); | |
1271 disk_cache::Entry* entry; | |
1272 ASSERT_EQ(net::OK, CreateEntry(key1, &entry)); | |
1273 | |
1274 entry->Close(); | |
1275 std::string key2("the second key"); | |
1276 ASSERT_EQ(net::OK, CreateEntry(key2, &entry)); | |
1277 | |
1278 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(size)); | |
1279 CacheTestFillBuffer(buffer->data(), size, false); | |
1280 | |
1281 for (int i = 0; i < 15; i++) { | |
1282 EXPECT_EQ(0, WriteData(entry, stream_index, 0, buffer.get(), 0, true)); | |
1283 EXPECT_EQ(size, | |
1284 WriteData(entry, stream_index, 0, buffer.get(), size, false)); | |
1285 entry->Close(); | |
1286 ASSERT_EQ(net::OK, OpenEntry(key2, &entry)); | |
1287 } | |
1288 | |
1289 entry->Close(); | |
1290 ASSERT_EQ(net::OK, OpenEntry(key1, &entry)) << "have not evicted this entry"; | |
1291 entry->Close(); | |
1292 } | |
1293 | |
1294 TEST_F(DiskCacheEntryTest, ReuseExternalEntry) { | |
1295 SetMaxSize(200 * 1024); | |
1296 InitCache(); | |
1297 ReuseEntry(20 * 1024, 0); | |
1298 } | |
1299 | |
1300 TEST_F(DiskCacheEntryTest, MemoryOnlyReuseExternalEntry) { | |
1301 SetMemoryOnlyMode(); | |
1302 SetMaxSize(200 * 1024); | |
1303 InitCache(); | |
1304 ReuseEntry(20 * 1024, 0); | |
1305 } | |
1306 | |
1307 TEST_F(DiskCacheEntryTest, ReuseInternalEntry) { | |
1308 SetMaxSize(100 * 1024); | |
1309 InitCache(); | |
1310 ReuseEntry(10 * 1024, 0); | |
1311 } | |
1312 | |
1313 TEST_F(DiskCacheEntryTest, MemoryOnlyReuseInternalEntry) { | |
1314 SetMemoryOnlyMode(); | |
1315 SetMaxSize(100 * 1024); | |
1316 InitCache(); | |
1317 ReuseEntry(10 * 1024, 0); | |
1318 } | |
1319 | |
1320 // Reading somewhere that was not written should return zeros. | |
1321 void DiskCacheEntryTest::InvalidData(int stream_index) { | |
1322 std::string key("the first key"); | |
1323 disk_cache::Entry* entry; | |
1324 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
1325 | |
1326 const int kSize1 = 20000; | |
1327 const int kSize2 = 20000; | |
1328 const int kSize3 = 20000; | |
1329 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1)); | |
1330 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2)); | |
1331 scoped_refptr<net::IOBuffer> buffer3(new net::IOBuffer(kSize3)); | |
1332 | |
1333 CacheTestFillBuffer(buffer1->data(), kSize1, false); | |
1334 memset(buffer2->data(), 0, kSize2); | |
1335 | |
1336 // Simple data grow: | |
1337 EXPECT_EQ(200, | |
1338 WriteData(entry, stream_index, 400, buffer1.get(), 200, false)); | |
1339 EXPECT_EQ(600, entry->GetDataSize(stream_index)); | |
1340 EXPECT_EQ(100, ReadData(entry, stream_index, 300, buffer3.get(), 100)); | |
1341 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100)); | |
1342 entry->Close(); | |
1343 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
1344 | |
1345 // The entry is now on disk. Load it and extend it. | |
1346 EXPECT_EQ(200, | |
1347 WriteData(entry, stream_index, 800, buffer1.get(), 200, false)); | |
1348 EXPECT_EQ(1000, entry->GetDataSize(stream_index)); | |
1349 EXPECT_EQ(100, ReadData(entry, stream_index, 700, buffer3.get(), 100)); | |
1350 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100)); | |
1351 entry->Close(); | |
1352 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
1353 | |
1354 // This time using truncate. | |
1355 EXPECT_EQ(200, | |
1356 WriteData(entry, stream_index, 1800, buffer1.get(), 200, true)); | |
1357 EXPECT_EQ(2000, entry->GetDataSize(stream_index)); | |
1358 EXPECT_EQ(100, ReadData(entry, stream_index, 1500, buffer3.get(), 100)); | |
1359 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100)); | |
1360 | |
1361 // Go to an external file. | |
1362 EXPECT_EQ(200, | |
1363 WriteData(entry, stream_index, 19800, buffer1.get(), 200, false)); | |
1364 EXPECT_EQ(20000, entry->GetDataSize(stream_index)); | |
1365 EXPECT_EQ(4000, ReadData(entry, stream_index, 14000, buffer3.get(), 4000)); | |
1366 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 4000)); | |
1367 | |
1368 // And back to an internal block. | |
1369 EXPECT_EQ(600, | |
1370 WriteData(entry, stream_index, 1000, buffer1.get(), 600, true)); | |
1371 EXPECT_EQ(1600, entry->GetDataSize(stream_index)); | |
1372 EXPECT_EQ(600, ReadData(entry, stream_index, 1000, buffer3.get(), 600)); | |
1373 EXPECT_TRUE(!memcmp(buffer3->data(), buffer1->data(), 600)); | |
1374 | |
1375 // Extend it again. | |
1376 EXPECT_EQ(600, | |
1377 WriteData(entry, stream_index, 2000, buffer1.get(), 600, false)); | |
1378 EXPECT_EQ(2600, entry->GetDataSize(stream_index)); | |
1379 EXPECT_EQ(200, ReadData(entry, stream_index, 1800, buffer3.get(), 200)); | |
1380 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 200)); | |
1381 | |
1382 // And again (with truncation flag). | |
1383 EXPECT_EQ(600, | |
1384 WriteData(entry, stream_index, 3000, buffer1.get(), 600, true)); | |
1385 EXPECT_EQ(3600, entry->GetDataSize(stream_index)); | |
1386 EXPECT_EQ(200, ReadData(entry, stream_index, 2800, buffer3.get(), 200)); | |
1387 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 200)); | |
1388 | |
1389 entry->Close(); | |
1390 } | |
1391 | |
1392 TEST_F(DiskCacheEntryTest, InvalidData) { | |
1393 InitCache(); | |
1394 InvalidData(0); | |
1395 } | |
1396 | |
1397 TEST_F(DiskCacheEntryTest, InvalidDataNoBuffer) { | |
1398 InitCache(); | |
1399 cache_impl_->SetFlags(disk_cache::kNoBuffering); | |
1400 InvalidData(0); | |
1401 } | |
1402 | |
1403 TEST_F(DiskCacheEntryTest, MemoryOnlyInvalidData) { | |
1404 SetMemoryOnlyMode(); | |
1405 InitCache(); | |
1406 InvalidData(0); | |
1407 } | |
1408 | |
1409 // Tests that the cache preserves the buffer of an IO operation. | |
1410 void DiskCacheEntryTest::ReadWriteDestroyBuffer(int stream_index) { | |
1411 std::string key("the first key"); | |
1412 disk_cache::Entry* entry; | |
1413 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
1414 | |
1415 const int kSize = 200; | |
1416 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize)); | |
1417 CacheTestFillBuffer(buffer->data(), kSize, false); | |
1418 | |
1419 net::TestCompletionCallback cb; | |
1420 EXPECT_EQ(net::ERR_IO_PENDING, | |
1421 entry->WriteData( | |
1422 stream_index, 0, buffer.get(), kSize, cb.callback(), false)); | |
1423 | |
1424 // Release our reference to the buffer. | |
1425 buffer = NULL; | |
1426 EXPECT_EQ(kSize, cb.WaitForResult()); | |
1427 | |
1428 // And now test with a Read(). | |
1429 buffer = new net::IOBuffer(kSize); | |
1430 CacheTestFillBuffer(buffer->data(), kSize, false); | |
1431 | |
1432 EXPECT_EQ( | |
1433 net::ERR_IO_PENDING, | |
1434 entry->ReadData(stream_index, 0, buffer.get(), kSize, cb.callback())); | |
1435 buffer = NULL; | |
1436 EXPECT_EQ(kSize, cb.WaitForResult()); | |
1437 | |
1438 entry->Close(); | |
1439 } | |
1440 | |
1441 TEST_F(DiskCacheEntryTest, ReadWriteDestroyBuffer) { | |
1442 InitCache(); | |
1443 ReadWriteDestroyBuffer(0); | |
1444 } | |
1445 | |
1446 void DiskCacheEntryTest::DoomNormalEntry() { | |
1447 std::string key("the first key"); | |
1448 disk_cache::Entry* entry; | |
1449 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
1450 entry->Doom(); | |
1451 entry->Close(); | |
1452 | |
1453 const int kSize = 20000; | |
1454 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize)); | |
1455 CacheTestFillBuffer(buffer->data(), kSize, true); | |
1456 buffer->data()[19999] = '\0'; | |
1457 | |
1458 key = buffer->data(); | |
1459 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
1460 EXPECT_EQ(20000, WriteData(entry, 0, 0, buffer.get(), kSize, false)); | |
1461 EXPECT_EQ(20000, WriteData(entry, 1, 0, buffer.get(), kSize, false)); | |
1462 entry->Doom(); | |
1463 entry->Close(); | |
1464 | |
1465 FlushQueueForTest(); | |
1466 EXPECT_EQ(0, cache_->GetEntryCount()); | |
1467 } | |
1468 | |
1469 TEST_F(DiskCacheEntryTest, DoomEntry) { | |
1470 InitCache(); | |
1471 DoomNormalEntry(); | |
1472 } | |
1473 | |
1474 TEST_F(DiskCacheEntryTest, MemoryOnlyDoomEntry) { | |
1475 SetMemoryOnlyMode(); | |
1476 InitCache(); | |
1477 DoomNormalEntry(); | |
1478 } | |
1479 | |
1480 // Tests dooming an entry that's linked to an open entry. | |
1481 void DiskCacheEntryTest::DoomEntryNextToOpenEntry() { | |
1482 disk_cache::Entry* entry1; | |
1483 disk_cache::Entry* entry2; | |
1484 ASSERT_EQ(net::OK, CreateEntry("fixed", &entry1)); | |
1485 entry1->Close(); | |
1486 ASSERT_EQ(net::OK, CreateEntry("foo", &entry1)); | |
1487 entry1->Close(); | |
1488 ASSERT_EQ(net::OK, CreateEntry("bar", &entry1)); | |
1489 entry1->Close(); | |
1490 | |
1491 ASSERT_EQ(net::OK, OpenEntry("foo", &entry1)); | |
1492 ASSERT_EQ(net::OK, OpenEntry("bar", &entry2)); | |
1493 entry2->Doom(); | |
1494 entry2->Close(); | |
1495 | |
1496 ASSERT_EQ(net::OK, OpenEntry("foo", &entry2)); | |
1497 entry2->Doom(); | |
1498 entry2->Close(); | |
1499 entry1->Close(); | |
1500 | |
1501 ASSERT_EQ(net::OK, OpenEntry("fixed", &entry1)); | |
1502 entry1->Close(); | |
1503 } | |
1504 | |
1505 TEST_F(DiskCacheEntryTest, DoomEntryNextToOpenEntry) { | |
1506 InitCache(); | |
1507 DoomEntryNextToOpenEntry(); | |
1508 } | |
1509 | |
1510 TEST_F(DiskCacheEntryTest, NewEvictionDoomEntryNextToOpenEntry) { | |
1511 SetNewEviction(); | |
1512 InitCache(); | |
1513 DoomEntryNextToOpenEntry(); | |
1514 } | |
1515 | |
1516 TEST_F(DiskCacheEntryTest, AppCacheDoomEntryNextToOpenEntry) { | |
1517 SetCacheType(net::APP_CACHE); | |
1518 InitCache(); | |
1519 DoomEntryNextToOpenEntry(); | |
1520 } | |
1521 | |
1522 // Verify that basic operations work as expected with doomed entries. | |
1523 void DiskCacheEntryTest::DoomedEntry(int stream_index) { | |
1524 std::string key("the first key"); | |
1525 disk_cache::Entry* entry; | |
1526 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
1527 entry->Doom(); | |
1528 | |
1529 FlushQueueForTest(); | |
1530 EXPECT_EQ(0, cache_->GetEntryCount()); | |
1531 Time initial = Time::Now(); | |
1532 AddDelay(); | |
1533 | |
1534 const int kSize1 = 2000; | |
1535 const int kSize2 = 2000; | |
1536 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1)); | |
1537 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2)); | |
1538 CacheTestFillBuffer(buffer1->data(), kSize1, false); | |
1539 memset(buffer2->data(), 0, kSize2); | |
1540 | |
1541 EXPECT_EQ(2000, | |
1542 WriteData(entry, stream_index, 0, buffer1.get(), 2000, false)); | |
1543 EXPECT_EQ(2000, ReadData(entry, stream_index, 0, buffer2.get(), 2000)); | |
1544 EXPECT_EQ(0, memcmp(buffer1->data(), buffer2->data(), kSize1)); | |
1545 EXPECT_EQ(key, entry->GetKey()); | |
1546 EXPECT_TRUE(initial < entry->GetLastModified()); | |
1547 EXPECT_TRUE(initial < entry->GetLastUsed()); | |
1548 | |
1549 entry->Close(); | |
1550 } | |
1551 | |
1552 TEST_F(DiskCacheEntryTest, DoomedEntry) { | |
1553 InitCache(); | |
1554 DoomedEntry(0); | |
1555 } | |
1556 | |
1557 TEST_F(DiskCacheEntryTest, MemoryOnlyDoomedEntry) { | |
1558 SetMemoryOnlyMode(); | |
1559 InitCache(); | |
1560 DoomedEntry(0); | |
1561 } | |
1562 | |
1563 // Tests that we discard entries if the data is missing. | |
1564 TEST_F(DiskCacheEntryTest, MissingData) { | |
1565 InitCache(); | |
1566 | |
1567 std::string key("the first key"); | |
1568 disk_cache::Entry* entry; | |
1569 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
1570 | |
1571 // Write to an external file. | |
1572 const int kSize = 20000; | |
1573 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize)); | |
1574 CacheTestFillBuffer(buffer->data(), kSize, false); | |
1575 EXPECT_EQ(kSize, WriteData(entry, 0, 0, buffer.get(), kSize, false)); | |
1576 entry->Close(); | |
1577 FlushQueueForTest(); | |
1578 | |
1579 disk_cache::Addr address(0x80000001); | |
1580 base::FilePath name = cache_impl_->GetFileName(address); | |
1581 EXPECT_TRUE(base::DeleteFile(name, false)); | |
1582 | |
1583 // Attempt to read the data. | |
1584 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
1585 EXPECT_EQ(net::ERR_FILE_NOT_FOUND, | |
1586 ReadData(entry, 0, 0, buffer.get(), kSize)); | |
1587 entry->Close(); | |
1588 | |
1589 // The entry should be gone. | |
1590 ASSERT_NE(net::OK, OpenEntry(key, &entry)); | |
1591 } | |
1592 | |
1593 // Test that child entries in a memory cache backend are not visible from | |
1594 // enumerations. | |
1595 TEST_F(DiskCacheEntryTest, MemoryOnlyEnumerationWithSparseEntries) { | |
1596 SetMemoryOnlyMode(); | |
1597 InitCache(); | |
1598 | |
1599 const int kSize = 4096; | |
1600 scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize)); | |
1601 CacheTestFillBuffer(buf->data(), kSize, false); | |
1602 | |
1603 std::string key("the first key"); | |
1604 disk_cache::Entry* parent_entry; | |
1605 ASSERT_EQ(net::OK, CreateEntry(key, &parent_entry)); | |
1606 | |
1607 // Writes to the parent entry. | |
1608 EXPECT_EQ(kSize, | |
1609 parent_entry->WriteSparseData( | |
1610 0, buf.get(), kSize, net::CompletionCallback())); | |
1611 | |
1612 // This write creates a child entry and writes to it. | |
1613 EXPECT_EQ(kSize, | |
1614 parent_entry->WriteSparseData( | |
1615 8192, buf.get(), kSize, net::CompletionCallback())); | |
1616 | |
1617 parent_entry->Close(); | |
1618 | |
1619 // Perform the enumerations. | |
1620 scoped_ptr<TestIterator> iter = CreateIterator(); | |
1621 disk_cache::Entry* entry = NULL; | |
1622 int count = 0; | |
1623 while (iter->OpenNextEntry(&entry) == net::OK) { | |
1624 ASSERT_TRUE(entry != NULL); | |
1625 ++count; | |
1626 disk_cache::MemEntryImpl* mem_entry = | |
1627 reinterpret_cast<disk_cache::MemEntryImpl*>(entry); | |
1628 EXPECT_EQ(disk_cache::MemEntryImpl::kParentEntry, mem_entry->type()); | |
1629 mem_entry->Close(); | |
1630 } | |
1631 EXPECT_EQ(1, count); | |
1632 } | |
1633 | |
1634 // Writes |buf_1| to offset and reads it back as |buf_2|. | |
1635 void VerifySparseIO(disk_cache::Entry* entry, int64 offset, | |
1636 net::IOBuffer* buf_1, int size, net::IOBuffer* buf_2) { | |
1637 net::TestCompletionCallback cb; | |
1638 | |
1639 memset(buf_2->data(), 0, size); | |
1640 int ret = entry->ReadSparseData(offset, buf_2, size, cb.callback()); | |
1641 EXPECT_EQ(0, cb.GetResult(ret)); | |
1642 | |
1643 ret = entry->WriteSparseData(offset, buf_1, size, cb.callback()); | |
1644 EXPECT_EQ(size, cb.GetResult(ret)); | |
1645 | |
1646 ret = entry->ReadSparseData(offset, buf_2, size, cb.callback()); | |
1647 EXPECT_EQ(size, cb.GetResult(ret)); | |
1648 | |
1649 EXPECT_EQ(0, memcmp(buf_1->data(), buf_2->data(), size)); | |
1650 } | |
1651 | |
1652 // Reads |size| bytes from |entry| at |offset| and verifies that they are the | |
1653 // same as the content of the provided |buffer|. | |
1654 void VerifyContentSparseIO(disk_cache::Entry* entry, int64 offset, char* buffer, | |
1655 int size) { | |
1656 net::TestCompletionCallback cb; | |
1657 | |
1658 scoped_refptr<net::IOBuffer> buf_1(new net::IOBuffer(size)); | |
1659 memset(buf_1->data(), 0, size); | |
1660 int ret = entry->ReadSparseData(offset, buf_1.get(), size, cb.callback()); | |
1661 EXPECT_EQ(size, cb.GetResult(ret)); | |
1662 EXPECT_EQ(0, memcmp(buf_1->data(), buffer, size)); | |
1663 } | |
1664 | |
1665 void DiskCacheEntryTest::BasicSparseIO() { | |
1666 std::string key("the first key"); | |
1667 disk_cache::Entry* entry; | |
1668 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
1669 | |
1670 const int kSize = 2048; | |
1671 scoped_refptr<net::IOBuffer> buf_1(new net::IOBuffer(kSize)); | |
1672 scoped_refptr<net::IOBuffer> buf_2(new net::IOBuffer(kSize)); | |
1673 CacheTestFillBuffer(buf_1->data(), kSize, false); | |
1674 | |
1675 // Write at offset 0. | |
1676 VerifySparseIO(entry, 0, buf_1.get(), kSize, buf_2.get()); | |
1677 | |
1678 // Write at offset 0x400000 (4 MB). | |
1679 VerifySparseIO(entry, 0x400000, buf_1.get(), kSize, buf_2.get()); | |
1680 | |
1681 // Write at offset 0x800000000 (32 GB). | |
1682 VerifySparseIO(entry, 0x800000000LL, buf_1.get(), kSize, buf_2.get()); | |
1683 | |
1684 entry->Close(); | |
1685 | |
1686 // Check everything again. | |
1687 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
1688 VerifyContentSparseIO(entry, 0, buf_1->data(), kSize); | |
1689 VerifyContentSparseIO(entry, 0x400000, buf_1->data(), kSize); | |
1690 VerifyContentSparseIO(entry, 0x800000000LL, buf_1->data(), kSize); | |
1691 entry->Close(); | |
1692 } | |
1693 | |
1694 TEST_F(DiskCacheEntryTest, BasicSparseIO) { | |
1695 InitCache(); | |
1696 BasicSparseIO(); | |
1697 } | |
1698 | |
1699 TEST_F(DiskCacheEntryTest, MemoryOnlyBasicSparseIO) { | |
1700 SetMemoryOnlyMode(); | |
1701 InitCache(); | |
1702 BasicSparseIO(); | |
1703 } | |
1704 | |
1705 void DiskCacheEntryTest::HugeSparseIO() { | |
1706 std::string key("the first key"); | |
1707 disk_cache::Entry* entry; | |
1708 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
1709 | |
1710 // Write 1.2 MB so that we cover multiple entries. | |
1711 const int kSize = 1200 * 1024; | |
1712 scoped_refptr<net::IOBuffer> buf_1(new net::IOBuffer(kSize)); | |
1713 scoped_refptr<net::IOBuffer> buf_2(new net::IOBuffer(kSize)); | |
1714 CacheTestFillBuffer(buf_1->data(), kSize, false); | |
1715 | |
1716 // Write at offset 0x20F0000 (33 MB - 64 KB). | |
1717 VerifySparseIO(entry, 0x20F0000, buf_1.get(), kSize, buf_2.get()); | |
1718 entry->Close(); | |
1719 | |
1720 // Check it again. | |
1721 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
1722 VerifyContentSparseIO(entry, 0x20F0000, buf_1->data(), kSize); | |
1723 entry->Close(); | |
1724 } | |
1725 | |
1726 TEST_F(DiskCacheEntryTest, HugeSparseIO) { | |
1727 InitCache(); | |
1728 HugeSparseIO(); | |
1729 } | |
1730 | |
1731 TEST_F(DiskCacheEntryTest, MemoryOnlyHugeSparseIO) { | |
1732 SetMemoryOnlyMode(); | |
1733 InitCache(); | |
1734 HugeSparseIO(); | |
1735 } | |
1736 | |
1737 void DiskCacheEntryTest::GetAvailableRange() { | |
1738 std::string key("the first key"); | |
1739 disk_cache::Entry* entry; | |
1740 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
1741 | |
1742 const int kSize = 16 * 1024; | |
1743 scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize)); | |
1744 CacheTestFillBuffer(buf->data(), kSize, false); | |
1745 | |
1746 // Write at offset 0x20F0000 (33 MB - 64 KB), and 0x20F4400 (33 MB - 47 KB). | |
1747 EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F0000, buf.get(), kSize)); | |
1748 EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F4400, buf.get(), kSize)); | |
1749 | |
1750 // We stop at the first empty block. | |
1751 int64 start; | |
1752 net::TestCompletionCallback cb; | |
1753 int rv = entry->GetAvailableRange( | |
1754 0x20F0000, kSize * 2, &start, cb.callback()); | |
1755 EXPECT_EQ(kSize, cb.GetResult(rv)); | |
1756 EXPECT_EQ(0x20F0000, start); | |
1757 | |
1758 start = 0; | |
1759 rv = entry->GetAvailableRange(0, kSize, &start, cb.callback()); | |
1760 EXPECT_EQ(0, cb.GetResult(rv)); | |
1761 rv = entry->GetAvailableRange( | |
1762 0x20F0000 - kSize, kSize, &start, cb.callback()); | |
1763 EXPECT_EQ(0, cb.GetResult(rv)); | |
1764 rv = entry->GetAvailableRange(0, 0x2100000, &start, cb.callback()); | |
1765 EXPECT_EQ(kSize, cb.GetResult(rv)); | |
1766 EXPECT_EQ(0x20F0000, start); | |
1767 | |
1768 // We should be able to Read based on the results of GetAvailableRange. | |
1769 start = -1; | |
1770 rv = entry->GetAvailableRange(0x2100000, kSize, &start, cb.callback()); | |
1771 EXPECT_EQ(0, cb.GetResult(rv)); | |
1772 rv = entry->ReadSparseData(start, buf.get(), kSize, cb.callback()); | |
1773 EXPECT_EQ(0, cb.GetResult(rv)); | |
1774 | |
1775 start = 0; | |
1776 rv = entry->GetAvailableRange(0x20F2000, kSize, &start, cb.callback()); | |
1777 EXPECT_EQ(0x2000, cb.GetResult(rv)); | |
1778 EXPECT_EQ(0x20F2000, start); | |
1779 EXPECT_EQ(0x2000, ReadSparseData(entry, start, buf.get(), kSize)); | |
1780 | |
1781 // Make sure that we respect the |len| argument. | |
1782 start = 0; | |
1783 rv = entry->GetAvailableRange( | |
1784 0x20F0001 - kSize, kSize, &start, cb.callback()); | |
1785 EXPECT_EQ(1, cb.GetResult(rv)); | |
1786 EXPECT_EQ(0x20F0000, start); | |
1787 | |
1788 entry->Close(); | |
1789 } | |
1790 | |
1791 TEST_F(DiskCacheEntryTest, GetAvailableRange) { | |
1792 InitCache(); | |
1793 GetAvailableRange(); | |
1794 } | |
1795 | |
1796 TEST_F(DiskCacheEntryTest, MemoryOnlyGetAvailableRange) { | |
1797 SetMemoryOnlyMode(); | |
1798 InitCache(); | |
1799 GetAvailableRange(); | |
1800 } | |
1801 | |
1802 // Tests that non-sequential writes that are not aligned with the minimum sparse | |
1803 // data granularity (1024 bytes) do in fact result in dropped data. | |
1804 TEST_F(DiskCacheEntryTest, SparseWriteDropped) { | |
1805 InitCache(); | |
1806 std::string key("the first key"); | |
1807 disk_cache::Entry* entry; | |
1808 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
1809 | |
1810 const int kSize = 180; | |
1811 scoped_refptr<net::IOBuffer> buf_1(new net::IOBuffer(kSize)); | |
1812 scoped_refptr<net::IOBuffer> buf_2(new net::IOBuffer(kSize)); | |
1813 CacheTestFillBuffer(buf_1->data(), kSize, false); | |
1814 | |
1815 // Do small writes (180 bytes) that get increasingly close to a 1024-byte | |
1816 // boundary. All data should be dropped until a boundary is crossed, at which | |
1817 // point the data after the boundary is saved (at least for a while). | |
1818 int offset = 1024 - 500; | |
1819 int rv = 0; | |
1820 net::TestCompletionCallback cb; | |
1821 int64 start; | |
1822 for (int i = 0; i < 5; i++) { | |
1823 // Check result of last GetAvailableRange. | |
1824 EXPECT_EQ(0, rv); | |
1825 | |
1826 rv = entry->WriteSparseData(offset, buf_1.get(), kSize, cb.callback()); | |
1827 EXPECT_EQ(kSize, cb.GetResult(rv)); | |
1828 | |
1829 rv = entry->GetAvailableRange(offset - 100, kSize, &start, cb.callback()); | |
1830 EXPECT_EQ(0, cb.GetResult(rv)); | |
1831 | |
1832 rv = entry->GetAvailableRange(offset, kSize, &start, cb.callback()); | |
1833 rv = cb.GetResult(rv); | |
1834 if (!rv) { | |
1835 rv = entry->ReadSparseData(offset, buf_2.get(), kSize, cb.callback()); | |
1836 EXPECT_EQ(0, cb.GetResult(rv)); | |
1837 rv = 0; | |
1838 } | |
1839 offset += 1024 * i + 100; | |
1840 } | |
1841 | |
1842 // The last write started 100 bytes below a bundary, so there should be 80 | |
1843 // bytes after the boundary. | |
1844 EXPECT_EQ(80, rv); | |
1845 EXPECT_EQ(1024 * 7, start); | |
1846 rv = entry->ReadSparseData(start, buf_2.get(), kSize, cb.callback()); | |
1847 EXPECT_EQ(80, cb.GetResult(rv)); | |
1848 EXPECT_EQ(0, memcmp(buf_1.get()->data() + 100, buf_2.get()->data(), 80)); | |
1849 | |
1850 // And even that part is dropped when another write changes the offset. | |
1851 offset = start; | |
1852 rv = entry->WriteSparseData(0, buf_1.get(), kSize, cb.callback()); | |
1853 EXPECT_EQ(kSize, cb.GetResult(rv)); | |
1854 | |
1855 rv = entry->GetAvailableRange(offset, kSize, &start, cb.callback()); | |
1856 EXPECT_EQ(0, cb.GetResult(rv)); | |
1857 entry->Close(); | |
1858 } | |
1859 | |
1860 // Tests that small sequential writes are not dropped. | |
1861 TEST_F(DiskCacheEntryTest, SparseSquentialWriteNotDropped) { | |
1862 InitCache(); | |
1863 std::string key("the first key"); | |
1864 disk_cache::Entry* entry; | |
1865 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
1866 | |
1867 const int kSize = 180; | |
1868 scoped_refptr<net::IOBuffer> buf_1(new net::IOBuffer(kSize)); | |
1869 scoped_refptr<net::IOBuffer> buf_2(new net::IOBuffer(kSize)); | |
1870 CacheTestFillBuffer(buf_1->data(), kSize, false); | |
1871 | |
1872 // Any starting offset is fine as long as it is 1024-bytes aligned. | |
1873 int rv = 0; | |
1874 net::TestCompletionCallback cb; | |
1875 int64 start; | |
1876 int64 offset = 1024 * 11; | |
1877 for (; offset < 20000; offset += kSize) { | |
1878 rv = entry->WriteSparseData(offset, buf_1.get(), kSize, cb.callback()); | |
1879 EXPECT_EQ(kSize, cb.GetResult(rv)); | |
1880 | |
1881 rv = entry->GetAvailableRange(offset, kSize, &start, cb.callback()); | |
1882 EXPECT_EQ(kSize, cb.GetResult(rv)); | |
1883 EXPECT_EQ(offset, start); | |
1884 | |
1885 rv = entry->ReadSparseData(offset, buf_2.get(), kSize, cb.callback()); | |
1886 EXPECT_EQ(kSize, cb.GetResult(rv)); | |
1887 EXPECT_EQ(0, memcmp(buf_1.get()->data(), buf_2.get()->data(), kSize)); | |
1888 } | |
1889 | |
1890 entry->Close(); | |
1891 FlushQueueForTest(); | |
1892 | |
1893 // Verify again the last write made. | |
1894 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
1895 offset -= kSize; | |
1896 rv = entry->GetAvailableRange(offset, kSize, &start, cb.callback()); | |
1897 EXPECT_EQ(kSize, cb.GetResult(rv)); | |
1898 EXPECT_EQ(offset, start); | |
1899 | |
1900 rv = entry->ReadSparseData(offset, buf_2.get(), kSize, cb.callback()); | |
1901 EXPECT_EQ(kSize, cb.GetResult(rv)); | |
1902 EXPECT_EQ(0, memcmp(buf_1.get()->data(), buf_2.get()->data(), kSize)); | |
1903 | |
1904 entry->Close(); | |
1905 } | |
1906 | |
1907 void DiskCacheEntryTest::CouldBeSparse() { | |
1908 std::string key("the first key"); | |
1909 disk_cache::Entry* entry; | |
1910 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
1911 | |
1912 const int kSize = 16 * 1024; | |
1913 scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize)); | |
1914 CacheTestFillBuffer(buf->data(), kSize, false); | |
1915 | |
1916 // Write at offset 0x20F0000 (33 MB - 64 KB). | |
1917 EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F0000, buf.get(), kSize)); | |
1918 | |
1919 EXPECT_TRUE(entry->CouldBeSparse()); | |
1920 entry->Close(); | |
1921 | |
1922 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
1923 EXPECT_TRUE(entry->CouldBeSparse()); | |
1924 entry->Close(); | |
1925 | |
1926 // Now verify a regular entry. | |
1927 key.assign("another key"); | |
1928 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
1929 EXPECT_FALSE(entry->CouldBeSparse()); | |
1930 | |
1931 EXPECT_EQ(kSize, WriteData(entry, 0, 0, buf.get(), kSize, false)); | |
1932 EXPECT_EQ(kSize, WriteData(entry, 1, 0, buf.get(), kSize, false)); | |
1933 EXPECT_EQ(kSize, WriteData(entry, 2, 0, buf.get(), kSize, false)); | |
1934 | |
1935 EXPECT_FALSE(entry->CouldBeSparse()); | |
1936 entry->Close(); | |
1937 | |
1938 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
1939 EXPECT_FALSE(entry->CouldBeSparse()); | |
1940 entry->Close(); | |
1941 } | |
1942 | |
1943 TEST_F(DiskCacheEntryTest, CouldBeSparse) { | |
1944 InitCache(); | |
1945 CouldBeSparse(); | |
1946 } | |
1947 | |
1948 TEST_F(DiskCacheEntryTest, MemoryCouldBeSparse) { | |
1949 SetMemoryOnlyMode(); | |
1950 InitCache(); | |
1951 CouldBeSparse(); | |
1952 } | |
1953 | |
1954 TEST_F(DiskCacheEntryTest, MemoryOnlyMisalignedSparseIO) { | |
1955 SetMemoryOnlyMode(); | |
1956 InitCache(); | |
1957 | |
1958 const int kSize = 8192; | |
1959 scoped_refptr<net::IOBuffer> buf_1(new net::IOBuffer(kSize)); | |
1960 scoped_refptr<net::IOBuffer> buf_2(new net::IOBuffer(kSize)); | |
1961 CacheTestFillBuffer(buf_1->data(), kSize, false); | |
1962 | |
1963 std::string key("the first key"); | |
1964 disk_cache::Entry* entry; | |
1965 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
1966 | |
1967 // This loop writes back to back starting from offset 0 and 9000. | |
1968 for (int i = 0; i < kSize; i += 1024) { | |
1969 scoped_refptr<net::WrappedIOBuffer> buf_3( | |
1970 new net::WrappedIOBuffer(buf_1->data() + i)); | |
1971 VerifySparseIO(entry, i, buf_3.get(), 1024, buf_2.get()); | |
1972 VerifySparseIO(entry, 9000 + i, buf_3.get(), 1024, buf_2.get()); | |
1973 } | |
1974 | |
1975 // Make sure we have data written. | |
1976 VerifyContentSparseIO(entry, 0, buf_1->data(), kSize); | |
1977 VerifyContentSparseIO(entry, 9000, buf_1->data(), kSize); | |
1978 | |
1979 // This tests a large write that spans 3 entries from a misaligned offset. | |
1980 VerifySparseIO(entry, 20481, buf_1.get(), 8192, buf_2.get()); | |
1981 | |
1982 entry->Close(); | |
1983 } | |
1984 | |
1985 TEST_F(DiskCacheEntryTest, MemoryOnlyMisalignedGetAvailableRange) { | |
1986 SetMemoryOnlyMode(); | |
1987 InitCache(); | |
1988 | |
1989 const int kSize = 8192; | |
1990 scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize)); | |
1991 CacheTestFillBuffer(buf->data(), kSize, false); | |
1992 | |
1993 disk_cache::Entry* entry; | |
1994 std::string key("the first key"); | |
1995 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
1996 | |
1997 // Writes in the middle of an entry. | |
1998 EXPECT_EQ( | |
1999 1024, | |
2000 entry->WriteSparseData(0, buf.get(), 1024, net::CompletionCallback())); | |
2001 EXPECT_EQ( | |
2002 1024, | |
2003 entry->WriteSparseData(5120, buf.get(), 1024, net::CompletionCallback())); | |
2004 EXPECT_EQ(1024, | |
2005 entry->WriteSparseData( | |
2006 10000, buf.get(), 1024, net::CompletionCallback())); | |
2007 | |
2008 // Writes in the middle of an entry and spans 2 child entries. | |
2009 EXPECT_EQ(8192, | |
2010 entry->WriteSparseData( | |
2011 50000, buf.get(), 8192, net::CompletionCallback())); | |
2012 | |
2013 int64 start; | |
2014 net::TestCompletionCallback cb; | |
2015 // Test that we stop at a discontinuous child at the second block. | |
2016 int rv = entry->GetAvailableRange(0, 10000, &start, cb.callback()); | |
2017 EXPECT_EQ(1024, cb.GetResult(rv)); | |
2018 EXPECT_EQ(0, start); | |
2019 | |
2020 // Test that number of bytes is reported correctly when we start from the | |
2021 // middle of a filled region. | |
2022 rv = entry->GetAvailableRange(512, 10000, &start, cb.callback()); | |
2023 EXPECT_EQ(512, cb.GetResult(rv)); | |
2024 EXPECT_EQ(512, start); | |
2025 | |
2026 // Test that we found bytes in the child of next block. | |
2027 rv = entry->GetAvailableRange(1024, 10000, &start, cb.callback()); | |
2028 EXPECT_EQ(1024, cb.GetResult(rv)); | |
2029 EXPECT_EQ(5120, start); | |
2030 | |
2031 // Test that the desired length is respected. It starts within a filled | |
2032 // region. | |
2033 rv = entry->GetAvailableRange(5500, 512, &start, cb.callback()); | |
2034 EXPECT_EQ(512, cb.GetResult(rv)); | |
2035 EXPECT_EQ(5500, start); | |
2036 | |
2037 // Test that the desired length is respected. It starts before a filled | |
2038 // region. | |
2039 rv = entry->GetAvailableRange(5000, 620, &start, cb.callback()); | |
2040 EXPECT_EQ(500, cb.GetResult(rv)); | |
2041 EXPECT_EQ(5120, start); | |
2042 | |
2043 // Test that multiple blocks are scanned. | |
2044 rv = entry->GetAvailableRange(40000, 20000, &start, cb.callback()); | |
2045 EXPECT_EQ(8192, cb.GetResult(rv)); | |
2046 EXPECT_EQ(50000, start); | |
2047 | |
2048 entry->Close(); | |
2049 } | |
2050 | |
2051 void DiskCacheEntryTest::UpdateSparseEntry() { | |
2052 std::string key("the first key"); | |
2053 disk_cache::Entry* entry1; | |
2054 ASSERT_EQ(net::OK, CreateEntry(key, &entry1)); | |
2055 | |
2056 const int kSize = 2048; | |
2057 scoped_refptr<net::IOBuffer> buf_1(new net::IOBuffer(kSize)); | |
2058 scoped_refptr<net::IOBuffer> buf_2(new net::IOBuffer(kSize)); | |
2059 CacheTestFillBuffer(buf_1->data(), kSize, false); | |
2060 | |
2061 // Write at offset 0. | |
2062 VerifySparseIO(entry1, 0, buf_1.get(), kSize, buf_2.get()); | |
2063 entry1->Close(); | |
2064 | |
2065 // Write at offset 2048. | |
2066 ASSERT_EQ(net::OK, OpenEntry(key, &entry1)); | |
2067 VerifySparseIO(entry1, 2048, buf_1.get(), kSize, buf_2.get()); | |
2068 | |
2069 disk_cache::Entry* entry2; | |
2070 ASSERT_EQ(net::OK, CreateEntry("the second key", &entry2)); | |
2071 | |
2072 entry1->Close(); | |
2073 entry2->Close(); | |
2074 FlushQueueForTest(); | |
2075 if (memory_only_ || simple_cache_mode_) | |
2076 EXPECT_EQ(2, cache_->GetEntryCount()); | |
2077 else | |
2078 EXPECT_EQ(3, cache_->GetEntryCount()); | |
2079 } | |
2080 | |
2081 TEST_F(DiskCacheEntryTest, UpdateSparseEntry) { | |
2082 SetCacheType(net::MEDIA_CACHE); | |
2083 InitCache(); | |
2084 UpdateSparseEntry(); | |
2085 } | |
2086 | |
2087 TEST_F(DiskCacheEntryTest, MemoryOnlyUpdateSparseEntry) { | |
2088 SetMemoryOnlyMode(); | |
2089 SetCacheType(net::MEDIA_CACHE); | |
2090 InitCache(); | |
2091 UpdateSparseEntry(); | |
2092 } | |
2093 | |
2094 void DiskCacheEntryTest::DoomSparseEntry() { | |
2095 std::string key1("the first key"); | |
2096 std::string key2("the second key"); | |
2097 disk_cache::Entry *entry1, *entry2; | |
2098 ASSERT_EQ(net::OK, CreateEntry(key1, &entry1)); | |
2099 ASSERT_EQ(net::OK, CreateEntry(key2, &entry2)); | |
2100 | |
2101 const int kSize = 4 * 1024; | |
2102 scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize)); | |
2103 CacheTestFillBuffer(buf->data(), kSize, false); | |
2104 | |
2105 int64 offset = 1024; | |
2106 // Write to a bunch of ranges. | |
2107 for (int i = 0; i < 12; i++) { | |
2108 EXPECT_EQ(kSize, WriteSparseData(entry1, offset, buf.get(), kSize)); | |
2109 // Keep the second map under the default size. | |
2110 if (i < 9) | |
2111 EXPECT_EQ(kSize, WriteSparseData(entry2, offset, buf.get(), kSize)); | |
2112 | |
2113 offset *= 4; | |
2114 } | |
2115 | |
2116 if (memory_only_ || simple_cache_mode_) | |
2117 EXPECT_EQ(2, cache_->GetEntryCount()); | |
2118 else | |
2119 EXPECT_EQ(15, cache_->GetEntryCount()); | |
2120 | |
2121 // Doom the first entry while it's still open. | |
2122 entry1->Doom(); | |
2123 entry1->Close(); | |
2124 entry2->Close(); | |
2125 | |
2126 // Doom the second entry after it's fully saved. | |
2127 EXPECT_EQ(net::OK, DoomEntry(key2)); | |
2128 | |
2129 // Make sure we do all needed work. This may fail for entry2 if between Close | |
2130 // and DoomEntry the system decides to remove all traces of the file from the | |
2131 // system cache so we don't see that there is pending IO. | |
2132 base::MessageLoop::current()->RunUntilIdle(); | |
2133 | |
2134 if (memory_only_) { | |
2135 EXPECT_EQ(0, cache_->GetEntryCount()); | |
2136 } else { | |
2137 if (5 == cache_->GetEntryCount()) { | |
2138 // Most likely we are waiting for the result of reading the sparse info | |
2139 // (it's always async on Posix so it is easy to miss). Unfortunately we | |
2140 // don't have any signal to watch for so we can only wait. | |
2141 base::PlatformThread::Sleep(base::TimeDelta::FromMilliseconds(500)); | |
2142 base::MessageLoop::current()->RunUntilIdle(); | |
2143 } | |
2144 EXPECT_EQ(0, cache_->GetEntryCount()); | |
2145 } | |
2146 } | |
2147 | |
2148 TEST_F(DiskCacheEntryTest, DoomSparseEntry) { | |
2149 UseCurrentThread(); | |
2150 InitCache(); | |
2151 DoomSparseEntry(); | |
2152 } | |
2153 | |
2154 TEST_F(DiskCacheEntryTest, MemoryOnlyDoomSparseEntry) { | |
2155 SetMemoryOnlyMode(); | |
2156 InitCache(); | |
2157 DoomSparseEntry(); | |
2158 } | |
2159 | |
2160 // A CompletionCallback wrapper that deletes the cache from within the callback. | |
2161 // The way a CompletionCallback works means that all tasks (even new ones) | |
2162 // are executed by the message loop before returning to the caller so the only | |
2163 // way to simulate a race is to execute what we want on the callback. | |
2164 class SparseTestCompletionCallback: public net::TestCompletionCallback { | |
2165 public: | |
2166 explicit SparseTestCompletionCallback(scoped_ptr<disk_cache::Backend> cache) | |
2167 : cache_(cache.Pass()) { | |
2168 } | |
2169 | |
2170 private: | |
2171 void SetResult(int result) override { | |
2172 cache_.reset(); | |
2173 TestCompletionCallback::SetResult(result); | |
2174 } | |
2175 | |
2176 scoped_ptr<disk_cache::Backend> cache_; | |
2177 DISALLOW_COPY_AND_ASSIGN(SparseTestCompletionCallback); | |
2178 }; | |
2179 | |
2180 // Tests that we don't crash when the backend is deleted while we are working | |
2181 // deleting the sub-entries of a sparse entry. | |
2182 TEST_F(DiskCacheEntryTest, DoomSparseEntry2) { | |
2183 UseCurrentThread(); | |
2184 InitCache(); | |
2185 std::string key("the key"); | |
2186 disk_cache::Entry* entry; | |
2187 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
2188 | |
2189 const int kSize = 4 * 1024; | |
2190 scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize)); | |
2191 CacheTestFillBuffer(buf->data(), kSize, false); | |
2192 | |
2193 int64 offset = 1024; | |
2194 // Write to a bunch of ranges. | |
2195 for (int i = 0; i < 12; i++) { | |
2196 EXPECT_EQ(kSize, | |
2197 entry->WriteSparseData( | |
2198 offset, buf.get(), kSize, net::CompletionCallback())); | |
2199 offset *= 4; | |
2200 } | |
2201 EXPECT_EQ(9, cache_->GetEntryCount()); | |
2202 | |
2203 entry->Close(); | |
2204 disk_cache::Backend* cache = cache_.get(); | |
2205 SparseTestCompletionCallback cb(cache_.Pass()); | |
2206 int rv = cache->DoomEntry(key, cb.callback()); | |
2207 EXPECT_EQ(net::ERR_IO_PENDING, rv); | |
2208 EXPECT_EQ(net::OK, cb.WaitForResult()); | |
2209 } | |
2210 | |
2211 void DiskCacheEntryTest::PartialSparseEntry() { | |
2212 std::string key("the first key"); | |
2213 disk_cache::Entry* entry; | |
2214 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
2215 | |
2216 // We should be able to deal with IO that is not aligned to the block size | |
2217 // of a sparse entry, at least to write a big range without leaving holes. | |
2218 const int kSize = 4 * 1024; | |
2219 const int kSmallSize = 128; | |
2220 scoped_refptr<net::IOBuffer> buf1(new net::IOBuffer(kSize)); | |
2221 CacheTestFillBuffer(buf1->data(), kSize, false); | |
2222 | |
2223 // The first write is just to extend the entry. The third write occupies | |
2224 // a 1KB block partially, it may not be written internally depending on the | |
2225 // implementation. | |
2226 EXPECT_EQ(kSize, WriteSparseData(entry, 20000, buf1.get(), kSize)); | |
2227 EXPECT_EQ(kSize, WriteSparseData(entry, 500, buf1.get(), kSize)); | |
2228 EXPECT_EQ(kSmallSize, | |
2229 WriteSparseData(entry, 1080321, buf1.get(), kSmallSize)); | |
2230 entry->Close(); | |
2231 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
2232 | |
2233 scoped_refptr<net::IOBuffer> buf2(new net::IOBuffer(kSize)); | |
2234 memset(buf2->data(), 0, kSize); | |
2235 EXPECT_EQ(0, ReadSparseData(entry, 8000, buf2.get(), kSize)); | |
2236 | |
2237 EXPECT_EQ(500, ReadSparseData(entry, kSize, buf2.get(), kSize)); | |
2238 EXPECT_EQ(0, memcmp(buf2->data(), buf1->data() + kSize - 500, 500)); | |
2239 EXPECT_EQ(0, ReadSparseData(entry, 0, buf2.get(), kSize)); | |
2240 | |
2241 // This read should not change anything. | |
2242 if (memory_only_ || simple_cache_mode_) | |
2243 EXPECT_EQ(96, ReadSparseData(entry, 24000, buf2.get(), kSize)); | |
2244 else | |
2245 EXPECT_EQ(0, ReadSparseData(entry, 24000, buf2.get(), kSize)); | |
2246 | |
2247 EXPECT_EQ(500, ReadSparseData(entry, kSize, buf2.get(), kSize)); | |
2248 EXPECT_EQ(0, ReadSparseData(entry, 99, buf2.get(), kSize)); | |
2249 | |
2250 int rv; | |
2251 int64 start; | |
2252 net::TestCompletionCallback cb; | |
2253 if (memory_only_ || simple_cache_mode_) { | |
2254 rv = entry->GetAvailableRange(0, 600, &start, cb.callback()); | |
2255 EXPECT_EQ(100, cb.GetResult(rv)); | |
2256 EXPECT_EQ(500, start); | |
2257 } else { | |
2258 rv = entry->GetAvailableRange(0, 2048, &start, cb.callback()); | |
2259 EXPECT_EQ(1024, cb.GetResult(rv)); | |
2260 EXPECT_EQ(1024, start); | |
2261 } | |
2262 rv = entry->GetAvailableRange(kSize, kSize, &start, cb.callback()); | |
2263 EXPECT_EQ(500, cb.GetResult(rv)); | |
2264 EXPECT_EQ(kSize, start); | |
2265 rv = entry->GetAvailableRange(20 * 1024, 10000, &start, cb.callback()); | |
2266 if (memory_only_ || simple_cache_mode_) | |
2267 EXPECT_EQ(3616, cb.GetResult(rv)); | |
2268 else | |
2269 EXPECT_EQ(3072, cb.GetResult(rv)); | |
2270 | |
2271 EXPECT_EQ(20 * 1024, start); | |
2272 | |
2273 // 1. Query before a filled 1KB block. | |
2274 // 2. Query within a filled 1KB block. | |
2275 // 3. Query beyond a filled 1KB block. | |
2276 if (memory_only_ || simple_cache_mode_) { | |
2277 rv = entry->GetAvailableRange(19400, kSize, &start, cb.callback()); | |
2278 EXPECT_EQ(3496, cb.GetResult(rv)); | |
2279 EXPECT_EQ(20000, start); | |
2280 } else { | |
2281 rv = entry->GetAvailableRange(19400, kSize, &start, cb.callback()); | |
2282 EXPECT_EQ(3016, cb.GetResult(rv)); | |
2283 EXPECT_EQ(20480, start); | |
2284 } | |
2285 rv = entry->GetAvailableRange(3073, kSize, &start, cb.callback()); | |
2286 EXPECT_EQ(1523, cb.GetResult(rv)); | |
2287 EXPECT_EQ(3073, start); | |
2288 rv = entry->GetAvailableRange(4600, kSize, &start, cb.callback()); | |
2289 EXPECT_EQ(0, cb.GetResult(rv)); | |
2290 EXPECT_EQ(4600, start); | |
2291 | |
2292 // Now make another write and verify that there is no hole in between. | |
2293 EXPECT_EQ(kSize, WriteSparseData(entry, 500 + kSize, buf1.get(), kSize)); | |
2294 rv = entry->GetAvailableRange(1024, 10000, &start, cb.callback()); | |
2295 EXPECT_EQ(7 * 1024 + 500, cb.GetResult(rv)); | |
2296 EXPECT_EQ(1024, start); | |
2297 EXPECT_EQ(kSize, ReadSparseData(entry, kSize, buf2.get(), kSize)); | |
2298 EXPECT_EQ(0, memcmp(buf2->data(), buf1->data() + kSize - 500, 500)); | |
2299 EXPECT_EQ(0, memcmp(buf2->data() + 500, buf1->data(), kSize - 500)); | |
2300 | |
2301 entry->Close(); | |
2302 } | |
2303 | |
2304 TEST_F(DiskCacheEntryTest, PartialSparseEntry) { | |
2305 InitCache(); | |
2306 PartialSparseEntry(); | |
2307 } | |
2308 | |
2309 TEST_F(DiskCacheEntryTest, MemoryPartialSparseEntry) { | |
2310 SetMemoryOnlyMode(); | |
2311 InitCache(); | |
2312 PartialSparseEntry(); | |
2313 } | |
2314 | |
2315 // Tests that corrupt sparse children are removed automatically. | |
2316 TEST_F(DiskCacheEntryTest, CleanupSparseEntry) { | |
2317 InitCache(); | |
2318 std::string key("the first key"); | |
2319 disk_cache::Entry* entry; | |
2320 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
2321 | |
2322 const int kSize = 4 * 1024; | |
2323 scoped_refptr<net::IOBuffer> buf1(new net::IOBuffer(kSize)); | |
2324 CacheTestFillBuffer(buf1->data(), kSize, false); | |
2325 | |
2326 const int k1Meg = 1024 * 1024; | |
2327 EXPECT_EQ(kSize, WriteSparseData(entry, 8192, buf1.get(), kSize)); | |
2328 EXPECT_EQ(kSize, WriteSparseData(entry, k1Meg + 8192, buf1.get(), kSize)); | |
2329 EXPECT_EQ(kSize, WriteSparseData(entry, 2 * k1Meg + 8192, buf1.get(), kSize)); | |
2330 entry->Close(); | |
2331 EXPECT_EQ(4, cache_->GetEntryCount()); | |
2332 | |
2333 scoped_ptr<TestIterator> iter = CreateIterator(); | |
2334 int count = 0; | |
2335 std::string child_key[2]; | |
2336 while (iter->OpenNextEntry(&entry) == net::OK) { | |
2337 ASSERT_TRUE(entry != NULL); | |
2338 // Writing to an entry will alter the LRU list and invalidate the iterator. | |
2339 if (entry->GetKey() != key && count < 2) | |
2340 child_key[count++] = entry->GetKey(); | |
2341 entry->Close(); | |
2342 } | |
2343 for (int i = 0; i < 2; i++) { | |
2344 ASSERT_EQ(net::OK, OpenEntry(child_key[i], &entry)); | |
2345 // Overwrite the header's magic and signature. | |
2346 EXPECT_EQ(12, WriteData(entry, 2, 0, buf1.get(), 12, false)); | |
2347 entry->Close(); | |
2348 } | |
2349 | |
2350 EXPECT_EQ(4, cache_->GetEntryCount()); | |
2351 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
2352 | |
2353 // Two children should be gone. One while reading and one while writing. | |
2354 EXPECT_EQ(0, ReadSparseData(entry, 2 * k1Meg + 8192, buf1.get(), kSize)); | |
2355 EXPECT_EQ(kSize, WriteSparseData(entry, k1Meg + 16384, buf1.get(), kSize)); | |
2356 EXPECT_EQ(0, ReadSparseData(entry, k1Meg + 8192, buf1.get(), kSize)); | |
2357 | |
2358 // We never touched this one. | |
2359 EXPECT_EQ(kSize, ReadSparseData(entry, 8192, buf1.get(), kSize)); | |
2360 entry->Close(); | |
2361 | |
2362 // We re-created one of the corrupt children. | |
2363 EXPECT_EQ(3, cache_->GetEntryCount()); | |
2364 } | |
2365 | |
2366 TEST_F(DiskCacheEntryTest, CancelSparseIO) { | |
2367 UseCurrentThread(); | |
2368 InitCache(); | |
2369 std::string key("the first key"); | |
2370 disk_cache::Entry* entry; | |
2371 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
2372 | |
2373 const int kSize = 40 * 1024; | |
2374 scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize)); | |
2375 CacheTestFillBuffer(buf->data(), kSize, false); | |
2376 | |
2377 // This will open and write two "real" entries. | |
2378 net::TestCompletionCallback cb1, cb2, cb3, cb4, cb5; | |
2379 int rv = entry->WriteSparseData( | |
2380 1024 * 1024 - 4096, buf.get(), kSize, cb1.callback()); | |
2381 EXPECT_EQ(net::ERR_IO_PENDING, rv); | |
2382 | |
2383 int64 offset = 0; | |
2384 rv = entry->GetAvailableRange(offset, kSize, &offset, cb5.callback()); | |
2385 rv = cb5.GetResult(rv); | |
2386 if (!cb1.have_result()) { | |
2387 // We may or may not have finished writing to the entry. If we have not, | |
2388 // we cannot start another operation at this time. | |
2389 EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED, rv); | |
2390 } | |
2391 | |
2392 // We cancel the pending operation, and register multiple notifications. | |
2393 entry->CancelSparseIO(); | |
2394 EXPECT_EQ(net::ERR_IO_PENDING, entry->ReadyForSparseIO(cb2.callback())); | |
2395 EXPECT_EQ(net::ERR_IO_PENDING, entry->ReadyForSparseIO(cb3.callback())); | |
2396 entry->CancelSparseIO(); // Should be a no op at this point. | |
2397 EXPECT_EQ(net::ERR_IO_PENDING, entry->ReadyForSparseIO(cb4.callback())); | |
2398 | |
2399 if (!cb1.have_result()) { | |
2400 EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED, | |
2401 entry->ReadSparseData( | |
2402 offset, buf.get(), kSize, net::CompletionCallback())); | |
2403 EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED, | |
2404 entry->WriteSparseData( | |
2405 offset, buf.get(), kSize, net::CompletionCallback())); | |
2406 } | |
2407 | |
2408 // Now see if we receive all notifications. Note that we should not be able | |
2409 // to write everything (unless the timing of the system is really weird). | |
2410 rv = cb1.WaitForResult(); | |
2411 EXPECT_TRUE(rv == 4096 || rv == kSize); | |
2412 EXPECT_EQ(net::OK, cb2.WaitForResult()); | |
2413 EXPECT_EQ(net::OK, cb3.WaitForResult()); | |
2414 EXPECT_EQ(net::OK, cb4.WaitForResult()); | |
2415 | |
2416 rv = entry->GetAvailableRange(offset, kSize, &offset, cb5.callback()); | |
2417 EXPECT_EQ(0, cb5.GetResult(rv)); | |
2418 entry->Close(); | |
2419 } | |
2420 | |
2421 // Tests that we perform sanity checks on an entry's key. Note that there are | |
2422 // other tests that exercise sanity checks by using saved corrupt files. | |
2423 TEST_F(DiskCacheEntryTest, KeySanityCheck) { | |
2424 UseCurrentThread(); | |
2425 InitCache(); | |
2426 std::string key("the first key"); | |
2427 disk_cache::Entry* entry; | |
2428 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
2429 | |
2430 disk_cache::EntryImpl* entry_impl = | |
2431 static_cast<disk_cache::EntryImpl*>(entry); | |
2432 disk_cache::EntryStore* store = entry_impl->entry()->Data(); | |
2433 | |
2434 // We have reserved space for a short key (one block), let's say that the key | |
2435 // takes more than one block, and remove the NULLs after the actual key. | |
2436 store->key_len = 800; | |
2437 memset(store->key + key.size(), 'k', sizeof(store->key) - key.size()); | |
2438 entry_impl->entry()->set_modified(); | |
2439 entry->Close(); | |
2440 | |
2441 // We have a corrupt entry. Now reload it. We should NOT read beyond the | |
2442 // allocated buffer here. | |
2443 ASSERT_NE(net::OK, OpenEntry(key, &entry)); | |
2444 DisableIntegrityCheck(); | |
2445 } | |
2446 | |
2447 TEST_F(DiskCacheEntryTest, SimpleCacheInternalAsyncIO) { | |
2448 SetSimpleCacheMode(); | |
2449 InitCache(); | |
2450 InternalAsyncIO(); | |
2451 } | |
2452 | |
2453 TEST_F(DiskCacheEntryTest, SimpleCacheExternalAsyncIO) { | |
2454 SetSimpleCacheMode(); | |
2455 InitCache(); | |
2456 ExternalAsyncIO(); | |
2457 } | |
2458 | |
2459 TEST_F(DiskCacheEntryTest, SimpleCacheReleaseBuffer) { | |
2460 SetSimpleCacheMode(); | |
2461 InitCache(); | |
2462 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) { | |
2463 EXPECT_EQ(net::OK, DoomAllEntries()); | |
2464 ReleaseBuffer(i); | |
2465 } | |
2466 } | |
2467 | |
2468 TEST_F(DiskCacheEntryTest, SimpleCacheStreamAccess) { | |
2469 SetSimpleCacheMode(); | |
2470 InitCache(); | |
2471 StreamAccess(); | |
2472 } | |
2473 | |
2474 TEST_F(DiskCacheEntryTest, SimpleCacheGetKey) { | |
2475 SetSimpleCacheMode(); | |
2476 InitCache(); | |
2477 GetKey(); | |
2478 } | |
2479 | |
2480 TEST_F(DiskCacheEntryTest, SimpleCacheGetTimes) { | |
2481 SetSimpleCacheMode(); | |
2482 InitCache(); | |
2483 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) { | |
2484 EXPECT_EQ(net::OK, DoomAllEntries()); | |
2485 GetTimes(i); | |
2486 } | |
2487 } | |
2488 | |
2489 TEST_F(DiskCacheEntryTest, SimpleCacheGrowData) { | |
2490 SetSimpleCacheMode(); | |
2491 InitCache(); | |
2492 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) { | |
2493 EXPECT_EQ(net::OK, DoomAllEntries()); | |
2494 GrowData(i); | |
2495 } | |
2496 } | |
2497 | |
2498 TEST_F(DiskCacheEntryTest, SimpleCacheTruncateData) { | |
2499 SetSimpleCacheMode(); | |
2500 InitCache(); | |
2501 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) { | |
2502 EXPECT_EQ(net::OK, DoomAllEntries()); | |
2503 TruncateData(i); | |
2504 } | |
2505 } | |
2506 | |
2507 TEST_F(DiskCacheEntryTest, SimpleCacheZeroLengthIO) { | |
2508 SetSimpleCacheMode(); | |
2509 InitCache(); | |
2510 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) { | |
2511 EXPECT_EQ(net::OK, DoomAllEntries()); | |
2512 ZeroLengthIO(i); | |
2513 } | |
2514 } | |
2515 | |
2516 TEST_F(DiskCacheEntryTest, SimpleCacheSizeAtCreate) { | |
2517 SetSimpleCacheMode(); | |
2518 InitCache(); | |
2519 SizeAtCreate(); | |
2520 } | |
2521 | |
2522 TEST_F(DiskCacheEntryTest, SimpleCacheReuseExternalEntry) { | |
2523 SetSimpleCacheMode(); | |
2524 SetMaxSize(200 * 1024); | |
2525 InitCache(); | |
2526 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) { | |
2527 EXPECT_EQ(net::OK, DoomAllEntries()); | |
2528 ReuseEntry(20 * 1024, i); | |
2529 } | |
2530 } | |
2531 | |
2532 TEST_F(DiskCacheEntryTest, SimpleCacheReuseInternalEntry) { | |
2533 SetSimpleCacheMode(); | |
2534 SetMaxSize(100 * 1024); | |
2535 InitCache(); | |
2536 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) { | |
2537 EXPECT_EQ(net::OK, DoomAllEntries()); | |
2538 ReuseEntry(10 * 1024, i); | |
2539 } | |
2540 } | |
2541 | |
2542 TEST_F(DiskCacheEntryTest, SimpleCacheSizeChanges) { | |
2543 SetSimpleCacheMode(); | |
2544 InitCache(); | |
2545 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) { | |
2546 EXPECT_EQ(net::OK, DoomAllEntries()); | |
2547 SizeChanges(i); | |
2548 } | |
2549 } | |
2550 | |
2551 TEST_F(DiskCacheEntryTest, SimpleCacheInvalidData) { | |
2552 SetSimpleCacheMode(); | |
2553 InitCache(); | |
2554 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) { | |
2555 EXPECT_EQ(net::OK, DoomAllEntries()); | |
2556 InvalidData(i); | |
2557 } | |
2558 } | |
2559 | |
2560 TEST_F(DiskCacheEntryTest, SimpleCacheReadWriteDestroyBuffer) { | |
2561 // Proving that the test works well with optimistic operations enabled is | |
2562 // subtle, instead run only in APP_CACHE mode to disable optimistic | |
2563 // operations. Stream 0 always uses optimistic operations, so the test is not | |
2564 // run on stream 0. | |
2565 SetCacheType(net::APP_CACHE); | |
2566 SetSimpleCacheMode(); | |
2567 InitCache(); | |
2568 for (int i = 1; i < disk_cache::kSimpleEntryStreamCount; ++i) { | |
2569 EXPECT_EQ(net::OK, DoomAllEntries()); | |
2570 ReadWriteDestroyBuffer(i); | |
2571 } | |
2572 } | |
2573 | |
2574 TEST_F(DiskCacheEntryTest, SimpleCacheDoomEntry) { | |
2575 SetSimpleCacheMode(); | |
2576 InitCache(); | |
2577 DoomNormalEntry(); | |
2578 } | |
2579 | |
2580 TEST_F(DiskCacheEntryTest, SimpleCacheDoomEntryNextToOpenEntry) { | |
2581 SetSimpleCacheMode(); | |
2582 InitCache(); | |
2583 DoomEntryNextToOpenEntry(); | |
2584 } | |
2585 | |
2586 TEST_F(DiskCacheEntryTest, SimpleCacheDoomedEntry) { | |
2587 SetSimpleCacheMode(); | |
2588 InitCache(); | |
2589 // Stream 2 is excluded because the implementation does not support writing to | |
2590 // it on a doomed entry, if it was previously lazily omitted. | |
2591 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount - 1; ++i) { | |
2592 EXPECT_EQ(net::OK, DoomAllEntries()); | |
2593 DoomedEntry(i); | |
2594 } | |
2595 } | |
2596 | |
2597 // Creates an entry with corrupted last byte in stream 0. | |
2598 // Requires SimpleCacheMode. | |
2599 bool DiskCacheEntryTest::SimpleCacheMakeBadChecksumEntry(const std::string& key, | |
2600 int* data_size) { | |
2601 disk_cache::Entry* entry = NULL; | |
2602 | |
2603 if (CreateEntry(key, &entry) != net::OK || !entry) { | |
2604 LOG(ERROR) << "Could not create entry"; | |
2605 return false; | |
2606 } | |
2607 | |
2608 const char data[] = "this is very good data"; | |
2609 const int kDataSize = arraysize(data); | |
2610 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kDataSize)); | |
2611 base::strlcpy(buffer->data(), data, kDataSize); | |
2612 | |
2613 EXPECT_EQ(kDataSize, WriteData(entry, 1, 0, buffer.get(), kDataSize, false)); | |
2614 entry->Close(); | |
2615 entry = NULL; | |
2616 | |
2617 // Corrupt the last byte of the data. | |
2618 base::FilePath entry_file0_path = cache_path_.AppendASCII( | |
2619 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 0)); | |
2620 base::File entry_file0(entry_file0_path, | |
2621 base::File::FLAG_WRITE | base::File::FLAG_OPEN); | |
2622 if (!entry_file0.IsValid()) | |
2623 return false; | |
2624 | |
2625 int64 file_offset = | |
2626 sizeof(disk_cache::SimpleFileHeader) + key.size() + kDataSize - 2; | |
2627 EXPECT_EQ(1, entry_file0.Write(file_offset, "X", 1)); | |
2628 *data_size = kDataSize; | |
2629 return true; | |
2630 } | |
2631 | |
2632 // Tests that the simple cache can detect entries that have bad data. | |
2633 TEST_F(DiskCacheEntryTest, SimpleCacheBadChecksum) { | |
2634 SetSimpleCacheMode(); | |
2635 InitCache(); | |
2636 | |
2637 const char key[] = "the first key"; | |
2638 int size_unused; | |
2639 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, &size_unused)); | |
2640 | |
2641 disk_cache::Entry* entry = NULL; | |
2642 | |
2643 // Open the entry. | |
2644 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
2645 ScopedEntryPtr entry_closer(entry); | |
2646 | |
2647 const int kReadBufferSize = 200; | |
2648 EXPECT_GE(kReadBufferSize, entry->GetDataSize(1)); | |
2649 scoped_refptr<net::IOBuffer> read_buffer(new net::IOBuffer(kReadBufferSize)); | |
2650 EXPECT_EQ(net::ERR_CACHE_CHECKSUM_MISMATCH, | |
2651 ReadData(entry, 1, 0, read_buffer.get(), kReadBufferSize)); | |
2652 } | |
2653 | |
2654 // Tests that an entry that has had an IO error occur can still be Doomed(). | |
2655 TEST_F(DiskCacheEntryTest, SimpleCacheErrorThenDoom) { | |
2656 SetSimpleCacheMode(); | |
2657 InitCache(); | |
2658 | |
2659 const char key[] = "the first key"; | |
2660 int size_unused; | |
2661 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, &size_unused)); | |
2662 | |
2663 disk_cache::Entry* entry = NULL; | |
2664 | |
2665 // Open the entry, forcing an IO error. | |
2666 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
2667 ScopedEntryPtr entry_closer(entry); | |
2668 | |
2669 const int kReadBufferSize = 200; | |
2670 EXPECT_GE(kReadBufferSize, entry->GetDataSize(1)); | |
2671 scoped_refptr<net::IOBuffer> read_buffer(new net::IOBuffer(kReadBufferSize)); | |
2672 EXPECT_EQ(net::ERR_CACHE_CHECKSUM_MISMATCH, | |
2673 ReadData(entry, 1, 0, read_buffer.get(), kReadBufferSize)); | |
2674 | |
2675 entry->Doom(); // Should not crash. | |
2676 } | |
2677 | |
2678 bool TruncatePath(const base::FilePath& file_path, int64 length) { | |
2679 base::File file(file_path, base::File::FLAG_WRITE | base::File::FLAG_OPEN); | |
2680 if (!file.IsValid()) | |
2681 return false; | |
2682 return file.SetLength(length); | |
2683 } | |
2684 | |
2685 TEST_F(DiskCacheEntryTest, SimpleCacheNoEOF) { | |
2686 SetSimpleCacheMode(); | |
2687 InitCache(); | |
2688 | |
2689 const char key[] = "the first key"; | |
2690 | |
2691 disk_cache::Entry* entry = NULL; | |
2692 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
2693 disk_cache::Entry* null = NULL; | |
2694 EXPECT_NE(null, entry); | |
2695 entry->Close(); | |
2696 entry = NULL; | |
2697 | |
2698 // Force the entry to flush to disk, so subsequent platform file operations | |
2699 // succed. | |
2700 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
2701 entry->Close(); | |
2702 entry = NULL; | |
2703 | |
2704 // Truncate the file such that the length isn't sufficient to have an EOF | |
2705 // record. | |
2706 int kTruncationBytes = -implicit_cast<int>(sizeof(disk_cache::SimpleFileEOF)); | |
2707 const base::FilePath entry_path = cache_path_.AppendASCII( | |
2708 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 0)); | |
2709 const int64 invalid_size = | |
2710 disk_cache::simple_util::GetFileSizeFromKeyAndDataSize(key, | |
2711 kTruncationBytes); | |
2712 EXPECT_TRUE(TruncatePath(entry_path, invalid_size)); | |
2713 EXPECT_EQ(net::ERR_FAILED, OpenEntry(key, &entry)); | |
2714 DisableIntegrityCheck(); | |
2715 } | |
2716 | |
2717 TEST_F(DiskCacheEntryTest, SimpleCacheNonOptimisticOperationsBasic) { | |
2718 // Test sequence: | |
2719 // Create, Write, Read, Close. | |
2720 SetCacheType(net::APP_CACHE); // APP_CACHE doesn't use optimistic operations. | |
2721 SetSimpleCacheMode(); | |
2722 InitCache(); | |
2723 disk_cache::Entry* const null_entry = NULL; | |
2724 | |
2725 disk_cache::Entry* entry = NULL; | |
2726 EXPECT_EQ(net::OK, CreateEntry("my key", &entry)); | |
2727 ASSERT_NE(null_entry, entry); | |
2728 ScopedEntryPtr entry_closer(entry); | |
2729 | |
2730 const int kBufferSize = 10; | |
2731 scoped_refptr<net::IOBufferWithSize> write_buffer( | |
2732 new net::IOBufferWithSize(kBufferSize)); | |
2733 CacheTestFillBuffer(write_buffer->data(), write_buffer->size(), false); | |
2734 EXPECT_EQ( | |
2735 write_buffer->size(), | |
2736 WriteData(entry, 1, 0, write_buffer.get(), write_buffer->size(), false)); | |
2737 | |
2738 scoped_refptr<net::IOBufferWithSize> read_buffer( | |
2739 new net::IOBufferWithSize(kBufferSize)); | |
2740 EXPECT_EQ(read_buffer->size(), | |
2741 ReadData(entry, 1, 0, read_buffer.get(), read_buffer->size())); | |
2742 } | |
2743 | |
2744 TEST_F(DiskCacheEntryTest, SimpleCacheNonOptimisticOperationsDontBlock) { | |
2745 // Test sequence: | |
2746 // Create, Write, Close. | |
2747 SetCacheType(net::APP_CACHE); // APP_CACHE doesn't use optimistic operations. | |
2748 SetSimpleCacheMode(); | |
2749 InitCache(); | |
2750 disk_cache::Entry* const null_entry = NULL; | |
2751 | |
2752 MessageLoopHelper helper; | |
2753 CallbackTest create_callback(&helper, false); | |
2754 | |
2755 int expected_callback_runs = 0; | |
2756 const int kBufferSize = 10; | |
2757 scoped_refptr<net::IOBufferWithSize> write_buffer( | |
2758 new net::IOBufferWithSize(kBufferSize)); | |
2759 | |
2760 disk_cache::Entry* entry = NULL; | |
2761 EXPECT_EQ(net::OK, CreateEntry("my key", &entry)); | |
2762 ASSERT_NE(null_entry, entry); | |
2763 ScopedEntryPtr entry_closer(entry); | |
2764 | |
2765 CacheTestFillBuffer(write_buffer->data(), write_buffer->size(), false); | |
2766 CallbackTest write_callback(&helper, false); | |
2767 int ret = entry->WriteData( | |
2768 1, | |
2769 0, | |
2770 write_buffer.get(), | |
2771 write_buffer->size(), | |
2772 base::Bind(&CallbackTest::Run, base::Unretained(&write_callback)), | |
2773 false); | |
2774 ASSERT_EQ(net::ERR_IO_PENDING, ret); | |
2775 helper.WaitUntilCacheIoFinished(++expected_callback_runs); | |
2776 } | |
2777 | |
2778 TEST_F(DiskCacheEntryTest, | |
2779 SimpleCacheNonOptimisticOperationsBasicsWithoutWaiting) { | |
2780 // Test sequence: | |
2781 // Create, Write, Read, Close. | |
2782 SetCacheType(net::APP_CACHE); // APP_CACHE doesn't use optimistic operations. | |
2783 SetSimpleCacheMode(); | |
2784 InitCache(); | |
2785 disk_cache::Entry* const null_entry = NULL; | |
2786 MessageLoopHelper helper; | |
2787 | |
2788 disk_cache::Entry* entry = NULL; | |
2789 // Note that |entry| is only set once CreateEntry() completed which is why we | |
2790 // have to wait (i.e. use the helper CreateEntry() function). | |
2791 EXPECT_EQ(net::OK, CreateEntry("my key", &entry)); | |
2792 ASSERT_NE(null_entry, entry); | |
2793 ScopedEntryPtr entry_closer(entry); | |
2794 | |
2795 const int kBufferSize = 10; | |
2796 scoped_refptr<net::IOBufferWithSize> write_buffer( | |
2797 new net::IOBufferWithSize(kBufferSize)); | |
2798 CacheTestFillBuffer(write_buffer->data(), write_buffer->size(), false); | |
2799 CallbackTest write_callback(&helper, false); | |
2800 int ret = entry->WriteData( | |
2801 1, | |
2802 0, | |
2803 write_buffer.get(), | |
2804 write_buffer->size(), | |
2805 base::Bind(&CallbackTest::Run, base::Unretained(&write_callback)), | |
2806 false); | |
2807 EXPECT_EQ(net::ERR_IO_PENDING, ret); | |
2808 int expected_callback_runs = 1; | |
2809 | |
2810 scoped_refptr<net::IOBufferWithSize> read_buffer( | |
2811 new net::IOBufferWithSize(kBufferSize)); | |
2812 CallbackTest read_callback(&helper, false); | |
2813 ret = entry->ReadData( | |
2814 1, | |
2815 0, | |
2816 read_buffer.get(), | |
2817 read_buffer->size(), | |
2818 base::Bind(&CallbackTest::Run, base::Unretained(&read_callback))); | |
2819 EXPECT_EQ(net::ERR_IO_PENDING, ret); | |
2820 ++expected_callback_runs; | |
2821 | |
2822 helper.WaitUntilCacheIoFinished(expected_callback_runs); | |
2823 ASSERT_EQ(read_buffer->size(), write_buffer->size()); | |
2824 EXPECT_EQ( | |
2825 0, | |
2826 memcmp(read_buffer->data(), write_buffer->data(), read_buffer->size())); | |
2827 } | |
2828 | |
2829 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic) { | |
2830 // Test sequence: | |
2831 // Create, Write, Read, Write, Read, Close. | |
2832 SetSimpleCacheMode(); | |
2833 InitCache(); | |
2834 disk_cache::Entry* null = NULL; | |
2835 const char key[] = "the first key"; | |
2836 | |
2837 MessageLoopHelper helper; | |
2838 CallbackTest callback1(&helper, false); | |
2839 CallbackTest callback2(&helper, false); | |
2840 CallbackTest callback3(&helper, false); | |
2841 CallbackTest callback4(&helper, false); | |
2842 CallbackTest callback5(&helper, false); | |
2843 | |
2844 int expected = 0; | |
2845 const int kSize1 = 10; | |
2846 const int kSize2 = 20; | |
2847 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1)); | |
2848 scoped_refptr<net::IOBuffer> buffer1_read(new net::IOBuffer(kSize1)); | |
2849 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2)); | |
2850 scoped_refptr<net::IOBuffer> buffer2_read(new net::IOBuffer(kSize2)); | |
2851 CacheTestFillBuffer(buffer1->data(), kSize1, false); | |
2852 CacheTestFillBuffer(buffer2->data(), kSize2, false); | |
2853 | |
2854 disk_cache::Entry* entry = NULL; | |
2855 // Create is optimistic, must return OK. | |
2856 ASSERT_EQ(net::OK, | |
2857 cache_->CreateEntry(key, &entry, | |
2858 base::Bind(&CallbackTest::Run, | |
2859 base::Unretained(&callback1)))); | |
2860 EXPECT_NE(null, entry); | |
2861 ScopedEntryPtr entry_closer(entry); | |
2862 | |
2863 // This write may or may not be optimistic (it depends if the previous | |
2864 // optimistic create already finished by the time we call the write here). | |
2865 int ret = entry->WriteData( | |
2866 1, | |
2867 0, | |
2868 buffer1.get(), | |
2869 kSize1, | |
2870 base::Bind(&CallbackTest::Run, base::Unretained(&callback2)), | |
2871 false); | |
2872 EXPECT_TRUE(kSize1 == ret || net::ERR_IO_PENDING == ret); | |
2873 if (net::ERR_IO_PENDING == ret) | |
2874 expected++; | |
2875 | |
2876 // This Read must not be optimistic, since we don't support that yet. | |
2877 EXPECT_EQ(net::ERR_IO_PENDING, | |
2878 entry->ReadData( | |
2879 1, | |
2880 0, | |
2881 buffer1_read.get(), | |
2882 kSize1, | |
2883 base::Bind(&CallbackTest::Run, base::Unretained(&callback3)))); | |
2884 expected++; | |
2885 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | |
2886 EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read->data(), kSize1)); | |
2887 | |
2888 // At this point after waiting, the pending operations queue on the entry | |
2889 // should be empty, so the next Write operation must run as optimistic. | |
2890 EXPECT_EQ(kSize2, | |
2891 entry->WriteData( | |
2892 1, | |
2893 0, | |
2894 buffer2.get(), | |
2895 kSize2, | |
2896 base::Bind(&CallbackTest::Run, base::Unretained(&callback4)), | |
2897 false)); | |
2898 | |
2899 // Lets do another read so we block until both the write and the read | |
2900 // operation finishes and we can then test for HasOneRef() below. | |
2901 EXPECT_EQ(net::ERR_IO_PENDING, | |
2902 entry->ReadData( | |
2903 1, | |
2904 0, | |
2905 buffer2_read.get(), | |
2906 kSize2, | |
2907 base::Bind(&CallbackTest::Run, base::Unretained(&callback5)))); | |
2908 expected++; | |
2909 | |
2910 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | |
2911 EXPECT_EQ(0, memcmp(buffer2->data(), buffer2_read->data(), kSize2)); | |
2912 | |
2913 // Check that we are not leaking. | |
2914 EXPECT_NE(entry, null); | |
2915 EXPECT_TRUE( | |
2916 static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef()); | |
2917 } | |
2918 | |
2919 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic2) { | |
2920 // Test sequence: | |
2921 // Create, Open, Close, Close. | |
2922 SetSimpleCacheMode(); | |
2923 InitCache(); | |
2924 disk_cache::Entry* null = NULL; | |
2925 const char key[] = "the first key"; | |
2926 | |
2927 MessageLoopHelper helper; | |
2928 CallbackTest callback1(&helper, false); | |
2929 CallbackTest callback2(&helper, false); | |
2930 | |
2931 disk_cache::Entry* entry = NULL; | |
2932 ASSERT_EQ(net::OK, | |
2933 cache_->CreateEntry(key, &entry, | |
2934 base::Bind(&CallbackTest::Run, | |
2935 base::Unretained(&callback1)))); | |
2936 EXPECT_NE(null, entry); | |
2937 ScopedEntryPtr entry_closer(entry); | |
2938 | |
2939 disk_cache::Entry* entry2 = NULL; | |
2940 ASSERT_EQ(net::ERR_IO_PENDING, | |
2941 cache_->OpenEntry(key, &entry2, | |
2942 base::Bind(&CallbackTest::Run, | |
2943 base::Unretained(&callback2)))); | |
2944 ASSERT_TRUE(helper.WaitUntilCacheIoFinished(1)); | |
2945 | |
2946 EXPECT_NE(null, entry2); | |
2947 EXPECT_EQ(entry, entry2); | |
2948 | |
2949 // We have to call close twice, since we called create and open above. | |
2950 entry->Close(); | |
2951 | |
2952 // Check that we are not leaking. | |
2953 EXPECT_TRUE( | |
2954 static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef()); | |
2955 } | |
2956 | |
2957 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic3) { | |
2958 // Test sequence: | |
2959 // Create, Close, Open, Close. | |
2960 SetSimpleCacheMode(); | |
2961 InitCache(); | |
2962 disk_cache::Entry* null = NULL; | |
2963 const char key[] = "the first key"; | |
2964 | |
2965 disk_cache::Entry* entry = NULL; | |
2966 ASSERT_EQ(net::OK, | |
2967 cache_->CreateEntry(key, &entry, net::CompletionCallback())); | |
2968 EXPECT_NE(null, entry); | |
2969 entry->Close(); | |
2970 | |
2971 net::TestCompletionCallback cb; | |
2972 disk_cache::Entry* entry2 = NULL; | |
2973 ASSERT_EQ(net::ERR_IO_PENDING, | |
2974 cache_->OpenEntry(key, &entry2, cb.callback())); | |
2975 ASSERT_EQ(net::OK, cb.GetResult(net::ERR_IO_PENDING)); | |
2976 ScopedEntryPtr entry_closer(entry2); | |
2977 | |
2978 EXPECT_NE(null, entry2); | |
2979 EXPECT_EQ(entry, entry2); | |
2980 | |
2981 // Check that we are not leaking. | |
2982 EXPECT_TRUE( | |
2983 static_cast<disk_cache::SimpleEntryImpl*>(entry2)->HasOneRef()); | |
2984 } | |
2985 | |
2986 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic4) { | |
2987 // Test sequence: | |
2988 // Create, Close, Write, Open, Open, Close, Write, Read, Close. | |
2989 SetSimpleCacheMode(); | |
2990 InitCache(); | |
2991 disk_cache::Entry* null = NULL; | |
2992 const char key[] = "the first key"; | |
2993 | |
2994 net::TestCompletionCallback cb; | |
2995 const int kSize1 = 10; | |
2996 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1)); | |
2997 CacheTestFillBuffer(buffer1->data(), kSize1, false); | |
2998 disk_cache::Entry* entry = NULL; | |
2999 | |
3000 ASSERT_EQ(net::OK, | |
3001 cache_->CreateEntry(key, &entry, net::CompletionCallback())); | |
3002 EXPECT_NE(null, entry); | |
3003 entry->Close(); | |
3004 | |
3005 // Lets do a Write so we block until both the Close and the Write | |
3006 // operation finishes. Write must fail since we are writing in a closed entry. | |
3007 EXPECT_EQ( | |
3008 net::ERR_IO_PENDING, | |
3009 entry->WriteData(1, 0, buffer1.get(), kSize1, cb.callback(), false)); | |
3010 EXPECT_EQ(net::ERR_FAILED, cb.GetResult(net::ERR_IO_PENDING)); | |
3011 | |
3012 // Finish running the pending tasks so that we fully complete the close | |
3013 // operation and destroy the entry object. | |
3014 base::MessageLoop::current()->RunUntilIdle(); | |
3015 | |
3016 // At this point the |entry| must have been destroyed, and called | |
3017 // RemoveSelfFromBackend(). | |
3018 disk_cache::Entry* entry2 = NULL; | |
3019 ASSERT_EQ(net::ERR_IO_PENDING, | |
3020 cache_->OpenEntry(key, &entry2, cb.callback())); | |
3021 ASSERT_EQ(net::OK, cb.GetResult(net::ERR_IO_PENDING)); | |
3022 EXPECT_NE(null, entry2); | |
3023 | |
3024 disk_cache::Entry* entry3 = NULL; | |
3025 ASSERT_EQ(net::ERR_IO_PENDING, | |
3026 cache_->OpenEntry(key, &entry3, cb.callback())); | |
3027 ASSERT_EQ(net::OK, cb.GetResult(net::ERR_IO_PENDING)); | |
3028 EXPECT_NE(null, entry3); | |
3029 EXPECT_EQ(entry2, entry3); | |
3030 entry3->Close(); | |
3031 | |
3032 // The previous Close doesn't actually closes the entry since we opened it | |
3033 // twice, so the next Write operation must succeed and it must be able to | |
3034 // perform it optimistically, since there is no operation running on this | |
3035 // entry. | |
3036 EXPECT_EQ(kSize1, | |
3037 entry2->WriteData( | |
3038 1, 0, buffer1.get(), kSize1, net::CompletionCallback(), false)); | |
3039 | |
3040 // Lets do another read so we block until both the write and the read | |
3041 // operation finishes and we can then test for HasOneRef() below. | |
3042 EXPECT_EQ(net::ERR_IO_PENDING, | |
3043 entry2->ReadData(1, 0, buffer1.get(), kSize1, cb.callback())); | |
3044 EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING)); | |
3045 | |
3046 // Check that we are not leaking. | |
3047 EXPECT_TRUE( | |
3048 static_cast<disk_cache::SimpleEntryImpl*>(entry2)->HasOneRef()); | |
3049 entry2->Close(); | |
3050 } | |
3051 | |
3052 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic5) { | |
3053 // Test sequence: | |
3054 // Create, Doom, Write, Read, Close. | |
3055 SetSimpleCacheMode(); | |
3056 InitCache(); | |
3057 disk_cache::Entry* null = NULL; | |
3058 const char key[] = "the first key"; | |
3059 | |
3060 net::TestCompletionCallback cb; | |
3061 const int kSize1 = 10; | |
3062 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1)); | |
3063 CacheTestFillBuffer(buffer1->data(), kSize1, false); | |
3064 disk_cache::Entry* entry = NULL; | |
3065 | |
3066 ASSERT_EQ(net::OK, | |
3067 cache_->CreateEntry(key, &entry, net::CompletionCallback())); | |
3068 EXPECT_NE(null, entry); | |
3069 ScopedEntryPtr entry_closer(entry); | |
3070 entry->Doom(); | |
3071 | |
3072 EXPECT_EQ( | |
3073 net::ERR_IO_PENDING, | |
3074 entry->WriteData(1, 0, buffer1.get(), kSize1, cb.callback(), false)); | |
3075 EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING)); | |
3076 | |
3077 EXPECT_EQ(net::ERR_IO_PENDING, | |
3078 entry->ReadData(1, 0, buffer1.get(), kSize1, cb.callback())); | |
3079 EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING)); | |
3080 | |
3081 // Check that we are not leaking. | |
3082 EXPECT_TRUE( | |
3083 static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef()); | |
3084 } | |
3085 | |
3086 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic6) { | |
3087 // Test sequence: | |
3088 // Create, Write, Doom, Doom, Read, Doom, Close. | |
3089 SetSimpleCacheMode(); | |
3090 InitCache(); | |
3091 disk_cache::Entry* null = NULL; | |
3092 const char key[] = "the first key"; | |
3093 | |
3094 net::TestCompletionCallback cb; | |
3095 const int kSize1 = 10; | |
3096 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1)); | |
3097 scoped_refptr<net::IOBuffer> buffer1_read(new net::IOBuffer(kSize1)); | |
3098 CacheTestFillBuffer(buffer1->data(), kSize1, false); | |
3099 disk_cache::Entry* entry = NULL; | |
3100 | |
3101 ASSERT_EQ(net::OK, | |
3102 cache_->CreateEntry(key, &entry, net::CompletionCallback())); | |
3103 EXPECT_NE(null, entry); | |
3104 ScopedEntryPtr entry_closer(entry); | |
3105 | |
3106 EXPECT_EQ( | |
3107 net::ERR_IO_PENDING, | |
3108 entry->WriteData(1, 0, buffer1.get(), kSize1, cb.callback(), false)); | |
3109 EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING)); | |
3110 | |
3111 entry->Doom(); | |
3112 entry->Doom(); | |
3113 | |
3114 // This Read must not be optimistic, since we don't support that yet. | |
3115 EXPECT_EQ(net::ERR_IO_PENDING, | |
3116 entry->ReadData(1, 0, buffer1_read.get(), kSize1, cb.callback())); | |
3117 EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING)); | |
3118 EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read->data(), kSize1)); | |
3119 | |
3120 entry->Doom(); | |
3121 } | |
3122 | |
3123 // Confirm that IO buffers are not referenced by the Simple Cache after a write | |
3124 // completes. | |
3125 TEST_F(DiskCacheEntryTest, SimpleCacheOptimisticWriteReleases) { | |
3126 SetSimpleCacheMode(); | |
3127 InitCache(); | |
3128 | |
3129 const char key[] = "the first key"; | |
3130 disk_cache::Entry* entry = NULL; | |
3131 | |
3132 // First, an optimistic create. | |
3133 ASSERT_EQ(net::OK, | |
3134 cache_->CreateEntry(key, &entry, net::CompletionCallback())); | |
3135 ASSERT_TRUE(entry); | |
3136 ScopedEntryPtr entry_closer(entry); | |
3137 | |
3138 const int kWriteSize = 512; | |
3139 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kWriteSize)); | |
3140 EXPECT_TRUE(buffer1->HasOneRef()); | |
3141 CacheTestFillBuffer(buffer1->data(), kWriteSize, false); | |
3142 | |
3143 // An optimistic write happens only when there is an empty queue of pending | |
3144 // operations. To ensure the queue is empty, we issue a write and wait until | |
3145 // it completes. | |
3146 EXPECT_EQ(kWriteSize, | |
3147 WriteData(entry, 1, 0, buffer1.get(), kWriteSize, false)); | |
3148 EXPECT_TRUE(buffer1->HasOneRef()); | |
3149 | |
3150 // Finally, we should perform an optimistic write and confirm that all | |
3151 // references to the IO buffer have been released. | |
3152 EXPECT_EQ( | |
3153 kWriteSize, | |
3154 entry->WriteData( | |
3155 1, 0, buffer1.get(), kWriteSize, net::CompletionCallback(), false)); | |
3156 EXPECT_TRUE(buffer1->HasOneRef()); | |
3157 } | |
3158 | |
3159 TEST_F(DiskCacheEntryTest, SimpleCacheCreateDoomRace) { | |
3160 // Test sequence: | |
3161 // Create, Doom, Write, Close, Check files are not on disk anymore. | |
3162 SetSimpleCacheMode(); | |
3163 InitCache(); | |
3164 disk_cache::Entry* null = NULL; | |
3165 const char key[] = "the first key"; | |
3166 | |
3167 net::TestCompletionCallback cb; | |
3168 const int kSize1 = 10; | |
3169 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1)); | |
3170 CacheTestFillBuffer(buffer1->data(), kSize1, false); | |
3171 disk_cache::Entry* entry = NULL; | |
3172 | |
3173 ASSERT_EQ(net::OK, | |
3174 cache_->CreateEntry(key, &entry, net::CompletionCallback())); | |
3175 EXPECT_NE(null, entry); | |
3176 | |
3177 EXPECT_EQ(net::ERR_IO_PENDING, cache_->DoomEntry(key, cb.callback())); | |
3178 EXPECT_EQ(net::OK, cb.GetResult(net::ERR_IO_PENDING)); | |
3179 | |
3180 EXPECT_EQ( | |
3181 kSize1, | |
3182 entry->WriteData(0, 0, buffer1.get(), kSize1, cb.callback(), false)); | |
3183 | |
3184 entry->Close(); | |
3185 | |
3186 // Finish running the pending tasks so that we fully complete the close | |
3187 // operation and destroy the entry object. | |
3188 base::MessageLoop::current()->RunUntilIdle(); | |
3189 | |
3190 for (int i = 0; i < disk_cache::kSimpleEntryFileCount; ++i) { | |
3191 base::FilePath entry_file_path = cache_path_.AppendASCII( | |
3192 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, i)); | |
3193 base::File::Info info; | |
3194 EXPECT_FALSE(base::GetFileInfo(entry_file_path, &info)); | |
3195 } | |
3196 } | |
3197 | |
3198 TEST_F(DiskCacheEntryTest, SimpleCacheDoomCreateRace) { | |
3199 // This test runs as APP_CACHE to make operations more synchronous. Test | |
3200 // sequence: | |
3201 // Create, Doom, Create. | |
3202 SetCacheType(net::APP_CACHE); | |
3203 SetSimpleCacheMode(); | |
3204 InitCache(); | |
3205 disk_cache::Entry* null = NULL; | |
3206 const char key[] = "the first key"; | |
3207 | |
3208 net::TestCompletionCallback create_callback; | |
3209 | |
3210 disk_cache::Entry* entry1 = NULL; | |
3211 ASSERT_EQ(net::OK, | |
3212 create_callback.GetResult( | |
3213 cache_->CreateEntry(key, &entry1, create_callback.callback()))); | |
3214 ScopedEntryPtr entry1_closer(entry1); | |
3215 EXPECT_NE(null, entry1); | |
3216 | |
3217 net::TestCompletionCallback doom_callback; | |
3218 EXPECT_EQ(net::ERR_IO_PENDING, | |
3219 cache_->DoomEntry(key, doom_callback.callback())); | |
3220 | |
3221 disk_cache::Entry* entry2 = NULL; | |
3222 ASSERT_EQ(net::OK, | |
3223 create_callback.GetResult( | |
3224 cache_->CreateEntry(key, &entry2, create_callback.callback()))); | |
3225 ScopedEntryPtr entry2_closer(entry2); | |
3226 EXPECT_EQ(net::OK, doom_callback.GetResult(net::ERR_IO_PENDING)); | |
3227 } | |
3228 | |
3229 TEST_F(DiskCacheEntryTest, SimpleCacheDoomDoom) { | |
3230 // Test sequence: | |
3231 // Create, Doom, Create, Doom (1st entry), Open. | |
3232 SetSimpleCacheMode(); | |
3233 InitCache(); | |
3234 disk_cache::Entry* null = NULL; | |
3235 | |
3236 const char key[] = "the first key"; | |
3237 | |
3238 disk_cache::Entry* entry1 = NULL; | |
3239 ASSERT_EQ(net::OK, CreateEntry(key, &entry1)); | |
3240 ScopedEntryPtr entry1_closer(entry1); | |
3241 EXPECT_NE(null, entry1); | |
3242 | |
3243 EXPECT_EQ(net::OK, DoomEntry(key)); | |
3244 | |
3245 disk_cache::Entry* entry2 = NULL; | |
3246 ASSERT_EQ(net::OK, CreateEntry(key, &entry2)); | |
3247 ScopedEntryPtr entry2_closer(entry2); | |
3248 EXPECT_NE(null, entry2); | |
3249 | |
3250 // Redundantly dooming entry1 should not delete entry2. | |
3251 disk_cache::SimpleEntryImpl* simple_entry1 = | |
3252 static_cast<disk_cache::SimpleEntryImpl*>(entry1); | |
3253 net::TestCompletionCallback cb; | |
3254 EXPECT_EQ(net::OK, | |
3255 cb.GetResult(simple_entry1->DoomEntry(cb.callback()))); | |
3256 | |
3257 disk_cache::Entry* entry3 = NULL; | |
3258 ASSERT_EQ(net::OK, OpenEntry(key, &entry3)); | |
3259 ScopedEntryPtr entry3_closer(entry3); | |
3260 EXPECT_NE(null, entry3); | |
3261 } | |
3262 | |
3263 TEST_F(DiskCacheEntryTest, SimpleCacheDoomCreateDoom) { | |
3264 // Test sequence: | |
3265 // Create, Doom, Create, Doom. | |
3266 SetSimpleCacheMode(); | |
3267 InitCache(); | |
3268 | |
3269 disk_cache::Entry* null = NULL; | |
3270 | |
3271 const char key[] = "the first key"; | |
3272 | |
3273 disk_cache::Entry* entry1 = NULL; | |
3274 ASSERT_EQ(net::OK, CreateEntry(key, &entry1)); | |
3275 ScopedEntryPtr entry1_closer(entry1); | |
3276 EXPECT_NE(null, entry1); | |
3277 | |
3278 entry1->Doom(); | |
3279 | |
3280 disk_cache::Entry* entry2 = NULL; | |
3281 ASSERT_EQ(net::OK, CreateEntry(key, &entry2)); | |
3282 ScopedEntryPtr entry2_closer(entry2); | |
3283 EXPECT_NE(null, entry2); | |
3284 | |
3285 entry2->Doom(); | |
3286 | |
3287 // This test passes if it doesn't crash. | |
3288 } | |
3289 | |
3290 TEST_F(DiskCacheEntryTest, SimpleCacheDoomCloseCreateCloseOpen) { | |
3291 // Test sequence: Create, Doom, Close, Create, Close, Open. | |
3292 SetSimpleCacheMode(); | |
3293 InitCache(); | |
3294 | |
3295 disk_cache::Entry* null = NULL; | |
3296 | |
3297 const char key[] = "this is a key"; | |
3298 | |
3299 disk_cache::Entry* entry1 = NULL; | |
3300 ASSERT_EQ(net::OK, CreateEntry(key, &entry1)); | |
3301 ScopedEntryPtr entry1_closer(entry1); | |
3302 EXPECT_NE(null, entry1); | |
3303 | |
3304 entry1->Doom(); | |
3305 entry1_closer.reset(); | |
3306 entry1 = NULL; | |
3307 | |
3308 disk_cache::Entry* entry2 = NULL; | |
3309 ASSERT_EQ(net::OK, CreateEntry(key, &entry2)); | |
3310 ScopedEntryPtr entry2_closer(entry2); | |
3311 EXPECT_NE(null, entry2); | |
3312 | |
3313 entry2_closer.reset(); | |
3314 entry2 = NULL; | |
3315 | |
3316 disk_cache::Entry* entry3 = NULL; | |
3317 ASSERT_EQ(net::OK, OpenEntry(key, &entry3)); | |
3318 ScopedEntryPtr entry3_closer(entry3); | |
3319 EXPECT_NE(null, entry3); | |
3320 } | |
3321 | |
3322 // Checks that an optimistic Create would fail later on a racing Open. | |
3323 TEST_F(DiskCacheEntryTest, SimpleCacheOptimisticCreateFailsOnOpen) { | |
3324 SetSimpleCacheMode(); | |
3325 InitCache(); | |
3326 | |
3327 // Create a corrupt file in place of a future entry. Optimistic create should | |
3328 // initially succeed, but realize later that creation failed. | |
3329 const std::string key = "the key"; | |
3330 net::TestCompletionCallback cb; | |
3331 disk_cache::Entry* entry = NULL; | |
3332 disk_cache::Entry* entry2 = NULL; | |
3333 | |
3334 EXPECT_TRUE(disk_cache::simple_util::CreateCorruptFileForTests( | |
3335 key, cache_path_)); | |
3336 EXPECT_EQ(net::OK, cache_->CreateEntry(key, &entry, cb.callback())); | |
3337 ASSERT_TRUE(entry); | |
3338 ScopedEntryPtr entry_closer(entry); | |
3339 ASSERT_NE(net::OK, OpenEntry(key, &entry2)); | |
3340 | |
3341 // Check that we are not leaking. | |
3342 EXPECT_TRUE( | |
3343 static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef()); | |
3344 | |
3345 DisableIntegrityCheck(); | |
3346 } | |
3347 | |
3348 // Tests that old entries are evicted while new entries remain in the index. | |
3349 // This test relies on non-mandatory properties of the simple Cache Backend: | |
3350 // LRU eviction, specific values of high-watermark and low-watermark etc. | |
3351 // When changing the eviction algorithm, the test will have to be re-engineered. | |
3352 TEST_F(DiskCacheEntryTest, SimpleCacheEvictOldEntries) { | |
3353 const int kMaxSize = 200 * 1024; | |
3354 const int kWriteSize = kMaxSize / 10; | |
3355 const int kNumExtraEntries = 12; | |
3356 SetSimpleCacheMode(); | |
3357 SetMaxSize(kMaxSize); | |
3358 InitCache(); | |
3359 | |
3360 std::string key1("the first key"); | |
3361 disk_cache::Entry* entry; | |
3362 ASSERT_EQ(net::OK, CreateEntry(key1, &entry)); | |
3363 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kWriteSize)); | |
3364 CacheTestFillBuffer(buffer->data(), kWriteSize, false); | |
3365 EXPECT_EQ(kWriteSize, | |
3366 WriteData(entry, 1, 0, buffer.get(), kWriteSize, false)); | |
3367 entry->Close(); | |
3368 AddDelay(); | |
3369 | |
3370 std::string key2("the key prefix"); | |
3371 for (int i = 0; i < kNumExtraEntries; i++) { | |
3372 if (i == kNumExtraEntries - 2) { | |
3373 // Create a distinct timestamp for the last two entries. These entries | |
3374 // will be checked for outliving the eviction. | |
3375 AddDelay(); | |
3376 } | |
3377 ASSERT_EQ(net::OK, CreateEntry(key2 + base::StringPrintf("%d", i), &entry)); | |
3378 ScopedEntryPtr entry_closer(entry); | |
3379 EXPECT_EQ(kWriteSize, | |
3380 WriteData(entry, 1, 0, buffer.get(), kWriteSize, false)); | |
3381 } | |
3382 | |
3383 // TODO(pasko): Find a way to wait for the eviction task(s) to finish by using | |
3384 // the internal knowledge about |SimpleBackendImpl|. | |
3385 ASSERT_NE(net::OK, OpenEntry(key1, &entry)) | |
3386 << "Should have evicted the old entry"; | |
3387 for (int i = 0; i < 2; i++) { | |
3388 int entry_no = kNumExtraEntries - i - 1; | |
3389 // Generally there is no guarantee that at this point the backround eviction | |
3390 // is finished. We are testing the positive case, i.e. when the eviction | |
3391 // never reaches this entry, should be non-flaky. | |
3392 ASSERT_EQ(net::OK, OpenEntry(key2 + base::StringPrintf("%d", entry_no), | |
3393 &entry)) | |
3394 << "Should not have evicted fresh entry " << entry_no; | |
3395 entry->Close(); | |
3396 } | |
3397 } | |
3398 | |
3399 // Tests that if a read and a following in-flight truncate are both in progress | |
3400 // simultaniously that they both can occur successfully. See | |
3401 // http://crbug.com/239223 | |
3402 TEST_F(DiskCacheEntryTest, SimpleCacheInFlightTruncate) { | |
3403 SetSimpleCacheMode(); | |
3404 InitCache(); | |
3405 | |
3406 const char key[] = "the first key"; | |
3407 | |
3408 const int kBufferSize = 1024; | |
3409 scoped_refptr<net::IOBuffer> write_buffer(new net::IOBuffer(kBufferSize)); | |
3410 CacheTestFillBuffer(write_buffer->data(), kBufferSize, false); | |
3411 | |
3412 disk_cache::Entry* entry = NULL; | |
3413 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
3414 | |
3415 EXPECT_EQ(kBufferSize, | |
3416 WriteData(entry, 1, 0, write_buffer.get(), kBufferSize, false)); | |
3417 entry->Close(); | |
3418 entry = NULL; | |
3419 | |
3420 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
3421 ScopedEntryPtr entry_closer(entry); | |
3422 | |
3423 MessageLoopHelper helper; | |
3424 int expected = 0; | |
3425 | |
3426 // Make a short read. | |
3427 const int kReadBufferSize = 512; | |
3428 scoped_refptr<net::IOBuffer> read_buffer(new net::IOBuffer(kReadBufferSize)); | |
3429 CallbackTest read_callback(&helper, false); | |
3430 EXPECT_EQ(net::ERR_IO_PENDING, | |
3431 entry->ReadData(1, | |
3432 0, | |
3433 read_buffer.get(), | |
3434 kReadBufferSize, | |
3435 base::Bind(&CallbackTest::Run, | |
3436 base::Unretained(&read_callback)))); | |
3437 ++expected; | |
3438 | |
3439 // Truncate the entry to the length of that read. | |
3440 scoped_refptr<net::IOBuffer> | |
3441 truncate_buffer(new net::IOBuffer(kReadBufferSize)); | |
3442 CacheTestFillBuffer(truncate_buffer->data(), kReadBufferSize, false); | |
3443 CallbackTest truncate_callback(&helper, false); | |
3444 EXPECT_EQ(net::ERR_IO_PENDING, | |
3445 entry->WriteData(1, | |
3446 0, | |
3447 truncate_buffer.get(), | |
3448 kReadBufferSize, | |
3449 base::Bind(&CallbackTest::Run, | |
3450 base::Unretained(&truncate_callback)), | |
3451 true)); | |
3452 ++expected; | |
3453 | |
3454 // Wait for both the read and truncation to finish, and confirm that both | |
3455 // succeeded. | |
3456 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | |
3457 EXPECT_EQ(kReadBufferSize, read_callback.last_result()); | |
3458 EXPECT_EQ(kReadBufferSize, truncate_callback.last_result()); | |
3459 EXPECT_EQ(0, | |
3460 memcmp(write_buffer->data(), read_buffer->data(), kReadBufferSize)); | |
3461 } | |
3462 | |
3463 // Tests that if a write and a read dependant on it are both in flight | |
3464 // simultaneiously that they both can complete successfully without erroneous | |
3465 // early returns. See http://crbug.com/239223 | |
3466 TEST_F(DiskCacheEntryTest, SimpleCacheInFlightRead) { | |
3467 SetSimpleCacheMode(); | |
3468 InitCache(); | |
3469 | |
3470 const char key[] = "the first key"; | |
3471 disk_cache::Entry* entry = NULL; | |
3472 ASSERT_EQ(net::OK, | |
3473 cache_->CreateEntry(key, &entry, net::CompletionCallback())); | |
3474 ScopedEntryPtr entry_closer(entry); | |
3475 | |
3476 const int kBufferSize = 1024; | |
3477 scoped_refptr<net::IOBuffer> write_buffer(new net::IOBuffer(kBufferSize)); | |
3478 CacheTestFillBuffer(write_buffer->data(), kBufferSize, false); | |
3479 | |
3480 MessageLoopHelper helper; | |
3481 int expected = 0; | |
3482 | |
3483 CallbackTest write_callback(&helper, false); | |
3484 EXPECT_EQ(net::ERR_IO_PENDING, | |
3485 entry->WriteData(1, | |
3486 0, | |
3487 write_buffer.get(), | |
3488 kBufferSize, | |
3489 base::Bind(&CallbackTest::Run, | |
3490 base::Unretained(&write_callback)), | |
3491 true)); | |
3492 ++expected; | |
3493 | |
3494 scoped_refptr<net::IOBuffer> read_buffer(new net::IOBuffer(kBufferSize)); | |
3495 CallbackTest read_callback(&helper, false); | |
3496 EXPECT_EQ(net::ERR_IO_PENDING, | |
3497 entry->ReadData(1, | |
3498 0, | |
3499 read_buffer.get(), | |
3500 kBufferSize, | |
3501 base::Bind(&CallbackTest::Run, | |
3502 base::Unretained(&read_callback)))); | |
3503 ++expected; | |
3504 | |
3505 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | |
3506 EXPECT_EQ(kBufferSize, write_callback.last_result()); | |
3507 EXPECT_EQ(kBufferSize, read_callback.last_result()); | |
3508 EXPECT_EQ(0, memcmp(write_buffer->data(), read_buffer->data(), kBufferSize)); | |
3509 } | |
3510 | |
3511 TEST_F(DiskCacheEntryTest, SimpleCacheOpenCreateRaceWithNoIndex) { | |
3512 SetSimpleCacheMode(); | |
3513 DisableSimpleCacheWaitForIndex(); | |
3514 DisableIntegrityCheck(); | |
3515 InitCache(); | |
3516 | |
3517 // Assume the index is not initialized, which is likely, since we are blocking | |
3518 // the IO thread from executing the index finalization step. | |
3519 disk_cache::Entry* entry1; | |
3520 net::TestCompletionCallback cb1; | |
3521 disk_cache::Entry* entry2; | |
3522 net::TestCompletionCallback cb2; | |
3523 int rv1 = cache_->OpenEntry("key", &entry1, cb1.callback()); | |
3524 int rv2 = cache_->CreateEntry("key", &entry2, cb2.callback()); | |
3525 | |
3526 EXPECT_EQ(net::ERR_FAILED, cb1.GetResult(rv1)); | |
3527 ASSERT_EQ(net::OK, cb2.GetResult(rv2)); | |
3528 entry2->Close(); | |
3529 } | |
3530 | |
3531 // Checks that reading two entries simultaneously does not discard a CRC check. | |
3532 // TODO(pasko): make it work with Simple Cache. | |
3533 TEST_F(DiskCacheEntryTest, DISABLED_SimpleCacheMultipleReadersCheckCRC) { | |
3534 SetSimpleCacheMode(); | |
3535 InitCache(); | |
3536 | |
3537 const char key[] = "key"; | |
3538 | |
3539 int size; | |
3540 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, &size)); | |
3541 | |
3542 scoped_refptr<net::IOBuffer> read_buffer1(new net::IOBuffer(size)); | |
3543 scoped_refptr<net::IOBuffer> read_buffer2(new net::IOBuffer(size)); | |
3544 | |
3545 // Advance the first reader a little. | |
3546 disk_cache::Entry* entry = NULL; | |
3547 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
3548 EXPECT_EQ(1, ReadData(entry, 0, 0, read_buffer1.get(), 1)); | |
3549 | |
3550 // Make the second reader pass the point where the first one is, and close. | |
3551 disk_cache::Entry* entry2 = NULL; | |
3552 EXPECT_EQ(net::OK, OpenEntry(key, &entry2)); | |
3553 EXPECT_EQ(1, ReadData(entry2, 0, 0, read_buffer2.get(), 1)); | |
3554 EXPECT_EQ(1, ReadData(entry2, 0, 1, read_buffer2.get(), 1)); | |
3555 entry2->Close(); | |
3556 | |
3557 // Read the data till the end should produce an error. | |
3558 EXPECT_GT(0, ReadData(entry, 0, 1, read_buffer1.get(), size)); | |
3559 entry->Close(); | |
3560 DisableIntegrityCheck(); | |
3561 } | |
3562 | |
3563 // Checking one more scenario of overlapped reading of a bad entry. | |
3564 // Differs from the |SimpleCacheMultipleReadersCheckCRC| only by the order of | |
3565 // last two reads. | |
3566 TEST_F(DiskCacheEntryTest, SimpleCacheMultipleReadersCheckCRC2) { | |
3567 SetSimpleCacheMode(); | |
3568 InitCache(); | |
3569 | |
3570 const char key[] = "key"; | |
3571 int size; | |
3572 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, &size)); | |
3573 | |
3574 scoped_refptr<net::IOBuffer> read_buffer1(new net::IOBuffer(size)); | |
3575 scoped_refptr<net::IOBuffer> read_buffer2(new net::IOBuffer(size)); | |
3576 | |
3577 // Advance the first reader a little. | |
3578 disk_cache::Entry* entry = NULL; | |
3579 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
3580 ScopedEntryPtr entry_closer(entry); | |
3581 EXPECT_EQ(1, ReadData(entry, 1, 0, read_buffer1.get(), 1)); | |
3582 | |
3583 // Advance the 2nd reader by the same amount. | |
3584 disk_cache::Entry* entry2 = NULL; | |
3585 EXPECT_EQ(net::OK, OpenEntry(key, &entry2)); | |
3586 ScopedEntryPtr entry2_closer(entry2); | |
3587 EXPECT_EQ(1, ReadData(entry2, 1, 0, read_buffer2.get(), 1)); | |
3588 | |
3589 // Continue reading 1st. | |
3590 EXPECT_GT(0, ReadData(entry, 1, 1, read_buffer1.get(), size)); | |
3591 | |
3592 // This read should fail as well because we have previous read failures. | |
3593 EXPECT_GT(0, ReadData(entry2, 1, 1, read_buffer2.get(), 1)); | |
3594 DisableIntegrityCheck(); | |
3595 } | |
3596 | |
3597 // Test if we can sequentially read each subset of the data until all the data | |
3598 // is read, then the CRC is calculated correctly and the reads are successful. | |
3599 TEST_F(DiskCacheEntryTest, SimpleCacheReadCombineCRC) { | |
3600 // Test sequence: | |
3601 // Create, Write, Read (first half of data), Read (second half of data), | |
3602 // Close. | |
3603 SetSimpleCacheMode(); | |
3604 InitCache(); | |
3605 disk_cache::Entry* null = NULL; | |
3606 const char key[] = "the first key"; | |
3607 | |
3608 const int kHalfSize = 200; | |
3609 const int kSize = 2 * kHalfSize; | |
3610 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize)); | |
3611 CacheTestFillBuffer(buffer1->data(), kSize, false); | |
3612 disk_cache::Entry* entry = NULL; | |
3613 | |
3614 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
3615 EXPECT_NE(null, entry); | |
3616 | |
3617 EXPECT_EQ(kSize, WriteData(entry, 1, 0, buffer1.get(), kSize, false)); | |
3618 entry->Close(); | |
3619 | |
3620 disk_cache::Entry* entry2 = NULL; | |
3621 ASSERT_EQ(net::OK, OpenEntry(key, &entry2)); | |
3622 EXPECT_EQ(entry, entry2); | |
3623 | |
3624 // Read the first half of the data. | |
3625 int offset = 0; | |
3626 int buf_len = kHalfSize; | |
3627 scoped_refptr<net::IOBuffer> buffer1_read1(new net::IOBuffer(buf_len)); | |
3628 EXPECT_EQ(buf_len, ReadData(entry2, 1, offset, buffer1_read1.get(), buf_len)); | |
3629 EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read1->data(), buf_len)); | |
3630 | |
3631 // Read the second half of the data. | |
3632 offset = buf_len; | |
3633 buf_len = kHalfSize; | |
3634 scoped_refptr<net::IOBuffer> buffer1_read2(new net::IOBuffer(buf_len)); | |
3635 EXPECT_EQ(buf_len, ReadData(entry2, 1, offset, buffer1_read2.get(), buf_len)); | |
3636 char* buffer1_data = buffer1->data() + offset; | |
3637 EXPECT_EQ(0, memcmp(buffer1_data, buffer1_read2->data(), buf_len)); | |
3638 | |
3639 // Check that we are not leaking. | |
3640 EXPECT_NE(entry, null); | |
3641 EXPECT_TRUE( | |
3642 static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef()); | |
3643 entry->Close(); | |
3644 entry = NULL; | |
3645 } | |
3646 | |
3647 // Test if we can write the data not in sequence and read correctly. In | |
3648 // this case the CRC will not be present. | |
3649 TEST_F(DiskCacheEntryTest, SimpleCacheNonSequentialWrite) { | |
3650 // Test sequence: | |
3651 // Create, Write (second half of data), Write (first half of data), Read, | |
3652 // Close. | |
3653 SetSimpleCacheMode(); | |
3654 InitCache(); | |
3655 disk_cache::Entry* null = NULL; | |
3656 const char key[] = "the first key"; | |
3657 | |
3658 const int kHalfSize = 200; | |
3659 const int kSize = 2 * kHalfSize; | |
3660 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize)); | |
3661 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize)); | |
3662 CacheTestFillBuffer(buffer1->data(), kSize, false); | |
3663 char* buffer1_data = buffer1->data() + kHalfSize; | |
3664 memcpy(buffer2->data(), buffer1_data, kHalfSize); | |
3665 | |
3666 disk_cache::Entry* entry = NULL; | |
3667 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
3668 entry->Close(); | |
3669 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) { | |
3670 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
3671 EXPECT_NE(null, entry); | |
3672 | |
3673 int offset = kHalfSize; | |
3674 int buf_len = kHalfSize; | |
3675 | |
3676 EXPECT_EQ(buf_len, | |
3677 WriteData(entry, i, offset, buffer2.get(), buf_len, false)); | |
3678 offset = 0; | |
3679 buf_len = kHalfSize; | |
3680 EXPECT_EQ(buf_len, | |
3681 WriteData(entry, i, offset, buffer1.get(), buf_len, false)); | |
3682 entry->Close(); | |
3683 | |
3684 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
3685 | |
3686 scoped_refptr<net::IOBuffer> buffer1_read1(new net::IOBuffer(kSize)); | |
3687 EXPECT_EQ(kSize, ReadData(entry, i, 0, buffer1_read1.get(), kSize)); | |
3688 EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read1->data(), kSize)); | |
3689 // Check that we are not leaking. | |
3690 ASSERT_NE(entry, null); | |
3691 EXPECT_TRUE(static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef()); | |
3692 entry->Close(); | |
3693 } | |
3694 } | |
3695 | |
3696 // Test that changing stream1 size does not affect stream0 (stream0 and stream1 | |
3697 // are stored in the same file in Simple Cache). | |
3698 TEST_F(DiskCacheEntryTest, SimpleCacheStream1SizeChanges) { | |
3699 SetSimpleCacheMode(); | |
3700 InitCache(); | |
3701 disk_cache::Entry* entry = NULL; | |
3702 const char key[] = "the key"; | |
3703 const int kSize = 100; | |
3704 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize)); | |
3705 scoped_refptr<net::IOBuffer> buffer_read(new net::IOBuffer(kSize)); | |
3706 CacheTestFillBuffer(buffer->data(), kSize, false); | |
3707 | |
3708 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
3709 EXPECT_TRUE(entry); | |
3710 | |
3711 // Write something into stream0. | |
3712 EXPECT_EQ(kSize, WriteData(entry, 0, 0, buffer.get(), kSize, false)); | |
3713 EXPECT_EQ(kSize, ReadData(entry, 0, 0, buffer_read.get(), kSize)); | |
3714 EXPECT_EQ(0, memcmp(buffer->data(), buffer_read->data(), kSize)); | |
3715 entry->Close(); | |
3716 | |
3717 // Extend stream1. | |
3718 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
3719 int stream1_size = 100; | |
3720 EXPECT_EQ(0, WriteData(entry, 1, stream1_size, buffer.get(), 0, false)); | |
3721 EXPECT_EQ(stream1_size, entry->GetDataSize(1)); | |
3722 entry->Close(); | |
3723 | |
3724 // Check that stream0 data has not been modified and that the EOF record for | |
3725 // stream 0 contains a crc. | |
3726 // The entry needs to be reopened before checking the crc: Open will perform | |
3727 // the synchronization with the previous Close. This ensures the EOF records | |
3728 // have been written to disk before we attempt to read them independently. | |
3729 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
3730 base::FilePath entry_file0_path = cache_path_.AppendASCII( | |
3731 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 0)); | |
3732 base::File entry_file0(entry_file0_path, | |
3733 base::File::FLAG_READ | base::File::FLAG_OPEN); | |
3734 ASSERT_TRUE(entry_file0.IsValid()); | |
3735 | |
3736 int data_size[disk_cache::kSimpleEntryStreamCount] = {kSize, stream1_size, 0}; | |
3737 int sparse_data_size = 0; | |
3738 disk_cache::SimpleEntryStat entry_stat( | |
3739 base::Time::Now(), base::Time::Now(), data_size, sparse_data_size); | |
3740 int eof_offset = entry_stat.GetEOFOffsetInFile(key, 0); | |
3741 disk_cache::SimpleFileEOF eof_record; | |
3742 ASSERT_EQ(static_cast<int>(sizeof(eof_record)), | |
3743 entry_file0.Read(eof_offset, reinterpret_cast<char*>(&eof_record), | |
3744 sizeof(eof_record))); | |
3745 EXPECT_EQ(disk_cache::kSimpleFinalMagicNumber, eof_record.final_magic_number); | |
3746 EXPECT_TRUE((eof_record.flags & disk_cache::SimpleFileEOF::FLAG_HAS_CRC32) == | |
3747 disk_cache::SimpleFileEOF::FLAG_HAS_CRC32); | |
3748 | |
3749 buffer_read = new net::IOBuffer(kSize); | |
3750 EXPECT_EQ(kSize, ReadData(entry, 0, 0, buffer_read.get(), kSize)); | |
3751 EXPECT_EQ(0, memcmp(buffer->data(), buffer_read->data(), kSize)); | |
3752 | |
3753 // Shrink stream1. | |
3754 stream1_size = 50; | |
3755 EXPECT_EQ(0, WriteData(entry, 1, stream1_size, buffer.get(), 0, true)); | |
3756 EXPECT_EQ(stream1_size, entry->GetDataSize(1)); | |
3757 entry->Close(); | |
3758 | |
3759 // Check that stream0 data has not been modified. | |
3760 buffer_read = new net::IOBuffer(kSize); | |
3761 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
3762 EXPECT_EQ(kSize, ReadData(entry, 0, 0, buffer_read.get(), kSize)); | |
3763 EXPECT_EQ(0, memcmp(buffer->data(), buffer_read->data(), kSize)); | |
3764 entry->Close(); | |
3765 entry = NULL; | |
3766 } | |
3767 | |
3768 // Test that writing within the range for which the crc has already been | |
3769 // computed will properly invalidate the computed crc. | |
3770 TEST_F(DiskCacheEntryTest, SimpleCacheCRCRewrite) { | |
3771 // Test sequence: | |
3772 // Create, Write (big data), Write (small data in the middle), Close. | |
3773 // Open, Read (all), Close. | |
3774 SetSimpleCacheMode(); | |
3775 InitCache(); | |
3776 disk_cache::Entry* null = NULL; | |
3777 const char key[] = "the first key"; | |
3778 | |
3779 const int kHalfSize = 200; | |
3780 const int kSize = 2 * kHalfSize; | |
3781 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize)); | |
3782 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kHalfSize)); | |
3783 CacheTestFillBuffer(buffer1->data(), kSize, false); | |
3784 CacheTestFillBuffer(buffer2->data(), kHalfSize, false); | |
3785 | |
3786 disk_cache::Entry* entry = NULL; | |
3787 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
3788 EXPECT_NE(null, entry); | |
3789 entry->Close(); | |
3790 | |
3791 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) { | |
3792 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
3793 int offset = 0; | |
3794 int buf_len = kSize; | |
3795 | |
3796 EXPECT_EQ(buf_len, | |
3797 WriteData(entry, i, offset, buffer1.get(), buf_len, false)); | |
3798 offset = kHalfSize; | |
3799 buf_len = kHalfSize; | |
3800 EXPECT_EQ(buf_len, | |
3801 WriteData(entry, i, offset, buffer2.get(), buf_len, false)); | |
3802 entry->Close(); | |
3803 | |
3804 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
3805 | |
3806 scoped_refptr<net::IOBuffer> buffer1_read1(new net::IOBuffer(kSize)); | |
3807 EXPECT_EQ(kSize, ReadData(entry, i, 0, buffer1_read1.get(), kSize)); | |
3808 EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read1->data(), kHalfSize)); | |
3809 EXPECT_EQ( | |
3810 0, | |
3811 memcmp(buffer2->data(), buffer1_read1->data() + kHalfSize, kHalfSize)); | |
3812 | |
3813 entry->Close(); | |
3814 } | |
3815 } | |
3816 | |
3817 bool DiskCacheEntryTest::SimpleCacheThirdStreamFileExists(const char* key) { | |
3818 int third_stream_file_index = | |
3819 disk_cache::simple_util::GetFileIndexFromStreamIndex(2); | |
3820 base::FilePath third_stream_file_path = cache_path_.AppendASCII( | |
3821 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex( | |
3822 key, third_stream_file_index)); | |
3823 return PathExists(third_stream_file_path); | |
3824 } | |
3825 | |
3826 void DiskCacheEntryTest::SyncDoomEntry(const char* key) { | |
3827 net::TestCompletionCallback callback; | |
3828 cache_->DoomEntry(key, callback.callback()); | |
3829 callback.WaitForResult(); | |
3830 } | |
3831 | |
3832 // Check that a newly-created entry with no third-stream writes omits the | |
3833 // third stream file. | |
3834 TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream1) { | |
3835 SetSimpleCacheMode(); | |
3836 InitCache(); | |
3837 | |
3838 const char key[] = "key"; | |
3839 | |
3840 disk_cache::Entry* entry; | |
3841 | |
3842 // Create entry and close without writing: third stream file should be | |
3843 // omitted, since the stream is empty. | |
3844 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
3845 entry->Close(); | |
3846 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key)); | |
3847 | |
3848 SyncDoomEntry(key); | |
3849 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key)); | |
3850 } | |
3851 | |
3852 // Check that a newly-created entry with only a single zero-offset, zero-length | |
3853 // write omits the third stream file. | |
3854 TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream2) { | |
3855 SetSimpleCacheMode(); | |
3856 InitCache(); | |
3857 | |
3858 const int kHalfSize = 8; | |
3859 const int kSize = kHalfSize * 2; | |
3860 const char key[] = "key"; | |
3861 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize)); | |
3862 CacheTestFillBuffer(buffer->data(), kHalfSize, false); | |
3863 | |
3864 disk_cache::Entry* entry; | |
3865 | |
3866 // Create entry, write empty buffer to third stream, and close: third stream | |
3867 // should still be omitted, since the entry ignores writes that don't modify | |
3868 // data or change the length. | |
3869 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
3870 EXPECT_EQ(0, WriteData(entry, 2, 0, buffer.get(), 0, true)); | |
3871 entry->Close(); | |
3872 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key)); | |
3873 | |
3874 SyncDoomEntry(key); | |
3875 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key)); | |
3876 } | |
3877 | |
3878 // Check that we can read back data written to the third stream. | |
3879 TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream3) { | |
3880 SetSimpleCacheMode(); | |
3881 InitCache(); | |
3882 | |
3883 const int kHalfSize = 8; | |
3884 const int kSize = kHalfSize * 2; | |
3885 const char key[] = "key"; | |
3886 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize)); | |
3887 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize)); | |
3888 CacheTestFillBuffer(buffer1->data(), kHalfSize, false); | |
3889 | |
3890 disk_cache::Entry* entry; | |
3891 | |
3892 // Create entry, write data to third stream, and close: third stream should | |
3893 // not be omitted, since it contains data. Re-open entry and ensure there | |
3894 // are that many bytes in the third stream. | |
3895 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
3896 EXPECT_EQ(kHalfSize, WriteData(entry, 2, 0, buffer1.get(), kHalfSize, true)); | |
3897 entry->Close(); | |
3898 EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key)); | |
3899 | |
3900 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
3901 EXPECT_EQ(kHalfSize, ReadData(entry, 2, 0, buffer2.get(), kSize)); | |
3902 EXPECT_EQ(0, memcmp(buffer1->data(), buffer2->data(), kHalfSize)); | |
3903 entry->Close(); | |
3904 EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key)); | |
3905 | |
3906 SyncDoomEntry(key); | |
3907 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key)); | |
3908 } | |
3909 | |
3910 // Check that we remove the third stream file upon opening an entry and finding | |
3911 // the third stream empty. (This is the upgrade path for entries written | |
3912 // before the third stream was optional.) | |
3913 TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream4) { | |
3914 SetSimpleCacheMode(); | |
3915 InitCache(); | |
3916 | |
3917 const int kHalfSize = 8; | |
3918 const int kSize = kHalfSize * 2; | |
3919 const char key[] = "key"; | |
3920 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize)); | |
3921 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize)); | |
3922 CacheTestFillBuffer(buffer1->data(), kHalfSize, false); | |
3923 | |
3924 disk_cache::Entry* entry; | |
3925 | |
3926 // Create entry, write data to third stream, truncate third stream back to | |
3927 // empty, and close: third stream will not initially be omitted, since entry | |
3928 // creates the file when the first significant write comes in, and only | |
3929 // removes it on open if it is empty. Reopen, ensure that the file is | |
3930 // deleted, and that there's no data in the third stream. | |
3931 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
3932 EXPECT_EQ(kHalfSize, WriteData(entry, 2, 0, buffer1.get(), kHalfSize, true)); | |
3933 EXPECT_EQ(0, WriteData(entry, 2, 0, buffer1.get(), 0, true)); | |
3934 entry->Close(); | |
3935 EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key)); | |
3936 | |
3937 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
3938 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key)); | |
3939 EXPECT_EQ(0, ReadData(entry, 2, 0, buffer2.get(), kSize)); | |
3940 entry->Close(); | |
3941 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key)); | |
3942 | |
3943 SyncDoomEntry(key); | |
3944 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key)); | |
3945 } | |
3946 | |
3947 // Check that we don't accidentally create the third stream file once the entry | |
3948 // has been doomed. | |
3949 TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream5) { | |
3950 SetSimpleCacheMode(); | |
3951 InitCache(); | |
3952 | |
3953 const int kHalfSize = 8; | |
3954 const int kSize = kHalfSize * 2; | |
3955 const char key[] = "key"; | |
3956 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize)); | |
3957 CacheTestFillBuffer(buffer->data(), kHalfSize, false); | |
3958 | |
3959 disk_cache::Entry* entry; | |
3960 | |
3961 // Create entry, doom entry, write data to third stream, and close: third | |
3962 // stream should not exist. (Note: We don't care if the write fails, just | |
3963 // that it doesn't cause the file to be created on disk.) | |
3964 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
3965 entry->Doom(); | |
3966 WriteData(entry, 2, 0, buffer.get(), kHalfSize, true); | |
3967 entry->Close(); | |
3968 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key)); | |
3969 } | |
3970 | |
3971 // There could be a race between Doom and an optimistic write. | |
3972 TEST_F(DiskCacheEntryTest, SimpleCacheDoomOptimisticWritesRace) { | |
3973 // Test sequence: | |
3974 // Create, first Write, second Write, Close. | |
3975 // Open, Close. | |
3976 SetSimpleCacheMode(); | |
3977 InitCache(); | |
3978 disk_cache::Entry* null = NULL; | |
3979 const char key[] = "the first key"; | |
3980 | |
3981 const int kSize = 200; | |
3982 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize)); | |
3983 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize)); | |
3984 CacheTestFillBuffer(buffer1->data(), kSize, false); | |
3985 CacheTestFillBuffer(buffer2->data(), kSize, false); | |
3986 | |
3987 // The race only happens on stream 1 and stream 2. | |
3988 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) { | |
3989 ASSERT_EQ(net::OK, DoomAllEntries()); | |
3990 disk_cache::Entry* entry = NULL; | |
3991 | |
3992 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
3993 EXPECT_NE(null, entry); | |
3994 entry->Close(); | |
3995 entry = NULL; | |
3996 | |
3997 ASSERT_EQ(net::OK, DoomAllEntries()); | |
3998 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
3999 EXPECT_NE(null, entry); | |
4000 | |
4001 int offset = 0; | |
4002 int buf_len = kSize; | |
4003 // This write should not be optimistic (since create is). | |
4004 EXPECT_EQ(buf_len, | |
4005 WriteData(entry, i, offset, buffer1.get(), buf_len, false)); | |
4006 | |
4007 offset = kSize; | |
4008 // This write should be optimistic. | |
4009 EXPECT_EQ(buf_len, | |
4010 WriteData(entry, i, offset, buffer2.get(), buf_len, false)); | |
4011 entry->Close(); | |
4012 | |
4013 ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | |
4014 EXPECT_NE(null, entry); | |
4015 | |
4016 entry->Close(); | |
4017 entry = NULL; | |
4018 } | |
4019 } | |
4020 | |
4021 // Tests for a regression in crbug.com/317138 , in which deleting an already | |
4022 // doomed entry was removing the active entry from the index. | |
4023 TEST_F(DiskCacheEntryTest, SimpleCachePreserveActiveEntries) { | |
4024 SetSimpleCacheMode(); | |
4025 InitCache(); | |
4026 | |
4027 disk_cache::Entry* null = NULL; | |
4028 | |
4029 const char key[] = "this is a key"; | |
4030 | |
4031 disk_cache::Entry* entry1 = NULL; | |
4032 ASSERT_EQ(net::OK, CreateEntry(key, &entry1)); | |
4033 ScopedEntryPtr entry1_closer(entry1); | |
4034 EXPECT_NE(null, entry1); | |
4035 entry1->Doom(); | |
4036 | |
4037 disk_cache::Entry* entry2 = NULL; | |
4038 ASSERT_EQ(net::OK, CreateEntry(key, &entry2)); | |
4039 ScopedEntryPtr entry2_closer(entry2); | |
4040 EXPECT_NE(null, entry2); | |
4041 entry2_closer.reset(); | |
4042 | |
4043 // Closing then reopening entry2 insures that entry2 is serialized, and so | |
4044 // it can be opened from files without error. | |
4045 entry2 = NULL; | |
4046 ASSERT_EQ(net::OK, OpenEntry(key, &entry2)); | |
4047 EXPECT_NE(null, entry2); | |
4048 entry2_closer.reset(entry2); | |
4049 | |
4050 scoped_refptr<disk_cache::SimpleEntryImpl> | |
4051 entry1_refptr = static_cast<disk_cache::SimpleEntryImpl*>(entry1); | |
4052 | |
4053 // If crbug.com/317138 has regressed, this will remove |entry2| from | |
4054 // the backend's |active_entries_| while |entry2| is still alive and its | |
4055 // files are still on disk. | |
4056 entry1_closer.reset(); | |
4057 entry1 = NULL; | |
4058 | |
4059 // Close does not have a callback. However, we need to be sure the close is | |
4060 // finished before we continue the test. We can take advantage of how the ref | |
4061 // counting of a SimpleEntryImpl works to fake out a callback: When the | |
4062 // last Close() call is made to an entry, an IO operation is sent to the | |
4063 // synchronous entry to close the platform files. This IO operation holds a | |
4064 // ref pointer to the entry, which expires when the operation is done. So, | |
4065 // we take a refpointer, and watch the SimpleEntry object until it has only | |
4066 // one ref; this indicates the IO operation is complete. | |
4067 while (!entry1_refptr->HasOneRef()) { | |
4068 base::PlatformThread::YieldCurrentThread(); | |
4069 base::MessageLoop::current()->RunUntilIdle(); | |
4070 } | |
4071 entry1_refptr = NULL; | |
4072 | |
4073 // In the bug case, this new entry ends up being a duplicate object pointing | |
4074 // at the same underlying files. | |
4075 disk_cache::Entry* entry3 = NULL; | |
4076 EXPECT_EQ(net::OK, OpenEntry(key, &entry3)); | |
4077 ScopedEntryPtr entry3_closer(entry3); | |
4078 EXPECT_NE(null, entry3); | |
4079 | |
4080 // The test passes if these two dooms do not crash. | |
4081 entry2->Doom(); | |
4082 entry3->Doom(); | |
4083 } | |
4084 | |
4085 TEST_F(DiskCacheEntryTest, SimpleCacheBasicSparseIO) { | |
4086 SetSimpleCacheMode(); | |
4087 InitCache(); | |
4088 BasicSparseIO(); | |
4089 } | |
4090 | |
4091 TEST_F(DiskCacheEntryTest, SimpleCacheHugeSparseIO) { | |
4092 SetSimpleCacheMode(); | |
4093 InitCache(); | |
4094 HugeSparseIO(); | |
4095 } | |
4096 | |
4097 TEST_F(DiskCacheEntryTest, SimpleCacheGetAvailableRange) { | |
4098 SetSimpleCacheMode(); | |
4099 InitCache(); | |
4100 GetAvailableRange(); | |
4101 } | |
4102 | |
4103 TEST_F(DiskCacheEntryTest, DISABLED_SimpleCacheCouldBeSparse) { | |
4104 SetSimpleCacheMode(); | |
4105 InitCache(); | |
4106 CouldBeSparse(); | |
4107 } | |
4108 | |
4109 TEST_F(DiskCacheEntryTest, SimpleCacheUpdateSparseEntry) { | |
4110 SetSimpleCacheMode(); | |
4111 InitCache(); | |
4112 UpdateSparseEntry(); | |
4113 } | |
4114 | |
4115 TEST_F(DiskCacheEntryTest, SimpleCacheDoomSparseEntry) { | |
4116 SetSimpleCacheMode(); | |
4117 InitCache(); | |
4118 DoomSparseEntry(); | |
4119 } | |
4120 | |
4121 TEST_F(DiskCacheEntryTest, SimpleCachePartialSparseEntry) { | |
4122 SetSimpleCacheMode(); | |
4123 InitCache(); | |
4124 PartialSparseEntry(); | |
4125 } | |
4126 | |
4127 TEST_F(DiskCacheEntryTest, SimpleCacheTruncateLargeSparseFile) { | |
4128 const int kSize = 1024; | |
4129 | |
4130 SetSimpleCacheMode(); | |
4131 // An entry is allowed sparse data 1/10 the size of the cache, so this size | |
4132 // allows for one |kSize|-sized range plus overhead, but not two ranges. | |
4133 SetMaxSize(kSize * 15); | |
4134 InitCache(); | |
4135 | |
4136 const char key[] = "key"; | |
4137 disk_cache::Entry* null = NULL; | |
4138 disk_cache::Entry* entry; | |
4139 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | |
4140 EXPECT_NE(null, entry); | |
4141 | |
4142 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize)); | |
4143 CacheTestFillBuffer(buffer->data(), kSize, false); | |
4144 net::TestCompletionCallback callback; | |
4145 int ret; | |
4146 | |
4147 // Verify initial conditions. | |
4148 ret = entry->ReadSparseData(0, buffer.get(), kSize, callback.callback()); | |
4149 EXPECT_EQ(0, callback.GetResult(ret)); | |
4150 | |
4151 ret = entry->ReadSparseData(kSize, buffer.get(), kSize, callback.callback()); | |
4152 EXPECT_EQ(0, callback.GetResult(ret)); | |
4153 | |
4154 // Write a range and make sure it reads back. | |
4155 ret = entry->WriteSparseData(0, buffer.get(), kSize, callback.callback()); | |
4156 EXPECT_EQ(kSize, callback.GetResult(ret)); | |
4157 | |
4158 ret = entry->ReadSparseData(0, buffer.get(), kSize, callback.callback()); | |
4159 EXPECT_EQ(kSize, callback.GetResult(ret)); | |
4160 | |
4161 // Write another range and make sure it reads back. | |
4162 ret = entry->WriteSparseData(kSize, buffer.get(), kSize, callback.callback()); | |
4163 EXPECT_EQ(kSize, callback.GetResult(ret)); | |
4164 | |
4165 ret = entry->ReadSparseData(kSize, buffer.get(), kSize, callback.callback()); | |
4166 EXPECT_EQ(kSize, callback.GetResult(ret)); | |
4167 | |
4168 // Make sure the first range was removed when the second was written. | |
4169 ret = entry->ReadSparseData(0, buffer.get(), kSize, callback.callback()); | |
4170 EXPECT_EQ(0, callback.GetResult(ret)); | |
4171 | |
4172 entry->Close(); | |
4173 } | |
OLD | NEW |