OLD | NEW |
| (Empty) |
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "net/cert/cert_verify_proc_nss.h" | |
6 | |
7 #include <string> | |
8 #include <vector> | |
9 | |
10 #include <cert.h> | |
11 #include <nss.h> | |
12 #include <prerror.h> | |
13 #include <secerr.h> | |
14 #include <sechash.h> | |
15 #include <sslerr.h> | |
16 | |
17 #include "base/logging.h" | |
18 #include "crypto/nss_util.h" | |
19 #include "crypto/scoped_nss_types.h" | |
20 #include "crypto/sha2.h" | |
21 #include "net/base/net_errors.h" | |
22 #include "net/cert/asn1_util.h" | |
23 #include "net/cert/cert_status_flags.h" | |
24 #include "net/cert/cert_verifier.h" | |
25 #include "net/cert/cert_verify_result.h" | |
26 #include "net/cert/crl_set.h" | |
27 #include "net/cert/ev_root_ca_metadata.h" | |
28 #include "net/cert/x509_certificate.h" | |
29 #include "net/cert/x509_util_nss.h" | |
30 | |
31 #if defined(OS_IOS) | |
32 #include <CommonCrypto/CommonDigest.h> | |
33 #include "net/cert/x509_util_ios.h" | |
34 #endif // defined(OS_IOS) | |
35 | |
36 namespace net { | |
37 | |
38 namespace { | |
39 | |
40 typedef scoped_ptr< | |
41 CERTCertificatePolicies, | |
42 crypto::NSSDestroyer<CERTCertificatePolicies, | |
43 CERT_DestroyCertificatePoliciesExtension> > | |
44 ScopedCERTCertificatePolicies; | |
45 | |
46 typedef scoped_ptr< | |
47 CERTCertList, | |
48 crypto::NSSDestroyer<CERTCertList, CERT_DestroyCertList> > | |
49 ScopedCERTCertList; | |
50 | |
51 // ScopedCERTValOutParam manages destruction of values in the CERTValOutParam | |
52 // array that cvout points to. cvout must be initialized as passed to | |
53 // CERT_PKIXVerifyCert, so that the array must be terminated with | |
54 // cert_po_end type. | |
55 // When it goes out of scope, it destroys values of cert_po_trustAnchor | |
56 // and cert_po_certList types, but doesn't release the array itself. | |
57 class ScopedCERTValOutParam { | |
58 public: | |
59 explicit ScopedCERTValOutParam(CERTValOutParam* cvout) : cvout_(cvout) {} | |
60 | |
61 ~ScopedCERTValOutParam() { | |
62 Clear(); | |
63 } | |
64 | |
65 // Free the internal resources, but do not release the array itself. | |
66 void Clear() { | |
67 if (cvout_ == NULL) | |
68 return; | |
69 for (CERTValOutParam *p = cvout_; p->type != cert_po_end; p++) { | |
70 switch (p->type) { | |
71 case cert_po_trustAnchor: | |
72 if (p->value.pointer.cert) { | |
73 CERT_DestroyCertificate(p->value.pointer.cert); | |
74 p->value.pointer.cert = NULL; | |
75 } | |
76 break; | |
77 case cert_po_certList: | |
78 if (p->value.pointer.chain) { | |
79 CERT_DestroyCertList(p->value.pointer.chain); | |
80 p->value.pointer.chain = NULL; | |
81 } | |
82 break; | |
83 default: | |
84 break; | |
85 } | |
86 } | |
87 } | |
88 | |
89 private: | |
90 CERTValOutParam* cvout_; | |
91 | |
92 DISALLOW_COPY_AND_ASSIGN(ScopedCERTValOutParam); | |
93 }; | |
94 | |
95 // Map PORT_GetError() return values to our network error codes. | |
96 int MapSecurityError(int err) { | |
97 switch (err) { | |
98 case PR_DIRECTORY_LOOKUP_ERROR: // DNS lookup error. | |
99 return ERR_NAME_NOT_RESOLVED; | |
100 case SEC_ERROR_INVALID_ARGS: | |
101 return ERR_INVALID_ARGUMENT; | |
102 case SSL_ERROR_BAD_CERT_DOMAIN: | |
103 return ERR_CERT_COMMON_NAME_INVALID; | |
104 case SEC_ERROR_INVALID_TIME: | |
105 case SEC_ERROR_EXPIRED_CERTIFICATE: | |
106 case SEC_ERROR_EXPIRED_ISSUER_CERTIFICATE: | |
107 return ERR_CERT_DATE_INVALID; | |
108 case SEC_ERROR_UNKNOWN_ISSUER: | |
109 case SEC_ERROR_UNTRUSTED_ISSUER: | |
110 case SEC_ERROR_CA_CERT_INVALID: | |
111 case SEC_ERROR_APPLICATION_CALLBACK_ERROR: // Rejected by | |
112 // chain_verify_callback. | |
113 return ERR_CERT_AUTHORITY_INVALID; | |
114 // TODO(port): map ERR_CERT_NO_REVOCATION_MECHANISM. | |
115 case SEC_ERROR_OCSP_BAD_HTTP_RESPONSE: | |
116 case SEC_ERROR_OCSP_SERVER_ERROR: | |
117 return ERR_CERT_UNABLE_TO_CHECK_REVOCATION; | |
118 case SEC_ERROR_REVOKED_CERTIFICATE: | |
119 case SEC_ERROR_UNTRUSTED_CERT: // Treat as revoked. | |
120 return ERR_CERT_REVOKED; | |
121 case SEC_ERROR_CERT_NOT_IN_NAME_SPACE: | |
122 return ERR_CERT_NAME_CONSTRAINT_VIOLATION; | |
123 case SEC_ERROR_BAD_DER: | |
124 case SEC_ERROR_BAD_SIGNATURE: | |
125 case SEC_ERROR_CERT_NOT_VALID: | |
126 // TODO(port): add an ERR_CERT_WRONG_USAGE error code. | |
127 case SEC_ERROR_CERT_USAGES_INVALID: | |
128 case SEC_ERROR_INADEQUATE_KEY_USAGE: // Key usage. | |
129 case SEC_ERROR_INADEQUATE_CERT_TYPE: // Extended key usage and whether | |
130 // the certificate is a CA. | |
131 case SEC_ERROR_POLICY_VALIDATION_FAILED: | |
132 case SEC_ERROR_PATH_LEN_CONSTRAINT_INVALID: | |
133 case SEC_ERROR_UNKNOWN_CRITICAL_EXTENSION: | |
134 case SEC_ERROR_EXTENSION_VALUE_INVALID: | |
135 return ERR_CERT_INVALID; | |
136 case SEC_ERROR_CERT_SIGNATURE_ALGORITHM_DISABLED: | |
137 return ERR_CERT_WEAK_SIGNATURE_ALGORITHM; | |
138 default: | |
139 LOG(WARNING) << "Unknown error " << err << " mapped to net::ERR_FAILED"; | |
140 return ERR_FAILED; | |
141 } | |
142 } | |
143 | |
144 // Map PORT_GetError() return values to our cert status flags. | |
145 CertStatus MapCertErrorToCertStatus(int err) { | |
146 int net_error = MapSecurityError(err); | |
147 return MapNetErrorToCertStatus(net_error); | |
148 } | |
149 | |
150 // Saves some information about the certificate chain cert_list in | |
151 // *verify_result. The caller MUST initialize *verify_result before calling | |
152 // this function. | |
153 // Note that cert_list[0] is the end entity certificate. | |
154 void GetCertChainInfo(CERTCertList* cert_list, | |
155 CERTCertificate* root_cert, | |
156 CertVerifyResult* verify_result) { | |
157 DCHECK(cert_list); | |
158 | |
159 CERTCertificate* verified_cert = NULL; | |
160 std::vector<CERTCertificate*> verified_chain; | |
161 int i = 0; | |
162 for (CERTCertListNode* node = CERT_LIST_HEAD(cert_list); | |
163 !CERT_LIST_END(node, cert_list); | |
164 node = CERT_LIST_NEXT(node), ++i) { | |
165 if (i == 0) { | |
166 verified_cert = node->cert; | |
167 } else { | |
168 // Because of an NSS bug, CERT_PKIXVerifyCert may chain a self-signed | |
169 // certificate of a root CA to another certificate of the same root CA | |
170 // key. Detect that error and ignore the root CA certificate. | |
171 // See https://bugzilla.mozilla.org/show_bug.cgi?id=721288. | |
172 if (node->cert->isRoot) { | |
173 // NOTE: isRoot doesn't mean the certificate is a trust anchor. It | |
174 // means the certificate is self-signed. Here we assume isRoot only | |
175 // implies the certificate is self-issued. | |
176 CERTCertListNode* next_node = CERT_LIST_NEXT(node); | |
177 CERTCertificate* next_cert; | |
178 if (!CERT_LIST_END(next_node, cert_list)) { | |
179 next_cert = next_node->cert; | |
180 } else { | |
181 next_cert = root_cert; | |
182 } | |
183 // Test that |node->cert| is actually a self-signed certificate | |
184 // whose key is equal to |next_cert|, and not a self-issued | |
185 // certificate signed by another key of the same CA. | |
186 if (next_cert && SECITEM_ItemsAreEqual(&node->cert->derPublicKey, | |
187 &next_cert->derPublicKey)) { | |
188 continue; | |
189 } | |
190 } | |
191 verified_chain.push_back(node->cert); | |
192 } | |
193 | |
194 SECAlgorithmID& signature = node->cert->signature; | |
195 SECOidTag oid_tag = SECOID_FindOIDTag(&signature.algorithm); | |
196 switch (oid_tag) { | |
197 case SEC_OID_PKCS1_MD5_WITH_RSA_ENCRYPTION: | |
198 verify_result->has_md5 = true; | |
199 break; | |
200 case SEC_OID_PKCS1_MD2_WITH_RSA_ENCRYPTION: | |
201 verify_result->has_md2 = true; | |
202 break; | |
203 case SEC_OID_PKCS1_MD4_WITH_RSA_ENCRYPTION: | |
204 verify_result->has_md4 = true; | |
205 break; | |
206 case SEC_OID_PKCS1_SHA1_WITH_RSA_ENCRYPTION: | |
207 case SEC_OID_ISO_SHA1_WITH_RSA_SIGNATURE: | |
208 case SEC_OID_ANSIX9_DSA_SIGNATURE_WITH_SHA1_DIGEST: | |
209 case SEC_OID_ANSIX962_ECDSA_SHA1_SIGNATURE: | |
210 verify_result->has_sha1 = true; | |
211 break; | |
212 default: | |
213 break; | |
214 } | |
215 } | |
216 | |
217 if (root_cert) | |
218 verified_chain.push_back(root_cert); | |
219 #if defined(OS_IOS) | |
220 verify_result->verified_cert = | |
221 x509_util_ios::CreateCertFromNSSHandles(verified_cert, verified_chain); | |
222 #else | |
223 verify_result->verified_cert = | |
224 X509Certificate::CreateFromHandle(verified_cert, verified_chain); | |
225 #endif // defined(OS_IOS) | |
226 } | |
227 | |
228 // IsKnownRoot returns true if the given certificate is one that we believe | |
229 // is a standard (as opposed to user-installed) root. | |
230 bool IsKnownRoot(CERTCertificate* root) { | |
231 if (!root || !root->slot) | |
232 return false; | |
233 | |
234 // This magic name is taken from | |
235 // http://bonsai.mozilla.org/cvsblame.cgi?file=mozilla/security/nss/lib/ckfw/b
uiltins/constants.c&rev=1.13&mark=86,89#79 | |
236 return 0 == strcmp(PK11_GetSlotName(root->slot), | |
237 "NSS Builtin Objects"); | |
238 } | |
239 | |
240 // Returns true if the given certificate is one of the additional trust anchors. | |
241 bool IsAdditionalTrustAnchor(CERTCertList* additional_trust_anchors, | |
242 CERTCertificate* root) { | |
243 if (!additional_trust_anchors || !root) | |
244 return false; | |
245 for (CERTCertListNode* node = CERT_LIST_HEAD(additional_trust_anchors); | |
246 !CERT_LIST_END(node, additional_trust_anchors); | |
247 node = CERT_LIST_NEXT(node)) { | |
248 if (CERT_CompareCerts(node->cert, root)) | |
249 return true; | |
250 } | |
251 return false; | |
252 } | |
253 | |
254 enum CRLSetResult { | |
255 kCRLSetOk, | |
256 kCRLSetRevoked, | |
257 kCRLSetUnknown, | |
258 }; | |
259 | |
260 // CheckRevocationWithCRLSet attempts to check each element of |cert_list| | |
261 // against |crl_set|. It returns: | |
262 // kCRLSetRevoked: if any element of the chain is known to have been revoked. | |
263 // kCRLSetUnknown: if there is no fresh information about the leaf | |
264 // certificate in the chain or if the CRLSet has expired. | |
265 // | |
266 // Only the leaf certificate is considered for coverage because some | |
267 // intermediates have CRLs with no revocations (after filtering) and | |
268 // those CRLs are pruned from the CRLSet at generation time. This means | |
269 // that some EV sites would otherwise take the hit of an OCSP lookup for | |
270 // no reason. | |
271 // kCRLSetOk: otherwise. | |
272 CRLSetResult CheckRevocationWithCRLSet(CERTCertList* cert_list, | |
273 CERTCertificate* root, | |
274 CRLSet* crl_set) { | |
275 std::vector<CERTCertificate*> certs; | |
276 | |
277 if (cert_list) { | |
278 for (CERTCertListNode* node = CERT_LIST_HEAD(cert_list); | |
279 !CERT_LIST_END(node, cert_list); | |
280 node = CERT_LIST_NEXT(node)) { | |
281 certs.push_back(node->cert); | |
282 } | |
283 } | |
284 if (root) | |
285 certs.push_back(root); | |
286 | |
287 // error is set to true if any errors are found. It causes such chains to be | |
288 // considered as not covered. | |
289 bool error = false; | |
290 // last_covered is set to the coverage state of the previous certificate. The | |
291 // certificates are iterated over backwards thus, after the iteration, | |
292 // |last_covered| contains the coverage state of the leaf certificate. | |
293 bool last_covered = false; | |
294 | |
295 // We iterate from the root certificate down to the leaf, keeping track of | |
296 // the issuer's SPKI at each step. | |
297 std::string issuer_spki_hash; | |
298 for (std::vector<CERTCertificate*>::reverse_iterator i = certs.rbegin(); | |
299 i != certs.rend(); ++i) { | |
300 CERTCertificate* cert = *i; | |
301 | |
302 base::StringPiece der(reinterpret_cast<char*>(cert->derCert.data), | |
303 cert->derCert.len); | |
304 | |
305 base::StringPiece spki; | |
306 if (!asn1::ExtractSPKIFromDERCert(der, &spki)) { | |
307 NOTREACHED(); | |
308 error = true; | |
309 continue; | |
310 } | |
311 const std::string spki_hash = crypto::SHA256HashString(spki); | |
312 | |
313 base::StringPiece serial_number = base::StringPiece( | |
314 reinterpret_cast<char*>(cert->serialNumber.data), | |
315 cert->serialNumber.len); | |
316 | |
317 CRLSet::Result result = crl_set->CheckSPKI(spki_hash); | |
318 | |
319 if (result != CRLSet::REVOKED && !issuer_spki_hash.empty()) | |
320 result = crl_set->CheckSerial(serial_number, issuer_spki_hash); | |
321 | |
322 issuer_spki_hash = spki_hash; | |
323 | |
324 switch (result) { | |
325 case CRLSet::REVOKED: | |
326 return kCRLSetRevoked; | |
327 case CRLSet::UNKNOWN: | |
328 last_covered = false; | |
329 continue; | |
330 case CRLSet::GOOD: | |
331 last_covered = true; | |
332 continue; | |
333 default: | |
334 NOTREACHED(); | |
335 error = true; | |
336 continue; | |
337 } | |
338 } | |
339 | |
340 if (error || !last_covered || crl_set->IsExpired()) | |
341 return kCRLSetUnknown; | |
342 return kCRLSetOk; | |
343 } | |
344 | |
345 // Forward declarations. | |
346 SECStatus RetryPKIXVerifyCertWithWorkarounds( | |
347 CERTCertificate* cert_handle, int num_policy_oids, | |
348 bool cert_io_enabled, std::vector<CERTValInParam>* cvin, | |
349 CERTValOutParam* cvout); | |
350 SECOidTag GetFirstCertPolicy(CERTCertificate* cert_handle); | |
351 | |
352 // Call CERT_PKIXVerifyCert for the cert_handle. | |
353 // Verification results are stored in an array of CERTValOutParam. | |
354 // If |hard_fail| is true, and no policy_oids are supplied (eg: EV is NOT being | |
355 // checked), then the failure to obtain valid CRL/OCSP information for all | |
356 // certificates that contain CRL/OCSP URLs will cause the certificate to be | |
357 // treated as if it was revoked. Since failures may be caused by transient | |
358 // network failures or by malicious attackers, in general, hard_fail should be | |
359 // false. | |
360 // If policy_oids is not NULL and num_policy_oids is positive, policies | |
361 // are also checked. | |
362 // additional_trust_anchors is an optional list of certificates that can be | |
363 // trusted as anchors when building a certificate chain. | |
364 // Caller must initialize cvout before calling this function. | |
365 SECStatus PKIXVerifyCert(CERTCertificate* cert_handle, | |
366 bool check_revocation, | |
367 bool hard_fail, | |
368 bool cert_io_enabled, | |
369 const SECOidTag* policy_oids, | |
370 int num_policy_oids, | |
371 CERTCertList* additional_trust_anchors, | |
372 CERTChainVerifyCallback* chain_verify_callback, | |
373 CERTValOutParam* cvout) { | |
374 bool use_crl = check_revocation; | |
375 bool use_ocsp = check_revocation; | |
376 | |
377 PRUint64 revocation_method_flags = | |
378 CERT_REV_M_DO_NOT_TEST_USING_THIS_METHOD | | |
379 CERT_REV_M_ALLOW_NETWORK_FETCHING | | |
380 CERT_REV_M_IGNORE_IMPLICIT_DEFAULT_SOURCE | | |
381 CERT_REV_M_IGNORE_MISSING_FRESH_INFO | | |
382 CERT_REV_M_STOP_TESTING_ON_FRESH_INFO; | |
383 PRUint64 revocation_method_independent_flags = | |
384 CERT_REV_MI_TEST_ALL_LOCAL_INFORMATION_FIRST; | |
385 if (check_revocation && policy_oids && num_policy_oids > 0) { | |
386 // EV verification requires revocation checking. Consider the certificate | |
387 // revoked if we don't have revocation info. | |
388 // TODO(wtc): Add a bool parameter to expressly specify we're doing EV | |
389 // verification or we want strict revocation flags. | |
390 revocation_method_flags |= CERT_REV_M_REQUIRE_INFO_ON_MISSING_SOURCE; | |
391 revocation_method_independent_flags |= | |
392 CERT_REV_MI_REQUIRE_SOME_FRESH_INFO_AVAILABLE; | |
393 } else if (check_revocation && hard_fail) { | |
394 revocation_method_flags |= CERT_REV_M_FAIL_ON_MISSING_FRESH_INFO; | |
395 revocation_method_independent_flags |= | |
396 CERT_REV_MI_REQUIRE_SOME_FRESH_INFO_AVAILABLE; | |
397 } else { | |
398 revocation_method_flags |= CERT_REV_M_SKIP_TEST_ON_MISSING_SOURCE; | |
399 revocation_method_independent_flags |= | |
400 CERT_REV_MI_NO_OVERALL_INFO_REQUIREMENT; | |
401 } | |
402 PRUint64 method_flags[2]; | |
403 method_flags[cert_revocation_method_crl] = revocation_method_flags; | |
404 method_flags[cert_revocation_method_ocsp] = revocation_method_flags; | |
405 | |
406 if (use_crl) { | |
407 method_flags[cert_revocation_method_crl] |= | |
408 CERT_REV_M_TEST_USING_THIS_METHOD; | |
409 } | |
410 if (use_ocsp) { | |
411 method_flags[cert_revocation_method_ocsp] |= | |
412 CERT_REV_M_TEST_USING_THIS_METHOD; | |
413 } | |
414 | |
415 CERTRevocationMethodIndex preferred_revocation_methods[1]; | |
416 if (use_ocsp) { | |
417 preferred_revocation_methods[0] = cert_revocation_method_ocsp; | |
418 } else { | |
419 preferred_revocation_methods[0] = cert_revocation_method_crl; | |
420 } | |
421 | |
422 CERTRevocationFlags revocation_flags; | |
423 revocation_flags.leafTests.number_of_defined_methods = | |
424 arraysize(method_flags); | |
425 revocation_flags.leafTests.cert_rev_flags_per_method = method_flags; | |
426 revocation_flags.leafTests.number_of_preferred_methods = | |
427 arraysize(preferred_revocation_methods); | |
428 revocation_flags.leafTests.preferred_methods = preferred_revocation_methods; | |
429 revocation_flags.leafTests.cert_rev_method_independent_flags = | |
430 revocation_method_independent_flags; | |
431 | |
432 revocation_flags.chainTests.number_of_defined_methods = | |
433 arraysize(method_flags); | |
434 revocation_flags.chainTests.cert_rev_flags_per_method = method_flags; | |
435 revocation_flags.chainTests.number_of_preferred_methods = | |
436 arraysize(preferred_revocation_methods); | |
437 revocation_flags.chainTests.preferred_methods = preferred_revocation_methods; | |
438 revocation_flags.chainTests.cert_rev_method_independent_flags = | |
439 revocation_method_independent_flags; | |
440 | |
441 | |
442 std::vector<CERTValInParam> cvin; | |
443 cvin.reserve(7); | |
444 CERTValInParam in_param; | |
445 in_param.type = cert_pi_revocationFlags; | |
446 in_param.value.pointer.revocation = &revocation_flags; | |
447 cvin.push_back(in_param); | |
448 if (policy_oids && num_policy_oids > 0) { | |
449 in_param.type = cert_pi_policyOID; | |
450 in_param.value.arraySize = num_policy_oids; | |
451 in_param.value.array.oids = policy_oids; | |
452 cvin.push_back(in_param); | |
453 } | |
454 if (additional_trust_anchors) { | |
455 in_param.type = cert_pi_trustAnchors; | |
456 in_param.value.pointer.chain = additional_trust_anchors; | |
457 cvin.push_back(in_param); | |
458 in_param.type = cert_pi_useOnlyTrustAnchors; | |
459 in_param.value.scalar.b = PR_FALSE; | |
460 cvin.push_back(in_param); | |
461 } | |
462 if (chain_verify_callback) { | |
463 in_param.type = cert_pi_chainVerifyCallback; | |
464 in_param.value.pointer.chainVerifyCallback = chain_verify_callback; | |
465 cvin.push_back(in_param); | |
466 } | |
467 in_param.type = cert_pi_end; | |
468 cvin.push_back(in_param); | |
469 | |
470 SECStatus rv = CERT_PKIXVerifyCert(cert_handle, certificateUsageSSLServer, | |
471 &cvin[0], cvout, NULL); | |
472 if (rv != SECSuccess) { | |
473 rv = RetryPKIXVerifyCertWithWorkarounds(cert_handle, num_policy_oids, | |
474 cert_io_enabled, &cvin, cvout); | |
475 } | |
476 return rv; | |
477 } | |
478 | |
479 // PKIXVerifyCert calls this function to work around some bugs in | |
480 // CERT_PKIXVerifyCert. All the arguments of this function are either the | |
481 // arguments or local variables of PKIXVerifyCert. | |
482 SECStatus RetryPKIXVerifyCertWithWorkarounds( | |
483 CERTCertificate* cert_handle, int num_policy_oids, | |
484 bool cert_io_enabled, std::vector<CERTValInParam>* cvin, | |
485 CERTValOutParam* cvout) { | |
486 // We call this function when the first CERT_PKIXVerifyCert call in | |
487 // PKIXVerifyCert failed, so we initialize |rv| to SECFailure. | |
488 SECStatus rv = SECFailure; | |
489 int nss_error = PORT_GetError(); | |
490 CERTValInParam in_param; | |
491 | |
492 // If we get SEC_ERROR_UNKNOWN_ISSUER, we may be missing an intermediate | |
493 // CA certificate, so we retry with cert_pi_useAIACertFetch. | |
494 // cert_pi_useAIACertFetch has several bugs in its error handling and | |
495 // error reporting (NSS bug 528743), so we don't use it by default. | |
496 // Note: When building a certificate chain, CERT_PKIXVerifyCert may | |
497 // incorrectly pick a CA certificate with the same subject name as the | |
498 // missing intermediate CA certificate, and fail with the | |
499 // SEC_ERROR_BAD_SIGNATURE error (NSS bug 524013), so we also retry with | |
500 // cert_pi_useAIACertFetch on SEC_ERROR_BAD_SIGNATURE. | |
501 if (cert_io_enabled && | |
502 (nss_error == SEC_ERROR_UNKNOWN_ISSUER || | |
503 nss_error == SEC_ERROR_BAD_SIGNATURE)) { | |
504 DCHECK_EQ(cvin->back().type, cert_pi_end); | |
505 cvin->pop_back(); | |
506 in_param.type = cert_pi_useAIACertFetch; | |
507 in_param.value.scalar.b = PR_TRUE; | |
508 cvin->push_back(in_param); | |
509 in_param.type = cert_pi_end; | |
510 cvin->push_back(in_param); | |
511 rv = CERT_PKIXVerifyCert(cert_handle, certificateUsageSSLServer, | |
512 &(*cvin)[0], cvout, NULL); | |
513 if (rv == SECSuccess) | |
514 return rv; | |
515 int new_nss_error = PORT_GetError(); | |
516 if (new_nss_error == SEC_ERROR_INVALID_ARGS || | |
517 new_nss_error == SEC_ERROR_UNKNOWN_AIA_LOCATION_TYPE || | |
518 new_nss_error == SEC_ERROR_BAD_INFO_ACCESS_LOCATION || | |
519 new_nss_error == SEC_ERROR_BAD_HTTP_RESPONSE || | |
520 new_nss_error == SEC_ERROR_BAD_LDAP_RESPONSE || | |
521 !IS_SEC_ERROR(new_nss_error)) { | |
522 // Use the original error code because of cert_pi_useAIACertFetch's | |
523 // bad error reporting. | |
524 PORT_SetError(nss_error); | |
525 return rv; | |
526 } | |
527 nss_error = new_nss_error; | |
528 } | |
529 | |
530 // If an intermediate CA certificate has requireExplicitPolicy in its | |
531 // policyConstraints extension, CERT_PKIXVerifyCert fails with | |
532 // SEC_ERROR_POLICY_VALIDATION_FAILED because we didn't specify any | |
533 // certificate policy (NSS bug 552775). So we retry with the certificate | |
534 // policy found in the server certificate. | |
535 if (nss_error == SEC_ERROR_POLICY_VALIDATION_FAILED && | |
536 num_policy_oids == 0) { | |
537 SECOidTag policy = GetFirstCertPolicy(cert_handle); | |
538 if (policy != SEC_OID_UNKNOWN) { | |
539 DCHECK_EQ(cvin->back().type, cert_pi_end); | |
540 cvin->pop_back(); | |
541 in_param.type = cert_pi_policyOID; | |
542 in_param.value.arraySize = 1; | |
543 in_param.value.array.oids = &policy; | |
544 cvin->push_back(in_param); | |
545 in_param.type = cert_pi_end; | |
546 cvin->push_back(in_param); | |
547 rv = CERT_PKIXVerifyCert(cert_handle, certificateUsageSSLServer, | |
548 &(*cvin)[0], cvout, NULL); | |
549 if (rv != SECSuccess) { | |
550 // Use the original error code. | |
551 PORT_SetError(nss_error); | |
552 } | |
553 } | |
554 } | |
555 | |
556 return rv; | |
557 } | |
558 | |
559 // Decodes the certificatePolicies extension of the certificate. Returns | |
560 // NULL if the certificate doesn't have the extension or the extension can't | |
561 // be decoded. The returned value must be freed with a | |
562 // CERT_DestroyCertificatePoliciesExtension call. | |
563 CERTCertificatePolicies* DecodeCertPolicies( | |
564 CERTCertificate* cert_handle) { | |
565 SECItem policy_ext; | |
566 SECStatus rv = CERT_FindCertExtension(cert_handle, | |
567 SEC_OID_X509_CERTIFICATE_POLICIES, | |
568 &policy_ext); | |
569 if (rv != SECSuccess) | |
570 return NULL; | |
571 CERTCertificatePolicies* policies = | |
572 CERT_DecodeCertificatePoliciesExtension(&policy_ext); | |
573 SECITEM_FreeItem(&policy_ext, PR_FALSE); | |
574 return policies; | |
575 } | |
576 | |
577 // Returns the OID tag for the first certificate policy in the certificate's | |
578 // certificatePolicies extension. Returns SEC_OID_UNKNOWN if the certificate | |
579 // has no certificate policy. | |
580 SECOidTag GetFirstCertPolicy(CERTCertificate* cert_handle) { | |
581 ScopedCERTCertificatePolicies policies(DecodeCertPolicies(cert_handle)); | |
582 if (!policies.get()) | |
583 return SEC_OID_UNKNOWN; | |
584 | |
585 CERTPolicyInfo* policy_info = policies->policyInfos[0]; | |
586 if (!policy_info) | |
587 return SEC_OID_UNKNOWN; | |
588 if (policy_info->oid != SEC_OID_UNKNOWN) | |
589 return policy_info->oid; | |
590 | |
591 // The certificate policy is unknown to NSS. We need to create a dynamic | |
592 // OID tag for the policy. | |
593 SECOidData od; | |
594 od.oid.len = policy_info->policyID.len; | |
595 od.oid.data = policy_info->policyID.data; | |
596 od.offset = SEC_OID_UNKNOWN; | |
597 // NSS doesn't allow us to pass an empty description, so I use a hardcoded, | |
598 // default description here. The description doesn't need to be unique for | |
599 // each OID. | |
600 od.desc = "a certificate policy"; | |
601 od.mechanism = CKM_INVALID_MECHANISM; | |
602 od.supportedExtension = INVALID_CERT_EXTENSION; | |
603 return SECOID_AddEntry(&od); | |
604 } | |
605 | |
606 HashValue CertPublicKeyHashSHA1(CERTCertificate* cert) { | |
607 HashValue hash(HASH_VALUE_SHA1); | |
608 #if defined(OS_IOS) | |
609 CC_SHA1(cert->derPublicKey.data, cert->derPublicKey.len, hash.data()); | |
610 #else | |
611 SECStatus rv = HASH_HashBuf(HASH_AlgSHA1, hash.data(), | |
612 cert->derPublicKey.data, cert->derPublicKey.len); | |
613 DCHECK_EQ(SECSuccess, rv); | |
614 #endif | |
615 return hash; | |
616 } | |
617 | |
618 HashValue CertPublicKeyHashSHA256(CERTCertificate* cert) { | |
619 HashValue hash(HASH_VALUE_SHA256); | |
620 #if defined(OS_IOS) | |
621 CC_SHA256(cert->derPublicKey.data, cert->derPublicKey.len, hash.data()); | |
622 #else | |
623 SECStatus rv = HASH_HashBuf(HASH_AlgSHA256, hash.data(), | |
624 cert->derPublicKey.data, cert->derPublicKey.len); | |
625 DCHECK_EQ(rv, SECSuccess); | |
626 #endif | |
627 return hash; | |
628 } | |
629 | |
630 void AppendPublicKeyHashes(CERTCertList* cert_list, | |
631 CERTCertificate* root_cert, | |
632 HashValueVector* hashes) { | |
633 for (CERTCertListNode* node = CERT_LIST_HEAD(cert_list); | |
634 !CERT_LIST_END(node, cert_list); | |
635 node = CERT_LIST_NEXT(node)) { | |
636 hashes->push_back(CertPublicKeyHashSHA1(node->cert)); | |
637 hashes->push_back(CertPublicKeyHashSHA256(node->cert)); | |
638 } | |
639 if (root_cert) { | |
640 hashes->push_back(CertPublicKeyHashSHA1(root_cert)); | |
641 hashes->push_back(CertPublicKeyHashSHA256(root_cert)); | |
642 } | |
643 } | |
644 | |
645 // Returns true if |cert_handle| contains a policy OID that is an EV policy | |
646 // OID according to |metadata|, storing the resulting policy OID in | |
647 // |*ev_policy_oid|. A true return is not sufficient to establish that a | |
648 // certificate is EV, but a false return is sufficient to establish the | |
649 // certificate cannot be EV. | |
650 bool IsEVCandidate(EVRootCAMetadata* metadata, | |
651 CERTCertificate* cert_handle, | |
652 SECOidTag* ev_policy_oid) { | |
653 DCHECK(cert_handle); | |
654 ScopedCERTCertificatePolicies policies(DecodeCertPolicies(cert_handle)); | |
655 if (!policies.get()) | |
656 return false; | |
657 | |
658 CERTPolicyInfo** policy_infos = policies->policyInfos; | |
659 while (*policy_infos != NULL) { | |
660 CERTPolicyInfo* policy_info = *policy_infos++; | |
661 // If the Policy OID is unknown, that implicitly means it has not been | |
662 // registered as an EV policy. | |
663 if (policy_info->oid == SEC_OID_UNKNOWN) | |
664 continue; | |
665 if (metadata->IsEVPolicyOID(policy_info->oid)) { | |
666 *ev_policy_oid = policy_info->oid; | |
667 return true; | |
668 } | |
669 } | |
670 | |
671 return false; | |
672 } | |
673 | |
674 // Studied Mozilla's code (esp. security/manager/ssl/src/nsIdentityChecking.cpp | |
675 // and nsNSSCertHelper.cpp) to learn how to verify EV certificate. | |
676 // TODO(wtc): A possible optimization is that we get the trust anchor from | |
677 // the first PKIXVerifyCert call. We look up the EV policy for the trust | |
678 // anchor. If the trust anchor has no EV policy, we know the cert isn't EV. | |
679 // Otherwise, we pass just that EV policy (as opposed to all the EV policies) | |
680 // to the second PKIXVerifyCert call. | |
681 bool VerifyEV(CERTCertificate* cert_handle, | |
682 int flags, | |
683 CRLSet* crl_set, | |
684 bool rev_checking_enabled, | |
685 EVRootCAMetadata* metadata, | |
686 SECOidTag ev_policy_oid, | |
687 CERTCertList* additional_trust_anchors, | |
688 CERTChainVerifyCallback* chain_verify_callback) { | |
689 CERTValOutParam cvout[3]; | |
690 int cvout_index = 0; | |
691 cvout[cvout_index].type = cert_po_certList; | |
692 cvout[cvout_index].value.pointer.chain = NULL; | |
693 int cvout_cert_list_index = cvout_index; | |
694 cvout_index++; | |
695 cvout[cvout_index].type = cert_po_trustAnchor; | |
696 cvout[cvout_index].value.pointer.cert = NULL; | |
697 int cvout_trust_anchor_index = cvout_index; | |
698 cvout_index++; | |
699 cvout[cvout_index].type = cert_po_end; | |
700 ScopedCERTValOutParam scoped_cvout(cvout); | |
701 | |
702 SECStatus status = PKIXVerifyCert( | |
703 cert_handle, | |
704 rev_checking_enabled, | |
705 true, /* hard fail is implied in EV. */ | |
706 flags & CertVerifier::VERIFY_CERT_IO_ENABLED, | |
707 &ev_policy_oid, | |
708 1, | |
709 additional_trust_anchors, | |
710 chain_verify_callback, | |
711 cvout); | |
712 if (status != SECSuccess) | |
713 return false; | |
714 | |
715 CERTCertificate* root_ca = | |
716 cvout[cvout_trust_anchor_index].value.pointer.cert; | |
717 if (root_ca == NULL) | |
718 return false; | |
719 | |
720 // This second PKIXVerifyCert call could have found a different certification | |
721 // path and one or more of the certificates on this new path, that weren't on | |
722 // the old path, might have been revoked. | |
723 if (crl_set) { | |
724 CRLSetResult crl_set_result = CheckRevocationWithCRLSet( | |
725 cvout[cvout_cert_list_index].value.pointer.chain, | |
726 cvout[cvout_trust_anchor_index].value.pointer.cert, | |
727 crl_set); | |
728 if (crl_set_result == kCRLSetRevoked) | |
729 return false; | |
730 } | |
731 | |
732 #if defined(OS_IOS) | |
733 SHA1HashValue fingerprint = x509_util_ios::CalculateFingerprintNSS(root_ca); | |
734 #else | |
735 SHA1HashValue fingerprint = | |
736 X509Certificate::CalculateFingerprint(root_ca); | |
737 #endif | |
738 return metadata->HasEVPolicyOID(fingerprint, ev_policy_oid); | |
739 } | |
740 | |
741 CERTCertList* CertificateListToCERTCertList(const CertificateList& list) { | |
742 CERTCertList* result = CERT_NewCertList(); | |
743 for (size_t i = 0; i < list.size(); ++i) { | |
744 #if defined(OS_IOS) | |
745 // X509Certificate::os_cert_handle() on iOS is a SecCertificateRef; convert | |
746 // it to an NSS CERTCertificate. | |
747 CERTCertificate* cert = x509_util_ios::CreateNSSCertHandleFromOSHandle( | |
748 list[i]->os_cert_handle()); | |
749 #else | |
750 CERTCertificate* cert = list[i]->os_cert_handle(); | |
751 #endif | |
752 CERT_AddCertToListTail(result, CERT_DupCertificate(cert)); | |
753 } | |
754 return result; | |
755 } | |
756 | |
757 } // namespace | |
758 | |
759 CertVerifyProcNSS::CertVerifyProcNSS() {} | |
760 | |
761 CertVerifyProcNSS::~CertVerifyProcNSS() {} | |
762 | |
763 bool CertVerifyProcNSS::SupportsAdditionalTrustAnchors() const { | |
764 return true; | |
765 } | |
766 | |
767 int CertVerifyProcNSS::VerifyInternalImpl( | |
768 X509Certificate* cert, | |
769 const std::string& hostname, | |
770 int flags, | |
771 CRLSet* crl_set, | |
772 const CertificateList& additional_trust_anchors, | |
773 CERTChainVerifyCallback* chain_verify_callback, | |
774 CertVerifyResult* verify_result) { | |
775 #if defined(OS_IOS) | |
776 // For iOS, the entire chain must be loaded into NSS's in-memory certificate | |
777 // store. | |
778 x509_util_ios::NSSCertChain scoped_chain(cert); | |
779 CERTCertificate* cert_handle = scoped_chain.cert_handle(); | |
780 #else | |
781 CERTCertificate* cert_handle = cert->os_cert_handle(); | |
782 #endif // defined(OS_IOS) | |
783 | |
784 if (!cert->VerifyNameMatch(hostname, | |
785 &verify_result->common_name_fallback_used)) { | |
786 verify_result->cert_status |= CERT_STATUS_COMMON_NAME_INVALID; | |
787 } | |
788 | |
789 // Make sure that the cert is valid now. | |
790 SECCertTimeValidity validity = CERT_CheckCertValidTimes( | |
791 cert_handle, PR_Now(), PR_TRUE); | |
792 if (validity != secCertTimeValid) | |
793 verify_result->cert_status |= CERT_STATUS_DATE_INVALID; | |
794 | |
795 CERTValOutParam cvout[3]; | |
796 int cvout_index = 0; | |
797 cvout[cvout_index].type = cert_po_certList; | |
798 cvout[cvout_index].value.pointer.chain = NULL; | |
799 int cvout_cert_list_index = cvout_index; | |
800 cvout_index++; | |
801 cvout[cvout_index].type = cert_po_trustAnchor; | |
802 cvout[cvout_index].value.pointer.cert = NULL; | |
803 int cvout_trust_anchor_index = cvout_index; | |
804 cvout_index++; | |
805 cvout[cvout_index].type = cert_po_end; | |
806 ScopedCERTValOutParam scoped_cvout(cvout); | |
807 | |
808 EVRootCAMetadata* metadata = EVRootCAMetadata::GetInstance(); | |
809 SECOidTag ev_policy_oid = SEC_OID_UNKNOWN; | |
810 bool is_ev_candidate = | |
811 (flags & CertVerifier::VERIFY_EV_CERT) && | |
812 IsEVCandidate(metadata, cert_handle, &ev_policy_oid); | |
813 bool cert_io_enabled = flags & CertVerifier::VERIFY_CERT_IO_ENABLED; | |
814 bool check_revocation = | |
815 cert_io_enabled && | |
816 (flags & CertVerifier::VERIFY_REV_CHECKING_ENABLED); | |
817 if (check_revocation) | |
818 verify_result->cert_status |= CERT_STATUS_REV_CHECKING_ENABLED; | |
819 | |
820 ScopedCERTCertList trust_anchors; | |
821 if (!additional_trust_anchors.empty()) { | |
822 trust_anchors.reset( | |
823 CertificateListToCERTCertList(additional_trust_anchors)); | |
824 } | |
825 | |
826 SECStatus status = PKIXVerifyCert(cert_handle, | |
827 check_revocation, | |
828 false, | |
829 cert_io_enabled, | |
830 NULL, | |
831 0, | |
832 trust_anchors.get(), | |
833 chain_verify_callback, | |
834 cvout); | |
835 | |
836 if (status == SECSuccess && | |
837 (flags & CertVerifier::VERIFY_REV_CHECKING_REQUIRED_LOCAL_ANCHORS) && | |
838 !IsKnownRoot(cvout[cvout_trust_anchor_index].value.pointer.cert)) { | |
839 // TODO(rsleevi): Optimize this by supplying the constructed chain to | |
840 // libpkix via cvin. Omitting for now, due to lack of coverage in upstream | |
841 // NSS tests for that feature. | |
842 scoped_cvout.Clear(); | |
843 verify_result->cert_status |= CERT_STATUS_REV_CHECKING_ENABLED; | |
844 status = PKIXVerifyCert(cert_handle, | |
845 true, | |
846 true, | |
847 cert_io_enabled, | |
848 NULL, | |
849 0, | |
850 trust_anchors.get(), | |
851 chain_verify_callback, | |
852 cvout); | |
853 } | |
854 | |
855 if (status == SECSuccess) { | |
856 AppendPublicKeyHashes(cvout[cvout_cert_list_index].value.pointer.chain, | |
857 cvout[cvout_trust_anchor_index].value.pointer.cert, | |
858 &verify_result->public_key_hashes); | |
859 | |
860 verify_result->is_issued_by_known_root = | |
861 IsKnownRoot(cvout[cvout_trust_anchor_index].value.pointer.cert); | |
862 verify_result->is_issued_by_additional_trust_anchor = | |
863 IsAdditionalTrustAnchor( | |
864 trust_anchors.get(), | |
865 cvout[cvout_trust_anchor_index].value.pointer.cert); | |
866 | |
867 GetCertChainInfo(cvout[cvout_cert_list_index].value.pointer.chain, | |
868 cvout[cvout_trust_anchor_index].value.pointer.cert, | |
869 verify_result); | |
870 } | |
871 | |
872 CRLSetResult crl_set_result = kCRLSetUnknown; | |
873 if (crl_set) { | |
874 crl_set_result = CheckRevocationWithCRLSet( | |
875 cvout[cvout_cert_list_index].value.pointer.chain, | |
876 cvout[cvout_trust_anchor_index].value.pointer.cert, | |
877 crl_set); | |
878 if (crl_set_result == kCRLSetRevoked) { | |
879 PORT_SetError(SEC_ERROR_REVOKED_CERTIFICATE); | |
880 status = SECFailure; | |
881 } | |
882 } | |
883 | |
884 if (status != SECSuccess) { | |
885 int err = PORT_GetError(); | |
886 LOG(ERROR) << "CERT_PKIXVerifyCert for " << hostname | |
887 << " failed err=" << err; | |
888 // CERT_PKIXVerifyCert rerports the wrong error code for | |
889 // expired certificates (NSS bug 491174) | |
890 if (err == SEC_ERROR_CERT_NOT_VALID && | |
891 (verify_result->cert_status & CERT_STATUS_DATE_INVALID)) | |
892 err = SEC_ERROR_EXPIRED_CERTIFICATE; | |
893 CertStatus cert_status = MapCertErrorToCertStatus(err); | |
894 if (cert_status) { | |
895 verify_result->cert_status |= cert_status; | |
896 return MapCertStatusToNetError(verify_result->cert_status); | |
897 } | |
898 // |err| is not a certificate error. | |
899 return MapSecurityError(err); | |
900 } | |
901 | |
902 if (IsCertStatusError(verify_result->cert_status)) | |
903 return MapCertStatusToNetError(verify_result->cert_status); | |
904 | |
905 if ((flags & CertVerifier::VERIFY_EV_CERT) && is_ev_candidate) { | |
906 check_revocation |= | |
907 crl_set_result != kCRLSetOk && | |
908 cert_io_enabled && | |
909 (flags & CertVerifier::VERIFY_REV_CHECKING_ENABLED_EV_ONLY); | |
910 if (check_revocation) | |
911 verify_result->cert_status |= CERT_STATUS_REV_CHECKING_ENABLED; | |
912 | |
913 if (VerifyEV(cert_handle, | |
914 flags, | |
915 crl_set, | |
916 check_revocation, | |
917 metadata, | |
918 ev_policy_oid, | |
919 trust_anchors.get(), | |
920 chain_verify_callback)) { | |
921 verify_result->cert_status |= CERT_STATUS_IS_EV; | |
922 } | |
923 } | |
924 | |
925 return OK; | |
926 } | |
927 | |
928 int CertVerifyProcNSS::VerifyInternal( | |
929 X509Certificate* cert, | |
930 const std::string& hostname, | |
931 int flags, | |
932 CRLSet* crl_set, | |
933 const CertificateList& additional_trust_anchors, | |
934 CertVerifyResult* verify_result) { | |
935 return VerifyInternalImpl(cert, | |
936 hostname, | |
937 flags, | |
938 crl_set, | |
939 additional_trust_anchors, | |
940 NULL, // chain_verify_callback | |
941 verify_result); | |
942 } | |
943 | |
944 } // namespace net | |
OLD | NEW |