OLD | NEW |
---|---|
(Empty) | |
1 //===- NormalizeStructRegSignatures.cpp - Change struct regs to struct ----===// | |
2 // pointers | |
3 // | |
4 // The LLVM Compiler Infrastructure | |
5 // | |
6 // This file is distributed under the University of Illinois Open Source | |
7 // License. See LICENSE.TXT for details. | |
8 // | |
9 //===----------------------------------------------------------------------===// | |
10 // We do not support struct registers in PNaCl. We remove them in 2 stages. | |
11 // In the first stage (this pass), we replace function signatures exposing them | |
12 // to byval pointer-based signatures: | |
13 // | |
14 // @foo(%some_struct %val) -> @foo(%some_struct* byval %val) | |
15 // or | |
16 // %someStruct @bar(<other_args>) -> void @bar(%someStruct* sret, <other_args>) | |
17 // | |
18 // We also adjust such a function's body and call sites by creating locals to | |
19 // convert to/from struct reg and struct* byval | |
20 // | |
21 // This affects more than function signatures. For example: | |
22 // | |
23 // %other_struct = type { i32, i32 } | |
24 // %struct = type { void (%other_struct)* } | |
25 // void %func(%struct* byval %s) | |
26 // | |
27 // must become: | |
28 // %other_struct = type {i32, i32} | |
29 // %struct.1 = type {void (%other_struct*)*} | |
30 // void %func(%struct.1* byval %s) | |
31 // | |
32 // The second removal stage happens in the ExpandStructRegs.cpp phase. | |
33 //===----------------------------------------------------------------------===// | |
34 | |
35 #include <stddef.h> | |
JF
2015/03/08 22:04:38
<cstddef> is more common.
Mircea Trofin
2015/03/09 21:21:29
Acknowledged.
| |
36 #include <cassert> | |
37 | |
38 #include "llvm/ADT/ArrayRef.h" | |
39 #include "llvm/ADT/ilist.h" | |
40 #include "llvm/ADT/DenseSet.h" | |
41 #include "llvm/ADT/SetVector.h" | |
42 #include "llvm/ADT/SmallVector.h" | |
43 #include "llvm/ADT/Twine.h" | |
44 #include "llvm/IR/Argument.h" | |
45 #include "llvm/IR/Attributes.h" | |
46 #include "llvm/IR/BasicBlock.h" | |
47 #include "llvm/IR/DerivedTypes.h" | |
48 #include "llvm/IR/Function.h" | |
49 #include "llvm/IR/GlobalValue.h" | |
50 #include "llvm/IR/Instructions.h" | |
51 #include "llvm/IR/Module.h" | |
52 #include "llvm/IR/Type.h" | |
53 #include "llvm/IR/Use.h" | |
54 #include "llvm/IR/User.h" | |
55 #include "llvm/IR/Value.h" | |
56 #include "llvm/Pass.h" | |
57 #include "llvm/PassInfo.h" | |
58 #include "llvm/PassRegistry.h" | |
59 #include "llvm/PassSupport.h" | |
60 #include "llvm/Transforms/NaCl.h" | |
JF
2015/03/08 22:04:38
You should sort these.
Mircea Trofin
2015/03/09 21:21:29
Done.
| |
61 | |
62 using namespace llvm; | |
63 | |
64 class MappingResult { | |
JF
2015/03/08 22:04:38
This should be in an anonymous namespace.
Mircea Trofin
2015/03/09 21:21:29
Done.
| |
65 public: | |
66 | |
67 MappingResult(Type *ATy, bool Chg) { | |
68 Ty = ATy; | |
69 Changed = Chg; | |
70 } | |
71 | |
72 bool isChanged() { | |
73 return Changed; | |
74 } | |
75 | |
76 Type *operator->() { | |
77 return Ty; | |
78 } | |
79 | |
80 operator Type*() { | |
81 return Ty; | |
82 } | |
83 private: | |
84 Type *Ty; | |
85 bool Changed; | |
86 }; | |
87 | |
88 // utility class. For any given type, get the associated type that is struct | |
89 // reg argument - free. | |
90 class TypeMapper { | |
91 public: | |
92 Type *getCompliantType(Type *Ty); | |
93 private: | |
94 DenseMap<Type*, Type*> MappedTypes; | |
95 MappingResult getCompliantArgumentType(Type *Ty); | |
96 MappingResult getCompliantAggregateTypeInternal(Type *Ty); | |
97 }; | |
98 | |
99 namespace { | |
100 // This is a ModulePass because the pass recreates functions in | |
101 // order to change their signatures. | |
102 class NormalizeStructRegSignatures : public ModulePass { | |
103 public: | |
104 static char ID; | |
105 | |
106 NormalizeStructRegSignatures() : | |
107 ModulePass(ID) { | |
108 initializeNormalizeStructRegSignaturesPass( | |
109 *PassRegistry::getPassRegistry()); | |
110 } | |
111 virtual bool runOnModule(Module &M); | |
112 private: | |
113 TypeMapper Mapper; | |
114 DenseSet<Function*> FunctionsToDelete; | |
115 DenseSet<CallInst*> CallsToPatch; | |
116 DenseSet<InvokeInst*> InvokesToPatch; | |
117 DenseMap<Function*, Function*> FunctionMap; | |
118 bool ensurePNaClComplyingFunction(Function *OldFunc, Module &M); | |
JF
2015/03/08 22:04:38
I'd avoid putting "PNaCl" in the name: when we ups
Mircea Trofin
2015/03/09 21:21:29
Done.
| |
119 void FixFunctionBody(Function *OldFunc, Function *NewFunc); | |
120 void ScheduleCallsForCleanup(Function *NewFunc); | |
121 template <class TCall> void FixCallSite(TCall *Call); | |
122 }; | |
123 } | |
124 | |
125 const unsigned int TypicalArity = 8; | |
JF
2015/03/08 22:04:38
static
Mircea Trofin
2015/03/09 21:21:29
Done.
| |
126 | |
127 char NormalizeStructRegSignatures::ID = 0; | |
128 | |
129 INITIALIZE_PASS(NormalizeStructRegSignatures, "normalize-struct-reg-signatures", | |
130 "Normalize function signatures by removing struct register parameters", | |
131 false, | |
132 false) | |
133 | |
134 // The type is "compliant" if it does not recursively reference a | |
135 // function type with at least an operand (arg or return) typed as struct | |
136 // register | |
137 Type *TypeMapper::getCompliantType(Type *Ty) { | |
138 if (MappedTypes.count(Ty)) | |
139 return MappedTypes[Ty]; | |
140 return MappedTypes[Ty] = getCompliantAggregateTypeInternal(Ty); | |
141 } | |
142 | |
143 // transforms any type that could transitively reference a function pointer | |
144 // into a compliant type. | |
145 MappingResult TypeMapper:: | |
146 getCompliantAggregateTypeInternal(Type *Ty) { | |
147 LLVMContext &Ctx = Ty->getContext(); | |
148 if (Ty->isFunctionTy()) { | |
149 FunctionType *OldFnTy = dyn_cast<FunctionType>(Ty); | |
JF
2015/03/08 22:04:38
The LLVM-idiomatic way is:
if (FunctionType *Old
Mircea Trofin
2015/03/09 21:21:29
Done.
| |
150 Type *OldRetType = OldFnTy->getReturnType(); | |
151 Type *NewRetType = OldRetType; | |
152 Type *Void = Type::getVoidTy(Ctx); | |
153 SmallVector<Type*, TypicalArity> NewArgs; | |
154 bool HasChanges = false; | |
155 // struct register returns become the first parameter of the new FT. | |
156 // the new FT has void for the return type | |
157 if (OldRetType->isAggregateType()) { | |
158 NewRetType = Void; | |
159 HasChanges = true; | |
160 NewArgs.push_back(getCompliantArgumentType(OldRetType)); | |
161 } | |
162 for (auto OldParam = OldFnTy->param_begin(), E = OldFnTy->param_end(); | |
163 OldParam != E; ++OldParam) { | |
164 auto NewType = getCompliantArgumentType(*OldParam); | |
165 HasChanges |= NewType.isChanged(); | |
166 NewArgs.push_back(NewType); | |
167 } | |
168 Type *NewFuncType = FunctionType::get(NewRetType, NewArgs, false); | |
169 return MappingResult(NewFuncType, HasChanges); | |
170 } | |
171 | |
172 if (Ty->isPointerTy()) { | |
173 auto NewTy = getCompliantAggregateTypeInternal( | |
174 Ty->getPointerElementType()); | |
175 | |
176 return MappingResult( | |
177 NewTy->getPointerTo(), | |
178 NewTy.isChanged()); | |
179 } | |
180 | |
181 if (Ty->isArrayTy()) { | |
182 auto NewTy = getCompliantAggregateTypeInternal( | |
183 Ty->getArrayElementType()); | |
184 return MappingResult( | |
185 ArrayType::get( | |
186 NewTy, | |
187 Ty->getArrayNumElements()), | |
188 NewTy.isChanged()); | |
189 } | |
190 | |
191 if (Ty->isVectorTy()) { | |
192 auto NewTy = getCompliantAggregateTypeInternal( | |
193 Ty->getVectorElementType()); | |
194 return MappingResult( | |
195 VectorType::get( | |
196 NewTy, | |
197 Ty->getVectorNumElements()), | |
198 NewTy.isChanged()); | |
199 } | |
200 | |
201 if (Ty->isAggregateType()) { | |
202 StructType *StructTy = dyn_cast<StructType>(Ty); | |
203 if (!StructTy->isLiteral()) { | |
204 // LLVM doesn't intern identified structs (the ones with a name). This, | |
205 // together with the fact that such structs can be recursive, | |
206 // complicates things a bit. We want to make sure that we only change | |
207 // "problem" structs (those that somehow reference noncompliant funcs). | |
208 // We don't want to change compliant structs, otherwise converting | |
209 // instruction types will become trickier. | |
210 Type* &Loc = MappedTypes[StructTy]; | |
JF
2015/03/08 22:04:38
Pointer ref is pretty unusual. Could you instead g
Mircea Trofin
2015/03/09 21:21:29
Yes, but then we spend twice on the hash map locat
| |
211 if (!Loc) { | |
212 // We don't have a mapping, and we don't know if the struct is recursive | |
213 // so we create an empty one and hypothesize that it is the | |
214 // mapping. | |
215 Loc = StructType::create(Ctx, StructTy->getStructName()); | |
216 } else { | |
217 // we either have a finished mapping or this is the empty placeholder | |
218 // created above, and we are in the process of finalizing it. | |
219 // 1) if this is a mapping, it must have the same element count | |
220 // as the original struct, so we mark a change if the types are | |
221 // different objects | |
222 // 2) if this is a placeholder, the element count will differ. | |
223 // Since we don't know yet if this is a change or not - because we | |
224 // are constructing the mapping - we don't mark as change. We decide | |
225 // if it is a change below, based on the other struct elements. | |
226 bool hasChanged = | |
227 StructTy != Loc && | |
228 StructTy->getStructNumElements() == Loc->getStructNumElements(); | |
229 return MappingResult(Loc, hasChanged); | |
230 } | |
231 } | |
232 | |
233 SmallVector<Type*, 8> ElemTypes; | |
JF
2015/03/08 22:04:38
TypicalArity?
Mircea Trofin
2015/03/09 21:21:29
Only I meant TypicalArity to be for functions :) B
| |
234 bool HasChanges = false; | |
235 for (unsigned I = 0; I < Ty->getStructNumElements(); I++) { | |
JF
2015/03/08 22:04:38
I'd cache getStructNumElements. It's not expensive
Mircea Trofin
2015/03/09 21:21:29
Done.
| |
236 auto NewElem = | |
237 getCompliantAggregateTypeInternal( | |
238 Ty->getStructElementType(I)); | |
239 ElemTypes.push_back(NewElem); | |
240 HasChanges |= NewElem.isChanged(); | |
241 } | |
242 if (!HasChanges) { | |
243 // we are leaking the created struct here, but there is no way to | |
244 // correctly delete it | |
JF
2015/03/08 22:04:38
Missing period
| |
245 return MappingResult(MappedTypes[Ty] = Ty, false); | |
246 } | |
247 | |
248 if (StructTy->isLiteral()) { | |
249 return MappingResult( | |
250 MappedTypes[Ty] = StructType::get( | |
251 Ctx, ElemTypes, StructTy->isPacked()), | |
252 HasChanges); | |
253 } else { | |
254 Type* &Loc = MappedTypes[StructTy]; | |
JF
2015/03/08 22:04:38
Ditto on ptr ref.
Mircea Trofin
2015/03/09 21:21:29
Ack, but see the comment before.
| |
255 assert(Loc); | |
256 StructType *NewStruct = dyn_cast<StructType>(Loc); | |
257 NewStruct->setBody(ElemTypes, StructTy->isPacked()); | |
258 return MappingResult(MappedTypes[Ty] = NewStruct, true); | |
259 } | |
260 } | |
261 | |
262 // anything else stays the same. | |
263 return MappingResult(Ty, false); | |
264 } | |
265 | |
266 // get the PNaCl-compliant type of a function argument. | |
267 MappingResult TypeMapper::getCompliantArgumentType(Type *Ty) { | |
268 // struct registers become pointers to compliant structs | |
269 if (Ty->isAggregateType()) { | |
270 return MappingResult( | |
271 PointerType::get( | |
272 getCompliantAggregateTypeInternal(Ty), 0), | |
273 true); | |
274 } | |
275 | |
276 return getCompliantAggregateTypeInternal(Ty); | |
277 } | |
278 | |
279 // apply 'byval' to func arguments that used to be struct regs. | |
280 // apply 'sret' to the argument corresponding to the return in the old signature | |
281 static void ApplyByValAndSRet(Function *OldFunc, Function *NewFunc) { | |
282 auto const &OldArgList = OldFunc->getArgumentList(); | |
283 auto &NewArgList = NewFunc->getArgumentList(); | |
284 | |
285 // when calling addAttribute, the first one refers to the function, so we | |
286 // skip past that. | |
287 unsigned ArgOffset = 1; | |
288 if (OldFunc->getReturnType()->isAggregateType()) { | |
289 NewFunc->addAttribute(1, Attribute::AttrKind::StructRet); | |
290 ArgOffset++; | |
291 } | |
292 | |
293 auto NewArg = NewArgList.begin(); | |
294 for (const Argument &OldArg : OldArgList) { | |
295 if (OldArg.getType()->isAggregateType()) { | |
296 NewFunc->addAttribute(NewArg->getArgNo() + ArgOffset, | |
297 Attribute::AttrKind::ByVal); | |
298 } | |
299 NewArg++; | |
300 } | |
301 } | |
302 | |
303 // update the arg names for a newly created function | |
304 static void UpdateArgNames(Function *OldFunc, Function *NewFunc) { | |
305 auto NewArgIter = NewFunc->arg_begin(); | |
306 auto const &OldFuncArgs = OldFunc->args(); | |
307 if (OldFunc->getReturnType()->isAggregateType()) { | |
308 NewArgIter->setName("retVal"); | |
309 NewArgIter++; | |
310 } | |
311 | |
312 for (const Argument &OldArg : OldFuncArgs) { | |
313 Argument *NewArg = NewArgIter++; | |
314 if (OldArg.getType()->isAggregateType()) { | |
315 NewArg->setName(OldArg.getName() + ".ptr"); | |
316 } else { | |
317 NewArg->setName(OldArg.getName()); | |
318 } | |
319 } | |
320 } | |
321 | |
322 // replace all uses of an old value with a new one, disregarding the type. We | |
323 // correct the types separately | |
324 static void BlindReplace(Value *Old, Value *New) { | |
325 for (auto UseIter = Old->use_begin(), E = Old->use_end(); E != UseIter;) { | |
326 Use &AUse = *(UseIter++); | |
327 AUse.set(New); | |
328 } | |
329 } | |
330 | |
331 // adapt the body of a function for the new arguments | |
332 static void ConvertArgumentValue(Value *Old, | |
333 Value *New, Instruction *InsPoint) { | |
334 if (Old == New) | |
335 return; | |
336 | |
337 if (Old->getType() == New->getType()) { | |
338 Old->replaceAllUsesWith(New); | |
339 New->takeName(Old); | |
340 return; | |
341 } | |
342 | |
343 if (Old->getType()->isAggregateType() && | |
344 New->getType()->isPointerTy()) { | |
345 Value *Load = new LoadInst(New, Old->getName() + ".sreg", InsPoint); | |
346 BlindReplace(Old, Load); | |
347 } else { | |
348 BlindReplace(Old, New); | |
349 } | |
350 } | |
351 | |
352 // fix returns. Return true if fixes were needed | |
353 static void FixReturn(Function *OldFunc, Function *NewFunc) { | |
354 | |
355 Argument *FirstNewArg = NewFunc->getArgumentList().begin(); | |
356 | |
357 for (auto BIter = NewFunc->begin(), LastBlock = NewFunc->end(); | |
358 LastBlock != BIter;) { | |
359 BasicBlock *BB = BIter++; | |
360 for (auto IIter = BB->begin(), LastI = BB->end(); LastI != IIter;) { | |
361 Instruction *Instr = IIter++; | |
362 if (ReturnInst * Ret = dyn_cast<ReturnInst>(Instr)) { | |
363 auto &Ctx = Ret->getContext(); | |
364 auto RetVal = Ret->getReturnValue(); | |
365 ReturnInst *NewRet = | |
366 ReturnInst::Create(Ctx, nullptr, Ret); | |
367 Ret->eraseFromParent(); | |
368 Ret = nullptr; | |
369 new StoreInst(RetVal, FirstNewArg, NewRet); | |
370 } | |
371 } | |
372 } | |
373 } | |
374 | |
375 template <class TCall> | |
376 void CopyCallAttributesAndMetadata(TCall* Orig, TCall* NewCall) { | |
377 NewCall->setCallingConv(Orig->getCallingConv()); | |
378 NewCall->setAttributes( | |
379 NewCall->getAttributes().addAttributes(Orig->getContext(), | |
380 AttributeSet::FunctionIndex, | |
381 Orig->getAttributes().getFnAttributes())); | |
382 NewCall->setDebugLoc(Orig->getDebugLoc()); | |
383 } | |
384 | |
385 static InvokeInst *CreateCallFrom(InvokeInst *Orig, | |
386 Value *Target, ArrayRef<Value*> &Args) { | |
387 InvokeInst *Ret = InvokeInst::Create(Target, | |
388 Orig->getNormalDest(), Orig->getUnwindDest(), Args); | |
389 CopyCallAttributesAndMetadata(Orig, Ret); | |
390 return Ret; | |
391 } | |
392 | |
393 static CallInst *CreateCallFrom(CallInst *Orig, | |
394 Value *Target, ArrayRef<Value*> &Args) { | |
395 | |
396 CallInst *Ret = CallInst::Create(Target, Args); | |
397 | |
398 Ret->setTailCallKind(Orig->getTailCallKind()); | |
399 CopyCallAttributesAndMetadata(Orig, Ret); | |
400 return Ret; | |
401 } | |
402 | |
403 // fix a call site by handing return type changes and/or parameter type and | |
404 // attribute changes | |
405 template<class TCall> | |
406 void NormalizeStructRegSignatures::FixCallSite(TCall *OldCall) { | |
407 Value *NewTarget = OldCall->getCalledValue(); | |
408 | |
409 if (Function * CalledFunc = dyn_cast<Function>(NewTarget)) { | |
410 NewTarget = this->FunctionMap[CalledFunc]; | |
411 } | |
412 assert(NewTarget); | |
413 | |
414 FunctionType *NewType = | |
415 dyn_cast<FunctionType>( | |
416 Mapper.getCompliantType(NewTarget->getType())-> | |
417 getPointerElementType()); | |
418 | |
419 Type *OldRetType = OldCall->getType(); | |
420 const bool isSRet = !OldCall->getType()->isVoidTy() && | |
421 NewType->getReturnType()->isVoidTy(); | |
422 | |
423 const unsigned argOffset = isSRet ? 1 : 0; | |
424 | |
425 SmallVector<Value*, TypicalArity> NewArgs; | |
426 | |
427 if (isSRet) { | |
428 AllocaInst *Alloca = | |
429 new AllocaInst(OldRetType); | |
430 NewArgs.push_back(Alloca); | |
431 Alloca->insertBefore(OldCall); | |
432 | |
433 LoadInst *Load = | |
434 new LoadInst(Alloca, OldCall->getName() + ".sreg", | |
435 (Instruction*) nullptr); | |
436 Load->insertAfter(OldCall); | |
437 OldCall->replaceAllUsesWith(Load); | |
438 } | |
439 | |
440 SmallSetVector<unsigned, TypicalArity> ByRefPlaces; | |
441 | |
442 for (unsigned ArgPos = 0; | |
443 ArgPos < NewType->getFunctionNumParams() - argOffset; ArgPos++) { | |
444 | |
445 Use &OldArgUse = OldCall->getOperandUse(ArgPos); | |
446 Value *OldArg = OldArgUse; | |
447 Type *OldArgType = OldArg->getType(); | |
448 unsigned NewArgPos = OldArgUse.getOperandNo() + argOffset; | |
449 Type *NewArgType = NewType->getFunctionParamType(NewArgPos); | |
450 | |
451 if (OldArgType != NewArgType && OldArgType->isAggregateType()) { | |
452 AllocaInst *Alloca = | |
453 new AllocaInst(OldArgType, OldArg->getName() + ".ptr", OldCall); | |
454 new StoreInst(OldArg, Alloca, OldCall); | |
455 ByRefPlaces.insert(NewArgPos); | |
456 NewArgs.push_back(Alloca); | |
457 } else { | |
458 NewArgs.push_back(OldArg); | |
459 } | |
460 } | |
461 | |
462 ArrayRef<Value*> ArrRef = NewArgs; | |
463 TCall *NewCall = CreateCallFrom(OldCall, NewTarget, ArrRef); | |
464 | |
465 // copy the attributes over, and add byref/sret as necessary | |
466 const AttributeSet &OldAttrSet = OldCall->getAttributes(); | |
467 const AttributeSet &NewAttrSet = NewCall->getAttributes(); | |
468 LLVMContext &Ctx = OldCall->getContext(); | |
469 AttrBuilder Builder(OldAttrSet, 0); | |
470 | |
471 for (unsigned I = 0; I < NewCall->getNumArgOperands(); I++) { | |
472 NewCall->setAttributes( | |
473 NewAttrSet.addAttributes(Ctx, I + argOffset + 1, | |
474 OldAttrSet.getParamAttributes(I + 1))); | |
475 if (ByRefPlaces.count(I)) { | |
476 NewCall->addAttribute(I + 1, Attribute::AttrKind::ByVal); | |
477 } | |
478 } | |
479 | |
480 if (isSRet) { | |
481 NewAttrSet.addAttributes(Ctx, 1, OldAttrSet.getRetAttributes()); | |
482 NewCall->addAttribute(1, Attribute::AttrKind::StructRet); | |
483 } else { | |
484 NewCall->setAttributes( | |
485 NewAttrSet.addAttributes(Ctx, | |
486 AttributeSet::ReturnIndex, OldAttrSet.getRetAttributes())); | |
487 // if we still return something, this is the value to replace the old | |
488 // call with | |
489 OldCall->replaceAllUsesWith(NewCall); | |
490 } | |
491 | |
492 NewCall->insertBefore(OldCall); | |
493 OldCall->eraseFromParent(); | |
494 OldCall = NULL; | |
495 } | |
496 | |
497 void NormalizeStructRegSignatures::ScheduleCallsForCleanup(Function *NewFunc) { | |
498 for (auto &BBIter : NewFunc->getBasicBlockList()) { | |
499 for (auto &IIter : BBIter.getInstList()) { | |
500 if (CallInst * Call = dyn_cast<CallInst>(&IIter)) { | |
501 CallsToPatch.insert(Call); | |
502 } else if (InvokeInst * Invoke = dyn_cast<InvokeInst>(&IIter)) { | |
503 InvokesToPatch.insert(Invoke); | |
504 } | |
505 } | |
506 } | |
507 } | |
508 | |
509 // change function body in the light of type changes | |
510 void NormalizeStructRegSignatures:: | |
511 FixFunctionBody(Function *OldFunc, Function *NewFunc) { | |
512 if (NewFunc->empty()) | |
513 return; | |
514 | |
515 bool returnWasFixed = OldFunc->getReturnType()->isAggregateType(); | |
516 | |
517 Instruction *InsPoint = NewFunc->begin()->begin(); | |
518 auto NewArgIter = NewFunc->arg_begin(); | |
519 // advance one more if we used to return a struct register | |
520 if (returnWasFixed) | |
521 NewArgIter++; | |
522 | |
523 // wire new parameters in | |
524 for (auto ArgIter = OldFunc->arg_begin(), E = OldFunc->arg_end(); | |
525 E != ArgIter;) { | |
526 Argument *OldArg = ArgIter++; | |
527 Argument *NewArg = NewArgIter++; | |
528 ConvertArgumentValue(OldArg, NewArg, InsPoint); | |
529 } | |
530 | |
531 // now fix instruction types. Calls are dealt with separately, but we still | |
532 // update the types here. We know that each value could only possibly be | |
533 // of a compliant type. At the end of this, call sites will be invalid, but | |
534 // we handle that afterwards, to make sure we have all the functions changed | |
535 // first (so that calls have valid targets) | |
536 for (auto BBIter = NewFunc->begin(), LBlock = NewFunc->end(); | |
537 LBlock != BBIter;) { | |
538 auto Block = BBIter++; | |
539 for (auto IIter = Block->begin(), LIns = Block->end(); LIns != IIter;) { | |
540 auto Instr = IIter++; | |
541 Instr->mutateType(Mapper.getCompliantType(Instr->getType())); | |
542 } | |
543 } | |
544 if (returnWasFixed) | |
545 FixReturn(OldFunc, NewFunc); | |
546 } | |
547 | |
548 // Ensure function is PNaCl compliant, returning true if the function | |
549 // changed. | |
550 bool NormalizeStructRegSignatures:: | |
551 ensurePNaClComplyingFunction(Function *OldFunc, Module &M) { | |
552 FunctionType *OldFT = OldFunc->getFunctionType(); | |
553 FunctionType *NewFT = | |
554 dyn_cast<FunctionType>(Mapper.getCompliantType(OldFT)); | |
555 assert(NewFT); | |
556 | |
557 Function* &AssociatedFctLoc = FunctionMap[OldFunc]; | |
558 if (NewFT != OldFT) { | |
559 Function *NewFunc = Function::Create(NewFT, OldFunc->getLinkage()); | |
560 AssociatedFctLoc = NewFunc; | |
561 | |
562 NewFunc->copyAttributesFrom(OldFunc); | |
563 OldFunc->getParent()->getFunctionList().insert(OldFunc, NewFunc); | |
564 NewFunc->takeName(OldFunc); | |
565 | |
566 UpdateArgNames(OldFunc, NewFunc); | |
567 ApplyByValAndSRet(OldFunc, NewFunc); | |
568 | |
569 NewFunc->getBasicBlockList(). | |
570 splice(NewFunc->begin(), OldFunc->getBasicBlockList()); | |
571 | |
572 FixFunctionBody(OldFunc, NewFunc); | |
573 FunctionsToDelete.insert(OldFunc); | |
574 } else { | |
575 AssociatedFctLoc = OldFunc; | |
576 } | |
577 ScheduleCallsForCleanup(AssociatedFctLoc); | |
578 return NewFT != OldFT; | |
579 } | |
580 | |
581 bool NormalizeStructRegSignatures::runOnModule(Module &M) { | |
582 bool Changed = false; | |
583 | |
584 // change function signatures and fix a changed function body by | |
585 // wiring the new arguments. Call sites are unchanged at this point | |
586 for (Module::iterator Iter = M.begin(), E = M.end(); Iter != E;) { | |
587 Function *Func = Iter++; | |
588 Changed |= ensurePNaClComplyingFunction(Func, M); | |
589 } | |
590 | |
591 // fix call sites | |
592 for (auto &CallToFix : CallsToPatch) { | |
593 FixCallSite(CallToFix); | |
594 } | |
595 | |
596 for (auto &InvokeToFix : InvokesToPatch) { | |
597 FixCallSite(InvokeToFix); | |
598 } | |
599 | |
600 // delete leftover functions - the ones with old signatures | |
601 for (auto &ToDelete : FunctionsToDelete) { | |
602 // this also frees the memory | |
603 ToDelete->eraseFromParent(); | |
604 } | |
605 return Changed; | |
606 } | |
607 | |
608 ModulePass *llvm::createNormalizeStructRegSignaturesPass() { | |
609 return new NormalizeStructRegSignatures(); | |
610 } | |
OLD | NEW |