Index: chrome/browser/autocomplete/scored_history_match.cc |
diff --git a/chrome/browser/autocomplete/scored_history_match.cc b/chrome/browser/autocomplete/scored_history_match.cc |
index adb22c62e601262674f439f54c811e762f0f2416..50b9d2b2dba56aeb549da88adca3408464c43d82 100644 |
--- a/chrome/browser/autocomplete/scored_history_match.cc |
+++ b/chrome/browser/autocomplete/scored_history_match.cc |
@@ -4,25 +4,299 @@ |
#include "chrome/browser/autocomplete/scored_history_match.h" |
+#include <math.h> |
+ |
+#include <algorithm> |
+#include <vector> |
+ |
+#include "base/logging.h" |
+#include "base/numerics/safe_conversions.h" |
+#include "base/strings/string_number_conversions.h" |
+#include "base/strings/string_split.h" |
+#include "base/strings/string_util.h" |
+#include "base/strings/utf_offset_string_conversions.h" |
+#include "base/strings/utf_string_conversions.h" |
+#include "chrome/browser/autocomplete/history_url_provider.h" |
+#include "components/bookmarks/browser/bookmark_utils.h" |
+#include "components/omnibox/omnibox_field_trial.h" |
+#include "components/omnibox/url_prefix.h" |
+#include "content/public/browser/browser_thread.h" |
+ |
+namespace { |
+ |
+// The number of days of recency scores to precompute. |
+const int kDaysToPrecomputeRecencyScoresFor = 366; |
+ |
+// The number of raw term score buckets use; raw term scores greater this are |
+// capped at the score of the largest bucket. |
+const int kMaxRawTermScore = 30; |
+ |
+// If true, assign raw scores to be max(whatever it normally would be, a score |
+// that's similar to the score HistoryURL provider would assign). This variable |
+// is set in the constructor by examining the field trial state. |
+const bool kAlsoDoHupLikeScoring = false; |
+ |
+// Pre-computed information to speed up calculating recency scores. |
+// |days_ago_to_recency_score| is a simple array mapping how long ago a page was |
+// visited (in days) to the recency score we should assign it. This allows easy |
+// lookups of scores without requiring math. This is initialized by |
+// InitDaysAgoToRecencyScoreArray called by |
+// ScoredHistoryMatch::Init(). |
+float days_ago_to_recency_score[kDaysToPrecomputeRecencyScoresFor]; |
+ |
+// Pre-computed information to speed up calculating topicality scores. |
+// |raw_term_score_to_topicality_score| is a simple array mapping how raw terms |
+// scores (a weighted sum of the number of hits for the term, weighted by how |
+// important the hit is: hostname, path, etc.) to the topicality score we should |
+// assign it. This allows easy lookups of scores without requiring math. This |
+// is initialized by InitRawTermScoreToTopicalityScoreArray() called from |
+// ScoredHistoryMatch::Init(). |
+float raw_term_score_to_topicality_score[kMaxRawTermScore]; |
+ |
+// The maximum score that can be assigned to non-inlineable matches. This is |
+// useful because often we want inlineable matches to come first (even if they |
+// don't sometimes score as well as non-inlineable matches) because if a |
+// non-inlineable match comes first than all matches will get demoted later in |
+// HistoryQuickProvider to non-inlineable scores. Set to -1 to indicate no |
+// maximum score. |
+int max_assigned_score_for_non_inlineable_matches = -1; |
+ |
+// Whether ScoredHistoryMatch::Init() has been called. |
+bool initialized = false; |
+ |
+// Precalculates raw_term_score_to_topicality_score, used in |
+// GetTopicalityScore(). |
+void InitRawTermScoreToTopicalityScoreArray() { |
+ for (int term_score = 0; term_score < kMaxRawTermScore; ++term_score) { |
+ float topicality_score; |
+ if (term_score < 10) { |
+ // If the term scores less than 10 points (no full-credit hit, or |
+ // no combination of hits that score that well), then the topicality |
+ // score is linear in the term score. |
+ topicality_score = 0.1 * term_score; |
+ } else { |
+ // For term scores of at least ten points, pass them through a log |
+ // function so a score of 10 points gets a 1.0 (to meet up exactly |
+ // with the linear component) and increases logarithmically until |
+ // maxing out at 30 points, with computes to a score around 2.1. |
+ topicality_score = (1.0 + 2.25 * log10(0.1 * term_score)); |
+ } |
+ raw_term_score_to_topicality_score[term_score] = topicality_score; |
+ } |
+} |
+ |
+// Pre-calculates days_ago_to_recency_score, used in GetRecencyScore(). |
+void InitDaysAgoToRecencyScoreArray() { |
+ for (int days_ago = 0; days_ago < kDaysToPrecomputeRecencyScoresFor; |
+ days_ago++) { |
+ int unnormalized_recency_score; |
+ if (days_ago <= 4) { |
+ unnormalized_recency_score = 100; |
+ } else if (days_ago <= 14) { |
+ // Linearly extrapolate between 4 and 14 days so 14 days has a score |
+ // of 70. |
+ unnormalized_recency_score = 70 + (14 - days_ago) * (100 - 70) / (14 - 4); |
+ } else if (days_ago <= 31) { |
+ // Linearly extrapolate between 14 and 31 days so 31 days has a score |
+ // of 50. |
+ unnormalized_recency_score = 50 + (31 - days_ago) * (70 - 50) / (31 - 14); |
+ } else if (days_ago <= 90) { |
+ // Linearly extrapolate between 30 and 90 days so 90 days has a score |
+ // of 30. |
+ unnormalized_recency_score = 30 + (90 - days_ago) * (50 - 30) / (90 - 30); |
+ } else { |
+ // Linearly extrapolate between 90 and 365 days so 365 days has a score |
+ // of 10. |
+ unnormalized_recency_score = |
+ 10 + (365 - days_ago) * (20 - 10) / (365 - 90); |
+ } |
+ days_ago_to_recency_score[days_ago] = unnormalized_recency_score / 100.0; |
+ if (days_ago > 0) { |
+ DCHECK_LE(days_ago_to_recency_score[days_ago], |
+ days_ago_to_recency_score[days_ago - 1]); |
+ } |
+ } |
+} |
+ |
+} // namespace |
+ |
// static |
const size_t ScoredHistoryMatch::kMaxVisitsToScore = 10; |
+int ScoredHistoryMatch::bookmark_value_ = 1; |
+bool ScoredHistoryMatch::allow_tld_matches_ = false; |
+bool ScoredHistoryMatch::allow_scheme_matches_ = false; |
+bool ScoredHistoryMatch::hqp_experimental_scoring_enabled_ = false; |
+float ScoredHistoryMatch::topicality_threshold_ = -1; |
+std::vector<ScoredHistoryMatch::ScoreMaxRelevance>* |
+ ScoredHistoryMatch::hqp_relevance_buckets_ = nullptr; |
ScoredHistoryMatch::ScoredHistoryMatch() : raw_score(0), can_inline(false) { |
} |
-ScoredHistoryMatch::ScoredHistoryMatch(const history::URLRow& url_info, |
- size_t input_location, |
- bool match_in_scheme, |
- bool innermost_match, |
- int raw_score, |
- const TermMatches& url_matches, |
- const TermMatches& title_matches, |
- bool can_inline) |
- : HistoryMatch(url_info, input_location, match_in_scheme, innermost_match), |
- raw_score(raw_score), |
- url_matches(url_matches), |
- title_matches(title_matches), |
- can_inline(can_inline) { |
+ScoredHistoryMatch::ScoredHistoryMatch( |
+ const history::URLRow& row, |
+ const VisitInfoVector& visits, |
+ const std::string& languages, |
+ const base::string16& lower_string, |
+ const String16Vector& terms_vector, |
+ const WordStarts& terms_to_word_starts_offsets, |
+ const RowWordStarts& word_starts, |
+ bool is_url_bookmarked, |
+ base::Time now) |
+ : HistoryMatch(row, 0, false, false), raw_score(0), can_inline(false) { |
+ GURL gurl = row.url(); |
+ if (!gurl.is_valid()) |
+ return; |
+ |
+ ScoredHistoryMatch::Init(); |
+ |
+ // Figure out where each search term appears in the URL and/or page title |
+ // so that we can score as well as provide autocomplete highlighting. |
+ base::OffsetAdjuster::Adjustments adjustments; |
+ base::string16 url = |
+ bookmarks::CleanUpUrlForMatching(gurl, languages, &adjustments); |
+ base::string16 title = bookmarks::CleanUpTitleForMatching(row.title()); |
+ int term_num = 0; |
+ for (const auto& term : terms_vector) { |
+ TermMatches url_term_matches = MatchTermInString(term, url, term_num); |
+ TermMatches title_term_matches = MatchTermInString(term, title, term_num); |
+ if (url_term_matches.empty() && title_term_matches.empty()) { |
+ // A term was not found in either URL or title - reject. |
+ return; |
+ } |
+ url_matches.insert(url_matches.end(), url_term_matches.begin(), |
+ url_term_matches.end()); |
+ title_matches.insert(title_matches.end(), title_term_matches.begin(), |
+ title_term_matches.end()); |
+ ++term_num; |
+ } |
+ |
+ // Sort matches by offset and eliminate any which overlap. |
+ // TODO(mpearson): Investigate whether this has any meaningful |
+ // effect on scoring. (It's necessary at some point: removing |
+ // overlaps and sorting is needed to decide what to highlight in the |
+ // suggestion string. But this sort and de-overlap doesn't have to |
+ // be done before scoring.) |
+ url_matches = SortAndDeoverlapMatches(url_matches); |
+ title_matches = SortAndDeoverlapMatches(title_matches); |
+ |
+ // We can inline autocomplete a match if: |
+ // 1) there is only one search term |
+ // 2) AND the match begins immediately after one of the prefixes in |
+ // URLPrefix such as http://www and https:// (note that one of these |
+ // is the empty prefix, for cases where the user has typed the scheme) |
+ // 3) AND the search string does not end in whitespace (making it look to |
+ // the IMUI as though there is a single search term when actually there |
+ // is a second, empty term). |
+ // |best_inlineable_prefix| stores the inlineable prefix computed in |
+ // clause (2) or NULL if no such prefix exists. (The URL is not inlineable.) |
+ // Note that using the best prefix here means that when multiple |
+ // prefixes match, we'll choose to inline following the longest one. |
+ // For a URL like "http://www.washingtonmutual.com", this means |
+ // typing "w" will inline "ashington..." instead of "ww.washington...". |
+ if (!url_matches.empty() && (terms_vector.size() == 1) && |
+ !IsWhitespace(*lower_string.rbegin())) { |
+ const base::string16 gurl_spec = base::UTF8ToUTF16(gurl.spec()); |
+ const URLPrefix* best_inlineable_prefix = |
+ URLPrefix::BestURLPrefix(gurl_spec, terms_vector[0]); |
+ if (best_inlineable_prefix) { |
+ // Initialize innermost_match. |
+ // The idea here is that matches that occur in the scheme or |
+ // "www." are worse than matches which don't. For the URLs |
+ // "http://www.google.com" and "http://wellsfargo.com", we want |
+ // the omnibox input "w" to cause the latter URL to rank higher |
+ // than the former. Note that this is not the same as checking |
+ // whether one match's inlinable prefix has more components than |
+ // the other match's, since in this example, both matches would |
+ // have an inlinable prefix of "http://", which is one component. |
+ // |
+ // Instead, we look for the overall best (i.e., most components) |
+ // prefix of the current URL, and then check whether the inlinable |
+ // prefix has that many components. If it does, this is an |
+ // "innermost" match, and should be boosted. In the example |
+ // above, the best prefixes for the two URLs have two and one |
+ // components respectively, while the inlinable prefixes each |
+ // have one component; this means the first match is not innermost |
+ // and the second match is innermost, resulting in us boosting the |
+ // second match. |
+ // |
+ // Now, the code that implements this. |
+ // The deepest prefix for this URL regardless of where the match is. |
+ const URLPrefix* best_prefix = |
+ URLPrefix::BestURLPrefix(gurl_spec, base::string16()); |
+ DCHECK(best_prefix); |
+ // If the URL is inlineable, we must have a match. Note the prefix that |
+ // makes it inlineable may be empty. |
+ can_inline = true; |
+ innermost_match = |
+ best_inlineable_prefix->num_components == best_prefix->num_components; |
+ } |
+ } |
+ |
+ const float topicality_score = GetTopicalityScore( |
+ terms_vector.size(), url, terms_to_word_starts_offsets, word_starts); |
+ const float frequency_score = GetFrequency(now, is_url_bookmarked, visits); |
+ raw_score = base::saturated_cast<int>(GetFinalRelevancyScore( |
+ topicality_score, frequency_score, *hqp_relevance_buckets_)); |
+ |
+ if (kAlsoDoHupLikeScoring && can_inline) { |
+ // HistoryURL-provider-like scoring gives any match that is |
+ // capable of being inlined a certain minimum score. Some of these |
+ // are given a higher score that lets them be shown in inline. |
+ // This test here derives from the test in |
+ // HistoryURLProvider::PromoteMatchForInlineAutocomplete(). |
+ const bool promote_to_inline = |
+ (row.typed_count() > 1) || (IsHostOnly() && (row.typed_count() == 1)); |
+ int hup_like_score = |
+ promote_to_inline |
+ ? HistoryURLProvider::kScoreForBestInlineableResult |
+ : HistoryURLProvider::kBaseScoreForNonInlineableResult; |
+ |
+ // Also, if the user types the hostname of a host with a typed |
+ // visit, then everything from that host get given inlineable scores |
+ // (because the URL-that-you-typed will go first and everything |
+ // else will be assigned one minus the previous score, as coded |
+ // at the end of HistoryURLProvider::DoAutocomplete(). |
+ if (base::UTF8ToUTF16(gurl.host()) == terms_vector[0]) |
+ hup_like_score = HistoryURLProvider::kScoreForBestInlineableResult; |
+ |
+ // HistoryURLProvider has the function PromoteOrCreateShorterSuggestion() |
+ // that's meant to promote prefixes of the best match (if they've |
+ // been visited enough related to the best match) or |
+ // create/promote host-only suggestions (even if they've never |
+ // been typed). The code is complicated and we don't try to |
+ // duplicate the logic here. Instead, we handle a simple case: in |
+ // low-typed-count ranges, give host-only matches (i.e., |
+ // http://www.foo.com/ vs. http://www.foo.com/bar.html) a boost so |
+ // that the host-only match outscores all the other matches that |
+ // would normally have the same base score. This behavior is not |
+ // identical to what happens in HistoryURLProvider even in these |
+ // low typed count ranges--sometimes it will create/promote when |
+ // this test does not (indeed, we cannot create matches like HUP |
+ // can) and vice versa--but the underlying philosophy is similar. |
+ if (!promote_to_inline && IsHostOnly()) |
+ hup_like_score++; |
+ |
+ // All the other logic to goes into hup-like-scoring happens in |
+ // the tie-breaker case of MatchScoreGreater(). |
+ |
+ // Incorporate hup_like_score into raw_score. |
+ raw_score = std::max(raw_score, hup_like_score); |
+ } |
+ |
+ // If this match is not inlineable and there's a cap on the maximum |
+ // score that can be given to non-inlineable matches, apply the cap. |
+ if (!can_inline && (max_assigned_score_for_non_inlineable_matches != -1)) { |
+ raw_score = |
+ std::min(raw_score, max_assigned_score_for_non_inlineable_matches); |
+ } |
+ |
+ // Now that we're done processing this entry, correct the offsets of the |
+ // matches in |url_matches| so they point to offsets in the original URL |
+ // spec, not the cleaned-up URL string that we used for matching. |
+ std::vector<size_t> offsets = OffsetsFromTermMatches(url_matches); |
+ base::OffsetAdjuster::UnadjustOffsets(adjustments, &offsets); |
+ url_matches = ReplaceOffsetsInTermMatches(url_matches, offsets); |
} |
ScoredHistoryMatch::~ScoredHistoryMatch() { |
@@ -66,3 +340,369 @@ bool ScoredHistoryMatch::MatchScoreGreater(const ScoredHistoryMatch& m1, |
// URLs that have been visited more recently are better. |
return m1.url_info.last_visit() > m2.url_info.last_visit(); |
} |
+ |
+// static |
+TermMatches ScoredHistoryMatch::FilterTermMatchesByWordStarts( |
+ const TermMatches& term_matches, |
+ const WordStarts& terms_to_word_starts_offsets, |
+ const WordStarts& word_starts, |
+ size_t start_pos, |
+ size_t end_pos) { |
+ // Return early if no filtering is needed. |
+ if (start_pos == std::string::npos) |
+ return term_matches; |
+ TermMatches filtered_matches; |
+ WordStarts::const_iterator next_word_starts = word_starts.begin(); |
+ WordStarts::const_iterator end_word_starts = word_starts.end(); |
+ for (const auto& term_match : term_matches) { |
+ const size_t term_offset = |
+ terms_to_word_starts_offsets[term_match.term_num]; |
+ // Advance next_word_starts until it's >= the position of the term we're |
+ // considering (adjusted for where the word begins within the term). |
+ while ((next_word_starts != end_word_starts) && |
+ (*next_word_starts < (term_match.offset + term_offset))) |
+ ++next_word_starts; |
+ // Add the match if it's before the position we start filtering at or |
+ // after the position we stop filtering at (assuming we have a position |
+ // to stop filtering at) or if it's at a word boundary. |
+ if ((term_match.offset < start_pos) || |
+ ((end_pos != std::string::npos) && (term_match.offset >= end_pos)) || |
+ ((next_word_starts != end_word_starts) && |
+ (*next_word_starts == term_match.offset + term_offset))) |
+ filtered_matches.push_back(term_match); |
+ } |
+ return filtered_matches; |
+} |
+ |
+// static |
+void ScoredHistoryMatch::Init() { |
+ // Because the code below is not thread safe, we check that we're only calling |
+ // it from one thread: the UI thread. Specifically, we check "if we've heard |
+ // of the UI thread then we'd better be on it." The first part is necessary |
+ // so unit tests pass. (Many unit tests don't set up the threading naming |
+ // system; hence CurrentlyOn(UI thread) will fail.) |
+ using content::BrowserThread; |
+ DCHECK(!BrowserThread::IsThreadInitialized(BrowserThread::UI) || |
+ BrowserThread::CurrentlyOn(BrowserThread::UI)); |
+ |
+ if (initialized) |
+ return; |
+ |
+ initialized = true; |
+ |
+ // When doing HUP-like scoring, don't allow a non-inlineable match |
+ // to beat the score of good inlineable matches. This is a problem |
+ // because if a non-inlineable match ends up with the highest score |
+ // from HistoryQuick provider, all HistoryQuick matches get demoted |
+ // to non-inlineable scores (scores less than 1200). Without |
+ // HUP-like-scoring, these results would actually come from the HUP |
+ // and not be demoted, thus outscoring the demoted HQP results. |
+ // When the HQP provides these, we need to clamp the non-inlineable |
+ // results to preserve this behavior. |
+ if (kAlsoDoHupLikeScoring) { |
+ max_assigned_score_for_non_inlineable_matches = |
+ HistoryURLProvider::kScoreForBestInlineableResult - 1; |
+ } |
+ bookmark_value_ = OmniboxFieldTrial::HQPBookmarkValue(); |
+ allow_tld_matches_ = OmniboxFieldTrial::HQPAllowMatchInTLDValue(); |
+ allow_scheme_matches_ = OmniboxFieldTrial::HQPAllowMatchInSchemeValue(); |
+ |
+ InitRawTermScoreToTopicalityScoreArray(); |
+ InitDaysAgoToRecencyScoreArray(); |
+ InitHQPExperimentalParams(); |
+} |
+ |
+float ScoredHistoryMatch::GetTopicalityScore( |
+ const int num_terms, |
+ const base::string16& url, |
+ const WordStarts& terms_to_word_starts_offsets, |
+ const RowWordStarts& word_starts) { |
+ ScoredHistoryMatch::Init(); |
+ // A vector that accumulates per-term scores. The strongest match--a |
+ // match in the hostname at a word boundary--is worth 10 points. |
+ // Everything else is less. In general, a match that's not at a word |
+ // boundary is worth about 1/4th or 1/5th of a match at the word boundary |
+ // in the same part of the URL/title. |
+ DCHECK_GT(num_terms, 0); |
+ std::vector<int> term_scores(num_terms, 0); |
+ WordStarts::const_iterator next_word_starts = |
+ word_starts.url_word_starts_.begin(); |
+ WordStarts::const_iterator end_word_starts = |
+ word_starts.url_word_starts_.end(); |
+ const size_t question_mark_pos = url.find('?'); |
+ const size_t colon_pos = url.find(':'); |
+ // The + 3 skips the // that probably appears in the protocol |
+ // after the colon. If the protocol doesn't have two slashes after |
+ // the colon, that's okay--all this ends up doing is starting our |
+ // search for the next / a few characters into the hostname. The |
+ // only times this can cause problems is if we have a protocol without |
+ // a // after the colon and the hostname is only one or two characters. |
+ // This isn't worth worrying about. |
+ const size_t end_of_hostname_pos = (colon_pos != std::string::npos) |
+ ? url.find('/', colon_pos + 3) |
+ : url.find('/'); |
+ size_t last_part_of_hostname_pos = (end_of_hostname_pos != std::string::npos) |
+ ? url.rfind('.', end_of_hostname_pos) |
+ : url.rfind('.'); |
+ // Loop through all URL matches and score them appropriately. |
+ // First, filter all matches not at a word boundary and in the path (or |
+ // later). |
+ url_matches = FilterTermMatchesByWordStarts( |
+ url_matches, terms_to_word_starts_offsets, word_starts.url_word_starts_, |
+ end_of_hostname_pos, std::string::npos); |
+ if (colon_pos != std::string::npos) { |
+ // Also filter matches not at a word boundary and in the scheme. |
+ url_matches = FilterTermMatchesByWordStarts( |
+ url_matches, terms_to_word_starts_offsets, word_starts.url_word_starts_, |
+ 0, colon_pos); |
+ } |
+ for (const auto& url_match : url_matches) { |
+ const size_t term_offset = terms_to_word_starts_offsets[url_match.term_num]; |
+ // Advance next_word_starts until it's >= the position of the term we're |
+ // considering (adjusted for where the word begins within the term). |
+ while ((next_word_starts != end_word_starts) && |
+ (*next_word_starts < (url_match.offset + term_offset))) { |
+ ++next_word_starts; |
+ } |
+ const bool at_word_boundary = |
+ (next_word_starts != end_word_starts) && |
+ (*next_word_starts == url_match.offset + term_offset); |
+ if ((question_mark_pos != std::string::npos) && |
+ (url_match.offset > question_mark_pos)) { |
+ // The match is in a CGI ?... fragment. |
+ DCHECK(at_word_boundary); |
+ term_scores[url_match.term_num] += 5; |
+ } else if ((end_of_hostname_pos != std::string::npos) && |
+ (url_match.offset > end_of_hostname_pos)) { |
+ // The match is in the path. |
+ DCHECK(at_word_boundary); |
+ term_scores[url_match.term_num] += 8; |
+ } else if ((colon_pos == std::string::npos) || |
+ (url_match.offset > colon_pos)) { |
+ // The match is in the hostname. |
+ if ((last_part_of_hostname_pos == std::string::npos) || |
+ (url_match.offset < last_part_of_hostname_pos)) { |
+ // Either there are no dots in the hostname or this match isn't |
+ // the last dotted component. |
+ term_scores[url_match.term_num] += at_word_boundary ? 10 : 2; |
+ } else { |
+ // The match is in the last part of a dotted hostname (usually this |
+ // is the top-level domain .com, .net, etc.). |
+ if (allow_tld_matches_) |
+ term_scores[url_match.term_num] += at_word_boundary ? 10 : 0; |
+ } |
+ } else { |
+ // The match is in the protocol (a.k.a. scheme). |
+ // Matches not at a word boundary should have been filtered already. |
+ DCHECK(at_word_boundary); |
+ match_in_scheme = true; |
+ if (allow_scheme_matches_) |
+ term_scores[url_match.term_num] += 10; |
+ } |
+ } |
+ // Now do the analogous loop over all matches in the title. |
+ next_word_starts = word_starts.title_word_starts_.begin(); |
+ end_word_starts = word_starts.title_word_starts_.end(); |
+ int word_num = 0; |
+ title_matches = FilterTermMatchesByWordStarts( |
+ title_matches, terms_to_word_starts_offsets, |
+ word_starts.title_word_starts_, 0, std::string::npos); |
+ for (const auto& title_match : title_matches) { |
+ const size_t term_offset = |
+ terms_to_word_starts_offsets[title_match.term_num]; |
+ // Advance next_word_starts until it's >= the position of the term we're |
+ // considering (adjusted for where the word begins within the term). |
+ while ((next_word_starts != end_word_starts) && |
+ (*next_word_starts < (title_match.offset + term_offset))) { |
+ ++next_word_starts; |
+ ++word_num; |
+ } |
+ if (word_num >= 10) |
+ break; // only count the first ten words |
+ DCHECK(next_word_starts != end_word_starts); |
+ DCHECK_EQ(*next_word_starts, title_match.offset + term_offset) |
+ << "not at word boundary"; |
+ term_scores[title_match.term_num] += 8; |
+ } |
+ // TODO(mpearson): Restore logic for penalizing out-of-order matches. |
+ // (Perhaps discount them by 0.8?) |
+ // TODO(mpearson): Consider: if the earliest match occurs late in the string, |
+ // should we discount it? |
+ // TODO(mpearson): Consider: do we want to score based on how much of the |
+ // input string the input covers? (I'm leaning toward no.) |
+ |
+ // Compute the topicality_score as the sum of transformed term_scores. |
+ float topicality_score = 0; |
+ for (int term_score : term_scores) { |
+ // Drop this URL if it seems like a term didn't appear or, more precisely, |
+ // didn't appear in a part of the URL or title that we trust enough |
+ // to give it credit for. For instance, terms that appear in the middle |
+ // of a CGI parameter get no credit. Almost all the matches dropped |
+ // due to this test would look stupid if shown to the user. |
+ if (term_score == 0) |
+ return 0; |
+ topicality_score += raw_term_score_to_topicality_score[std::min( |
+ term_score, kMaxRawTermScore - 1)]; |
+ } |
+ // TODO(mpearson): If there are multiple terms, consider taking the |
+ // geometric mean of per-term scores rather than the arithmetic mean. |
+ |
+ const float final_topicality_score = topicality_score / num_terms; |
+ |
+ // Demote the URL if the topicality score is less than threshold. |
+ if (hqp_experimental_scoring_enabled_ && |
+ (final_topicality_score < topicality_threshold_)) { |
+ return 0.0; |
+ } |
+ |
+ return final_topicality_score; |
+} |
+ |
+// static |
+float ScoredHistoryMatch::GetRecencyScore(int last_visit_days_ago) { |
+ ScoredHistoryMatch::Init(); |
+ // Lookup the score in days_ago_to_recency_score, treating |
+ // everything older than what we've precomputed as the oldest thing |
+ // we've precomputed. The std::max is to protect against corruption |
+ // in the database (in case last_visit_days_ago is negative). |
+ return days_ago_to_recency_score[std::max( |
+ std::min(last_visit_days_ago, kDaysToPrecomputeRecencyScoresFor - 1), 0)]; |
+} |
+ |
+// static |
+float ScoredHistoryMatch::GetFrequency(const base::Time& now, |
+ const bool bookmarked, |
+ const VisitInfoVector& visits) { |
+ // Compute the weighted average |value_of_transition| over the last at |
+ // most kMaxVisitsToScore visits, where each visit is weighted using |
+ // GetRecencyScore() based on how many days ago it happened. Use |
+ // kMaxVisitsToScore as the denominator for the average regardless of |
+ // how many visits there were in order to penalize a match that has |
+ // fewer visits than kMaxVisitsToScore. |
+ float summed_visit_points = 0; |
+ const size_t max_visit_to_score = |
+ std::min(visits.size(), ScoredHistoryMatch::kMaxVisitsToScore); |
+ for (size_t i = 0; i < max_visit_to_score; ++i) { |
+ int value_of_transition = |
+ (visits[i].second == ui::PAGE_TRANSITION_TYPED) ? 20 : 1; |
+ if (bookmarked) |
+ value_of_transition = std::max(value_of_transition, bookmark_value_); |
+ const float bucket_weight = |
+ GetRecencyScore((now - visits[i].first).InDays()); |
+ summed_visit_points += (value_of_transition * bucket_weight); |
+ } |
+ return visits.size() * summed_visit_points / |
+ ScoredHistoryMatch::kMaxVisitsToScore; |
+} |
+ |
+// static |
+float ScoredHistoryMatch::GetFinalRelevancyScore( |
+ float topicality_score, |
+ float frequency_score, |
+ const std::vector<ScoreMaxRelevance>& hqp_relevance_buckets) { |
+ DCHECK(hqp_relevance_buckets.size() > 0); |
+ DCHECK_EQ(hqp_relevance_buckets[0].first, 0.0); |
+ |
+ if (topicality_score == 0) |
+ return 0; |
+ // Here's how to interpret intermediate_score: Suppose the omnibox |
+ // has one input term. Suppose we have a URL for which the omnibox |
+ // input term has a single URL hostname hit at a word boundary. (This |
+ // implies topicality_score = 1.0.). Then the intermediate_score for |
+ // this URL will depend entirely on the frequency_score with |
+ // this interpretation: |
+ // - a single typed visit more than three months ago, no other visits -> 0.2 |
+ // - a visit every three days, no typed visits -> 0.706 |
+ // - a visit every day, no typed visits -> 0.916 |
+ // - a single typed visit yesterday, no other visits -> 2.0 |
+ // - a typed visit once a week -> 11.77 |
+ // - a typed visit every three days -> 14.12 |
+ // - at least ten typed visits today -> 20.0 (maximum score) |
+ // |
+ // The below code maps intermediate_score to the range [0, 1399]. |
+ // For example: |
+ // HQP default scoring buckets: "0.0:400,1.5:600,12.0:1300,20.0:1399" |
+ // We will linearly interpolate the scores between: |
+ // 0 to 1.5 --> 400 to 600 |
+ // 1.5 to 12.0 --> 600 to 1300 |
+ // 12.0 to 20.0 --> 1300 to 1399 |
+ // >= 20.0 --> 1399 |
+ // |
+ // The score maxes out at 1399 (i.e., cannot beat a good inlineable result |
+ // from HistoryURL provider). |
+ const float intermediate_score = topicality_score * frequency_score; |
+ |
+ // Find the threshold where intermediate score is greater than bucket. |
+ size_t i = 1; |
+ for (; i < hqp_relevance_buckets.size(); ++i) { |
+ const ScoreMaxRelevance& hqp_bucket = hqp_relevance_buckets[i]; |
+ if (intermediate_score >= hqp_bucket.first) { |
+ continue; |
+ } |
+ const ScoreMaxRelevance& previous_bucket = hqp_relevance_buckets[i - 1]; |
+ const float slope = ((hqp_bucket.second - previous_bucket.second) / |
+ (hqp_bucket.first - previous_bucket.first)); |
+ return (previous_bucket.second + |
+ (slope * (intermediate_score - previous_bucket.first))); |
+ } |
+ // It will reach this stage when the score is > highest bucket score. |
+ // Return the highest bucket score. |
+ return hqp_relevance_buckets[i - 1].second; |
+} |
+ |
+// static |
+void ScoredHistoryMatch::InitHQPExperimentalParams() { |
+ // These are default HQP relevance scoring buckets. |
+ // See GetFinalRelevancyScore() for details. |
+ std::string hqp_relevance_buckets_str = "0.0:400,1.5:600,12.0:1300,20.0:1399"; |
+ |
+ // Fetch the experiment params if they are any. |
+ hqp_experimental_scoring_enabled_ = |
+ OmniboxFieldTrial::HQPExperimentalScoringEnabled(); |
+ |
+ if (hqp_experimental_scoring_enabled_) { |
+ // Add the topicality threshold from experiment params. |
+ float hqp_experimental_topicality_threhold = |
+ OmniboxFieldTrial::HQPExperimentalTopicalityThreshold(); |
+ topicality_threshold_ = hqp_experimental_topicality_threhold; |
+ |
+ // Add the HQP experimental scoring buckets. |
+ std::string hqp_experimental_scoring_buckets = |
+ OmniboxFieldTrial::HQPExperimentalScoringBuckets(); |
+ if (!hqp_experimental_scoring_buckets.empty()) |
+ hqp_relevance_buckets_str = hqp_experimental_scoring_buckets; |
+ } |
+ |
+ // Parse the hqp_relevance_buckets_str string once and store them in vector |
+ // which is easy to access. |
+ hqp_relevance_buckets_ = |
+ new std::vector<ScoredHistoryMatch::ScoreMaxRelevance>(); |
+ |
+ bool is_valid_bucket_str = GetHQPBucketsFromString(hqp_relevance_buckets_str, |
+ hqp_relevance_buckets_); |
+ DCHECK(is_valid_bucket_str); |
+} |
+ |
+// static |
+bool ScoredHistoryMatch::GetHQPBucketsFromString( |
+ const std::string& buckets_str, |
+ std::vector<ScoreMaxRelevance>* hqp_buckets) { |
+ DCHECK(hqp_buckets != NULL); |
+ DCHECK(!buckets_str.empty()); |
+ |
+ base::StringPairs kv_pairs; |
+ if (base::SplitStringIntoKeyValuePairs(buckets_str, ':', ',', &kv_pairs)) { |
+ for (base::StringPairs::const_iterator it = kv_pairs.begin(); |
+ it != kv_pairs.end(); ++it) { |
+ ScoreMaxRelevance bucket; |
+ bool is_valid_intermediate_score = |
+ base::StringToDouble(it->first, &bucket.first); |
+ DCHECK(is_valid_intermediate_score); |
+ bool is_valid_hqp_score = base::StringToInt(it->second, &bucket.second); |
+ DCHECK(is_valid_hqp_score); |
+ hqp_buckets->push_back(bucket); |
+ } |
+ return true; |
+ } |
+ return false; |
+} |