Index: lib/Transforms/NaCl/SimplifyStructRegSignatures.cpp |
diff --git a/lib/Transforms/NaCl/SimplifyStructRegSignatures.cpp b/lib/Transforms/NaCl/SimplifyStructRegSignatures.cpp |
new file mode 100644 |
index 0000000000000000000000000000000000000000..d004fe9e32e35fec6df3ed0b985c9b421b589e0f |
--- /dev/null |
+++ b/lib/Transforms/NaCl/SimplifyStructRegSignatures.cpp |
@@ -0,0 +1,577 @@ |
+//===- SimplifyStructRegSignatures.cpp - Change struct regs to struct ----===// |
+// pointers |
JF
2015/03/12 18:36:18
That's a bit weird formatting :-)
It would fit if
Mircea Trofin
2015/03/13 22:04:52
Done.
|
+// |
+// The LLVM Compiler Infrastructure |
+// |
+// This file is distributed under the University of Illinois Open Source |
+// License. See LICENSE.TXT for details. |
+// |
+//===----------------------------------------------------------------------===// |
+// |
+// This pass replaces function signatures exposing struct registers |
+// to byval pointer-based signatures. |
+// |
+// There are 2 types of signatures that are thus changed: |
+// |
+// @foo(%some_struct %val) -> @foo(%some_struct* byval %val) |
+// and |
+// %someStruct @bar(<other_args>) -> void @bar(%someStruct* sret, <other_args>) |
+// |
+// Such function types may appear in other type declarations, for example: |
+// |
+// %a_struct = type { void (%some_struct)*, i32 } |
+// |
+// We map such types to corresponding types, mapping the function types |
+// appropriately: |
+// |
+// %a_struct.0 = type { void (%some_struct*)*, i32 } |
+//===----------------------------------------------------------------------===// |
+ |
+#include <cassert> |
+#include <cstddef> |
+ |
+#include "llvm/ADT/ArrayRef.h" |
+#include "llvm/ADT/DenseSet.h" |
+#include "llvm/ADT/ilist.h" |
+#include "llvm/ADT/SetVector.h" |
+#include "llvm/ADT/SmallVector.h" |
+#include "llvm/ADT/Twine.h" |
+#include "llvm/IR/Argument.h" |
+#include "llvm/IR/Attributes.h" |
+#include "llvm/IR/BasicBlock.h" |
+#include "llvm/IR/DerivedTypes.h" |
+#include "llvm/IR/Function.h" |
+#include "llvm/IR/GlobalValue.h" |
+#include "llvm/IR/Instructions.h" |
+#include "llvm/IR/Module.h" |
+#include "llvm/IR/Type.h" |
+#include "llvm/IR/Use.h" |
+#include "llvm/IR/User.h" |
+#include "llvm/IR/Value.h" |
+#include "llvm/Pass.h" |
+#include "llvm/PassInfo.h" |
+#include "llvm/PassRegistry.h" |
+#include "llvm/PassSupport.h" |
+#include "llvm/Transforms/NaCl.h" |
+#include "llvm/Support/Debug.h" |
+ |
+using namespace llvm; |
+ |
+namespace { |
+class MappingResult { |
+public: |
+ MappingResult(Type *ATy, bool Chg) { |
+ Ty = ATy; |
+ Changed = Chg; |
+ } |
+ |
+ bool isChanged() { return Changed; } |
+ |
+ Type *operator->() { return Ty; } |
+ |
+ operator Type *() { return Ty; } |
+ |
+private: |
+ Type *Ty; |
+ bool Changed; |
+}; |
+ |
+// Utility class. For any given type, get the associated type that is free of |
+// struct register arguments. |
+class TypeMapper { |
+public: |
+ Type *getSimpleType(Type *Ty); |
+ |
+private: |
+ DenseMap<Type *, Type *> MappedTypes; |
+ MappingResult getSimpleArgumentType(Type *Ty); |
+ MappingResult getSimpleAggregateTypeInternal(Type *Ty); |
+}; |
+ |
+// This is a ModulePass because the pass recreates functions in |
+// order to change their signatures. |
+class SimplifyStructRegSignatures : public ModulePass { |
+public: |
+ static char ID; |
+ |
+ SimplifyStructRegSignatures() : ModulePass(ID) { |
+ initializeSimplifyStructRegSignaturesPass(*PassRegistry::getPassRegistry()); |
+ } |
+ virtual bool runOnModule(Module &M); |
+ |
+private: |
+ TypeMapper Mapper; |
+ DenseSet<Function *> FunctionsToDelete; |
+ SetVector<CallInst*> CallsToPatch; |
+ SetVector<InvokeInst *> InvokesToPatch; |
+ DenseMap<Function *, Function *> FunctionMap; |
+ bool simplifyFunction(Function *OldFunc, Module &M); |
+ void scheduleCallsForCleanup(Function *NewFunc); |
+ template <class TCall> void fixCallSite(TCall *Call); |
+ void fixFunctionBody(Function *OldFunc, Function *NewFunc); |
+}; |
+} |
+ |
+static const unsigned int TypicalFuncArity = 8; |
+static const unsigned int TypicalStructArity = 8; |
+ |
+char SimplifyStructRegSignatures::ID = 0; |
+ |
+INITIALIZE_PASS( |
+ SimplifyStructRegSignatures, "simplify-struct-reg-signatures", |
+ "Simplify function signatures by removing struct register parameters", |
+ false, false) |
+ |
+// The type is "simple" if it does not recursively reference a |
+// function type with at least an operand (arg or return) typed as struct |
+// register |
+Type *TypeMapper::getSimpleType(Type *Ty) { |
+ if (MappedTypes.count(Ty)) |
+ return MappedTypes[Ty]; |
JF
2015/03/12 18:36:18
auto Found = MappedTypes.find(Ty);
if (Found != Ma
Mircea Trofin
2015/03/13 22:04:52
or the location alternative, to avoid the double s
JF
2015/03/14 18:42:57
There's no point in having two separate functions
|
+ return MappedTypes[Ty] = getSimpleAggregateTypeInternal(Ty); |
+} |
+ |
+// transforms any type that could transitively reference a function pointer |
JF
2015/03/12 18:36:18
"Transforms"
Mircea Trofin
2015/03/13 22:04:51
Done.
|
+// into a simplified type. |
+MappingResult TypeMapper::getSimpleAggregateTypeInternal(Type *Ty) { |
+ LLVMContext &Ctx = Ty->getContext(); |
+ |
JF
2015/03/12 18:36:18
assert(MappedTypes.end() == MappedTypes.find(Ty));
Mircea Trofin
2015/03/13 22:04:51
They don't. Struct mapping will insert the empty n
|
+ if (auto *OldFnTy = dyn_cast<FunctionType>(Ty)) { |
+ Type *OldRetType = OldFnTy->getReturnType(); |
+ Type *NewRetType = OldRetType; |
+ Type *Void = Type::getVoidTy(Ctx); |
+ SmallVector<Type *, TypicalFuncArity> NewArgs; |
+ bool HasChanges = false; |
JF
2015/03/12 18:36:18
"Changed" is a more common name in LLVM.
Mircea Trofin
2015/03/13 22:04:51
Done.
|
+ // struct register returns become the first parameter of the new FT. |
+ // the new FT has void for the return type |
+ if (OldRetType->isAggregateType()) { |
+ NewRetType = Void; |
+ HasChanges = true; |
+ NewArgs.push_back(getSimpleArgumentType(OldRetType)); |
+ } |
+ for (auto OldParam = OldFnTy->param_begin(), E = OldFnTy->param_end(); |
+ OldParam != E; ++OldParam) { |
JF
2015/03/12 18:36:17
for (auto P : OldFnTy->params())
Mircea Trofin
2015/03/13 22:04:52
Done.
|
+ auto NewType = getSimpleArgumentType(*OldParam); |
+ HasChanges |= NewType.isChanged(); |
+ NewArgs.push_back(NewType); |
+ } |
+ Type *NewFuncType = FunctionType::get(NewRetType, NewArgs, false); |
JF
2015/03/12 18:36:17
This should preserve vararg (and have a correspond
Mircea Trofin
2015/03/13 22:04:51
Done.
|
+ return MappingResult(NewFuncType, HasChanges); |
JF
2015/03/12 18:36:17
C++11 initializer lists should work here and a few
Mircea Trofin
2015/03/13 22:04:51
Done.
|
+ } |
+ |
+ if (auto PtrTy = dyn_cast<PointerType>(Ty)) { |
+ auto NewTy = getSimpleAggregateTypeInternal(PtrTy->getPointerElementType()); |
+ |
+ return MappingResult(NewTy->getPointerTo(), NewTy.isChanged()); |
JF
2015/03/12 18:36:17
This should also preserve the address space of the
Mircea Trofin
2015/03/13 22:04:51
Done.
|
+ } |
+ |
+ if (auto ArrTy = dyn_cast<ArrayType>(Ty)) { |
+ auto NewTy = getSimpleAggregateTypeInternal(ArrTy->getArrayElementType()); |
+ return MappingResult(ArrayType::get(NewTy, ArrTy->getArrayNumElements()), |
+ NewTy.isChanged()); |
+ } |
+ |
+ if (auto VecTy = dyn_cast<VectorType>(Ty)) { |
+ auto NewTy = getSimpleAggregateTypeInternal(VecTy->getVectorElementType()); |
+ return MappingResult(VectorType::get(NewTy, VecTy->getVectorNumElements()), |
+ NewTy.isChanged()); |
JF
2015/03/12 18:36:17
There's no test for this.
|
+ } |
+ |
+ if (auto StructTy = dyn_cast<StructType>(Ty)) { |
+ if (!StructTy->isLiteral()) { |
+ // LLVM doesn't intern identified structs (the ones with a name). This, |
+ // together with the fact that such structs can be recursive, |
+ // complicates things a bit. We want to make sure that we only change |
+ // "unsimplified" structs (those that somehow reference funcs that |
+ // are not simple). |
+ // We don't want to change "simplified" structs, otherwise converting |
+ // instruction types will become trickier. |
+ Type *&Loc = MappedTypes[StructTy]; |
JF
2015/03/12 18:36:17
I'd use `find` here too.
Mircea Trofin
2015/03/13 22:04:52
Done.
|
+ if (!Loc) { |
+ // We don't have a mapping, and we don't know if the struct is recursive |
+ // so we create an empty one and hypothesize that it is the |
+ // mapping. |
+ Loc = StructType::create(Ctx, StructTy->getStructName()); |
JF
2015/03/12 18:36:16
This loses `isPacked`, though I'm not sure we care
Mircea Trofin
2015/03/13 22:04:51
No, we're setting that further below, if the new s
Mircea Trofin
2015/03/13 22:04:52
It doesn't, we set it below, line 229
|
+ } else { |
+ // We either have a finished mapping or this is the empty placeholder |
+ // created above, and we are in the process of finalizing it. |
+ // 1) if this is a mapping, it must have the same element count |
+ // as the original struct, so we mark a change if the types are |
+ // different objects |
+ // 2) if this is a placeholder, the element count |
+ // wgetStructNumElementsill differ. |
JF
2015/03/12 18:36:17
Paste-o?
Mircea Trofin
2015/03/13 22:04:51
yup
|
+ // Since we don't know yet if this is a change or not - because we |
+ // are constructing the mapping - we don't mark as change. We decide |
+ // if it is a change below, based on the other struct elements. |
+ bool hasChanged = |
+ StructTy != Loc && |
+ StructTy->getStructNumElements() == Loc->getStructNumElements(); |
+ return MappingResult(Loc, hasChanged); |
JF
2015/03/12 18:36:17
Same as above, just "Changed".
|
+ } |
+ } |
+ |
+ SmallVector<Type *, TypicalStructArity> ElemTypes; |
+ bool HasChanges = false; |
JF
2015/03/12 18:36:17
Changed
Mircea Trofin
2015/03/13 22:04:52
Done.
|
+ unsigned StructElemCount = StructTy->getStructNumElements(); |
+ for (unsigned I = 0; I < StructElemCount; I++) { |
+ auto NewElem = |
+ getSimpleAggregateTypeInternal(Ty->getStructElementType(I)); |
+ ElemTypes.push_back(NewElem); |
+ HasChanges |= NewElem.isChanged(); |
+ } |
+ if (!HasChanges) { |
+ // We are leaking the created struct here, but there is no way to |
+ // correctly delete it. |
+ return MappingResult(MappedTypes[Ty] = Ty, false); |
+ } |
+ |
+ if (StructTy->isLiteral()) { |
+ return MappingResult(MappedTypes[Ty] = StructType::get( |
+ Ctx, ElemTypes, StructTy->isPacked()), |
+ HasChanges); |
+ } else { |
+ Type *&Loc = MappedTypes[StructTy]; |
JF
2015/03/12 18:36:18
`find`
Mircea Trofin
2015/03/13 22:04:52
Done.
|
+ assert(Loc); |
+ StructType *NewStruct = dyn_cast<StructType>(Loc); |
JF
2015/03/12 18:36:18
Just `cast<StructType>`, which has an assert inter
Mircea Trofin
2015/03/13 22:04:51
Done.
|
+ NewStruct->setBody(ElemTypes, StructTy->isPacked()); |
+ return MappingResult(MappedTypes[Ty] = NewStruct, true); |
+ } |
+ } |
+ |
+ // anything else stays the same. |
JF
2015/03/12 18:36:18
Capitalize (here and below).
|
+ return MappingResult(Ty, false); |
+} |
+ |
+// get the simplified type of a function argument. |
+MappingResult TypeMapper::getSimpleArgumentType(Type *Ty) { |
+ // struct registers become pointers to simple structs |
+ if (Ty->isAggregateType()) { |
+ return MappingResult( |
+ PointerType::get(getSimpleAggregateTypeInternal(Ty), 0), true); |
+ } |
+ |
+ return getSimpleAggregateTypeInternal(Ty); |
+} |
+ |
+// apply 'byval' to func arguments that used to be struct regs. |
+// apply 'sret' to the argument corresponding to the return in the old signature |
+static void ApplyByValAndSRet(Function *OldFunc, Function *NewFunc) { |
+ auto const &OldArgList = OldFunc->getArgumentList(); |
+ auto &NewArgList = NewFunc->getArgumentList(); |
+ |
+ // when calling addAttribute, the first one refers to the function, so we |
+ // skip past that. |
+ unsigned ArgOffset = 1; |
+ if (OldFunc->getReturnType()->isAggregateType()) { |
+ NewFunc->addAttribute(1, Attribute::AttrKind::StructRet); |
+ ArgOffset++; |
+ } |
+ |
+ auto NewArg = NewArgList.begin(); |
+ for (const Argument &OldArg : OldArgList) { |
JF
2015/03/12 18:36:18
Move `OldFunc->getArgumentList()` here, delete abo
Mircea Trofin
2015/03/13 22:04:51
Done.
|
+ if (OldArg.getType()->isAggregateType()) { |
+ NewFunc->addAttribute(NewArg->getArgNo() + ArgOffset, |
+ Attribute::AttrKind::ByVal); |
+ } |
+ NewArg++; |
+ } |
+} |
+ |
+// update the arg names for a newly created function |
+static void UpdateArgNames(Function *OldFunc, Function *NewFunc) { |
+ auto NewArgIter = NewFunc->arg_begin(); |
+ auto const &OldFuncArgs = OldFunc->args(); |
+ if (OldFunc->getReturnType()->isAggregateType()) { |
+ NewArgIter->setName("retVal"); |
+ NewArgIter++; |
+ } |
+ |
+ for (const Argument &OldArg : OldFuncArgs) { |
JF
2015/03/12 18:36:18
Same, move `NewFunc->args()` here.
Mircea Trofin
2015/03/13 22:04:51
Done.
|
+ Argument *NewArg = NewArgIter++; |
+ if (OldArg.getType()->isAggregateType()) { |
+ NewArg->setName(OldArg.getName() + ".ptr"); |
+ } else { |
+ NewArg->setName(OldArg.getName()); |
+ } |
+ } |
+} |
+ |
+// replace all uses of an old value with a new one, disregarding the type. We |
+// correct the types separately |
JF
2015/03/12 18:36:17
Where is the type corrected? It's not obvious from
Mircea Trofin
2015/03/13 22:04:52
Done.
|
+static void BlindReplace(Value *Old, Value *New) { |
+ for (auto UseIter = Old->use_begin(), E = Old->use_end(); E != UseIter;) { |
JF
2015/03/12 18:36:17
`for (auto U : Old->uses())`
Actually, it would b
Mircea Trofin
2015/03/13 22:04:52
That wouldn't work, I'm not changing the content o
|
+ Use &AUse = *(UseIter++); |
+ AUse.set(New); |
+ } |
+} |
+ |
+// adapt the body of a function for the new arguments |
+static void ConvertArgumentValue(Value *Old, Value *New, |
+ Instruction *InsPoint) { |
+ if (Old == New) |
+ return; |
+ |
+ if (Old->getType() == New->getType()) { |
+ Old->replaceAllUsesWith(New); |
+ New->takeName(Old); |
+ return; |
+ } |
+ |
+ if (Old->getType()->isAggregateType() && New->getType()->isPointerTy()) { |
+ Value *Load = new LoadInst(New, Old->getName() + ".sreg", InsPoint); |
+ BlindReplace(Old, Load); |
+ } else { |
+ BlindReplace(Old, New); |
+ } |
+} |
+ |
+// fix returns. Return true if fixes were needed |
+static void FixReturn(Function *OldFunc, Function *NewFunc) { |
+ |
+ Argument *FirstNewArg = NewFunc->getArgumentList().begin(); |
+ |
+ for (auto BIter = NewFunc->begin(), LastBlock = NewFunc->end(); |
+ LastBlock != BIter;) { |
JF
2015/03/12 18:36:19
for (BasicBlock &BB : NewFunc->getBasicBlockList()
Mircea Trofin
2015/03/13 22:04:52
no, because we mutate the list (same goes for the
|
+ BasicBlock *BB = BIter++; |
+ for (auto IIter = BB->begin(), LastI = BB->end(); LastI != IIter;) { |
JF
2015/03/12 18:36:17
for (Instruction &I : BB)
|
+ Instruction *Instr = IIter++; |
+ if (ReturnInst *Ret = dyn_cast<ReturnInst>(Instr)) { |
+ auto &Ctx = Ret->getContext(); |
JF
2015/03/12 18:36:18
This should be loop invariant, hoist it.
Mircea Trofin
2015/03/13 22:04:52
Done.
|
+ auto RetVal = Ret->getReturnValue(); |
+ ReturnInst *NewRet = ReturnInst::Create(Ctx, nullptr, Ret); |
+ Ret->eraseFromParent(); |
JF
2015/03/12 18:36:18
I think this invalidates your Instruction iterator
Mircea Trofin
2015/03/13 22:04:52
That's the reason I increment the iterator first t
|
+ Ret = nullptr; |
+ new StoreInst(RetVal, FirstNewArg, NewRet); |
JF
2015/03/12 18:36:16
Give it a name and copy debug location.
Also, you
Mircea Trofin
2015/03/13 22:04:51
Turns out store doesn't accept a name. Otherwise,
|
+ } |
+ } |
+ } |
+} |
+ |
+template <class TCall> |
+void CopyCallAttributesAndMetadata(TCall *Orig, TCall *NewCall) { |
+ NewCall->setCallingConv(Orig->getCallingConv()); |
+ NewCall->setAttributes(NewCall->getAttributes().addAttributes( |
+ Orig->getContext(), AttributeSet::FunctionIndex, |
+ Orig->getAttributes().getFnAttributes())); |
+ NewCall->setDebugLoc(Orig->getDebugLoc()); |
JF
2015/03/12 18:36:17
Other metadata?
Mircea Trofin
2015/03/13 22:04:51
I believe this is it, but I added a TODO, because
|
+} |
+ |
+static InvokeInst *CreateCallFrom(InvokeInst *Orig, Value *Target, |
+ ArrayRef<Value *> &Args) { |
+ InvokeInst *Ret = InvokeInst::Create(Target, Orig->getNormalDest(), |
+ Orig->getUnwindDest(), Args); |
JF
2015/03/12 18:36:17
Copy name.
Mircea Trofin
2015/03/13 22:04:52
Done.
|
+ CopyCallAttributesAndMetadata(Orig, Ret); |
+ return Ret; |
+} |
+ |
+static CallInst *CreateCallFrom(CallInst *Orig, Value *Target, |
+ ArrayRef<Value *> &Args) { |
+ |
+ CallInst *Ret = CallInst::Create(Target, Args); |
JF
2015/03/12 18:36:17
Name.
Mircea Trofin
2015/03/13 22:04:52
Done, doing this in CopyCallAttributesAndMetadata
|
+ |
+ Ret->setTailCallKind(Orig->getTailCallKind()); |
+ CopyCallAttributesAndMetadata(Orig, Ret); |
JF
2015/03/12 18:36:18
I think you're missing NoBuiltin, NoInline, Return
Mircea Trofin
2015/03/13 22:04:52
as per http://llvm.org/docs/LangRef.html#i-call:
|
+ return Ret; |
+} |
+ |
+// fix a call site by handing return type changes and/or parameter type and |
+// attribute changes |
+template <class TCall> |
+void SimplifyStructRegSignatures::fixCallSite(TCall *OldCall) { |
+ Value *NewTarget = OldCall->getCalledValue(); |
+ |
+ if (Function *CalledFunc = dyn_cast<Function>(NewTarget)) { |
+ NewTarget = this->FunctionMap[CalledFunc]; |
+ } |
+ assert(NewTarget); |
+ |
+ FunctionType *NewType = dyn_cast<FunctionType>( |
JF
2015/03/12 18:36:16
cast<FunctionType>
Mircea Trofin
2015/03/13 22:04:51
Done.
|
+ Mapper.getSimpleType(NewTarget->getType())->getPointerElementType()); |
+ |
+ Type *OldRetType = OldCall->getType(); |
+ const bool isSRet = |
+ !OldCall->getType()->isVoidTy() && NewType->getReturnType()->isVoidTy(); |
+ |
+ const unsigned argOffset = isSRet ? 1 : 0; |
+ |
+ SmallVector<Value *, TypicalFuncArity> NewArgs; |
+ |
+ if (isSRet) { |
+ AllocaInst *Alloca = new AllocaInst(OldRetType); |
JF
2015/03/12 18:36:18
Alignment to preferred size.
Name.
You can also
Mircea Trofin
2015/03/13 22:04:52
It's simpler to use takeName than cache the old na
|
+ NewArgs.push_back(Alloca); |
+ Alloca->insertBefore(OldCall); |
+ |
+ LoadInst *Load = new LoadInst(Alloca, OldCall->getName() + ".sreg", |
+ (Instruction *)nullptr); |
JF
2015/03/12 18:36:18
Alignment.
Mircea Trofin
2015/03/13 22:04:52
Done.
|
+ Load->insertAfter(OldCall); |
+ OldCall->replaceAllUsesWith(Load); |
+ } |
JF
2015/03/12 18:36:18
Why not create the new call between the alloca and
Mircea Trofin
2015/03/13 22:04:52
the call is between the alloca and the load *if* w
JF
2015/03/14 18:42:57
I mean that the order of code in this pass should
|
+ |
+ SmallSetVector<unsigned, TypicalFuncArity> ByRefPlaces; |
+ |
+ for (unsigned ArgPos = 0; |
+ ArgPos < NewType->getFunctionNumParams() - argOffset; ArgPos++) { |
+ |
+ Use &OldArgUse = OldCall->getOperandUse(ArgPos); |
+ Value *OldArg = OldArgUse; |
+ Type *OldArgType = OldArg->getType(); |
+ unsigned NewArgPos = OldArgUse.getOperandNo() + argOffset; |
+ Type *NewArgType = NewType->getFunctionParamType(NewArgPos); |
+ |
+ if (OldArgType != NewArgType && OldArgType->isAggregateType()) { |
+ AllocaInst *Alloca = |
+ new AllocaInst(OldArgType, OldArg->getName() + ".ptr", OldCall); |
+ new StoreInst(OldArg, Alloca, OldCall); |
+ ByRefPlaces.insert(NewArgPos); |
+ NewArgs.push_back(Alloca); |
+ } else { |
+ NewArgs.push_back(OldArg); |
+ } |
+ } |
+ |
+ ArrayRef<Value *> ArrRef = NewArgs; |
+ TCall *NewCall = CreateCallFrom(OldCall, NewTarget, ArrRef); |
+ |
+ // copy the attributes over, and add byref/sret as necessary |
+ const AttributeSet &OldAttrSet = OldCall->getAttributes(); |
+ const AttributeSet &NewAttrSet = NewCall->getAttributes(); |
+ LLVMContext &Ctx = OldCall->getContext(); |
+ AttrBuilder Builder(OldAttrSet, 0); |
+ |
+ for (unsigned I = 0; I < NewCall->getNumArgOperands(); I++) { |
+ NewCall->setAttributes(NewAttrSet.addAttributes( |
+ Ctx, I + argOffset + 1, OldAttrSet.getParamAttributes(I + 1))); |
+ if (ByRefPlaces.count(I)) { |
+ NewCall->addAttribute(I + 1, Attribute::AttrKind::ByVal); |
+ } |
+ } |
+ |
+ if (isSRet) { |
+ NewAttrSet.addAttributes(Ctx, 1, OldAttrSet.getRetAttributes()); |
+ NewCall->addAttribute(1, Attribute::AttrKind::StructRet); |
+ } else { |
+ NewCall->setAttributes(NewAttrSet.addAttributes( |
+ Ctx, AttributeSet::ReturnIndex, OldAttrSet.getRetAttributes())); |
+ // if we still return something, this is the value to replace the old |
+ // call with |
+ OldCall->replaceAllUsesWith(NewCall); |
+ } |
+ |
+ NewCall->insertBefore(OldCall); |
+ OldCall->eraseFromParent(); |
+ OldCall = NULL; |
+} |
+ |
+void SimplifyStructRegSignatures::scheduleCallsForCleanup(Function *NewFunc) { |
+ for (auto &BBIter : NewFunc->getBasicBlockList()) { |
+ for (auto &IIter : BBIter.getInstList()) { |
+ if (CallInst *Call = dyn_cast<CallInst>(&IIter)) { |
+ CallsToPatch.insert(Call); |
+ } else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(&IIter)) { |
+ InvokesToPatch.insert(Invoke); |
+ } |
+ } |
+ } |
+} |
+ |
+// change function body in the light of type changes |
+void SimplifyStructRegSignatures::fixFunctionBody(Function *OldFunc, |
+ Function *NewFunc) { |
+ if (NewFunc->empty()) |
+ return; |
+ |
+ bool returnWasFixed = OldFunc->getReturnType()->isAggregateType(); |
+ |
+ Instruction *InsPoint = NewFunc->begin()->begin(); |
+ auto NewArgIter = NewFunc->arg_begin(); |
+ // advance one more if we used to return a struct register |
+ if (returnWasFixed) |
+ NewArgIter++; |
+ |
+ // wire new parameters in |
+ for (auto ArgIter = OldFunc->arg_begin(), E = OldFunc->arg_end(); |
+ E != ArgIter;) { |
+ Argument *OldArg = ArgIter++; |
+ Argument *NewArg = NewArgIter++; |
+ ConvertArgumentValue(OldArg, NewArg, InsPoint); |
+ } |
+ |
+ // now fix instruction types. Calls are dealt with separately, but we still |
+ // update the types here. We know that each value could only possibly be |
+ // of a simplified type. At the end of this, call sites will be invalid, but |
+ // we handle that afterwards, to make sure we have all the functions changed |
+ // first (so that calls have valid targets) |
+ for (auto BBIter = NewFunc->begin(), LBlock = NewFunc->end(); |
+ LBlock != BBIter;) { |
+ auto Block = BBIter++; |
+ for (auto IIter = Block->begin(), LIns = Block->end(); LIns != IIter;) { |
+ auto Instr = IIter++; |
+ Instr->mutateType(Mapper.getSimpleType(Instr->getType())); |
+ } |
+ } |
+ if (returnWasFixed) |
+ FixReturn(OldFunc, NewFunc); |
+} |
+ |
+// Ensure function is simplified, returning true if the function |
+// had to be changed. |
+bool SimplifyStructRegSignatures::simplifyFunction(Function *OldFunc, |
+ Module &M) { |
+ FunctionType *OldFT = OldFunc->getFunctionType(); |
+ FunctionType *NewFT = dyn_cast<FunctionType>(Mapper.getSimpleType(OldFT)); |
+ assert(NewFT); |
+ |
+ Function *&AssociatedFctLoc = FunctionMap[OldFunc]; |
+ if (NewFT != OldFT) { |
+ Function *NewFunc = Function::Create(NewFT, OldFunc->getLinkage()); |
+ AssociatedFctLoc = NewFunc; |
+ |
+ NewFunc->copyAttributesFrom(OldFunc); |
+ OldFunc->getParent()->getFunctionList().insert(OldFunc, NewFunc); |
+ NewFunc->takeName(OldFunc); |
+ |
+ UpdateArgNames(OldFunc, NewFunc); |
+ ApplyByValAndSRet(OldFunc, NewFunc); |
+ |
+ NewFunc->getBasicBlockList().splice(NewFunc->begin(), |
+ OldFunc->getBasicBlockList()); |
+ |
+ fixFunctionBody(OldFunc, NewFunc); |
+ FunctionsToDelete.insert(OldFunc); |
+ } else { |
+ AssociatedFctLoc = OldFunc; |
+ } |
+ scheduleCallsForCleanup(AssociatedFctLoc); |
+ return NewFT != OldFT; |
+} |
+ |
+bool SimplifyStructRegSignatures::runOnModule(Module &M) { |
+ bool Changed = false; |
+ |
+ // change function signatures and fix a changed function body by |
+ // wiring the new arguments. Call sites are unchanged at this point |
+ for (Module::iterator Iter = M.begin(), E = M.end(); Iter != E;) { |
+ Function *Func = Iter++; |
+ Changed |= simplifyFunction(Func, M); |
+ } |
+ |
+ // fix call sites |
+ for (auto &CallToFix : CallsToPatch) { |
+ fixCallSite(CallToFix); |
+ } |
+ |
+ for (auto &InvokeToFix : InvokesToPatch) { |
+ fixCallSite(InvokeToFix); |
+ } |
+ |
+ // delete leftover functions - the ones with old signatures |
+ for (auto &ToDelete : FunctionsToDelete) { |
+ // this also frees the memory |
+ ToDelete->eraseFromParent(); |
+ } |
+ return Changed; |
+} |
+ |
+ModulePass *llvm::createSimplifyStructRegSignaturesPass() { |
+ return new SimplifyStructRegSignatures(); |
+} |