OLD | NEW |
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include "chrome/browser/autocomplete/scored_history_match.h" | 5 #include "chrome/browser/autocomplete/scored_history_match.h" |
6 | 6 |
| 7 #include <math.h> |
| 8 |
| 9 #include <algorithm> |
| 10 #include <vector> |
| 11 |
| 12 #include "base/logging.h" |
| 13 #include "base/numerics/safe_conversions.h" |
| 14 #include "base/strings/string_number_conversions.h" |
| 15 #include "base/strings/string_split.h" |
| 16 #include "base/strings/string_util.h" |
| 17 #include "base/strings/utf_offset_string_conversions.h" |
| 18 #include "base/strings/utf_string_conversions.h" |
| 19 #include "chrome/browser/autocomplete/history_url_provider.h" |
| 20 #include "components/bookmarks/browser/bookmark_utils.h" |
| 21 #include "components/omnibox/omnibox_field_trial.h" |
| 22 #include "components/omnibox/url_prefix.h" |
| 23 #include "content/public/browser/browser_thread.h" |
| 24 |
| 25 namespace { |
| 26 |
| 27 // The number of days of recency scores to precompute. |
| 28 const int kDaysToPrecomputeRecencyScoresFor = 366; |
| 29 |
| 30 // The number of raw term score buckets use; raw term scores greater this are |
| 31 // capped at the score of the largest bucket. |
| 32 const int kMaxRawTermScore = 30; |
| 33 |
| 34 // If true, assign raw scores to be max(whatever it normally would be, a score |
| 35 // that's similar to the score HistoryURL provider would assign). This variable |
| 36 // is set in the constructor by examining the field trial state. |
| 37 const bool kAlsoDoHupLikeScoring = false; |
| 38 |
| 39 // Pre-computed information to speed up calculating recency scores. |
| 40 // |days_ago_to_recency_score| is a simple array mapping how long ago a page was |
| 41 // visited (in days) to the recency score we should assign it. This allows easy |
| 42 // lookups of scores without requiring math. This is initialized by |
| 43 // InitDaysAgoToRecencyScoreArray called by |
| 44 // ScoredHistoryMatch::Init(). |
| 45 float days_ago_to_recency_score[kDaysToPrecomputeRecencyScoresFor]; |
| 46 |
| 47 // Pre-computed information to speed up calculating topicality scores. |
| 48 // |raw_term_score_to_topicality_score| is a simple array mapping how raw terms |
| 49 // scores (a weighted sum of the number of hits for the term, weighted by how |
| 50 // important the hit is: hostname, path, etc.) to the topicality score we should |
| 51 // assign it. This allows easy lookups of scores without requiring math. This |
| 52 // is initialized by InitRawTermScoreToTopicalityScoreArray() called from |
| 53 // ScoredHistoryMatch::Init(). |
| 54 float raw_term_score_to_topicality_score[kMaxRawTermScore]; |
| 55 |
| 56 // The maximum score that can be assigned to non-inlineable matches. This is |
| 57 // useful because often we want inlineable matches to come first (even if they |
| 58 // don't sometimes score as well as non-inlineable matches) because if a |
| 59 // non-inlineable match comes first than all matches will get demoted later in |
| 60 // HistoryQuickProvider to non-inlineable scores. Set to -1 to indicate no |
| 61 // maximum score. |
| 62 int max_assigned_score_for_non_inlineable_matches = -1; |
| 63 |
| 64 // Whether ScoredHistoryMatch::Init() has been called. |
| 65 bool initialized = false; |
| 66 |
| 67 // Precalculates raw_term_score_to_topicality_score, used in |
| 68 // GetTopicalityScore(). |
| 69 void InitRawTermScoreToTopicalityScoreArray() { |
| 70 for (int term_score = 0; term_score < kMaxRawTermScore; ++term_score) { |
| 71 float topicality_score; |
| 72 if (term_score < 10) { |
| 73 // If the term scores less than 10 points (no full-credit hit, or |
| 74 // no combination of hits that score that well), then the topicality |
| 75 // score is linear in the term score. |
| 76 topicality_score = 0.1 * term_score; |
| 77 } else { |
| 78 // For term scores of at least ten points, pass them through a log |
| 79 // function so a score of 10 points gets a 1.0 (to meet up exactly |
| 80 // with the linear component) and increases logarithmically until |
| 81 // maxing out at 30 points, with computes to a score around 2.1. |
| 82 topicality_score = (1.0 + 2.25 * log10(0.1 * term_score)); |
| 83 } |
| 84 raw_term_score_to_topicality_score[term_score] = topicality_score; |
| 85 } |
| 86 } |
| 87 |
| 88 // Pre-calculates days_ago_to_recency_score, used in GetRecencyScore(). |
| 89 void InitDaysAgoToRecencyScoreArray() { |
| 90 for (int days_ago = 0; days_ago < kDaysToPrecomputeRecencyScoresFor; |
| 91 days_ago++) { |
| 92 int unnormalized_recency_score; |
| 93 if (days_ago <= 4) { |
| 94 unnormalized_recency_score = 100; |
| 95 } else if (days_ago <= 14) { |
| 96 // Linearly extrapolate between 4 and 14 days so 14 days has a score |
| 97 // of 70. |
| 98 unnormalized_recency_score = 70 + (14 - days_ago) * (100 - 70) / (14 - 4); |
| 99 } else if (days_ago <= 31) { |
| 100 // Linearly extrapolate between 14 and 31 days so 31 days has a score |
| 101 // of 50. |
| 102 unnormalized_recency_score = 50 + (31 - days_ago) * (70 - 50) / (31 - 14); |
| 103 } else if (days_ago <= 90) { |
| 104 // Linearly extrapolate between 30 and 90 days so 90 days has a score |
| 105 // of 30. |
| 106 unnormalized_recency_score = 30 + (90 - days_ago) * (50 - 30) / (90 - 30); |
| 107 } else { |
| 108 // Linearly extrapolate between 90 and 365 days so 365 days has a score |
| 109 // of 10. |
| 110 unnormalized_recency_score = |
| 111 10 + (365 - days_ago) * (20 - 10) / (365 - 90); |
| 112 } |
| 113 days_ago_to_recency_score[days_ago] = unnormalized_recency_score / 100.0; |
| 114 if (days_ago > 0) { |
| 115 DCHECK_LE(days_ago_to_recency_score[days_ago], |
| 116 days_ago_to_recency_score[days_ago - 1]); |
| 117 } |
| 118 } |
| 119 } |
| 120 |
| 121 } // namespace |
| 122 |
7 // static | 123 // static |
8 const size_t ScoredHistoryMatch::kMaxVisitsToScore = 10; | 124 const size_t ScoredHistoryMatch::kMaxVisitsToScore = 10; |
| 125 int ScoredHistoryMatch::bookmark_value_ = 1; |
| 126 bool ScoredHistoryMatch::allow_tld_matches_ = false; |
| 127 bool ScoredHistoryMatch::allow_scheme_matches_ = false; |
| 128 bool ScoredHistoryMatch::hqp_experimental_scoring_enabled_ = false; |
| 129 float ScoredHistoryMatch::topicality_threshold_ = -1; |
| 130 std::vector<ScoredHistoryMatch::ScoreMaxRelevance>* |
| 131 ScoredHistoryMatch::hqp_relevance_buckets_ = nullptr; |
9 | 132 |
10 ScoredHistoryMatch::ScoredHistoryMatch() : raw_score(0), can_inline(false) { | 133 ScoredHistoryMatch::ScoredHistoryMatch() : raw_score(0), can_inline(false) { |
11 } | 134 } |
12 | 135 |
13 ScoredHistoryMatch::ScoredHistoryMatch(const history::URLRow& url_info, | 136 ScoredHistoryMatch::ScoredHistoryMatch( |
14 size_t input_location, | 137 const history::URLRow& row, |
15 bool match_in_scheme, | 138 const VisitInfoVector& visits, |
16 bool innermost_match, | 139 const std::string& languages, |
17 int raw_score, | 140 const base::string16& lower_string, |
18 const TermMatches& url_matches, | 141 const String16Vector& terms_vector, |
19 const TermMatches& title_matches, | 142 const WordStarts& terms_to_word_starts_offsets, |
20 bool can_inline) | 143 const RowWordStarts& word_starts, |
21 : HistoryMatch(url_info, input_location, match_in_scheme, innermost_match), | 144 bool is_url_bookmarked, |
22 raw_score(raw_score), | 145 base::Time now) |
23 url_matches(url_matches), | 146 : HistoryMatch(row, 0, false, false), raw_score(0), can_inline(false) { |
24 title_matches(title_matches), | 147 GURL gurl = row.url(); |
25 can_inline(can_inline) { | 148 if (!gurl.is_valid()) |
| 149 return; |
| 150 |
| 151 ScoredHistoryMatch::Init(); |
| 152 |
| 153 // Figure out where each search term appears in the URL and/or page title |
| 154 // so that we can score as well as provide autocomplete highlighting. |
| 155 base::OffsetAdjuster::Adjustments adjustments; |
| 156 base::string16 url = |
| 157 bookmarks::CleanUpUrlForMatching(gurl, languages, &adjustments); |
| 158 base::string16 title = bookmarks::CleanUpTitleForMatching(row.title()); |
| 159 int term_num = 0; |
| 160 for (const auto& term : terms_vector) { |
| 161 TermMatches url_term_matches = MatchTermInString(term, url, term_num); |
| 162 TermMatches title_term_matches = MatchTermInString(term, title, term_num); |
| 163 if (url_term_matches.empty() && title_term_matches.empty()) { |
| 164 // A term was not found in either URL or title - reject. |
| 165 return; |
| 166 } |
| 167 url_matches.insert(url_matches.end(), url_term_matches.begin(), |
| 168 url_term_matches.end()); |
| 169 title_matches.insert(title_matches.end(), title_term_matches.begin(), |
| 170 title_term_matches.end()); |
| 171 ++term_num; |
| 172 } |
| 173 |
| 174 // Sort matches by offset and eliminate any which overlap. |
| 175 // TODO(mpearson): Investigate whether this has any meaningful |
| 176 // effect on scoring. (It's necessary at some point: removing |
| 177 // overlaps and sorting is needed to decide what to highlight in the |
| 178 // suggestion string. But this sort and de-overlap doesn't have to |
| 179 // be done before scoring.) |
| 180 url_matches = SortAndDeoverlapMatches(url_matches); |
| 181 title_matches = SortAndDeoverlapMatches(title_matches); |
| 182 |
| 183 // We can inline autocomplete a match if: |
| 184 // 1) there is only one search term |
| 185 // 2) AND the match begins immediately after one of the prefixes in |
| 186 // URLPrefix such as http://www and https:// (note that one of these |
| 187 // is the empty prefix, for cases where the user has typed the scheme) |
| 188 // 3) AND the search string does not end in whitespace (making it look to |
| 189 // the IMUI as though there is a single search term when actually there |
| 190 // is a second, empty term). |
| 191 // |best_inlineable_prefix| stores the inlineable prefix computed in |
| 192 // clause (2) or NULL if no such prefix exists. (The URL is not inlineable.) |
| 193 // Note that using the best prefix here means that when multiple |
| 194 // prefixes match, we'll choose to inline following the longest one. |
| 195 // For a URL like "http://www.washingtonmutual.com", this means |
| 196 // typing "w" will inline "ashington..." instead of "ww.washington...". |
| 197 if (!url_matches.empty() && (terms_vector.size() == 1) && |
| 198 !IsWhitespace(*lower_string.rbegin())) { |
| 199 const base::string16 gurl_spec = base::UTF8ToUTF16(gurl.spec()); |
| 200 const URLPrefix* best_inlineable_prefix = |
| 201 URLPrefix::BestURLPrefix(gurl_spec, terms_vector[0]); |
| 202 if (best_inlineable_prefix) { |
| 203 // Initialize innermost_match. |
| 204 // The idea here is that matches that occur in the scheme or |
| 205 // "www." are worse than matches which don't. For the URLs |
| 206 // "http://www.google.com" and "http://wellsfargo.com", we want |
| 207 // the omnibox input "w" to cause the latter URL to rank higher |
| 208 // than the former. Note that this is not the same as checking |
| 209 // whether one match's inlinable prefix has more components than |
| 210 // the other match's, since in this example, both matches would |
| 211 // have an inlinable prefix of "http://", which is one component. |
| 212 // |
| 213 // Instead, we look for the overall best (i.e., most components) |
| 214 // prefix of the current URL, and then check whether the inlinable |
| 215 // prefix has that many components. If it does, this is an |
| 216 // "innermost" match, and should be boosted. In the example |
| 217 // above, the best prefixes for the two URLs have two and one |
| 218 // components respectively, while the inlinable prefixes each |
| 219 // have one component; this means the first match is not innermost |
| 220 // and the second match is innermost, resulting in us boosting the |
| 221 // second match. |
| 222 // |
| 223 // Now, the code that implements this. |
| 224 // The deepest prefix for this URL regardless of where the match is. |
| 225 const URLPrefix* best_prefix = |
| 226 URLPrefix::BestURLPrefix(gurl_spec, base::string16()); |
| 227 DCHECK(best_prefix); |
| 228 // If the URL is inlineable, we must have a match. Note the prefix that |
| 229 // makes it inlineable may be empty. |
| 230 can_inline = true; |
| 231 innermost_match = |
| 232 best_inlineable_prefix->num_components == best_prefix->num_components; |
| 233 } |
| 234 } |
| 235 |
| 236 const float topicality_score = GetTopicalityScore( |
| 237 terms_vector.size(), url, terms_to_word_starts_offsets, word_starts); |
| 238 const float frequency_score = GetFrequency(now, is_url_bookmarked, visits); |
| 239 raw_score = base::saturated_cast<int>(GetFinalRelevancyScore( |
| 240 topicality_score, frequency_score, *hqp_relevance_buckets_)); |
| 241 |
| 242 if (kAlsoDoHupLikeScoring && can_inline) { |
| 243 // HistoryURL-provider-like scoring gives any match that is |
| 244 // capable of being inlined a certain minimum score. Some of these |
| 245 // are given a higher score that lets them be shown in inline. |
| 246 // This test here derives from the test in |
| 247 // HistoryURLProvider::PromoteMatchForInlineAutocomplete(). |
| 248 const bool promote_to_inline = |
| 249 (row.typed_count() > 1) || (IsHostOnly() && (row.typed_count() == 1)); |
| 250 int hup_like_score = |
| 251 promote_to_inline |
| 252 ? HistoryURLProvider::kScoreForBestInlineableResult |
| 253 : HistoryURLProvider::kBaseScoreForNonInlineableResult; |
| 254 |
| 255 // Also, if the user types the hostname of a host with a typed |
| 256 // visit, then everything from that host get given inlineable scores |
| 257 // (because the URL-that-you-typed will go first and everything |
| 258 // else will be assigned one minus the previous score, as coded |
| 259 // at the end of HistoryURLProvider::DoAutocomplete(). |
| 260 if (base::UTF8ToUTF16(gurl.host()) == terms_vector[0]) |
| 261 hup_like_score = HistoryURLProvider::kScoreForBestInlineableResult; |
| 262 |
| 263 // HistoryURLProvider has the function PromoteOrCreateShorterSuggestion() |
| 264 // that's meant to promote prefixes of the best match (if they've |
| 265 // been visited enough related to the best match) or |
| 266 // create/promote host-only suggestions (even if they've never |
| 267 // been typed). The code is complicated and we don't try to |
| 268 // duplicate the logic here. Instead, we handle a simple case: in |
| 269 // low-typed-count ranges, give host-only matches (i.e., |
| 270 // http://www.foo.com/ vs. http://www.foo.com/bar.html) a boost so |
| 271 // that the host-only match outscores all the other matches that |
| 272 // would normally have the same base score. This behavior is not |
| 273 // identical to what happens in HistoryURLProvider even in these |
| 274 // low typed count ranges--sometimes it will create/promote when |
| 275 // this test does not (indeed, we cannot create matches like HUP |
| 276 // can) and vice versa--but the underlying philosophy is similar. |
| 277 if (!promote_to_inline && IsHostOnly()) |
| 278 hup_like_score++; |
| 279 |
| 280 // All the other logic to goes into hup-like-scoring happens in |
| 281 // the tie-breaker case of MatchScoreGreater(). |
| 282 |
| 283 // Incorporate hup_like_score into raw_score. |
| 284 raw_score = std::max(raw_score, hup_like_score); |
| 285 } |
| 286 |
| 287 // If this match is not inlineable and there's a cap on the maximum |
| 288 // score that can be given to non-inlineable matches, apply the cap. |
| 289 if (!can_inline && (max_assigned_score_for_non_inlineable_matches != -1)) { |
| 290 raw_score = |
| 291 std::min(raw_score, max_assigned_score_for_non_inlineable_matches); |
| 292 } |
| 293 |
| 294 // Now that we're done processing this entry, correct the offsets of the |
| 295 // matches in |url_matches| so they point to offsets in the original URL |
| 296 // spec, not the cleaned-up URL string that we used for matching. |
| 297 std::vector<size_t> offsets = OffsetsFromTermMatches(url_matches); |
| 298 base::OffsetAdjuster::UnadjustOffsets(adjustments, &offsets); |
| 299 url_matches = ReplaceOffsetsInTermMatches(url_matches, offsets); |
26 } | 300 } |
27 | 301 |
28 ScoredHistoryMatch::~ScoredHistoryMatch() { | 302 ScoredHistoryMatch::~ScoredHistoryMatch() { |
29 } | 303 } |
30 | 304 |
31 // Comparison function for sorting ScoredMatches by their scores with | 305 // Comparison function for sorting ScoredMatches by their scores with |
32 // intelligent tie-breaking. | 306 // intelligent tie-breaking. |
33 bool ScoredHistoryMatch::MatchScoreGreater(const ScoredHistoryMatch& m1, | 307 bool ScoredHistoryMatch::MatchScoreGreater(const ScoredHistoryMatch& m1, |
34 const ScoredHistoryMatch& m2) { | 308 const ScoredHistoryMatch& m2) { |
35 if (m1.raw_score != m2.raw_score) | 309 if (m1.raw_score != m2.raw_score) |
(...skipping 23 matching lines...) Expand all Loading... |
59 return m1.IsHostOnly(); | 333 return m1.IsHostOnly(); |
60 } | 334 } |
61 | 335 |
62 // URLs that have been visited more often are better. | 336 // URLs that have been visited more often are better. |
63 if (m1.url_info.visit_count() != m2.url_info.visit_count()) | 337 if (m1.url_info.visit_count() != m2.url_info.visit_count()) |
64 return m1.url_info.visit_count() > m2.url_info.visit_count(); | 338 return m1.url_info.visit_count() > m2.url_info.visit_count(); |
65 | 339 |
66 // URLs that have been visited more recently are better. | 340 // URLs that have been visited more recently are better. |
67 return m1.url_info.last_visit() > m2.url_info.last_visit(); | 341 return m1.url_info.last_visit() > m2.url_info.last_visit(); |
68 } | 342 } |
| 343 |
| 344 // static |
| 345 TermMatches ScoredHistoryMatch::FilterTermMatchesByWordStarts( |
| 346 const TermMatches& term_matches, |
| 347 const WordStarts& terms_to_word_starts_offsets, |
| 348 const WordStarts& word_starts, |
| 349 size_t start_pos, |
| 350 size_t end_pos) { |
| 351 // Return early if no filtering is needed. |
| 352 if (start_pos == std::string::npos) |
| 353 return term_matches; |
| 354 TermMatches filtered_matches; |
| 355 WordStarts::const_iterator next_word_starts = word_starts.begin(); |
| 356 WordStarts::const_iterator end_word_starts = word_starts.end(); |
| 357 for (const auto& term_match : term_matches) { |
| 358 const size_t term_offset = |
| 359 terms_to_word_starts_offsets[term_match.term_num]; |
| 360 // Advance next_word_starts until it's >= the position of the term we're |
| 361 // considering (adjusted for where the word begins within the term). |
| 362 while ((next_word_starts != end_word_starts) && |
| 363 (*next_word_starts < (term_match.offset + term_offset))) |
| 364 ++next_word_starts; |
| 365 // Add the match if it's before the position we start filtering at or |
| 366 // after the position we stop filtering at (assuming we have a position |
| 367 // to stop filtering at) or if it's at a word boundary. |
| 368 if ((term_match.offset < start_pos) || |
| 369 ((end_pos != std::string::npos) && (term_match.offset >= end_pos)) || |
| 370 ((next_word_starts != end_word_starts) && |
| 371 (*next_word_starts == term_match.offset + term_offset))) |
| 372 filtered_matches.push_back(term_match); |
| 373 } |
| 374 return filtered_matches; |
| 375 } |
| 376 |
| 377 // static |
| 378 void ScoredHistoryMatch::Init() { |
| 379 // Because the code below is not thread safe, we check that we're only calling |
| 380 // it from one thread: the UI thread. Specifically, we check "if we've heard |
| 381 // of the UI thread then we'd better be on it." The first part is necessary |
| 382 // so unit tests pass. (Many unit tests don't set up the threading naming |
| 383 // system; hence CurrentlyOn(UI thread) will fail.) |
| 384 using content::BrowserThread; |
| 385 DCHECK(!BrowserThread::IsThreadInitialized(BrowserThread::UI) || |
| 386 BrowserThread::CurrentlyOn(BrowserThread::UI)); |
| 387 |
| 388 if (initialized) |
| 389 return; |
| 390 |
| 391 initialized = true; |
| 392 |
| 393 // When doing HUP-like scoring, don't allow a non-inlineable match |
| 394 // to beat the score of good inlineable matches. This is a problem |
| 395 // because if a non-inlineable match ends up with the highest score |
| 396 // from HistoryQuick provider, all HistoryQuick matches get demoted |
| 397 // to non-inlineable scores (scores less than 1200). Without |
| 398 // HUP-like-scoring, these results would actually come from the HUP |
| 399 // and not be demoted, thus outscoring the demoted HQP results. |
| 400 // When the HQP provides these, we need to clamp the non-inlineable |
| 401 // results to preserve this behavior. |
| 402 if (kAlsoDoHupLikeScoring) { |
| 403 max_assigned_score_for_non_inlineable_matches = |
| 404 HistoryURLProvider::kScoreForBestInlineableResult - 1; |
| 405 } |
| 406 bookmark_value_ = OmniboxFieldTrial::HQPBookmarkValue(); |
| 407 allow_tld_matches_ = OmniboxFieldTrial::HQPAllowMatchInTLDValue(); |
| 408 allow_scheme_matches_ = OmniboxFieldTrial::HQPAllowMatchInSchemeValue(); |
| 409 |
| 410 InitRawTermScoreToTopicalityScoreArray(); |
| 411 InitDaysAgoToRecencyScoreArray(); |
| 412 InitHQPExperimentalParams(); |
| 413 } |
| 414 |
| 415 float ScoredHistoryMatch::GetTopicalityScore( |
| 416 const int num_terms, |
| 417 const base::string16& url, |
| 418 const WordStarts& terms_to_word_starts_offsets, |
| 419 const RowWordStarts& word_starts) { |
| 420 ScoredHistoryMatch::Init(); |
| 421 // A vector that accumulates per-term scores. The strongest match--a |
| 422 // match in the hostname at a word boundary--is worth 10 points. |
| 423 // Everything else is less. In general, a match that's not at a word |
| 424 // boundary is worth about 1/4th or 1/5th of a match at the word boundary |
| 425 // in the same part of the URL/title. |
| 426 DCHECK_GT(num_terms, 0); |
| 427 std::vector<int> term_scores(num_terms, 0); |
| 428 WordStarts::const_iterator next_word_starts = |
| 429 word_starts.url_word_starts_.begin(); |
| 430 WordStarts::const_iterator end_word_starts = |
| 431 word_starts.url_word_starts_.end(); |
| 432 const size_t question_mark_pos = url.find('?'); |
| 433 const size_t colon_pos = url.find(':'); |
| 434 // The + 3 skips the // that probably appears in the protocol |
| 435 // after the colon. If the protocol doesn't have two slashes after |
| 436 // the colon, that's okay--all this ends up doing is starting our |
| 437 // search for the next / a few characters into the hostname. The |
| 438 // only times this can cause problems is if we have a protocol without |
| 439 // a // after the colon and the hostname is only one or two characters. |
| 440 // This isn't worth worrying about. |
| 441 const size_t end_of_hostname_pos = (colon_pos != std::string::npos) |
| 442 ? url.find('/', colon_pos + 3) |
| 443 : url.find('/'); |
| 444 size_t last_part_of_hostname_pos = (end_of_hostname_pos != std::string::npos) |
| 445 ? url.rfind('.', end_of_hostname_pos) |
| 446 : url.rfind('.'); |
| 447 // Loop through all URL matches and score them appropriately. |
| 448 // First, filter all matches not at a word boundary and in the path (or |
| 449 // later). |
| 450 url_matches = FilterTermMatchesByWordStarts( |
| 451 url_matches, terms_to_word_starts_offsets, word_starts.url_word_starts_, |
| 452 end_of_hostname_pos, std::string::npos); |
| 453 if (colon_pos != std::string::npos) { |
| 454 // Also filter matches not at a word boundary and in the scheme. |
| 455 url_matches = FilterTermMatchesByWordStarts( |
| 456 url_matches, terms_to_word_starts_offsets, word_starts.url_word_starts_, |
| 457 0, colon_pos); |
| 458 } |
| 459 for (const auto& url_match : url_matches) { |
| 460 const size_t term_offset = terms_to_word_starts_offsets[url_match.term_num]; |
| 461 // Advance next_word_starts until it's >= the position of the term we're |
| 462 // considering (adjusted for where the word begins within the term). |
| 463 while ((next_word_starts != end_word_starts) && |
| 464 (*next_word_starts < (url_match.offset + term_offset))) { |
| 465 ++next_word_starts; |
| 466 } |
| 467 const bool at_word_boundary = |
| 468 (next_word_starts != end_word_starts) && |
| 469 (*next_word_starts == url_match.offset + term_offset); |
| 470 if ((question_mark_pos != std::string::npos) && |
| 471 (url_match.offset > question_mark_pos)) { |
| 472 // The match is in a CGI ?... fragment. |
| 473 DCHECK(at_word_boundary); |
| 474 term_scores[url_match.term_num] += 5; |
| 475 } else if ((end_of_hostname_pos != std::string::npos) && |
| 476 (url_match.offset > end_of_hostname_pos)) { |
| 477 // The match is in the path. |
| 478 DCHECK(at_word_boundary); |
| 479 term_scores[url_match.term_num] += 8; |
| 480 } else if ((colon_pos == std::string::npos) || |
| 481 (url_match.offset > colon_pos)) { |
| 482 // The match is in the hostname. |
| 483 if ((last_part_of_hostname_pos == std::string::npos) || |
| 484 (url_match.offset < last_part_of_hostname_pos)) { |
| 485 // Either there are no dots in the hostname or this match isn't |
| 486 // the last dotted component. |
| 487 term_scores[url_match.term_num] += at_word_boundary ? 10 : 2; |
| 488 } else { |
| 489 // The match is in the last part of a dotted hostname (usually this |
| 490 // is the top-level domain .com, .net, etc.). |
| 491 if (allow_tld_matches_) |
| 492 term_scores[url_match.term_num] += at_word_boundary ? 10 : 0; |
| 493 } |
| 494 } else { |
| 495 // The match is in the protocol (a.k.a. scheme). |
| 496 // Matches not at a word boundary should have been filtered already. |
| 497 DCHECK(at_word_boundary); |
| 498 match_in_scheme = true; |
| 499 if (allow_scheme_matches_) |
| 500 term_scores[url_match.term_num] += 10; |
| 501 } |
| 502 } |
| 503 // Now do the analogous loop over all matches in the title. |
| 504 next_word_starts = word_starts.title_word_starts_.begin(); |
| 505 end_word_starts = word_starts.title_word_starts_.end(); |
| 506 int word_num = 0; |
| 507 title_matches = FilterTermMatchesByWordStarts( |
| 508 title_matches, terms_to_word_starts_offsets, |
| 509 word_starts.title_word_starts_, 0, std::string::npos); |
| 510 for (const auto& title_match : title_matches) { |
| 511 const size_t term_offset = |
| 512 terms_to_word_starts_offsets[title_match.term_num]; |
| 513 // Advance next_word_starts until it's >= the position of the term we're |
| 514 // considering (adjusted for where the word begins within the term). |
| 515 while ((next_word_starts != end_word_starts) && |
| 516 (*next_word_starts < (title_match.offset + term_offset))) { |
| 517 ++next_word_starts; |
| 518 ++word_num; |
| 519 } |
| 520 if (word_num >= 10) |
| 521 break; // only count the first ten words |
| 522 DCHECK(next_word_starts != end_word_starts); |
| 523 DCHECK_EQ(*next_word_starts, title_match.offset + term_offset) |
| 524 << "not at word boundary"; |
| 525 term_scores[title_match.term_num] += 8; |
| 526 } |
| 527 // TODO(mpearson): Restore logic for penalizing out-of-order matches. |
| 528 // (Perhaps discount them by 0.8?) |
| 529 // TODO(mpearson): Consider: if the earliest match occurs late in the string, |
| 530 // should we discount it? |
| 531 // TODO(mpearson): Consider: do we want to score based on how much of the |
| 532 // input string the input covers? (I'm leaning toward no.) |
| 533 |
| 534 // Compute the topicality_score as the sum of transformed term_scores. |
| 535 float topicality_score = 0; |
| 536 for (int term_score : term_scores) { |
| 537 // Drop this URL if it seems like a term didn't appear or, more precisely, |
| 538 // didn't appear in a part of the URL or title that we trust enough |
| 539 // to give it credit for. For instance, terms that appear in the middle |
| 540 // of a CGI parameter get no credit. Almost all the matches dropped |
| 541 // due to this test would look stupid if shown to the user. |
| 542 if (term_score == 0) |
| 543 return 0; |
| 544 topicality_score += raw_term_score_to_topicality_score[std::min( |
| 545 term_score, kMaxRawTermScore - 1)]; |
| 546 } |
| 547 // TODO(mpearson): If there are multiple terms, consider taking the |
| 548 // geometric mean of per-term scores rather than the arithmetic mean. |
| 549 |
| 550 const float final_topicality_score = topicality_score / num_terms; |
| 551 |
| 552 // Demote the URL if the topicality score is less than threshold. |
| 553 if (hqp_experimental_scoring_enabled_ && |
| 554 (final_topicality_score < topicality_threshold_)) { |
| 555 return 0.0; |
| 556 } |
| 557 |
| 558 return final_topicality_score; |
| 559 } |
| 560 |
| 561 // static |
| 562 float ScoredHistoryMatch::GetRecencyScore(int last_visit_days_ago) { |
| 563 ScoredHistoryMatch::Init(); |
| 564 // Lookup the score in days_ago_to_recency_score, treating |
| 565 // everything older than what we've precomputed as the oldest thing |
| 566 // we've precomputed. The std::max is to protect against corruption |
| 567 // in the database (in case last_visit_days_ago is negative). |
| 568 return days_ago_to_recency_score[std::max( |
| 569 std::min(last_visit_days_ago, kDaysToPrecomputeRecencyScoresFor - 1), 0)]; |
| 570 } |
| 571 |
| 572 // static |
| 573 float ScoredHistoryMatch::GetFrequency(const base::Time& now, |
| 574 const bool bookmarked, |
| 575 const VisitInfoVector& visits) { |
| 576 // Compute the weighted average |value_of_transition| over the last at |
| 577 // most kMaxVisitsToScore visits, where each visit is weighted using |
| 578 // GetRecencyScore() based on how many days ago it happened. Use |
| 579 // kMaxVisitsToScore as the denominator for the average regardless of |
| 580 // how many visits there were in order to penalize a match that has |
| 581 // fewer visits than kMaxVisitsToScore. |
| 582 float summed_visit_points = 0; |
| 583 const size_t max_visit_to_score = |
| 584 std::min(visits.size(), ScoredHistoryMatch::kMaxVisitsToScore); |
| 585 for (size_t i = 0; i < max_visit_to_score; ++i) { |
| 586 int value_of_transition = |
| 587 (visits[i].second == ui::PAGE_TRANSITION_TYPED) ? 20 : 1; |
| 588 if (bookmarked) |
| 589 value_of_transition = std::max(value_of_transition, bookmark_value_); |
| 590 const float bucket_weight = |
| 591 GetRecencyScore((now - visits[i].first).InDays()); |
| 592 summed_visit_points += (value_of_transition * bucket_weight); |
| 593 } |
| 594 return visits.size() * summed_visit_points / |
| 595 ScoredHistoryMatch::kMaxVisitsToScore; |
| 596 } |
| 597 |
| 598 // static |
| 599 float ScoredHistoryMatch::GetFinalRelevancyScore( |
| 600 float topicality_score, |
| 601 float frequency_score, |
| 602 const std::vector<ScoreMaxRelevance>& hqp_relevance_buckets) { |
| 603 DCHECK(hqp_relevance_buckets.size() > 0); |
| 604 DCHECK_EQ(hqp_relevance_buckets[0].first, 0.0); |
| 605 |
| 606 if (topicality_score == 0) |
| 607 return 0; |
| 608 // Here's how to interpret intermediate_score: Suppose the omnibox |
| 609 // has one input term. Suppose we have a URL for which the omnibox |
| 610 // input term has a single URL hostname hit at a word boundary. (This |
| 611 // implies topicality_score = 1.0.). Then the intermediate_score for |
| 612 // this URL will depend entirely on the frequency_score with |
| 613 // this interpretation: |
| 614 // - a single typed visit more than three months ago, no other visits -> 0.2 |
| 615 // - a visit every three days, no typed visits -> 0.706 |
| 616 // - a visit every day, no typed visits -> 0.916 |
| 617 // - a single typed visit yesterday, no other visits -> 2.0 |
| 618 // - a typed visit once a week -> 11.77 |
| 619 // - a typed visit every three days -> 14.12 |
| 620 // - at least ten typed visits today -> 20.0 (maximum score) |
| 621 // |
| 622 // The below code maps intermediate_score to the range [0, 1399]. |
| 623 // For example: |
| 624 // HQP default scoring buckets: "0.0:400,1.5:600,12.0:1300,20.0:1399" |
| 625 // We will linearly interpolate the scores between: |
| 626 // 0 to 1.5 --> 400 to 600 |
| 627 // 1.5 to 12.0 --> 600 to 1300 |
| 628 // 12.0 to 20.0 --> 1300 to 1399 |
| 629 // >= 20.0 --> 1399 |
| 630 // |
| 631 // The score maxes out at 1399 (i.e., cannot beat a good inlineable result |
| 632 // from HistoryURL provider). |
| 633 const float intermediate_score = topicality_score * frequency_score; |
| 634 |
| 635 // Find the threshold where intermediate score is greater than bucket. |
| 636 size_t i = 1; |
| 637 for (; i < hqp_relevance_buckets.size(); ++i) { |
| 638 const ScoreMaxRelevance& hqp_bucket = hqp_relevance_buckets[i]; |
| 639 if (intermediate_score >= hqp_bucket.first) { |
| 640 continue; |
| 641 } |
| 642 const ScoreMaxRelevance& previous_bucket = hqp_relevance_buckets[i - 1]; |
| 643 const float slope = ((hqp_bucket.second - previous_bucket.second) / |
| 644 (hqp_bucket.first - previous_bucket.first)); |
| 645 return (previous_bucket.second + |
| 646 (slope * (intermediate_score - previous_bucket.first))); |
| 647 } |
| 648 // It will reach this stage when the score is > highest bucket score. |
| 649 // Return the highest bucket score. |
| 650 return hqp_relevance_buckets[i - 1].second; |
| 651 } |
| 652 |
| 653 // static |
| 654 void ScoredHistoryMatch::InitHQPExperimentalParams() { |
| 655 // These are default HQP relevance scoring buckets. |
| 656 // See GetFinalRelevancyScore() for details. |
| 657 std::string hqp_relevance_buckets_str = "0.0:400,1.5:600,12.0:1300,20.0:1399"; |
| 658 |
| 659 // Fetch the experiment params if they are any. |
| 660 hqp_experimental_scoring_enabled_ = |
| 661 OmniboxFieldTrial::HQPExperimentalScoringEnabled(); |
| 662 |
| 663 if (hqp_experimental_scoring_enabled_) { |
| 664 // Add the topicality threshold from experiment params. |
| 665 float hqp_experimental_topicality_threhold = |
| 666 OmniboxFieldTrial::HQPExperimentalTopicalityThreshold(); |
| 667 topicality_threshold_ = hqp_experimental_topicality_threhold; |
| 668 |
| 669 // Add the HQP experimental scoring buckets. |
| 670 std::string hqp_experimental_scoring_buckets = |
| 671 OmniboxFieldTrial::HQPExperimentalScoringBuckets(); |
| 672 if (!hqp_experimental_scoring_buckets.empty()) |
| 673 hqp_relevance_buckets_str = hqp_experimental_scoring_buckets; |
| 674 } |
| 675 |
| 676 // Parse the hqp_relevance_buckets_str string once and store them in vector |
| 677 // which is easy to access. |
| 678 hqp_relevance_buckets_ = |
| 679 new std::vector<ScoredHistoryMatch::ScoreMaxRelevance>(); |
| 680 |
| 681 bool is_valid_bucket_str = GetHQPBucketsFromString(hqp_relevance_buckets_str, |
| 682 hqp_relevance_buckets_); |
| 683 DCHECK(is_valid_bucket_str); |
| 684 } |
| 685 |
| 686 // static |
| 687 bool ScoredHistoryMatch::GetHQPBucketsFromString( |
| 688 const std::string& buckets_str, |
| 689 std::vector<ScoreMaxRelevance>* hqp_buckets) { |
| 690 DCHECK(hqp_buckets != NULL); |
| 691 DCHECK(!buckets_str.empty()); |
| 692 |
| 693 base::StringPairs kv_pairs; |
| 694 if (base::SplitStringIntoKeyValuePairs(buckets_str, ':', ',', &kv_pairs)) { |
| 695 for (base::StringPairs::const_iterator it = kv_pairs.begin(); |
| 696 it != kv_pairs.end(); ++it) { |
| 697 ScoreMaxRelevance bucket; |
| 698 bool is_valid_intermediate_score = |
| 699 base::StringToDouble(it->first, &bucket.first); |
| 700 DCHECK(is_valid_intermediate_score); |
| 701 bool is_valid_hqp_score = base::StringToInt(it->second, &bucket.second); |
| 702 DCHECK(is_valid_hqp_score); |
| 703 hqp_buckets->push_back(bucket); |
| 704 } |
| 705 return true; |
| 706 } |
| 707 return false; |
| 708 } |
OLD | NEW |