OLD | NEW |
| (Empty) |
1 // Copyright 2014 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "net/disk_cache/blockfile/index_table_v3.h" | |
6 | |
7 #include <algorithm> | |
8 #include <set> | |
9 #include <utility> | |
10 | |
11 #include "base/bits.h" | |
12 #include "net/base/io_buffer.h" | |
13 #include "net/base/net_errors.h" | |
14 #include "net/disk_cache/disk_cache.h" | |
15 | |
16 using base::Time; | |
17 using base::TimeDelta; | |
18 using disk_cache::CellInfo; | |
19 using disk_cache::CellList; | |
20 using disk_cache::IndexCell; | |
21 using disk_cache::IndexIterator; | |
22 | |
23 namespace { | |
24 | |
25 // The following constants describe the bitfields of an IndexCell so they are | |
26 // implicitly synchronized with the descrption of IndexCell on file_format_v3.h. | |
27 const uint64 kCellLocationMask = (1 << 22) - 1; | |
28 const uint64 kCellIdMask = (1 << 18) - 1; | |
29 const uint64 kCellTimestampMask = (1 << 20) - 1; | |
30 const uint64 kCellReuseMask = (1 << 4) - 1; | |
31 const uint8 kCellStateMask = (1 << 3) - 1; | |
32 const uint8 kCellGroupMask = (1 << 3) - 1; | |
33 const uint8 kCellSumMask = (1 << 2) - 1; | |
34 | |
35 const uint64 kCellSmallTableLocationMask = (1 << 16) - 1; | |
36 const uint64 kCellSmallTableIdMask = (1 << 24) - 1; | |
37 | |
38 const int kCellIdOffset = 22; | |
39 const int kCellTimestampOffset = 40; | |
40 const int kCellReuseOffset = 60; | |
41 const int kCellGroupOffset = 3; | |
42 const int kCellSumOffset = 6; | |
43 | |
44 const int kCellSmallTableIdOffset = 16; | |
45 | |
46 // The number of bits that a hash has to be shifted to grab the part that | |
47 // defines the cell id. | |
48 const int kHashShift = 14; | |
49 const int kSmallTableHashShift = 8; | |
50 | |
51 // Unfortunately we have to break the abstaction a little here: the file number | |
52 // where entries are stored is outside of the control of this code, and it is | |
53 // usually part of the stored address. However, for small tables we only store | |
54 // 16 bits of the address so the file number is never stored on a cell. We have | |
55 // to infere the file number from the type of entry (normal vs evicted), and | |
56 // the knowledge that given that the table will not keep more than 64k entries, | |
57 // a single file of each type is enough. | |
58 const int kEntriesFile = disk_cache::BLOCK_ENTRIES - 1; | |
59 const int kEvictedEntriesFile = disk_cache::BLOCK_EVICTED - 1; | |
60 const int kMaxLocation = 1 << 22; | |
61 const int kMinFileNumber = 1 << 16; | |
62 | |
63 uint32 GetCellLocation(const IndexCell& cell) { | |
64 return cell.first_part & kCellLocationMask; | |
65 } | |
66 | |
67 uint32 GetCellSmallTableLocation(const IndexCell& cell) { | |
68 return cell.first_part & kCellSmallTableLocationMask; | |
69 } | |
70 | |
71 uint32 GetCellId(const IndexCell& cell) { | |
72 return (cell.first_part >> kCellIdOffset) & kCellIdMask; | |
73 } | |
74 | |
75 uint32 GetCellSmallTableId(const IndexCell& cell) { | |
76 return (cell.first_part >> kCellSmallTableIdOffset) & | |
77 kCellSmallTableIdMask; | |
78 } | |
79 | |
80 int GetCellTimestamp(const IndexCell& cell) { | |
81 return (cell.first_part >> kCellTimestampOffset) & kCellTimestampMask; | |
82 } | |
83 | |
84 int GetCellReuse(const IndexCell& cell) { | |
85 return (cell.first_part >> kCellReuseOffset) & kCellReuseMask; | |
86 } | |
87 | |
88 int GetCellState(const IndexCell& cell) { | |
89 return cell.last_part & kCellStateMask; | |
90 } | |
91 | |
92 int GetCellGroup(const IndexCell& cell) { | |
93 return (cell.last_part >> kCellGroupOffset) & kCellGroupMask; | |
94 } | |
95 | |
96 int GetCellSum(const IndexCell& cell) { | |
97 return (cell.last_part >> kCellSumOffset) & kCellSumMask; | |
98 } | |
99 | |
100 void SetCellLocation(IndexCell* cell, uint32 address) { | |
101 DCHECK_LE(address, static_cast<uint32>(kCellLocationMask)); | |
102 cell->first_part &= ~kCellLocationMask; | |
103 cell->first_part |= address; | |
104 } | |
105 | |
106 void SetCellSmallTableLocation(IndexCell* cell, uint32 address) { | |
107 DCHECK_LE(address, static_cast<uint32>(kCellSmallTableLocationMask)); | |
108 cell->first_part &= ~kCellSmallTableLocationMask; | |
109 cell->first_part |= address; | |
110 } | |
111 | |
112 void SetCellId(IndexCell* cell, uint32 hash) { | |
113 DCHECK_LE(hash, static_cast<uint32>(kCellIdMask)); | |
114 cell->first_part &= ~(kCellIdMask << kCellIdOffset); | |
115 cell->first_part |= static_cast<int64>(hash) << kCellIdOffset; | |
116 } | |
117 | |
118 void SetCellSmallTableId(IndexCell* cell, uint32 hash) { | |
119 DCHECK_LE(hash, static_cast<uint32>(kCellSmallTableIdMask)); | |
120 cell->first_part &= ~(kCellSmallTableIdMask << kCellSmallTableIdOffset); | |
121 cell->first_part |= static_cast<int64>(hash) << kCellSmallTableIdOffset; | |
122 } | |
123 | |
124 void SetCellTimestamp(IndexCell* cell, int timestamp) { | |
125 DCHECK_LT(timestamp, 1 << 20); | |
126 DCHECK_GE(timestamp, 0); | |
127 cell->first_part &= ~(kCellTimestampMask << kCellTimestampOffset); | |
128 cell->first_part |= static_cast<int64>(timestamp) << kCellTimestampOffset; | |
129 } | |
130 | |
131 void SetCellReuse(IndexCell* cell, int count) { | |
132 DCHECK_LT(count, 16); | |
133 DCHECK_GE(count, 0); | |
134 cell->first_part &= ~(kCellReuseMask << kCellReuseOffset); | |
135 cell->first_part |= static_cast<int64>(count) << kCellReuseOffset; | |
136 } | |
137 | |
138 void SetCellState(IndexCell* cell, disk_cache::EntryState state) { | |
139 cell->last_part &= ~kCellStateMask; | |
140 cell->last_part |= state; | |
141 } | |
142 | |
143 void SetCellGroup(IndexCell* cell, disk_cache::EntryGroup group) { | |
144 cell->last_part &= ~(kCellGroupMask << kCellGroupOffset); | |
145 cell->last_part |= group << kCellGroupOffset; | |
146 } | |
147 | |
148 void SetCellSum(IndexCell* cell, int sum) { | |
149 DCHECK_LT(sum, 4); | |
150 DCHECK_GE(sum, 0); | |
151 cell->last_part &= ~(kCellSumMask << kCellSumOffset); | |
152 cell->last_part |= sum << kCellSumOffset; | |
153 } | |
154 | |
155 // This is a very particular way to calculate the sum, so it will not match if | |
156 // compared a gainst a pure 2 bit, modulo 2 sum. | |
157 int CalculateCellSum(const IndexCell& cell) { | |
158 uint32* words = bit_cast<uint32*>(&cell); | |
159 uint8* bytes = bit_cast<uint8*>(&cell); | |
160 uint32 result = words[0] + words[1]; | |
161 result += result >> 16; | |
162 result += (result >> 8) + (bytes[8] & 0x3f); | |
163 result += result >> 4; | |
164 result += result >> 2; | |
165 return result & 3; | |
166 } | |
167 | |
168 bool SanityCheck(const IndexCell& cell) { | |
169 if (GetCellSum(cell) != CalculateCellSum(cell)) | |
170 return false; | |
171 | |
172 if (GetCellState(cell) > disk_cache::ENTRY_USED || | |
173 GetCellGroup(cell) == disk_cache::ENTRY_RESERVED || | |
174 GetCellGroup(cell) > disk_cache::ENTRY_EVICTED) { | |
175 return false; | |
176 } | |
177 | |
178 return true; | |
179 } | |
180 | |
181 int FileNumberFromLocation(int location) { | |
182 return location / kMinFileNumber; | |
183 } | |
184 | |
185 int StartBlockFromLocation(int location) { | |
186 return location % kMinFileNumber; | |
187 } | |
188 | |
189 bool IsValidAddress(disk_cache::Addr address) { | |
190 if (!address.is_initialized() || | |
191 (address.file_type() != disk_cache::BLOCK_EVICTED && | |
192 address.file_type() != disk_cache::BLOCK_ENTRIES)) { | |
193 return false; | |
194 } | |
195 | |
196 return address.FileNumber() < FileNumberFromLocation(kMaxLocation); | |
197 } | |
198 | |
199 bool IsNormalState(const IndexCell& cell) { | |
200 disk_cache::EntryState state = | |
201 static_cast<disk_cache::EntryState>(GetCellState(cell)); | |
202 DCHECK_NE(state, disk_cache::ENTRY_FREE); | |
203 return state != disk_cache::ENTRY_DELETED && | |
204 state != disk_cache::ENTRY_FIXING; | |
205 } | |
206 | |
207 inline int GetNextBucket(int min_bucket_num, int max_bucket_num, | |
208 disk_cache::IndexBucket* table, | |
209 disk_cache::IndexBucket** bucket) { | |
210 if (!(*bucket)->next) | |
211 return 0; | |
212 | |
213 int bucket_num = (*bucket)->next / disk_cache::kCellsPerBucket; | |
214 if (bucket_num < min_bucket_num || bucket_num > max_bucket_num) { | |
215 // The next bucket must fall within the extra table. Note that this is not | |
216 // an uncommon path as growing the table may not cleanup the link from the | |
217 // main table to the extra table, and that cleanup is performed here when | |
218 // accessing that bucket for the first time. This behavior has to change if | |
219 // the tables are ever shrinked. | |
220 (*bucket)->next = 0; | |
221 return 0; | |
222 } | |
223 *bucket = &table[bucket_num - min_bucket_num]; | |
224 return bucket_num; | |
225 } | |
226 | |
227 // Updates the |iterator| with the current |cell|. This cell may cause all | |
228 // previous cells to be deleted (when a new target timestamp is found), the cell | |
229 // may be added to the list (if it matches the target timestamp), or may it be | |
230 // ignored. | |
231 void UpdateIterator(const disk_cache::EntryCell& cell, | |
232 int limit_time, | |
233 IndexIterator* iterator) { | |
234 int time = cell.GetTimestamp(); | |
235 // Look for not interesting times. | |
236 if (iterator->forward && time <= limit_time) | |
237 return; | |
238 if (!iterator->forward && time >= limit_time) | |
239 return; | |
240 | |
241 if ((iterator->forward && time < iterator->timestamp) || | |
242 (!iterator->forward && time > iterator->timestamp)) { | |
243 // This timestamp is better than the one we had. | |
244 iterator->timestamp = time; | |
245 iterator->cells.clear(); | |
246 } | |
247 if (time == iterator->timestamp) { | |
248 CellInfo cell_info = { cell.hash(), cell.GetAddress() }; | |
249 iterator->cells.push_back(cell_info); | |
250 } | |
251 } | |
252 | |
253 void InitIterator(IndexIterator* iterator) { | |
254 iterator->cells.clear(); | |
255 iterator->timestamp = iterator->forward ? kint32max : 0; | |
256 } | |
257 | |
258 } // namespace | |
259 | |
260 namespace disk_cache { | |
261 | |
262 EntryCell::~EntryCell() { | |
263 } | |
264 | |
265 bool EntryCell::IsValid() const { | |
266 return GetCellLocation(cell_) != 0; | |
267 } | |
268 | |
269 // This code has to map the cell address (up to 22 bits) to a general cache Addr | |
270 // (up to 24 bits of general addressing). It also set the implied file_number | |
271 // in the case of small tables. See also the comment by the definition of | |
272 // kEntriesFile. | |
273 Addr EntryCell::GetAddress() const { | |
274 uint32 location = GetLocation(); | |
275 int file_number = FileNumberFromLocation(location); | |
276 if (small_table_) { | |
277 DCHECK_EQ(0, file_number); | |
278 file_number = (GetGroup() == ENTRY_EVICTED) ? kEvictedEntriesFile : | |
279 kEntriesFile; | |
280 } | |
281 DCHECK_NE(0, file_number); | |
282 FileType file_type = (GetGroup() == ENTRY_EVICTED) ? BLOCK_EVICTED : | |
283 BLOCK_ENTRIES; | |
284 return Addr(file_type, 1, file_number, StartBlockFromLocation(location)); | |
285 } | |
286 | |
287 EntryState EntryCell::GetState() const { | |
288 return static_cast<EntryState>(GetCellState(cell_)); | |
289 } | |
290 | |
291 EntryGroup EntryCell::GetGroup() const { | |
292 return static_cast<EntryGroup>(GetCellGroup(cell_)); | |
293 } | |
294 | |
295 int EntryCell::GetReuse() const { | |
296 return GetCellReuse(cell_); | |
297 } | |
298 | |
299 int EntryCell::GetTimestamp() const { | |
300 return GetCellTimestamp(cell_); | |
301 } | |
302 | |
303 void EntryCell::SetState(EntryState state) { | |
304 SetCellState(&cell_, state); | |
305 } | |
306 | |
307 void EntryCell::SetGroup(EntryGroup group) { | |
308 SetCellGroup(&cell_, group); | |
309 } | |
310 | |
311 void EntryCell::SetReuse(int count) { | |
312 SetCellReuse(&cell_, count); | |
313 } | |
314 | |
315 void EntryCell::SetTimestamp(int timestamp) { | |
316 SetCellTimestamp(&cell_, timestamp); | |
317 } | |
318 | |
319 // Static. | |
320 EntryCell EntryCell::GetEntryCellForTest(int32 cell_num, | |
321 uint32 hash, | |
322 Addr address, | |
323 IndexCell* cell, | |
324 bool small_table) { | |
325 if (cell) { | |
326 EntryCell entry_cell(cell_num, hash, *cell, small_table); | |
327 return entry_cell; | |
328 } | |
329 | |
330 return EntryCell(cell_num, hash, address, small_table); | |
331 } | |
332 | |
333 void EntryCell::SerializaForTest(IndexCell* destination) { | |
334 FixSum(); | |
335 Serialize(destination); | |
336 } | |
337 | |
338 EntryCell::EntryCell() : cell_num_(0), hash_(0), small_table_(false) { | |
339 cell_.Clear(); | |
340 } | |
341 | |
342 EntryCell::EntryCell(int32 cell_num, | |
343 uint32 hash, | |
344 Addr address, | |
345 bool small_table) | |
346 : cell_num_(cell_num), | |
347 hash_(hash), | |
348 small_table_(small_table) { | |
349 DCHECK(IsValidAddress(address) || !address.value()); | |
350 | |
351 cell_.Clear(); | |
352 SetCellState(&cell_, ENTRY_NEW); | |
353 SetCellGroup(&cell_, ENTRY_NO_USE); | |
354 if (small_table) { | |
355 DCHECK(address.FileNumber() == kEntriesFile || | |
356 address.FileNumber() == kEvictedEntriesFile); | |
357 SetCellSmallTableLocation(&cell_, address.start_block()); | |
358 SetCellSmallTableId(&cell_, hash >> kSmallTableHashShift); | |
359 } else { | |
360 uint32 location = address.FileNumber() << 16 | address.start_block(); | |
361 SetCellLocation(&cell_, location); | |
362 SetCellId(&cell_, hash >> kHashShift); | |
363 } | |
364 } | |
365 | |
366 EntryCell::EntryCell(int32 cell_num, | |
367 uint32 hash, | |
368 const IndexCell& cell, | |
369 bool small_table) | |
370 : cell_num_(cell_num), | |
371 hash_(hash), | |
372 cell_(cell), | |
373 small_table_(small_table) { | |
374 } | |
375 | |
376 void EntryCell::FixSum() { | |
377 SetCellSum(&cell_, CalculateCellSum(cell_)); | |
378 } | |
379 | |
380 uint32 EntryCell::GetLocation() const { | |
381 if (small_table_) | |
382 return GetCellSmallTableLocation(cell_); | |
383 | |
384 return GetCellLocation(cell_); | |
385 } | |
386 | |
387 uint32 EntryCell::RecomputeHash() { | |
388 if (small_table_) { | |
389 hash_ &= (1 << kSmallTableHashShift) - 1; | |
390 hash_ |= GetCellSmallTableId(cell_) << kSmallTableHashShift; | |
391 return hash_; | |
392 } | |
393 | |
394 hash_ &= (1 << kHashShift) - 1; | |
395 hash_ |= GetCellId(cell_) << kHashShift; | |
396 return hash_; | |
397 } | |
398 | |
399 void EntryCell::Serialize(IndexCell* destination) const { | |
400 *destination = cell_; | |
401 } | |
402 | |
403 EntrySet::EntrySet() : evicted_count(0), current(0) { | |
404 } | |
405 | |
406 EntrySet::~EntrySet() { | |
407 } | |
408 | |
409 IndexIterator::IndexIterator() { | |
410 } | |
411 | |
412 IndexIterator::~IndexIterator() { | |
413 } | |
414 | |
415 IndexTableInitData::IndexTableInitData() { | |
416 } | |
417 | |
418 IndexTableInitData::~IndexTableInitData() { | |
419 } | |
420 | |
421 // ----------------------------------------------------------------------- | |
422 | |
423 IndexTable::IndexTable(IndexTableBackend* backend) | |
424 : backend_(backend), | |
425 header_(NULL), | |
426 main_table_(NULL), | |
427 extra_table_(NULL), | |
428 modified_(false), | |
429 small_table_(false) { | |
430 } | |
431 | |
432 IndexTable::~IndexTable() { | |
433 } | |
434 | |
435 // For a general description of the index tables see: | |
436 // http://www.chromium.org/developers/design-documents/network-stack/disk-cache/
disk-cache-v3#TOC-Index | |
437 // | |
438 // The index is split between two tables: the main_table_ and the extra_table_. | |
439 // The main table can grow only by doubling its number of cells, while the | |
440 // extra table can grow slowly, because it only contain cells that overflow | |
441 // from the main table. In order to locate a given cell, part of the hash is | |
442 // used directly as an index into the main table; once that bucket is located, | |
443 // all cells with that partial hash (i.e., belonging to that bucket) are | |
444 // inspected, and if present, the next bucket (located on the extra table) is | |
445 // then located. For more information on bucket chaining see: | |
446 // http://www.chromium.org/developers/design-documents/network-stack/disk-cache/
disk-cache-v3#TOC-Buckets | |
447 // | |
448 // There are two cases when increasing the size: | |
449 // - Doubling the size of the main table | |
450 // - Adding more entries to the extra table | |
451 // | |
452 // For example, consider a 64k main table with 8k cells on the extra table (for | |
453 // a total of 72k cells). Init can be called to add another 8k cells at the end | |
454 // (grow to 80k cells). When the size of the extra table approaches 64k, Init | |
455 // can be called to double the main table (to 128k) and go back to a small extra | |
456 // table. | |
457 void IndexTable::Init(IndexTableInitData* params) { | |
458 bool growing = header_ != NULL; | |
459 scoped_ptr<IndexBucket[]> old_extra_table; | |
460 header_ = ¶ms->index_bitmap->header; | |
461 | |
462 if (params->main_table) { | |
463 if (main_table_) { | |
464 // This is doubling the size of main table. | |
465 DCHECK_EQ(base::bits::Log2Floor(header_->table_len), | |
466 base::bits::Log2Floor(backup_header_->table_len) + 1); | |
467 int extra_size = (header()->max_bucket - mask_) * kCellsPerBucket; | |
468 DCHECK_GE(extra_size, 0); | |
469 | |
470 // Doubling the size implies deleting the extra table and moving as many | |
471 // cells as we can to the main table, so we first copy the old one. This | |
472 // is not required when just growing the extra table because we don't | |
473 // move any cell in that case. | |
474 old_extra_table.reset(new IndexBucket[extra_size]); | |
475 memcpy(old_extra_table.get(), extra_table_, | |
476 extra_size * sizeof(IndexBucket)); | |
477 memset(params->extra_table, 0, extra_size * sizeof(IndexBucket)); | |
478 } | |
479 main_table_ = params->main_table; | |
480 } | |
481 DCHECK(main_table_); | |
482 extra_table_ = params->extra_table; | |
483 | |
484 // extra_bits_ is really measured against table-size specific values. | |
485 const int kMaxAbsoluteExtraBits = 12; // From smallest to largest table. | |
486 const int kMaxExtraBitsSmallTable = 6; // From smallest to 64K table. | |
487 | |
488 extra_bits_ = base::bits::Log2Floor(header_->table_len) - | |
489 base::bits::Log2Floor(kBaseTableLen); | |
490 DCHECK_GE(extra_bits_, 0); | |
491 DCHECK_LT(extra_bits_, kMaxAbsoluteExtraBits); | |
492 | |
493 // Note that following the previous code the constants could be derived as | |
494 // kMaxAbsoluteExtraBits = base::bits::Log2Floor(max table len) - | |
495 // base::bits::Log2Floor(kBaseTableLen); | |
496 // = 22 - base::bits::Log2Floor(1024) = 22 - 10; | |
497 // kMaxExtraBitsSmallTable = base::bits::Log2Floor(max 16 bit table) - 10. | |
498 | |
499 mask_ = ((kBaseTableLen / kCellsPerBucket) << extra_bits_) - 1; | |
500 small_table_ = extra_bits_ < kMaxExtraBitsSmallTable; | |
501 if (!small_table_) | |
502 extra_bits_ -= kMaxExtraBitsSmallTable; | |
503 | |
504 // table_len keeps the max number of cells stored by the index. We need a | |
505 // bitmap with 1 bit per cell, and that bitmap has num_words 32-bit words. | |
506 int num_words = (header_->table_len + 31) / 32; | |
507 | |
508 if (old_extra_table) { | |
509 // All the cells from the extra table are moving to the new tables so before | |
510 // creating the bitmaps, clear the part of the bitmap referring to the extra | |
511 // table. | |
512 int old_main_table_bit_words = ((mask_ >> 1) + 1) * kCellsPerBucket / 32; | |
513 DCHECK_GT(num_words, old_main_table_bit_words); | |
514 memset(params->index_bitmap->bitmap + old_main_table_bit_words, 0, | |
515 (num_words - old_main_table_bit_words) * sizeof(int32)); | |
516 | |
517 DCHECK(growing); | |
518 int old_num_words = (backup_header_.get()->table_len + 31) / 32; | |
519 DCHECK_GT(old_num_words, old_main_table_bit_words); | |
520 memset(backup_bitmap_storage_.get() + old_main_table_bit_words, 0, | |
521 (old_num_words - old_main_table_bit_words) * sizeof(int32)); | |
522 } | |
523 bitmap_.reset(new Bitmap(params->index_bitmap->bitmap, header_->table_len, | |
524 num_words)); | |
525 | |
526 if (growing) { | |
527 int old_num_words = (backup_header_.get()->table_len + 31) / 32; | |
528 DCHECK_GE(num_words, old_num_words); | |
529 scoped_ptr<uint32[]> storage(new uint32[num_words]); | |
530 memcpy(storage.get(), backup_bitmap_storage_.get(), | |
531 old_num_words * sizeof(int32)); | |
532 memset(storage.get() + old_num_words, 0, | |
533 (num_words - old_num_words) * sizeof(int32)); | |
534 | |
535 backup_bitmap_storage_.swap(storage); | |
536 backup_header_->table_len = header_->table_len; | |
537 } else { | |
538 backup_bitmap_storage_.reset(params->backup_bitmap.release()); | |
539 backup_header_.reset(params->backup_header.release()); | |
540 } | |
541 | |
542 num_words = (backup_header_->table_len + 31) / 32; | |
543 backup_bitmap_.reset(new Bitmap(backup_bitmap_storage_.get(), | |
544 backup_header_->table_len, num_words)); | |
545 if (old_extra_table) | |
546 MoveCells(old_extra_table.get()); | |
547 | |
548 if (small_table_) | |
549 DCHECK(header_->flags & SMALL_CACHE); | |
550 | |
551 // All tables and backups are needed for operation. | |
552 DCHECK(main_table_); | |
553 DCHECK(extra_table_); | |
554 DCHECK(bitmap_.get()); | |
555 } | |
556 | |
557 void IndexTable::Shutdown() { | |
558 header_ = NULL; | |
559 main_table_ = NULL; | |
560 extra_table_ = NULL; | |
561 bitmap_.reset(); | |
562 backup_bitmap_.reset(); | |
563 backup_header_.reset(); | |
564 backup_bitmap_storage_.reset(); | |
565 modified_ = false; | |
566 } | |
567 | |
568 // The general method for locating cells is to: | |
569 // 1. Get the first bucket. This usually means directly indexing the table (as | |
570 // this method does), or iterating through all possible buckets. | |
571 // 2. Iterate through all the cells in that first bucket. | |
572 // 3. If there is a linked bucket, locate it directly in the extra table. | |
573 // 4. Go back to 2, as needed. | |
574 // | |
575 // One consequence of this pattern is that we never start looking at buckets in | |
576 // the extra table, unless we are following a link from the main table. | |
577 EntrySet IndexTable::LookupEntries(uint32 hash) { | |
578 EntrySet entries; | |
579 int bucket_num = static_cast<int>(hash & mask_); | |
580 IndexBucket* bucket = &main_table_[bucket_num]; | |
581 do { | |
582 for (int i = 0; i < kCellsPerBucket; i++) { | |
583 IndexCell* current_cell = &bucket->cells[i]; | |
584 if (!GetLocation(*current_cell)) | |
585 continue; | |
586 if (!SanityCheck(*current_cell)) { | |
587 NOTREACHED(); | |
588 int cell_num = bucket_num * kCellsPerBucket + i; | |
589 current_cell->Clear(); | |
590 bitmap_->Set(cell_num, false); | |
591 backup_bitmap_->Set(cell_num, false); | |
592 modified_ = true; | |
593 continue; | |
594 } | |
595 int cell_num = bucket_num * kCellsPerBucket + i; | |
596 if (MisplacedHash(*current_cell, hash)) { | |
597 HandleMisplacedCell(current_cell, cell_num, hash & mask_); | |
598 } else if (IsHashMatch(*current_cell, hash)) { | |
599 EntryCell entry_cell(cell_num, hash, *current_cell, small_table_); | |
600 CheckState(entry_cell); | |
601 if (entry_cell.GetState() != ENTRY_DELETED) { | |
602 entries.cells.push_back(entry_cell); | |
603 if (entry_cell.GetGroup() == ENTRY_EVICTED) | |
604 entries.evicted_count++; | |
605 } | |
606 } | |
607 } | |
608 bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_, | |
609 &bucket); | |
610 } while (bucket_num); | |
611 return entries; | |
612 } | |
613 | |
614 EntryCell IndexTable::CreateEntryCell(uint32 hash, Addr address) { | |
615 DCHECK(IsValidAddress(address)); | |
616 DCHECK(address.FileNumber() || address.start_block()); | |
617 | |
618 int bucket_num = static_cast<int>(hash & mask_); | |
619 int cell_num = 0; | |
620 IndexBucket* bucket = &main_table_[bucket_num]; | |
621 IndexCell* current_cell = NULL; | |
622 bool found = false; | |
623 do { | |
624 for (int i = 0; i < kCellsPerBucket && !found; i++) { | |
625 current_cell = &bucket->cells[i]; | |
626 if (!GetLocation(*current_cell)) { | |
627 cell_num = bucket_num * kCellsPerBucket + i; | |
628 found = true; | |
629 } | |
630 } | |
631 if (found) | |
632 break; | |
633 bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_, | |
634 &bucket); | |
635 } while (bucket_num); | |
636 | |
637 if (!found) { | |
638 bucket_num = NewExtraBucket(); | |
639 if (bucket_num) { | |
640 cell_num = bucket_num * kCellsPerBucket; | |
641 bucket->next = cell_num; | |
642 bucket = &extra_table_[bucket_num - (mask_ + 1)]; | |
643 bucket->hash = hash & mask_; | |
644 found = true; | |
645 } else { | |
646 // address 0 is a reserved value, and the caller interprets it as invalid. | |
647 address.set_value(0); | |
648 } | |
649 } | |
650 | |
651 EntryCell entry_cell(cell_num, hash, address, small_table_); | |
652 if (address.file_type() == BLOCK_EVICTED) | |
653 entry_cell.SetGroup(ENTRY_EVICTED); | |
654 else | |
655 entry_cell.SetGroup(ENTRY_NO_USE); | |
656 Save(&entry_cell); | |
657 | |
658 if (found) { | |
659 bitmap_->Set(cell_num, true); | |
660 backup_bitmap_->Set(cell_num, true); | |
661 header()->used_cells++; | |
662 modified_ = true; | |
663 } | |
664 | |
665 return entry_cell; | |
666 } | |
667 | |
668 EntryCell IndexTable::FindEntryCell(uint32 hash, Addr address) { | |
669 return FindEntryCellImpl(hash, address, false); | |
670 } | |
671 | |
672 int IndexTable::CalculateTimestamp(Time time) { | |
673 TimeDelta delta = time - Time::FromInternalValue(header_->base_time); | |
674 return std::max(delta.InMinutes(), 0); | |
675 } | |
676 | |
677 base::Time IndexTable::TimeFromTimestamp(int timestamp) { | |
678 return Time::FromInternalValue(header_->base_time) + | |
679 TimeDelta::FromMinutes(timestamp); | |
680 } | |
681 | |
682 void IndexTable::SetSate(uint32 hash, Addr address, EntryState state) { | |
683 EntryCell cell = FindEntryCellImpl(hash, address, state == ENTRY_FREE); | |
684 if (!cell.IsValid()) { | |
685 NOTREACHED(); | |
686 return; | |
687 } | |
688 | |
689 EntryState old_state = cell.GetState(); | |
690 switch (state) { | |
691 case ENTRY_FREE: | |
692 DCHECK_EQ(old_state, ENTRY_DELETED); | |
693 break; | |
694 case ENTRY_NEW: | |
695 DCHECK_EQ(old_state, ENTRY_FREE); | |
696 break; | |
697 case ENTRY_OPEN: | |
698 DCHECK_EQ(old_state, ENTRY_USED); | |
699 break; | |
700 case ENTRY_MODIFIED: | |
701 DCHECK_EQ(old_state, ENTRY_OPEN); | |
702 break; | |
703 case ENTRY_DELETED: | |
704 DCHECK(old_state == ENTRY_NEW || old_state == ENTRY_OPEN || | |
705 old_state == ENTRY_MODIFIED); | |
706 break; | |
707 case ENTRY_USED: | |
708 DCHECK(old_state == ENTRY_NEW || old_state == ENTRY_OPEN || | |
709 old_state == ENTRY_MODIFIED); | |
710 break; | |
711 case ENTRY_FIXING: | |
712 break; | |
713 }; | |
714 | |
715 modified_ = true; | |
716 if (state == ENTRY_DELETED) { | |
717 bitmap_->Set(cell.cell_num(), false); | |
718 backup_bitmap_->Set(cell.cell_num(), false); | |
719 } else if (state == ENTRY_FREE) { | |
720 cell.Clear(); | |
721 Write(cell); | |
722 header()->used_cells--; | |
723 return; | |
724 } | |
725 cell.SetState(state); | |
726 | |
727 Save(&cell); | |
728 } | |
729 | |
730 void IndexTable::UpdateTime(uint32 hash, Addr address, base::Time current) { | |
731 EntryCell cell = FindEntryCell(hash, address); | |
732 if (!cell.IsValid()) | |
733 return; | |
734 | |
735 int minutes = CalculateTimestamp(current); | |
736 | |
737 // Keep about 3 months of headroom. | |
738 const int kMaxTimestamp = (1 << 20) - 60 * 24 * 90; | |
739 if (minutes > kMaxTimestamp) { | |
740 // TODO(rvargas): | |
741 // Update header->old_time and trigger a timer | |
742 // Rebaseline timestamps and don't update sums | |
743 // Start a timer (about 2 backups) | |
744 // fix all ckecksums and trigger another timer | |
745 // update header->old_time because rebaseline is done. | |
746 minutes = std::min(minutes, (1 << 20) - 1); | |
747 } | |
748 | |
749 cell.SetTimestamp(minutes); | |
750 Save(&cell); | |
751 } | |
752 | |
753 void IndexTable::Save(EntryCell* cell) { | |
754 cell->FixSum(); | |
755 Write(*cell); | |
756 } | |
757 | |
758 void IndexTable::GetOldest(IndexIterator* no_use, | |
759 IndexIterator* low_use, | |
760 IndexIterator* high_use) { | |
761 no_use->forward = true; | |
762 low_use->forward = true; | |
763 high_use->forward = true; | |
764 InitIterator(no_use); | |
765 InitIterator(low_use); | |
766 InitIterator(high_use); | |
767 | |
768 WalkTables(-1, no_use, low_use, high_use); | |
769 } | |
770 | |
771 bool IndexTable::GetNextCells(IndexIterator* iterator) { | |
772 int current_time = iterator->timestamp; | |
773 InitIterator(iterator); | |
774 | |
775 WalkTables(current_time, iterator, iterator, iterator); | |
776 return !iterator->cells.empty(); | |
777 } | |
778 | |
779 void IndexTable::OnBackupTimer() { | |
780 if (!modified_) | |
781 return; | |
782 | |
783 int num_words = (header_->table_len + 31) / 32; | |
784 int num_bytes = num_words * 4 + static_cast<int>(sizeof(*header_)); | |
785 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(num_bytes)); | |
786 memcpy(buffer->data(), header_, sizeof(*header_)); | |
787 memcpy(buffer->data() + sizeof(*header_), backup_bitmap_storage_.get(), | |
788 num_words * 4); | |
789 backend_->SaveIndex(buffer.get(), num_bytes); | |
790 modified_ = false; | |
791 } | |
792 | |
793 // ----------------------------------------------------------------------- | |
794 | |
795 EntryCell IndexTable::FindEntryCellImpl(uint32 hash, Addr address, | |
796 bool allow_deleted) { | |
797 int bucket_num = static_cast<int>(hash & mask_); | |
798 IndexBucket* bucket = &main_table_[bucket_num]; | |
799 do { | |
800 for (int i = 0; i < kCellsPerBucket; i++) { | |
801 IndexCell* current_cell = &bucket->cells[i]; | |
802 if (!GetLocation(*current_cell)) | |
803 continue; | |
804 DCHECK(SanityCheck(*current_cell)); | |
805 if (IsHashMatch(*current_cell, hash)) { | |
806 // We have a match. | |
807 int cell_num = bucket_num * kCellsPerBucket + i; | |
808 EntryCell entry_cell(cell_num, hash, *current_cell, small_table_); | |
809 if (entry_cell.GetAddress() != address) | |
810 continue; | |
811 | |
812 if (!allow_deleted && entry_cell.GetState() == ENTRY_DELETED) | |
813 continue; | |
814 | |
815 return entry_cell; | |
816 } | |
817 } | |
818 bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_, | |
819 &bucket); | |
820 } while (bucket_num); | |
821 return EntryCell(); | |
822 } | |
823 | |
824 void IndexTable::CheckState(const EntryCell& cell) { | |
825 int current_state = cell.GetState(); | |
826 if (current_state != ENTRY_FIXING) { | |
827 bool present = ((current_state & 3) != 0); // Look at the last two bits. | |
828 if (present != bitmap_->Get(cell.cell_num()) || | |
829 present != backup_bitmap_->Get(cell.cell_num())) { | |
830 // There's a mismatch. | |
831 if (current_state == ENTRY_DELETED) { | |
832 // We were in the process of deleting this entry. Finish now. | |
833 backend_->DeleteCell(cell); | |
834 } else { | |
835 current_state = ENTRY_FIXING; | |
836 EntryCell bad_cell(cell); | |
837 bad_cell.SetState(ENTRY_FIXING); | |
838 Save(&bad_cell); | |
839 } | |
840 } | |
841 } | |
842 | |
843 if (current_state == ENTRY_FIXING) | |
844 backend_->FixCell(cell); | |
845 } | |
846 | |
847 void IndexTable::Write(const EntryCell& cell) { | |
848 IndexBucket* bucket = NULL; | |
849 int bucket_num = cell.cell_num() / kCellsPerBucket; | |
850 if (bucket_num < static_cast<int32>(mask_ + 1)) { | |
851 bucket = &main_table_[bucket_num]; | |
852 } else { | |
853 DCHECK_LE(bucket_num, header()->max_bucket); | |
854 bucket = &extra_table_[bucket_num - (mask_ + 1)]; | |
855 } | |
856 | |
857 int cell_number = cell.cell_num() % kCellsPerBucket; | |
858 if (GetLocation(bucket->cells[cell_number]) && cell.GetLocation()) { | |
859 DCHECK_EQ(cell.GetLocation(), | |
860 GetLocation(bucket->cells[cell_number])); | |
861 } | |
862 cell.Serialize(&bucket->cells[cell_number]); | |
863 } | |
864 | |
865 int IndexTable::NewExtraBucket() { | |
866 int safe_window = (header()->table_len < kNumExtraBlocks * 2) ? | |
867 kNumExtraBlocks / 4 : kNumExtraBlocks; | |
868 if (header()->table_len - header()->max_bucket * kCellsPerBucket < | |
869 safe_window) { | |
870 backend_->GrowIndex(); | |
871 } | |
872 | |
873 if (header()->max_bucket * kCellsPerBucket == | |
874 header()->table_len - kCellsPerBucket) { | |
875 return 0; | |
876 } | |
877 | |
878 header()->max_bucket++; | |
879 return header()->max_bucket; | |
880 } | |
881 | |
882 void IndexTable::WalkTables(int limit_time, | |
883 IndexIterator* no_use, | |
884 IndexIterator* low_use, | |
885 IndexIterator* high_use) { | |
886 header_->num_no_use_entries = 0; | |
887 header_->num_low_use_entries = 0; | |
888 header_->num_high_use_entries = 0; | |
889 header_->num_evicted_entries = 0; | |
890 | |
891 for (int i = 0; i < static_cast<int32>(mask_ + 1); i++) { | |
892 int bucket_num = i; | |
893 IndexBucket* bucket = &main_table_[i]; | |
894 do { | |
895 UpdateFromBucket(bucket, i, limit_time, no_use, low_use, high_use); | |
896 | |
897 bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_, | |
898 &bucket); | |
899 } while (bucket_num); | |
900 } | |
901 header_->num_entries = header_->num_no_use_entries + | |
902 header_->num_low_use_entries + | |
903 header_->num_high_use_entries + | |
904 header_->num_evicted_entries; | |
905 modified_ = true; | |
906 } | |
907 | |
908 void IndexTable::UpdateFromBucket(IndexBucket* bucket, int bucket_hash, | |
909 int limit_time, | |
910 IndexIterator* no_use, | |
911 IndexIterator* low_use, | |
912 IndexIterator* high_use) { | |
913 for (int i = 0; i < kCellsPerBucket; i++) { | |
914 IndexCell& current_cell = bucket->cells[i]; | |
915 if (!GetLocation(current_cell)) | |
916 continue; | |
917 DCHECK(SanityCheck(current_cell)); | |
918 if (!IsNormalState(current_cell)) | |
919 continue; | |
920 | |
921 EntryCell entry_cell(0, GetFullHash(current_cell, bucket_hash), | |
922 current_cell, small_table_); | |
923 switch (GetCellGroup(current_cell)) { | |
924 case ENTRY_NO_USE: | |
925 UpdateIterator(entry_cell, limit_time, no_use); | |
926 header_->num_no_use_entries++; | |
927 break; | |
928 case ENTRY_LOW_USE: | |
929 UpdateIterator(entry_cell, limit_time, low_use); | |
930 header_->num_low_use_entries++; | |
931 break; | |
932 case ENTRY_HIGH_USE: | |
933 UpdateIterator(entry_cell, limit_time, high_use); | |
934 header_->num_high_use_entries++; | |
935 break; | |
936 case ENTRY_EVICTED: | |
937 header_->num_evicted_entries++; | |
938 break; | |
939 default: | |
940 NOTREACHED(); | |
941 } | |
942 } | |
943 } | |
944 | |
945 // This code is only called from Init() so the internal state of this object is | |
946 // in flux (this method is performing the last steps of re-initialization). As | |
947 // such, random methods are not supposed to work at this point, so whatever this | |
948 // method calls should be relatively well controlled and it may require some | |
949 // degree of "stable state faking". | |
950 void IndexTable::MoveCells(IndexBucket* old_extra_table) { | |
951 int max_hash = (mask_ + 1) / 2; | |
952 int max_bucket = header()->max_bucket; | |
953 header()->max_bucket = mask_; | |
954 int used_cells = header()->used_cells; | |
955 | |
956 // Consider a large cache: a cell stores the upper 18 bits of the hash | |
957 // (h >> 14). If the table is say 8 times the original size (growing from 4x), | |
958 // the bit that we are interested in would be the 3rd bit of the stored value, | |
959 // in other words 'multiplier' >> 1. | |
960 uint32 new_bit = (1 << extra_bits_) >> 1; | |
961 | |
962 scoped_ptr<IndexBucket[]> old_main_table; | |
963 IndexBucket* source_table = main_table_; | |
964 bool upgrade_format = !extra_bits_; | |
965 if (upgrade_format) { | |
966 // This method should deal with migrating a small table to a big one. Given | |
967 // that the first thing to do is read the old table, set small_table_ for | |
968 // the size of the old table. Now, when moving a cell, the result cannot be | |
969 // placed in the old table or we will end up reading it again and attempting | |
970 // to move it, so we have to copy the whole table at once. | |
971 DCHECK(!small_table_); | |
972 small_table_ = true; | |
973 old_main_table.reset(new IndexBucket[max_hash]); | |
974 memcpy(old_main_table.get(), main_table_, max_hash * sizeof(IndexBucket)); | |
975 memset(main_table_, 0, max_hash * sizeof(IndexBucket)); | |
976 source_table = old_main_table.get(); | |
977 } | |
978 | |
979 for (int i = 0; i < max_hash; i++) { | |
980 int bucket_num = i; | |
981 IndexBucket* bucket = &source_table[i]; | |
982 do { | |
983 for (int j = 0; j < kCellsPerBucket; j++) { | |
984 IndexCell& current_cell = bucket->cells[j]; | |
985 if (!GetLocation(current_cell)) | |
986 continue; | |
987 DCHECK(SanityCheck(current_cell)); | |
988 if (bucket_num == i) { | |
989 if (upgrade_format || (GetHashValue(current_cell) & new_bit)) { | |
990 // Move this cell to the upper half of the table. | |
991 MoveSingleCell(¤t_cell, bucket_num * kCellsPerBucket + j, i, | |
992 true); | |
993 } | |
994 } else { | |
995 // All cells on extra buckets have to move. | |
996 MoveSingleCell(¤t_cell, bucket_num * kCellsPerBucket + j, i, | |
997 true); | |
998 } | |
999 } | |
1000 | |
1001 // There is no need to clear the old bucket->next value because if falls | |
1002 // within the main table so it will be fixed when attempting to follow | |
1003 // the link. | |
1004 bucket_num = GetNextBucket(max_hash, max_bucket, old_extra_table, | |
1005 &bucket); | |
1006 } while (bucket_num); | |
1007 } | |
1008 | |
1009 DCHECK_EQ(header()->used_cells, used_cells); | |
1010 | |
1011 if (upgrade_format) { | |
1012 small_table_ = false; | |
1013 header()->flags &= ~SMALL_CACHE; | |
1014 } | |
1015 } | |
1016 | |
1017 void IndexTable::MoveSingleCell(IndexCell* current_cell, int cell_num, | |
1018 int main_table_index, bool growing) { | |
1019 uint32 hash = GetFullHash(*current_cell, main_table_index); | |
1020 EntryCell old_cell(cell_num, hash, *current_cell, small_table_); | |
1021 | |
1022 // This method may be called when moving entries from a small table to a | |
1023 // normal table. In that case, the caller (MoveCells) has to read the old | |
1024 // table, so it needs small_table_ set to true, but this method needs to | |
1025 // write to the new table so small_table_ has to be set to false, and the | |
1026 // value restored to true before returning. | |
1027 bool upgrade_format = !extra_bits_ && growing; | |
1028 if (upgrade_format) | |
1029 small_table_ = false; | |
1030 EntryCell new_cell = CreateEntryCell(hash, old_cell.GetAddress()); | |
1031 | |
1032 if (!new_cell.IsValid()) { | |
1033 // We'll deal with this entry later. | |
1034 if (upgrade_format) | |
1035 small_table_ = true; | |
1036 return; | |
1037 } | |
1038 | |
1039 new_cell.SetState(old_cell.GetState()); | |
1040 new_cell.SetGroup(old_cell.GetGroup()); | |
1041 new_cell.SetReuse(old_cell.GetReuse()); | |
1042 new_cell.SetTimestamp(old_cell.GetTimestamp()); | |
1043 Save(&new_cell); | |
1044 modified_ = true; | |
1045 if (upgrade_format) | |
1046 small_table_ = true; | |
1047 | |
1048 if (old_cell.GetState() == ENTRY_DELETED) { | |
1049 bitmap_->Set(new_cell.cell_num(), false); | |
1050 backup_bitmap_->Set(new_cell.cell_num(), false); | |
1051 } | |
1052 | |
1053 if (!growing || cell_num / kCellsPerBucket == main_table_index) { | |
1054 // Only delete entries that live on the main table. | |
1055 if (!upgrade_format) { | |
1056 old_cell.Clear(); | |
1057 Write(old_cell); | |
1058 } | |
1059 | |
1060 if (cell_num != new_cell.cell_num()) { | |
1061 bitmap_->Set(old_cell.cell_num(), false); | |
1062 backup_bitmap_->Set(old_cell.cell_num(), false); | |
1063 } | |
1064 } | |
1065 header()->used_cells--; | |
1066 } | |
1067 | |
1068 void IndexTable::HandleMisplacedCell(IndexCell* current_cell, int cell_num, | |
1069 int main_table_index) { | |
1070 NOTREACHED(); // No unit tests yet. | |
1071 | |
1072 // The cell may be misplaced, or a duplicate cell exists with this data. | |
1073 uint32 hash = GetFullHash(*current_cell, main_table_index); | |
1074 MoveSingleCell(current_cell, cell_num, main_table_index, false); | |
1075 | |
1076 // Now look for a duplicate cell. | |
1077 CheckBucketList(hash & mask_); | |
1078 } | |
1079 | |
1080 void IndexTable::CheckBucketList(int bucket_num) { | |
1081 typedef std::pair<int, EntryGroup> AddressAndGroup; | |
1082 std::set<AddressAndGroup> entries; | |
1083 IndexBucket* bucket = &main_table_[bucket_num]; | |
1084 int bucket_hash = bucket_num; | |
1085 do { | |
1086 for (int i = 0; i < kCellsPerBucket; i++) { | |
1087 IndexCell* current_cell = &bucket->cells[i]; | |
1088 if (!GetLocation(*current_cell)) | |
1089 continue; | |
1090 if (!SanityCheck(*current_cell)) { | |
1091 NOTREACHED(); | |
1092 current_cell->Clear(); | |
1093 continue; | |
1094 } | |
1095 int cell_num = bucket_num * kCellsPerBucket + i; | |
1096 EntryCell cell(cell_num, GetFullHash(*current_cell, bucket_hash), | |
1097 *current_cell, small_table_); | |
1098 if (!entries.insert(std::make_pair(cell.GetAddress().value(), | |
1099 cell.GetGroup())).second) { | |
1100 current_cell->Clear(); | |
1101 continue; | |
1102 } | |
1103 CheckState(cell); | |
1104 } | |
1105 | |
1106 bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_, | |
1107 &bucket); | |
1108 } while (bucket_num); | |
1109 } | |
1110 | |
1111 uint32 IndexTable::GetLocation(const IndexCell& cell) { | |
1112 if (small_table_) | |
1113 return GetCellSmallTableLocation(cell); | |
1114 | |
1115 return GetCellLocation(cell); | |
1116 } | |
1117 | |
1118 uint32 IndexTable::GetHashValue(const IndexCell& cell) { | |
1119 if (small_table_) | |
1120 return GetCellSmallTableId(cell); | |
1121 | |
1122 return GetCellId(cell); | |
1123 } | |
1124 | |
1125 uint32 IndexTable::GetFullHash(const IndexCell& cell, uint32 lower_part) { | |
1126 // It is OK for the high order bits of lower_part to overlap with the stored | |
1127 // part of the hash. | |
1128 if (small_table_) | |
1129 return (GetCellSmallTableId(cell) << kSmallTableHashShift) | lower_part; | |
1130 | |
1131 return (GetCellId(cell) << kHashShift) | lower_part; | |
1132 } | |
1133 | |
1134 // All the bits stored in the cell should match the provided hash. | |
1135 bool IndexTable::IsHashMatch(const IndexCell& cell, uint32 hash) { | |
1136 hash = small_table_ ? hash >> kSmallTableHashShift : hash >> kHashShift; | |
1137 return GetHashValue(cell) == hash; | |
1138 } | |
1139 | |
1140 bool IndexTable::MisplacedHash(const IndexCell& cell, uint32 hash) { | |
1141 if (!extra_bits_) | |
1142 return false; | |
1143 | |
1144 uint32 mask = (1 << extra_bits_) - 1; | |
1145 hash = small_table_ ? hash >> kSmallTableHashShift : hash >> kHashShift; | |
1146 return (GetHashValue(cell) & mask) != (hash & mask); | |
1147 } | |
1148 | |
1149 } // namespace disk_cache | |
OLD | NEW |