Index: src/core/Sk4x_neon.h |
diff --git a/src/core/Sk4x_neon.h b/src/core/Sk4x_neon.h |
new file mode 100644 |
index 0000000000000000000000000000000000000000..41a30b2e47cab5b8c0aca002de76cde1936e729b |
--- /dev/null |
+++ b/src/core/Sk4x_neon.h |
@@ -0,0 +1,220 @@ |
+// It is important _not_ to put header guards here. |
+// This file will be intentionally included three times. |
+ |
+#if defined(SK4X_PREAMBLE) |
+ #include <arm_neon.h> |
+ |
+ // Template metaprogramming to map scalar types to vector types. |
+ template <typename T> struct SkScalarToSIMD; |
+ template <> struct SkScalarToSIMD<float> { typedef float32x4_t Type; }; |
+ template <> struct SkScalarToSIMD<int32_t> { typedef int32x4_t Type; }; |
+ |
+#elif defined(SK4X_PRIVATE) |
+ Sk4x(float32x4_t); |
+ Sk4x(int32x4_t); |
+ |
+ typename SkScalarToSIMD<T>::Type fVec; |
+ |
+#else |
+ |
+// Vector Constructors |
+//template <> inline Sk4f::Sk4x(int32x4_t v) : fVec(vcvtq_f32_s32(v)) {} |
+template <> inline Sk4f::Sk4x(float32x4_t v) : fVec(v) {} |
+template <> inline Sk4i::Sk4x(int32x4_t v) : fVec(v) {} |
+//template <> inline Sk4i::Sk4x(float32x4_t v) : fVec(vcvtq_s32_f32(v)) {} |
+ |
+// Generic Methods |
+template <typename T> Sk4x<T>::Sk4x() {} |
+template <typename T> Sk4x<T>::Sk4x(const Sk4x& other) { *this = other; } |
+template <typename T> Sk4x<T>& Sk4x<T>::operator=(const Sk4x<T>& other) { |
+ fVec = other.fVec; |
+ return *this; |
+} |
+ |
+// Sk4f Methods |
+#define M(...) template <> inline __VA_ARGS__ Sk4f:: |
+ |
+M() Sk4x(float v) : fVec(vdupq_n_f32(v)) {} |
+M() Sk4x(float a, float b, float c, float d) { |
+ // NEON lacks an intrinsic to make this easy. It is recommended to avoid |
+ // this constructor unless it is absolutely necessary. |
+ |
+ // I am choosing to use the set lane intrinsics. Particularly, in the case |
+ // of floating point, it is likely that the values are already in the right |
+ // register file, so this may be the best approach. However, I am not |
+ // certain that this is the fastest approach and experimentation might be |
+ // useful. |
+ fVec = vsetq_lane_f32(a, fVec, 0); |
+ fVec = vsetq_lane_f32(b, fVec, 1); |
+ fVec = vsetq_lane_f32(c, fVec, 2); |
+ fVec = vsetq_lane_f32(d, fVec, 3); |
+} |
+ |
+// As far as I can tell, it's not possible to provide an alignment hint to |
+// NEON using intrinsics. However, I think it is possible at the assembly |
+// level if we want to get into that. |
+// TODO: Write our own aligned load and store. |
+M(Sk4f) Load (const float fs[4]) { return vld1q_f32(fs); } |
+M(Sk4f) LoadAligned(const float fs[4]) { return vld1q_f32(fs); } |
+M(void) store (float fs[4]) const { vst1q_f32(fs, fVec); } |
+M(void) storeAligned(float fs[4]) const { vst1q_f32 (fs, fVec); } |
+ |
+template <> |
+M(Sk4i) reinterpret<Sk4i>() const { return vreinterpretq_s32_f32(fVec); } |
+ |
+template <> |
+M(Sk4i) cast<Sk4i>() const { return vcvtq_s32_f32(fVec); } |
+ |
+// We're going to skip allTrue(), anyTrue(), and bit-manipulators |
+// for Sk4f. Code that calls them probably does so accidentally. |
+// Ask msarett or mtklein to fill these in if you really need them. |
+M(Sk4f) add (const Sk4f& o) const { return vaddq_f32(fVec, o.fVec); } |
+M(Sk4f) subtract(const Sk4f& o) const { return vsubq_f32(fVec, o.fVec); } |
+M(Sk4f) multiply(const Sk4f& o) const { return vmulq_f32(fVec, o.fVec); } |
+ |
+M(Sk4f) divide (const Sk4f& o) const { |
+ float32x4_t est0 = vrecpeq_f32(o.fVec); |
+ float32x4_t est1 = vmulq_f32(vrecpsq_f32(est0, o.fVec), est0); |
+ float32x4_t est2 = vmulq_f32(vrecpsq_f32(est1, o.fVec), est1); |
+ return vmulq_f32(est2, fVec); |
+} |
+ |
+M(Sk4f) rsqrt() const { |
+ float32x4_t est0 = vrsqrteq_f32(fVec); |
+ float32x4_t est1 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est0, est0)), est0); |
+ float32x4_t est2 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est1, est1)), est1); |
+ return est2; |
+} |
+ |
+M(Sk4f) sqrt() const { return this->multiply(this->rsqrt()); } |
+ |
+M(Sk4i) equal (const Sk4f& o) const { return vreinterpretq_s32_u32(vceqq_f32(fVec, o.fVec)); } |
+M(Sk4i) notEqual (const Sk4f& o) const { return vreinterpretq_s32_u32(vmvnq_u32(vceqq_f32(fVec, o.fVec))); } |
+M(Sk4i) lessThan (const Sk4f& o) const { return vreinterpretq_s32_u32(vcltq_f32(fVec, o.fVec)); } |
+M(Sk4i) greaterThan (const Sk4f& o) const { return vreinterpretq_s32_u32(vcgtq_f32(fVec, o.fVec)); } |
+M(Sk4i) lessThanEqual (const Sk4f& o) const { return vreinterpretq_s32_u32(vcleq_f32(fVec, o.fVec)); } |
+M(Sk4i) greaterThanEqual(const Sk4f& o) const { return vreinterpretq_s32_u32(vcgeq_f32(fVec, o.fVec)); } |
+ |
+M(Sk4f) Min(const Sk4f& a, const Sk4f& b) { return vminq_f32(a.fVec, b.fVec); } |
+M(Sk4f) Max(const Sk4f& a, const Sk4f& b) { return vmaxq_f32(a.fVec, b.fVec); } |
+ |
+// These shuffle operations are implemented more efficiently with SSE. |
+// NEON has efficient zip, unzip, and transpose, but it is more costly to |
+// exploit zip and unzip in order to shuffle. |
+M(Sk4f) zwxy() const { |
+ float32x4x2_t zip = vzipq_f32(fVec, vdupq_n_f32(0.0)); |
+ return vuzpq_f32(zip.val[1], zip.val[0]).val[0]; |
+} |
+// Note that XYAB and ZWCD share code. If both are needed, they could be |
+// implemented more efficiently together. Also, ABXY and CDZW are available |
+// as well. |
+M(Sk4f) XYAB(const Sk4f& xyzw, const Sk4f& abcd) { |
+ float32x4x2_t xayb_zcwd = vzipq_f32(xyzw.fVec, abcd.fVec); |
+ float32x4x2_t axby_czdw = vzipq_f32(abcd.fVec, xyzw.fVec); |
+ return vuzpq_f32(xayb_zcwd.val[0], axby_czdw.val[0]).val[0]; |
+} |
+M(Sk4f) ZWCD(const Sk4f& xyzw, const Sk4f& abcd) { |
+ float32x4x2_t xayb_zcwd = vzipq_f32(xyzw.fVec, abcd.fVec); |
+ float32x4x2_t axby_czdw = vzipq_f32(abcd.fVec, xyzw.fVec); |
+ return vuzpq_f32(xayb_zcwd.val[1], axby_czdw.val[1]).val[0]; |
+} |
+ |
+// Sk4i Methods |
+#undef M |
+#define M(...) template <> inline __VA_ARGS__ Sk4i:: |
+ |
+M() Sk4x(int32_t v) : fVec(vdupq_n_s32(v)) {} |
+M() Sk4x(int32_t a, int32_t b, int32_t c, int32_t d) { |
+ // NEON lacks an intrinsic to make this easy. It is recommended to avoid |
+ // this constructor unless it is absolutely necessary. |
+ |
+ // There are a few different implementation strategies. |
+ |
+ // uint64_t ab_i = ((uint32_t) a) | (((uint64_t) b) << 32); |
+ // uint64_t cd_i = ((uint32_t) c) | (((uint64_t) d) << 32); |
+ // int32x2_t ab = vcreate_s32(ab_i); |
+ // int32x2_t cd = vcreate_s32(cd_i); |
+ // fVec = vcombine_s32(ab, cd); |
+ // This might not be a bad idea for the integer case. Either way I think, |
+ // we will need to move values from general registers to NEON registers. |
+ |
+ // I am choosing to use the set lane intrinsics. I am not certain that |
+ // this is the fastest approach. It may be useful to try the above code |
+ // for integers. |
+ fVec = vsetq_lane_s32(a, fVec, 0); |
+ fVec = vsetq_lane_s32(b, fVec, 1); |
+ fVec = vsetq_lane_s32(c, fVec, 2); |
+ fVec = vsetq_lane_s32(d, fVec, 3); |
+} |
+ |
+// As far as I can tell, it's not possible to provide an alignment hint to |
+// NEON using intrinsics. However, I think it is possible at the assembly |
+// level if we want to get into that. |
+M(Sk4i) Load (const int32_t is[4]) { return vld1q_s32(is); } |
+M(Sk4i) LoadAligned(const int32_t is[4]) { return vld1q_s32(is); } |
+M(void) store (int32_t is[4]) const { vst1q_s32(is, fVec); } |
+M(void) storeAligned(int32_t is[4]) const { vst1q_s32 (is, fVec); } |
+ |
+template <> |
+M(Sk4f) reinterpret<Sk4f>() const { return vreinterpretq_f32_s32(fVec); } |
+ |
+template <> |
+M(Sk4f) cast<Sk4f>() const { return vcvtq_f32_s32(fVec); } |
+ |
+M(bool) allTrue() const { |
+ int32_t a = vgetq_lane_s32(fVec, 0); |
+ int32_t b = vgetq_lane_s32(fVec, 1); |
+ int32_t c = vgetq_lane_s32(fVec, 2); |
+ int32_t d = vgetq_lane_s32(fVec, 3); |
+ return a & b & c & d; |
+} |
+M(bool) anyTrue() const { |
+ int32_t a = vgetq_lane_s32(fVec, 0); |
+ int32_t b = vgetq_lane_s32(fVec, 1); |
+ int32_t c = vgetq_lane_s32(fVec, 2); |
+ int32_t d = vgetq_lane_s32(fVec, 3); |
+ return a | b | c | d; |
+} |
+ |
+M(Sk4i) bitNot() const { return vmvnq_s32(fVec); } |
+M(Sk4i) bitAnd(const Sk4i& o) const { return vandq_s32(fVec, o.fVec); } |
+M(Sk4i) bitOr (const Sk4i& o) const { return vorrq_s32(fVec, o.fVec); } |
+ |
+M(Sk4i) equal (const Sk4i& o) const { return vreinterpretq_s32_u32(vceqq_s32(fVec, o.fVec)); } |
+M(Sk4i) notEqual (const Sk4i& o) const { return vreinterpretq_s32_u32(vmvnq_u32(vceqq_s32(fVec, o.fVec))); } |
+M(Sk4i) lessThan (const Sk4i& o) const { return vreinterpretq_s32_u32(vcltq_s32(fVec, o.fVec)); } |
+M(Sk4i) greaterThan (const Sk4i& o) const { return vreinterpretq_s32_u32(vcgtq_s32(fVec, o.fVec)); } |
+M(Sk4i) lessThanEqual (const Sk4i& o) const { return vreinterpretq_s32_u32(vcleq_s32(fVec, o.fVec)); } |
+M(Sk4i) greaterThanEqual(const Sk4i& o) const { return vreinterpretq_s32_u32(vcgeq_s32(fVec, o.fVec)); } |
+ |
+M(Sk4i) add (const Sk4i& o) const { return vaddq_s32(fVec, o.fVec); } |
+M(Sk4i) subtract(const Sk4i& o) const { return vsubq_s32(fVec, o.fVec); } |
+M(Sk4i) multiply(const Sk4i& o) const { return vmulq_s32(fVec, o.fVec); } |
+// NEON does not have integer reciprocal, sqrt, or division. |
+M(Sk4i) Min(const Sk4i& a, const Sk4i& b) { return vminq_s32(a.fVec, b.fVec); } |
+M(Sk4i) Max(const Sk4i& a, const Sk4i& b) { return vmaxq_s32(a.fVec, b.fVec); } |
+ |
+// These shuffle operations are implemented more efficiently with SSE. |
+// NEON has efficient zip, unzip, and transpose, but it is more costly to |
+// exploit zip and unzip in order to shuffle. |
+M(Sk4i) zwxy() const { |
+ int32x4x2_t zip = vzipq_s32(fVec, vdupq_n_s32(0.0)); |
+ return vuzpq_s32(zip.val[1], zip.val[0]).val[0]; |
+} |
+// Note that XYAB and ZWCD share code. If both are needed, they could be |
+// implemented more efficiently together. Also, ABXY and CDZW are available |
+// as well. |
+M(Sk4i) XYAB(const Sk4i& xyzw, const Sk4i& abcd) { |
+ int32x4x2_t xayb_zcwd = vzipq_s32(xyzw.fVec, abcd.fVec); |
+ int32x4x2_t axby_czdw = vzipq_s32(abcd.fVec, xyzw.fVec); |
+ return vuzpq_s32(xayb_zcwd.val[0], axby_czdw.val[0]).val[0]; |
+} |
+M(Sk4i) ZWCD(const Sk4i& xyzw, const Sk4i& abcd) { |
+ int32x4x2_t xayb_zcwd = vzipq_s32(xyzw.fVec, abcd.fVec); |
+ int32x4x2_t axby_czdw = vzipq_s32(abcd.fVec, xyzw.fVec); |
+ return vuzpq_s32(xayb_zcwd.val[1], axby_czdw.val[1]).val[0]; |
+} |
+ |
+#undef M |
+ |
+#endif |