OLD | NEW |
---|---|
1 // Copyright 2011 the V8 project authors. All rights reserved. | 1 // Copyright 2011 the V8 project authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include <algorithm> | 5 #include <algorithm> |
6 | 6 |
7 #include "src/v8.h" | 7 #include "src/v8.h" |
8 | 8 |
9 #include "src/base/atomicops.h" | 9 #include "src/base/atomicops.h" |
10 #include "src/counters.h" | 10 #include "src/counters.h" |
(...skipping 361 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
372 during_gc_ = false; | 372 during_gc_ = false; |
373 #ifdef VERIFY_HEAP | 373 #ifdef VERIFY_HEAP |
374 if (FLAG_verify_heap) { | 374 if (FLAG_verify_heap) { |
375 Verify(); | 375 Verify(); |
376 } | 376 } |
377 #endif | 377 #endif |
378 } | 378 } |
379 | 379 |
380 | 380 |
381 void StoreBuffer::ProcessOldToNewSlot(Address slot_address, | 381 void StoreBuffer::ProcessOldToNewSlot(Address slot_address, |
382 ObjectSlotCallback slot_callback, | 382 ObjectSlotCallback slot_callback) { |
383 bool clear_maps) { | |
384 Object** slot = reinterpret_cast<Object**>(slot_address); | 383 Object** slot = reinterpret_cast<Object**>(slot_address); |
385 Object* object = reinterpret_cast<Object*>( | 384 Object* object = reinterpret_cast<Object*>( |
386 base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot))); | 385 base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot))); |
387 | 386 |
388 // If the object is not in from space, it must be a duplicate store buffer | 387 // If the object is not in from space, it must be a duplicate store buffer |
389 // entry and the slot was already updated. | 388 // entry and the slot was already updated. |
390 if (heap_->InFromSpace(object)) { | 389 if (heap_->InFromSpace(object)) { |
391 HeapObject* heap_object = reinterpret_cast<HeapObject*>(object); | 390 HeapObject* heap_object = reinterpret_cast<HeapObject*>(object); |
392 DCHECK(heap_object->IsHeapObject()); | 391 DCHECK(heap_object->IsHeapObject()); |
393 // The new space object was not promoted if it still contains a map | |
394 // pointer. Clear the map field now lazily (during full GC). | |
395 if (clear_maps) ClearDeadObject(heap_object); | |
ulan
2015/03/10 10:37:32
We can remove the ClearDeadObject function now.
Hannes Payer (out of office)
2015/03/10 13:07:00
Done.
| |
396 slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object); | 392 slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object); |
397 object = reinterpret_cast<Object*>( | 393 object = reinterpret_cast<Object*>( |
398 base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot))); | 394 base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot))); |
399 // If the object was in from space before and is after executing the | 395 // If the object was in from space before and is after executing the |
400 // callback in to space, the object is still live. | 396 // callback in to space, the object is still live. |
401 // Unfortunately, we do not know about the slot. It could be in a | 397 // Unfortunately, we do not know about the slot. It could be in a |
402 // just freed free space object. | 398 // just freed free space object. |
403 if (heap_->InToSpace(object)) { | 399 if (heap_->InToSpace(object)) { |
404 EnterDirectlyIntoStoreBuffer(reinterpret_cast<Address>(slot)); | 400 EnterDirectlyIntoStoreBuffer(reinterpret_cast<Address>(slot)); |
405 } | 401 } |
406 } | 402 } |
407 } | 403 } |
408 | 404 |
409 | 405 |
410 void StoreBuffer::FindPointersToNewSpaceInRegion( | 406 void StoreBuffer::FindPointersToNewSpaceInRegion( |
411 Address start, Address end, ObjectSlotCallback slot_callback, | 407 Address start, Address end, ObjectSlotCallback slot_callback) { |
412 bool clear_maps) { | |
413 for (Address slot_address = start; slot_address < end; | 408 for (Address slot_address = start; slot_address < end; |
414 slot_address += kPointerSize) { | 409 slot_address += kPointerSize) { |
415 ProcessOldToNewSlot(slot_address, slot_callback, clear_maps); | 410 ProcessOldToNewSlot(slot_address, slot_callback); |
416 } | 411 } |
417 } | 412 } |
418 | 413 |
419 | 414 |
420 void StoreBuffer::IteratePointersInStoreBuffer(ObjectSlotCallback slot_callback, | 415 void StoreBuffer::IteratePointersInStoreBuffer( |
421 bool clear_maps) { | 416 ObjectSlotCallback slot_callback) { |
422 Address* limit = old_top_; | 417 Address* limit = old_top_; |
423 old_top_ = old_start_; | 418 old_top_ = old_start_; |
424 { | 419 { |
425 DontMoveStoreBufferEntriesScope scope(this); | 420 DontMoveStoreBufferEntriesScope scope(this); |
426 for (Address* current = old_start_; current < limit; current++) { | 421 for (Address* current = old_start_; current < limit; current++) { |
427 #ifdef DEBUG | 422 #ifdef DEBUG |
428 Address* saved_top = old_top_; | 423 Address* saved_top = old_top_; |
429 #endif | 424 #endif |
430 ProcessOldToNewSlot(*current, slot_callback, clear_maps); | 425 ProcessOldToNewSlot(*current, slot_callback); |
431 DCHECK(old_top_ == saved_top + 1 || old_top_ == saved_top); | 426 DCHECK(old_top_ == saved_top + 1 || old_top_ == saved_top); |
432 } | 427 } |
433 } | 428 } |
434 } | 429 } |
435 | 430 |
436 | 431 |
437 void StoreBuffer::ClearInvalidStoreBufferEntries() { | 432 void StoreBuffer::ClearInvalidStoreBufferEntries() { |
438 Compact(); | 433 Compact(); |
439 Address* new_top = old_start_; | 434 Address* new_top = old_start_; |
440 for (Address* current = old_start_; current < old_top_; current++) { | 435 for (Address* current = old_start_; current < old_top_; current++) { |
(...skipping 21 matching lines...) Expand all Loading... | |
462 base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot))); | 457 base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot))); |
463 CHECK(heap_->InNewSpace(object)); | 458 CHECK(heap_->InNewSpace(object)); |
464 heap_->mark_compact_collector()->VerifyIsSlotInLiveObject( | 459 heap_->mark_compact_collector()->VerifyIsSlotInLiveObject( |
465 reinterpret_cast<HeapObject**>(slot), | 460 reinterpret_cast<HeapObject**>(slot), |
466 reinterpret_cast<HeapObject*>(object)); | 461 reinterpret_cast<HeapObject*>(object)); |
467 } | 462 } |
468 } | 463 } |
469 | 464 |
470 | 465 |
471 void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback) { | 466 void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback) { |
472 IteratePointersToNewSpace(slot_callback, false); | |
473 } | |
474 | |
475 | |
476 void StoreBuffer::IteratePointersToNewSpaceAndClearMaps( | |
477 ObjectSlotCallback slot_callback) { | |
478 IteratePointersToNewSpace(slot_callback, true); | |
479 } | |
480 | |
481 | |
482 void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback, | |
483 bool clear_maps) { | |
484 // We do not sort or remove duplicated entries from the store buffer because | 467 // We do not sort or remove duplicated entries from the store buffer because |
485 // we expect that callback will rebuild the store buffer thus removing | 468 // we expect that callback will rebuild the store buffer thus removing |
486 // all duplicates and pointers to old space. | 469 // all duplicates and pointers to old space. |
487 bool some_pages_to_scan = PrepareForIteration(); | 470 bool some_pages_to_scan = PrepareForIteration(); |
488 | 471 |
489 // TODO(gc): we want to skip slots on evacuation candidates | 472 // TODO(gc): we want to skip slots on evacuation candidates |
490 // but we can't simply figure that out from slot address | 473 // but we can't simply figure that out from slot address |
491 // because slot can belong to a large object. | 474 // because slot can belong to a large object. |
492 IteratePointersInStoreBuffer(slot_callback, clear_maps); | 475 IteratePointersInStoreBuffer(slot_callback); |
493 | 476 |
494 // We are done scanning all the pointers that were in the store buffer, but | 477 // We are done scanning all the pointers that were in the store buffer, but |
495 // there may be some pages marked scan_on_scavenge that have pointers to new | 478 // there may be some pages marked scan_on_scavenge that have pointers to new |
496 // space that are not in the store buffer. We must scan them now. As we | 479 // space that are not in the store buffer. We must scan them now. As we |
497 // scan, the surviving pointers to new space will be added to the store | 480 // scan, the surviving pointers to new space will be added to the store |
498 // buffer. If there are still a lot of pointers to new space then we will | 481 // buffer. If there are still a lot of pointers to new space then we will |
499 // keep the scan_on_scavenge flag on the page and discard the pointers that | 482 // keep the scan_on_scavenge flag on the page and discard the pointers that |
500 // were added to the store buffer. If there are not many pointers to new | 483 // were added to the store buffer. If there are not many pointers to new |
501 // space left on the page we will keep the pointers in the store buffer and | 484 // space left on the page we will keep the pointers in the store buffer and |
502 // remove the flag from the page. | 485 // remove the flag from the page. |
503 if (some_pages_to_scan) { | 486 if (some_pages_to_scan) { |
504 if (callback_ != NULL) { | 487 if (callback_ != NULL) { |
505 (*callback_)(heap_, NULL, kStoreBufferStartScanningPagesEvent); | 488 (*callback_)(heap_, NULL, kStoreBufferStartScanningPagesEvent); |
506 } | 489 } |
507 PointerChunkIterator it(heap_); | 490 PointerChunkIterator it(heap_); |
508 MemoryChunk* chunk; | 491 MemoryChunk* chunk; |
509 while ((chunk = it.next()) != NULL) { | 492 while ((chunk = it.next()) != NULL) { |
510 if (chunk->scan_on_scavenge()) { | 493 if (chunk->scan_on_scavenge()) { |
511 chunk->set_scan_on_scavenge(false); | 494 chunk->set_scan_on_scavenge(false); |
512 if (callback_ != NULL) { | 495 if (callback_ != NULL) { |
513 (*callback_)(heap_, chunk, kStoreBufferScanningPageEvent); | 496 (*callback_)(heap_, chunk, kStoreBufferScanningPageEvent); |
514 } | 497 } |
515 if (chunk->owner() == heap_->lo_space()) { | 498 if (chunk->owner() == heap_->lo_space()) { |
516 LargePage* large_page = reinterpret_cast<LargePage*>(chunk); | 499 LargePage* large_page = reinterpret_cast<LargePage*>(chunk); |
517 HeapObject* array = large_page->GetObject(); | 500 HeapObject* array = large_page->GetObject(); |
518 DCHECK(array->IsFixedArray()); | 501 DCHECK(array->IsFixedArray()); |
519 Address start = array->address(); | 502 Address start = array->address(); |
520 Address end = start + array->Size(); | 503 Address end = start + array->Size(); |
521 FindPointersToNewSpaceInRegion(start, end, slot_callback, clear_maps); | 504 FindPointersToNewSpaceInRegion(start, end, slot_callback); |
522 } else { | 505 } else { |
523 Page* page = reinterpret_cast<Page*>(chunk); | 506 Page* page = reinterpret_cast<Page*>(chunk); |
524 PagedSpace* owner = reinterpret_cast<PagedSpace*>(page->owner()); | 507 PagedSpace* owner = reinterpret_cast<PagedSpace*>(page->owner()); |
525 if (owner == heap_->map_space()) { | 508 if (owner == heap_->map_space()) { |
526 DCHECK(page->WasSwept()); | 509 DCHECK(page->WasSwept()); |
527 HeapObjectIterator iterator(page, NULL); | 510 HeapObjectIterator iterator(page, NULL); |
528 for (HeapObject* heap_object = iterator.Next(); heap_object != NULL; | 511 for (HeapObject* heap_object = iterator.Next(); heap_object != NULL; |
529 heap_object = iterator.Next()) { | 512 heap_object = iterator.Next()) { |
530 // We skip free space objects. | 513 // We skip free space objects. |
531 if (!heap_object->IsFiller()) { | 514 if (!heap_object->IsFiller()) { |
532 DCHECK(heap_object->IsMap()); | 515 DCHECK(heap_object->IsMap()); |
533 FindPointersToNewSpaceInRegion( | 516 FindPointersToNewSpaceInRegion( |
534 heap_object->address() + Map::kPointerFieldsBeginOffset, | 517 heap_object->address() + Map::kPointerFieldsBeginOffset, |
535 heap_object->address() + Map::kPointerFieldsEndOffset, | 518 heap_object->address() + Map::kPointerFieldsEndOffset, |
536 slot_callback, clear_maps); | 519 slot_callback); |
537 } | 520 } |
538 } | 521 } |
539 } else { | 522 } else { |
540 if (!page->SweepingCompleted()) { | 523 if (!page->SweepingCompleted()) { |
541 heap_->mark_compact_collector()->SweepInParallel(page, owner); | 524 heap_->mark_compact_collector()->SweepInParallel(page, owner); |
542 if (!page->SweepingCompleted()) { | 525 if (!page->SweepingCompleted()) { |
543 // We were not able to sweep that page, i.e., a concurrent | 526 // We were not able to sweep that page, i.e., a concurrent |
544 // sweeper thread currently owns this page. | 527 // sweeper thread currently owns this page. |
545 // TODO(hpayer): This may introduce a huge pause here. We | 528 // TODO(hpayer): This may introduce a huge pause here. We |
546 // just care about finish sweeping of the scan on scavenge page. | 529 // just care about finish sweeping of the scan on scavenge page. |
(...skipping 14 matching lines...) Expand all Loading... | |
561 LayoutDescriptorHelper helper(heap_object->map()); | 544 LayoutDescriptorHelper helper(heap_object->map()); |
562 bool has_only_tagged_fields = helper.all_fields_tagged(); | 545 bool has_only_tagged_fields = helper.all_fields_tagged(); |
563 | 546 |
564 if (!has_only_tagged_fields) { | 547 if (!has_only_tagged_fields) { |
565 for (int offset = start_offset; offset < end_offset;) { | 548 for (int offset = start_offset; offset < end_offset;) { |
566 int end_of_region_offset; | 549 int end_of_region_offset; |
567 if (helper.IsTagged(offset, end_offset, | 550 if (helper.IsTagged(offset, end_offset, |
568 &end_of_region_offset)) { | 551 &end_of_region_offset)) { |
569 FindPointersToNewSpaceInRegion( | 552 FindPointersToNewSpaceInRegion( |
570 obj_address + offset, | 553 obj_address + offset, |
571 obj_address + end_of_region_offset, slot_callback, | 554 obj_address + end_of_region_offset, slot_callback); |
572 clear_maps); | |
573 } | 555 } |
574 offset = end_of_region_offset; | 556 offset = end_of_region_offset; |
575 } | 557 } |
576 } else { | 558 } else { |
577 #endif | 559 #endif |
578 Address start_address = obj_address + start_offset; | 560 Address start_address = obj_address + start_offset; |
579 Address end_address = obj_address + end_offset; | 561 Address end_address = obj_address + end_offset; |
580 // Object has only tagged fields. | 562 // Object has only tagged fields. |
581 FindPointersToNewSpaceInRegion(start_address, end_address, | 563 FindPointersToNewSpaceInRegion(start_address, end_address, |
582 slot_callback, clear_maps); | 564 slot_callback); |
583 #if V8_DOUBLE_FIELDS_UNBOXING | 565 #if V8_DOUBLE_FIELDS_UNBOXING |
584 } | 566 } |
585 #endif | 567 #endif |
586 } | 568 } |
587 } | 569 } |
588 } | 570 } |
589 } | 571 } |
590 } | 572 } |
591 } | 573 } |
592 if (callback_ != NULL) { | 574 if (callback_ != NULL) { |
(...skipping 53 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
646 } | 628 } |
647 old_buffer_is_sorted_ = false; | 629 old_buffer_is_sorted_ = false; |
648 old_buffer_is_filtered_ = false; | 630 old_buffer_is_filtered_ = false; |
649 *old_top_++ = reinterpret_cast<Address>(int_addr << kPointerSizeLog2); | 631 *old_top_++ = reinterpret_cast<Address>(int_addr << kPointerSizeLog2); |
650 DCHECK(old_top_ <= old_limit_); | 632 DCHECK(old_top_ <= old_limit_); |
651 } | 633 } |
652 heap_->isolate()->counters()->store_buffer_compactions()->Increment(); | 634 heap_->isolate()->counters()->store_buffer_compactions()->Increment(); |
653 } | 635 } |
654 } | 636 } |
655 } // namespace v8::internal | 637 } // namespace v8::internal |
OLD | NEW |