Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 //===- SimplifyStructRegSignatures.cpp - struct regs to struct pointers----===// | |
| 2 // | |
| 3 // The LLVM Compiler Infrastructure | |
| 4 // | |
| 5 // This file is distributed under the University of Illinois Open Source | |
| 6 // License. See LICENSE.TXT for details. | |
| 7 // | |
| 8 //===----------------------------------------------------------------------===// | |
| 9 // | |
| 10 // This pass replaces function signatures exposing struct registers | |
| 11 // to byval pointer-based signatures. | |
| 12 // | |
| 13 // There are 2 types of signatures that are thus changed: | |
| 14 // | |
| 15 // @foo(%some_struct %val) -> @foo(%some_struct* byval %val) | |
| 16 // and | |
| 17 // %someStruct @bar(<other_args>) -> void @bar(%someStruct* sret, <other_args>) | |
| 18 // | |
| 19 // Such function types may appear in other type declarations, for example: | |
| 20 // | |
| 21 // %a_struct = type { void (%some_struct)*, i32 } | |
| 22 // | |
| 23 // We map such types to corresponding types, mapping the function types | |
| 24 // appropriately: | |
| 25 // | |
| 26 // %a_struct.0 = type { void (%some_struct*)*, i32 } | |
| 27 //===----------------------------------------------------------------------===// | |
| 28 | |
| 29 #include <llvm/ADT/SmallString.h> | |
| 30 #include <llvm/IR/IRBuilder.h> | |
| 31 #include "llvm/ADT/ArrayRef.h" | |
| 32 #include "llvm/ADT/DenseSet.h" | |
| 33 #include "llvm/ADT/ilist.h" | |
| 34 #include "llvm/ADT/SetVector.h" | |
| 35 #include "llvm/ADT/SmallVector.h" | |
| 36 #include "llvm/ADT/Twine.h" | |
| 37 #include "llvm/IR/Argument.h" | |
| 38 #include "llvm/IR/Attributes.h" | |
| 39 #include "llvm/IR/BasicBlock.h" | |
| 40 #include "llvm/IR/DerivedTypes.h" | |
| 41 #include "llvm/IR/Function.h" | |
| 42 #include "llvm/IR/GlobalValue.h" | |
| 43 #include "llvm/IR/Instructions.h" | |
| 44 #include "llvm/IR/Module.h" | |
| 45 #include "llvm/IR/Type.h" | |
| 46 #include "llvm/IR/Use.h" | |
| 47 #include "llvm/IR/User.h" | |
| 48 #include "llvm/IR/Value.h" | |
| 49 #include "llvm/Pass.h" | |
| 50 #include "llvm/PassInfo.h" | |
| 51 #include "llvm/PassRegistry.h" | |
| 52 #include "llvm/PassSupport.h" | |
| 53 #include "llvm/Transforms/NaCl.h" | |
| 54 #include "llvm/Support/Debug.h" | |
| 55 | |
| 56 #include <cassert> | |
| 57 #include <cstddef> | |
| 58 | |
| 59 using namespace llvm; | |
| 60 | |
| 61 namespace { | |
| 62 | |
| 63 static const unsigned int TypicalFuncArity = 8; | |
| 64 static const unsigned int TypicalStructArity = 8; | |
| 65 | |
| 66 class MappingResult { | |
| 67 public: | |
| 68 MappingResult(Type *ATy, bool Chg) { | |
| 69 Ty = ATy; | |
| 70 Changed = Chg; | |
| 71 } | |
| 72 | |
| 73 bool isChanged() { return Changed; } | |
| 74 | |
| 75 Type *operator->() { return Ty; } | |
| 76 | |
| 77 operator Type *() { return Ty; } | |
| 78 | |
| 79 private: | |
| 80 Type *Ty; | |
| 81 bool Changed; | |
| 82 }; | |
| 83 | |
| 84 // Utility class. For any given type, get the associated type that is free of | |
| 85 // struct register arguments. | |
| 86 class TypeMapper { | |
| 87 public: | |
| 88 Type *getSimpleType(LLVMContext &Ctx, Type *Ty); | |
| 89 | |
| 90 private: | |
| 91 DenseMap<Type *, Type *> MappedTypes; | |
| 92 MappingResult | |
| 93 getSimpleArgumentType(LLVMContext &Ctx, Type *Ty, | |
| 94 DenseMap<StructType *, StructType *> &Tentatives); | |
| 95 MappingResult getSimpleAggregateTypeInternal( | |
| 96 LLVMContext &Ctx, Type *Ty, | |
| 97 DenseMap<StructType *, StructType *> &Tentatives); | |
| 98 | |
| 99 bool isChangedStruct(LLVMContext &Ctx, StructType *StructTy, | |
| 100 SmallVector<Type *, TypicalStructArity> &ElemTypes, | |
| 101 DenseMap<StructType *, StructType *> &Tentatives); | |
| 102 }; | |
| 103 | |
| 104 // This is a ModulePass because the pass recreates functions in | |
| 105 // order to change their signatures. | |
| 106 class SimplifyStructRegSignatures : public ModulePass { | |
| 107 public: | |
| 108 static char ID; | |
| 109 | |
| 110 SimplifyStructRegSignatures() : ModulePass(ID) { | |
| 111 initializeSimplifyStructRegSignaturesPass(*PassRegistry::getPassRegistry()); | |
| 112 } | |
| 113 virtual bool runOnModule(Module &M); | |
| 114 | |
| 115 private: | |
| 116 TypeMapper Mapper; | |
| 117 DenseSet<Function *> FunctionsToDelete; | |
| 118 SetVector<CallInst *> CallsToPatch; | |
| 119 SetVector<InvokeInst *> InvokesToPatch; | |
| 120 DenseMap<Function *, Function *> FunctionMap; | |
| 121 bool simplifyFunction(LLVMContext &Ctx, Function *OldFunc); | |
| 122 void scheduleCallsForCleanup(Function *NewFunc); | |
| 123 template <class TCall> | |
| 124 void fixCallSite(LLVMContext &Ctx, TCall *Call, unsigned PreferredAlignment); | |
| 125 void fixFunctionBody(LLVMContext &Ctx, Function *OldFunc, Function *NewFunc); | |
| 126 | |
| 127 template <class TCall> | |
| 128 TCall *fixCallTargetAndArguments(LLVMContext &Ctx, IRBuilder<> &Builder, | |
| 129 TCall *OldCall, Value *NewTarget, | |
| 130 FunctionType *NewType, | |
| 131 Value *ExtraArg = nullptr); | |
| 132 }; | |
| 133 } | |
| 134 | |
| 135 char SimplifyStructRegSignatures::ID = 0; | |
| 136 | |
| 137 INITIALIZE_PASS( | |
| 138 SimplifyStructRegSignatures, "simplify-struct-reg-signatures", | |
| 139 "Simplify function signatures by removing struct register parameters", | |
| 140 false, false) | |
| 141 | |
| 142 // The type is "simple" if it does not recursively reference a | |
| 143 // function type with at least an operand (arg or return) typed as struct | |
| 144 // register. | |
| 145 Type *TypeMapper::getSimpleType(LLVMContext &Ctx, Type *Ty) { | |
| 146 auto Found = MappedTypes.find(Ty); | |
| 147 if (Found != MappedTypes.end()) { | |
| 148 return Found->second; | |
| 149 } | |
| 150 | |
| 151 DenseMap<StructType *, StructType *> Tentatives; | |
| 152 auto Ret = getSimpleAggregateTypeInternal(Ctx, Ty, Tentatives); | |
| 153 assert(Tentatives.size() == 0); | |
| 154 | |
| 155 if (!Ty->isStructTy()) { | |
| 156 // Structs are memoized in getSimpleAggregateTypeInternal. | |
| 157 MappedTypes[Ty] = Ret; | |
| 158 } | |
| 159 return Ret; | |
| 160 } | |
| 161 | |
| 162 // Transforms any type that could transitively reference a function pointer | |
| 163 // into a simplified type. | |
| 164 // We enter this function trying to determine the mapping of a type. Because | |
| 165 // of how structs are handled (not interned by llvm - see further comments | |
| 166 // below) we may be working with temporary types - types (pointers, for example) | |
| 167 // transitively referencing "tentative" structs. For that reason, we do not | |
| 168 // memoize anything here, except for structs. The latter is so that we avoid | |
| 169 // unnecessary repeated creation of types (pointers, function types, etc), | |
| 170 // as we try to map a given type. | |
| 171 MappingResult TypeMapper::getSimpleAggregateTypeInternal( | |
| 172 LLVMContext &Ctx, Type *Ty, | |
| 173 DenseMap<StructType *, StructType *> &Tentatives) { | |
| 174 // Leverage the map for types we encounter on the way. | |
| 175 auto Found = MappedTypes.find(Ty); | |
| 176 if (Found != MappedTypes.end()) { | |
| 177 return {Found->second, Found->second != Ty}; | |
| 178 } | |
| 179 | |
| 180 if (auto *OldFnTy = dyn_cast<FunctionType>(Ty)) { | |
| 181 Type *OldRetType = OldFnTy->getReturnType(); | |
| 182 Type *NewRetType = OldRetType; | |
| 183 Type *Void = Type::getVoidTy(Ctx); | |
| 184 SmallVector<Type *, TypicalFuncArity> NewArgs; | |
| 185 bool Changed = false; | |
| 186 // Struct register returns become the first parameter of the new FT. | |
| 187 // The new FT has void for the return type | |
| 188 if (OldRetType->isAggregateType()) { | |
| 189 NewRetType = Void; | |
| 190 Changed = true; | |
| 191 NewArgs.push_back(getSimpleArgumentType(Ctx, OldRetType, Tentatives)); | |
| 192 } | |
| 193 for (auto OldParam : OldFnTy->params()) { | |
| 194 auto NewType = getSimpleArgumentType(Ctx, OldParam, Tentatives); | |
| 195 Changed |= NewType.isChanged(); | |
| 196 NewArgs.push_back(NewType); | |
| 197 } | |
| 198 Type *NewFuncType = | |
| 199 FunctionType::get(NewRetType, NewArgs, OldFnTy->isVarArg()); | |
| 200 return {NewFuncType, Changed}; | |
| 201 } | |
| 202 | |
| 203 if (auto PtrTy = dyn_cast<PointerType>(Ty)) { | |
| 204 auto NewTy = getSimpleAggregateTypeInternal( | |
| 205 Ctx, PtrTy->getPointerElementType(), Tentatives); | |
| 206 | |
| 207 return {NewTy->getPointerTo(PtrTy->getAddressSpace()), NewTy.isChanged()}; | |
| 208 } | |
| 209 | |
| 210 if (auto ArrTy = dyn_cast<ArrayType>(Ty)) { | |
| 211 auto NewTy = getSimpleAggregateTypeInternal( | |
| 212 Ctx, ArrTy->getArrayElementType(), Tentatives); | |
| 213 return {ArrayType::get(NewTy, ArrTy->getArrayNumElements()), | |
| 214 NewTy.isChanged()}; | |
| 215 } | |
| 216 | |
| 217 if (auto VecTy = dyn_cast<VectorType>(Ty)) { | |
| 218 auto NewTy = getSimpleAggregateTypeInternal( | |
| 219 Ctx, VecTy->getVectorElementType(), Tentatives); | |
| 220 return {VectorType::get(NewTy, VecTy->getVectorNumElements()), | |
| 221 NewTy.isChanged()}; | |
| 222 } | |
| 223 | |
| 224 // LLVM doesn't intern identified structs (the ones with a name). This, | |
| 225 // together with the fact that such structs can be recursive, | |
| 226 // complicates things a bit. We want to make sure that we only change | |
| 227 // "unsimplified" structs (those that somehow reference funcs that | |
| 228 // are not simple). | |
| 229 // We don't want to change "simplified" structs, otherwise converting | |
| 230 // instruction types will become trickier. | |
| 231 if (auto StructTy = dyn_cast<StructType>(Ty)) { | |
| 232 SmallVector<Type *, TypicalStructArity> ElemTypes; | |
| 233 if (!StructTy->isLiteral()) { | |
| 234 // Literals - struct without a name - cannot be recursive, so we | |
| 235 // don't need to form tentatives. | |
| 236 auto Found = Tentatives.find(StructTy); | |
| 237 | |
| 238 // Having a tentative means we are in a recursion trying to map this | |
| 239 // particular struct, so arriving back to it is not a change. | |
| 240 // We will determine if this struct is actually | |
| 241 // changed by checking its other fields. | |
| 242 if (Found != Tentatives.end()) { | |
| 243 return {Found->second, false}; | |
| 244 } | |
| 245 // We have never seen this struct, so we start a tentative. | |
| 246 std::string NewName = StructTy->getStructName(); | |
| 247 NewName += ".simplified"; | |
| 248 StructType *Tentative = | |
| 249 StructType::create(Ctx, NewName); | |
| 250 Tentatives[StructTy] = Tentative; | |
| 251 | |
| 252 bool Changed = isChangedStruct(Ctx, StructTy, ElemTypes, Tentatives); | |
| 253 | |
| 254 Tentatives.erase(StructTy); | |
| 255 // We can now decide the mapping of the struct. We will register it | |
| 256 // early with MappedTypes, to avoid leaking tentatives unnecessarily. | |
| 257 // We are leaking the created struct here, but there is no way to | |
| 258 // correctly delete it. | |
| 259 if (!Changed) { | |
| 260 return {MappedTypes[StructTy] = StructTy, false}; | |
| 261 } else { | |
| 262 Tentative->setBody(ElemTypes, StructTy->isPacked()); | |
| 263 return {MappedTypes[StructTy] = Tentative, true}; | |
| 264 } | |
| 265 } else { | |
| 266 bool Changed = isChangedStruct(Ctx, StructTy, ElemTypes, Tentatives); | |
| 267 return {MappedTypes[StructTy] = | |
| 268 StructType::get(Ctx, ElemTypes, StructTy->isPacked()), | |
| 269 Changed}; | |
| 270 } | |
| 271 } | |
| 272 | |
| 273 // Anything else stays the same. | |
| 274 return {Ty, false}; | |
| 275 } | |
| 276 | |
| 277 bool TypeMapper::isChangedStruct( | |
| 278 LLVMContext &Ctx, StructType *StructTy, | |
| 279 SmallVector<Type *, TypicalStructArity> &ElemTypes, | |
| 280 DenseMap<StructType *, StructType *> &Tentatives) { | |
| 281 bool Changed = false; | |
| 282 unsigned StructElemCount = StructTy->getStructNumElements(); | |
| 283 for (unsigned I = 0; I < StructElemCount; I++) { | |
| 284 auto NewElem = getSimpleAggregateTypeInternal( | |
| 285 Ctx, StructTy->getStructElementType(I), Tentatives); | |
| 286 ElemTypes.push_back(NewElem); | |
| 287 Changed |= NewElem.isChanged(); | |
| 288 } | |
| 289 return Changed; | |
| 290 } | |
| 291 | |
| 292 // Get the simplified type of a function argument. | |
| 293 MappingResult TypeMapper::getSimpleArgumentType( | |
| 294 LLVMContext &Ctx, Type *Ty, | |
| 295 DenseMap<StructType *, StructType *> &Tentatives) { | |
| 296 // struct registers become pointers to simple structs | |
| 297 if (Ty->isAggregateType()) { | |
| 298 return MappingResult( | |
| 299 PointerType::get(getSimpleAggregateTypeInternal(Ctx, Ty, Tentatives), | |
| 300 0), | |
| 301 true); | |
| 302 } | |
| 303 | |
| 304 return getSimpleAggregateTypeInternal(Ctx, Ty, Tentatives); | |
| 305 } | |
| 306 | |
| 307 // Apply 'byval' to func arguments that used to be struct regs. | |
| 308 // Apply 'sret' to the argument corresponding to the return in the old | |
| 309 // signature. | |
| 310 static void ApplyByValAndSRet(Function *OldFunc, Function *NewFunc) { | |
| 311 // When calling addAttribute, the first one refers to the function, so we | |
| 312 // skip past that. | |
| 313 unsigned ArgOffset = 1; | |
| 314 if (OldFunc->getReturnType()->isAggregateType()) { | |
| 315 NewFunc->addAttribute(1, Attribute::AttrKind::StructRet); | |
| 316 ArgOffset++; | |
| 317 } | |
| 318 | |
| 319 auto &NewArgList = NewFunc->getArgumentList(); | |
| 320 auto NewArg = NewArgList.begin(); | |
| 321 for (const Argument &OldArg : OldFunc->getArgumentList()) { | |
| 322 if (OldArg.getType()->isAggregateType()) { | |
| 323 NewFunc->addAttribute(NewArg->getArgNo() + ArgOffset, | |
| 324 Attribute::AttrKind::ByVal); | |
| 325 } | |
| 326 NewArg++; | |
| 327 } | |
| 328 } | |
| 329 | |
| 330 // Update the arg names for a newly created function. | |
| 331 static void UpdateArgNames(Function *OldFunc, Function *NewFunc) { | |
| 332 auto NewArgIter = NewFunc->arg_begin(); | |
| 333 if (OldFunc->getReturnType()->isAggregateType()) { | |
| 334 NewArgIter->setName("retVal"); | |
| 335 NewArgIter++; | |
| 336 } | |
| 337 | |
| 338 for (const Argument &OldArg : OldFunc->args()) { | |
| 339 Argument *NewArg = NewArgIter++; | |
| 340 NewArg->setName(OldArg.getName() + | |
| 341 (OldArg.getType()->isAggregateType() ? ".ptr" : "")); | |
| 342 } | |
| 343 } | |
| 344 | |
| 345 // Replace all uses of an old value with a new one, disregarding the type. We | |
| 346 // correct the types after we wire the new parameters in, in fixFunctionBody. | |
| 347 static void BlindReplace(Value *Old, Value *New) { | |
| 348 for (auto UseIter = Old->use_begin(), E = Old->use_end(); E != UseIter;) { | |
| 349 Use &AUse = *(UseIter++); | |
| 350 AUse.set(New); | |
| 351 } | |
| 352 } | |
| 353 | |
| 354 // Adapt the body of a function for the new arguments. | |
| 355 static void ConvertArgumentValue(Value *Old, Value *New, | |
| 356 Instruction *InsPoint) { | |
| 357 if (Old == New) | |
| 358 return; | |
| 359 | |
| 360 if (Old->getType() == New->getType()) { | |
| 361 Old->replaceAllUsesWith(New); | |
| 362 New->takeName(Old); | |
| 363 return; | |
| 364 } | |
| 365 | |
| 366 bool IsAggregateToPtr = | |
| 367 Old->getType()->isAggregateType() && New->getType()->isPointerTy(); | |
| 368 BlindReplace(Old, (IsAggregateToPtr | |
| 369 ? new LoadInst(New, Old->getName() + ".sreg", InsPoint) | |
| 370 : New)); | |
| 371 } | |
| 372 | |
| 373 // Fix returns. Return true if fixes were needed. | |
| 374 static void FixReturn(Function *OldFunc, Function *NewFunc) { | |
| 375 | |
| 376 Argument *FirstNewArg = NewFunc->getArgumentList().begin(); | |
| 377 | |
| 378 for (auto BIter = NewFunc->begin(), LastBlock = NewFunc->end(); | |
| 379 LastBlock != BIter;) { | |
| 380 BasicBlock *BB = BIter++; | |
| 381 for (auto IIter = BB->begin(), LastI = BB->end(); LastI != IIter;) { | |
| 382 Instruction *Instr = IIter++; | |
| 383 if (ReturnInst *Ret = dyn_cast<ReturnInst>(Instr)) { | |
| 384 auto RetVal = Ret->getReturnValue(); | |
| 385 IRBuilder<> Builder(Ret); | |
| 386 StoreInst *Store = Builder.CreateStore(RetVal, FirstNewArg); | |
| 387 Store->setAlignment(FirstNewArg->getParamAlignment()); | |
| 388 Builder.CreateRetVoid(); | |
| 389 Ret->eraseFromParent(); | |
| 390 } | |
| 391 } | |
| 392 } | |
| 393 } | |
| 394 | |
| 395 // TODO (mtrofin): is this comprehensive? | |
| 396 template <class TCall> | |
| 397 void CopyCallAttributesAndMetadata(TCall *Orig, TCall *NewCall) { | |
| 398 NewCall->setCallingConv(Orig->getCallingConv()); | |
| 399 NewCall->setAttributes(NewCall->getAttributes().addAttributes( | |
| 400 Orig->getContext(), AttributeSet::FunctionIndex, | |
| 401 Orig->getAttributes().getFnAttributes())); | |
| 402 NewCall->takeName(Orig); | |
| 403 } | |
| 404 | |
| 405 static InvokeInst *CreateCallFrom(InvokeInst *Orig, Value *Target, | |
| 406 ArrayRef<Value *> &Args, | |
| 407 IRBuilder<> &Builder) { | |
| 408 auto Ret = Builder.CreateInvoke(Target, Orig->getNormalDest(), | |
| 409 Orig->getUnwindDest(), Args); | |
| 410 CopyCallAttributesAndMetadata(Orig, Ret); | |
| 411 return Ret; | |
| 412 } | |
| 413 | |
| 414 static CallInst *CreateCallFrom(CallInst *Orig, Value *Target, | |
| 415 ArrayRef<Value *> &Args, IRBuilder<> &Builder) { | |
| 416 | |
| 417 CallInst *Ret = Builder.CreateCall(Target, Args); | |
| 418 Ret->setTailCallKind(Orig->getTailCallKind()); | |
| 419 CopyCallAttributesAndMetadata(Orig, Ret); | |
| 420 return Ret; | |
| 421 } | |
| 422 | |
| 423 // Fix a call site by handing return type changes and/or parameter type and | |
| 424 // attribute changes. | |
| 425 template <class TCall> | |
| 426 void SimplifyStructRegSignatures::fixCallSite(LLVMContext &Ctx, TCall *OldCall, | |
| 427 unsigned PreferredAlignment) { | |
| 428 Value *NewTarget = OldCall->getCalledValue(); | |
| 429 | |
| 430 if (Function *CalledFunc = dyn_cast<Function>(NewTarget)) { | |
| 431 NewTarget = this->FunctionMap[CalledFunc]; | |
| 432 } | |
| 433 assert(NewTarget); | |
| 434 | |
| 435 FunctionType *NewType = cast<FunctionType>( | |
| 436 Mapper.getSimpleType(Ctx, NewTarget->getType())->getPointerElementType()); | |
| 437 | |
| 438 Type *OldRetType = OldCall->getType(); | |
| 439 const bool IsSRet = | |
| 440 !OldCall->getType()->isVoidTy() && NewType->getReturnType()->isVoidTy(); | |
| 441 | |
| 442 IRBuilder<> Builder(OldCall); | |
| 443 if (IsSRet) { | |
| 444 AllocaInst *Alloca = Builder.CreateAlloca(OldRetType); | |
| 445 Alloca->takeName(OldCall); | |
| 446 Alloca->setAlignment(PreferredAlignment); | |
| 447 | |
| 448 auto *NewCall = fixCallTargetAndArguments(Ctx, Builder, OldCall, NewTarget, | |
| 449 NewType, Alloca); | |
| 450 assert(NewCall); | |
| 451 LoadInst *Load = Builder.CreateLoad(Alloca, Alloca->getName() + ".sreg"); | |
| 452 Load->setAlignment(Alloca->getAlignment()); | |
| 453 OldCall->replaceAllUsesWith(Load); | |
| 454 } else { | |
| 455 auto *NewCall = | |
| 456 fixCallTargetAndArguments(Ctx, Builder, OldCall, NewTarget, NewType); | |
| 457 OldCall->replaceAllUsesWith(NewCall); | |
| 458 } | |
| 459 | |
| 460 OldCall->eraseFromParent(); | |
| 461 } | |
| 462 | |
| 463 template <class TCall> | |
| 464 TCall *SimplifyStructRegSignatures::fixCallTargetAndArguments( | |
| 465 LLVMContext &Ctx, IRBuilder<> &Builder, TCall *OldCall, Value *NewTarget, | |
| 466 FunctionType *NewType, Value *ExtraArg) { | |
| 467 SmallSetVector<unsigned, TypicalFuncArity> ByRefPlaces; | |
| 468 SmallVector<Value *, TypicalFuncArity> NewArgs; | |
| 469 | |
| 470 unsigned argOffset = ExtraArg ? 1 : 0; | |
| 471 if (ExtraArg) | |
| 472 NewArgs.push_back(ExtraArg); | |
| 473 | |
| 474 for (unsigned ArgPos = 0; | |
| 475 ArgPos < NewType->getFunctionNumParams() - argOffset; ArgPos++) { | |
| 476 | |
| 477 Use &OldArgUse = OldCall->getOperandUse(ArgPos); | |
| 478 Value *OldArg = OldArgUse; | |
| 479 Type *OldArgType = OldArg->getType(); | |
| 480 unsigned NewArgPos = OldArgUse.getOperandNo() + argOffset; | |
| 481 Type *NewArgType = NewType->getFunctionParamType(NewArgPos); | |
| 482 | |
| 483 if (OldArgType != NewArgType && OldArgType->isAggregateType()) { | |
| 484 AllocaInst *Alloca = | |
| 485 Builder.CreateAlloca(OldArgType, nullptr, OldArg->getName() + ".ptr"); | |
| 486 Builder.CreateStore(OldArg, Alloca); | |
| 487 ByRefPlaces.insert(NewArgPos); | |
| 488 NewArgs.push_back(Alloca); | |
| 489 } else { | |
| 490 NewArgs.push_back(OldArg); | |
| 491 } | |
| 492 } | |
| 493 | |
| 494 ArrayRef<Value *> ArrRef = NewArgs; | |
| 495 TCall *NewCall = CreateCallFrom(OldCall, NewTarget, ArrRef, Builder); | |
| 496 | |
| 497 // Copy the attributes over, and add byref/sret as necessary. | |
| 498 const AttributeSet &OldAttrSet = OldCall->getAttributes(); | |
| 499 const AttributeSet &NewAttrSet = NewCall->getAttributes(); | |
| 500 | |
| 501 for (unsigned I = 0; I < NewCall->getNumArgOperands(); I++) { | |
| 502 NewCall->setAttributes(NewAttrSet.addAttributes( | |
| 503 Ctx, I + argOffset + 1, OldAttrSet.getParamAttributes(I + 1))); | |
| 504 if (ByRefPlaces.count(I)) { | |
| 505 NewCall->addAttribute(I + 1, Attribute::ByVal); | |
| 506 } | |
| 507 } | |
| 508 | |
| 509 if (ExtraArg) { | |
| 510 NewAttrSet.addAttributes(Ctx, 1, OldAttrSet.getRetAttributes()); | |
| 511 NewCall->addAttribute(1, Attribute::StructRet); | |
| 512 } else { | |
| 513 NewCall->setAttributes(NewAttrSet.addAttributes( | |
| 514 Ctx, AttributeSet::ReturnIndex, OldAttrSet.getRetAttributes())); | |
| 515 } | |
| 516 return NewCall; | |
| 517 } | |
| 518 | |
| 519 void SimplifyStructRegSignatures::scheduleCallsForCleanup(Function *NewFunc) { | |
| 520 for (auto &BBIter : NewFunc->getBasicBlockList()) { | |
| 521 for (auto &IIter : BBIter.getInstList()) { | |
| 522 if (CallInst *Call = dyn_cast<CallInst>(&IIter)) { | |
| 523 CallsToPatch.insert(Call); | |
| 524 } else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(&IIter)) { | |
| 525 InvokesToPatch.insert(Invoke); | |
| 526 } | |
| 527 } | |
| 528 } | |
| 529 } | |
| 530 | |
| 531 // Change function body in the light of type changes. | |
| 532 void SimplifyStructRegSignatures::fixFunctionBody(LLVMContext &Ctx, | |
| 533 Function *OldFunc, | |
| 534 Function *NewFunc) { | |
| 535 if (NewFunc->empty()) | |
| 536 return; | |
| 537 | |
| 538 bool returnWasFixed = OldFunc->getReturnType()->isAggregateType(); | |
| 539 | |
| 540 Instruction *InsPoint = NewFunc->begin()->begin(); | |
| 541 auto NewArgIter = NewFunc->arg_begin(); | |
| 542 // Advance one more if we used to return a struct register. | |
| 543 if (returnWasFixed) | |
| 544 NewArgIter++; | |
| 545 | |
| 546 // Wire new parameters in. | |
| 547 for (auto ArgIter = OldFunc->arg_begin(), E = OldFunc->arg_end(); | |
| 548 E != ArgIter;) { | |
| 549 Argument *OldArg = ArgIter++; | |
| 550 Argument *NewArg = NewArgIter++; | |
| 551 ConvertArgumentValue(OldArg, NewArg, InsPoint); | |
| 552 } | |
| 553 | |
| 554 // Now fix instruction types. We know that each value could only possibly be | |
| 555 // of a simplified type. At the end of this, call sites will be invalid, but | |
| 556 // we handle that afterwards, to make sure we have all the functions changed | |
| 557 // first (so that calls have valid targets) | |
| 558 for (auto BBIter = NewFunc->begin(), LBlock = NewFunc->end(); | |
| 559 LBlock != BBIter;) { | |
| 560 auto Block = BBIter++; | |
| 561 for (auto IIter = Block->begin(), LIns = Block->end(); LIns != IIter;) { | |
| 562 auto Instr = IIter++; | |
| 563 Instr->mutateType(Mapper.getSimpleType(Ctx, Instr->getType())); | |
| 564 } | |
| 565 } | |
| 566 if (returnWasFixed) | |
| 567 FixReturn(OldFunc, NewFunc); | |
| 568 } | |
| 569 | |
| 570 // Ensure function is simplified, returning true if the function | |
| 571 // had to be changed. | |
| 572 bool SimplifyStructRegSignatures::simplifyFunction(LLVMContext &Ctx, | |
| 573 Function *OldFunc) { | |
| 574 FunctionType *OldFT = OldFunc->getFunctionType(); | |
| 575 FunctionType *NewFT = cast<FunctionType>(Mapper.getSimpleType(Ctx, OldFT)); | |
| 576 | |
| 577 Function *&AssociatedFctLoc = FunctionMap[OldFunc]; | |
| 578 if (NewFT != OldFT) { | |
| 579 Function *NewFunc = Function::Create(NewFT, OldFunc->getLinkage()); | |
| 580 AssociatedFctLoc = NewFunc; | |
| 581 | |
| 582 NewFunc->copyAttributesFrom(OldFunc); | |
| 583 OldFunc->getParent()->getFunctionList().insert(OldFunc, NewFunc); | |
| 584 NewFunc->takeName(OldFunc); | |
| 585 | |
| 586 UpdateArgNames(OldFunc, NewFunc); | |
| 587 ApplyByValAndSRet(OldFunc, NewFunc); | |
| 588 | |
| 589 NewFunc->getBasicBlockList().splice(NewFunc->begin(), | |
| 590 OldFunc->getBasicBlockList()); | |
| 591 | |
| 592 fixFunctionBody(Ctx, OldFunc, NewFunc); | |
| 593 FunctionsToDelete.insert(OldFunc); | |
| 594 } else { | |
| 595 AssociatedFctLoc = OldFunc; | |
| 596 } | |
| 597 scheduleCallsForCleanup(AssociatedFctLoc); | |
| 598 return NewFT != OldFT; | |
| 599 } | |
| 600 | |
| 601 bool SimplifyStructRegSignatures::runOnModule(Module &M) { | |
| 602 bool Changed = false; | |
| 603 | |
| 604 const DataLayout *DL = M.getDataLayout(); | |
| 605 unsigned PreferredAlignment = 0; | |
| 606 if (DL) | |
| 607 PreferredAlignment = DL->getStackAlignment(); | |
| 608 | |
| 609 LLVMContext &Ctx = M.getContext(); | |
| 610 // Change function signatures and fix a changed function body by | |
| 611 // wiring the new arguments. Call sites are unchanged at this point. | |
| 612 for (Module::iterator Iter = M.begin(), E = M.end(); Iter != E;) { | |
| 613 Function *Func = Iter++; | |
| 614 Changed |= simplifyFunction(Ctx, Func); | |
| 615 } | |
| 616 | |
| 617 // Fix call sites. | |
| 618 for (auto &CallToFix : CallsToPatch) { | |
| 619 fixCallSite(Ctx, CallToFix, PreferredAlignment); | |
| 620 } | |
| 621 | |
| 622 for (auto &InvokeToFix : InvokesToPatch) { | |
| 623 fixCallSite(Ctx, InvokeToFix, PreferredAlignment); | |
| 624 } | |
| 625 | |
| 626 // Delete leftover functions - the ones with old signatures. | |
|
jvoung (off chromium)
2015/03/17 16:25:45
Here is your first(?) driveby review =)
I didn't
Mircea Trofin
2015/03/18 18:41:42
Thanks!
| |
| 627 for (auto &ToDelete : FunctionsToDelete) { | |
| 628 ToDelete->eraseFromParent(); | |
| 629 } | |
| 630 | |
| 631 return Changed; | |
| 632 } | |
| 633 | |
| 634 ModulePass *llvm::createSimplifyStructRegSignaturesPass() { | |
| 635 return new SimplifyStructRegSignatures(); | |
| 636 } | |
| OLD | NEW |