Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(126)

Unified Diff: src/core/Sk4x_neon.h

Issue 975303003: 4x library for NEON (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: added iteration steps to imprecise calcs 2 Created 5 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/core/Sk4x.h ('k') | tests/Sk4xTest.cpp » ('j') | tests/Sk4xTest.cpp » ('J')
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/core/Sk4x_neon.h
diff --git a/src/core/Sk4x_neon.h b/src/core/Sk4x_neon.h
new file mode 100644
index 0000000000000000000000000000000000000000..41a30b2e47cab5b8c0aca002de76cde1936e729b
--- /dev/null
+++ b/src/core/Sk4x_neon.h
@@ -0,0 +1,220 @@
+// It is important _not_ to put header guards here.
+// This file will be intentionally included three times.
+
+#if defined(SK4X_PREAMBLE)
+ #include <arm_neon.h>
+
+ // Template metaprogramming to map scalar types to vector types.
+ template <typename T> struct SkScalarToSIMD;
+ template <> struct SkScalarToSIMD<float> { typedef float32x4_t Type; };
+ template <> struct SkScalarToSIMD<int32_t> { typedef int32x4_t Type; };
+
+#elif defined(SK4X_PRIVATE)
+ Sk4x(float32x4_t);
+ Sk4x(int32x4_t);
+
+ typename SkScalarToSIMD<T>::Type fVec;
+
+#else
+
+// Vector Constructors
+//template <> inline Sk4f::Sk4x(int32x4_t v) : fVec(vcvtq_f32_s32(v)) {}
+template <> inline Sk4f::Sk4x(float32x4_t v) : fVec(v) {}
+template <> inline Sk4i::Sk4x(int32x4_t v) : fVec(v) {}
+//template <> inline Sk4i::Sk4x(float32x4_t v) : fVec(vcvtq_s32_f32(v)) {}
+
+// Generic Methods
+template <typename T> Sk4x<T>::Sk4x() {}
+template <typename T> Sk4x<T>::Sk4x(const Sk4x& other) { *this = other; }
+template <typename T> Sk4x<T>& Sk4x<T>::operator=(const Sk4x<T>& other) {
+ fVec = other.fVec;
+ return *this;
+}
+
+// Sk4f Methods
+#define M(...) template <> inline __VA_ARGS__ Sk4f::
+
+M() Sk4x(float v) : fVec(vdupq_n_f32(v)) {}
+M() Sk4x(float a, float b, float c, float d) {
+ // NEON lacks an intrinsic to make this easy. It is recommended to avoid
+ // this constructor unless it is absolutely necessary.
+
+ // I am choosing to use the set lane intrinsics. Particularly, in the case
+ // of floating point, it is likely that the values are already in the right
+ // register file, so this may be the best approach. However, I am not
+ // certain that this is the fastest approach and experimentation might be
+ // useful.
+ fVec = vsetq_lane_f32(a, fVec, 0);
+ fVec = vsetq_lane_f32(b, fVec, 1);
+ fVec = vsetq_lane_f32(c, fVec, 2);
+ fVec = vsetq_lane_f32(d, fVec, 3);
+}
+
+// As far as I can tell, it's not possible to provide an alignment hint to
+// NEON using intrinsics. However, I think it is possible at the assembly
+// level if we want to get into that.
+// TODO: Write our own aligned load and store.
+M(Sk4f) Load (const float fs[4]) { return vld1q_f32(fs); }
+M(Sk4f) LoadAligned(const float fs[4]) { return vld1q_f32(fs); }
+M(void) store (float fs[4]) const { vst1q_f32(fs, fVec); }
+M(void) storeAligned(float fs[4]) const { vst1q_f32 (fs, fVec); }
+
+template <>
+M(Sk4i) reinterpret<Sk4i>() const { return vreinterpretq_s32_f32(fVec); }
+
+template <>
+M(Sk4i) cast<Sk4i>() const { return vcvtq_s32_f32(fVec); }
+
+// We're going to skip allTrue(), anyTrue(), and bit-manipulators
+// for Sk4f. Code that calls them probably does so accidentally.
+// Ask msarett or mtklein to fill these in if you really need them.
+M(Sk4f) add (const Sk4f& o) const { return vaddq_f32(fVec, o.fVec); }
+M(Sk4f) subtract(const Sk4f& o) const { return vsubq_f32(fVec, o.fVec); }
+M(Sk4f) multiply(const Sk4f& o) const { return vmulq_f32(fVec, o.fVec); }
+
+M(Sk4f) divide (const Sk4f& o) const {
+ float32x4_t est0 = vrecpeq_f32(o.fVec);
+ float32x4_t est1 = vmulq_f32(vrecpsq_f32(est0, o.fVec), est0);
+ float32x4_t est2 = vmulq_f32(vrecpsq_f32(est1, o.fVec), est1);
+ return vmulq_f32(est2, fVec);
+}
+
+M(Sk4f) rsqrt() const {
+ float32x4_t est0 = vrsqrteq_f32(fVec);
+ float32x4_t est1 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est0, est0)), est0);
+ float32x4_t est2 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est1, est1)), est1);
+ return est2;
+}
+
+M(Sk4f) sqrt() const { return this->multiply(this->rsqrt()); }
+
+M(Sk4i) equal (const Sk4f& o) const { return vreinterpretq_s32_u32(vceqq_f32(fVec, o.fVec)); }
+M(Sk4i) notEqual (const Sk4f& o) const { return vreinterpretq_s32_u32(vmvnq_u32(vceqq_f32(fVec, o.fVec))); }
+M(Sk4i) lessThan (const Sk4f& o) const { return vreinterpretq_s32_u32(vcltq_f32(fVec, o.fVec)); }
+M(Sk4i) greaterThan (const Sk4f& o) const { return vreinterpretq_s32_u32(vcgtq_f32(fVec, o.fVec)); }
+M(Sk4i) lessThanEqual (const Sk4f& o) const { return vreinterpretq_s32_u32(vcleq_f32(fVec, o.fVec)); }
+M(Sk4i) greaterThanEqual(const Sk4f& o) const { return vreinterpretq_s32_u32(vcgeq_f32(fVec, o.fVec)); }
+
+M(Sk4f) Min(const Sk4f& a, const Sk4f& b) { return vminq_f32(a.fVec, b.fVec); }
+M(Sk4f) Max(const Sk4f& a, const Sk4f& b) { return vmaxq_f32(a.fVec, b.fVec); }
+
+// These shuffle operations are implemented more efficiently with SSE.
+// NEON has efficient zip, unzip, and transpose, but it is more costly to
+// exploit zip and unzip in order to shuffle.
+M(Sk4f) zwxy() const {
+ float32x4x2_t zip = vzipq_f32(fVec, vdupq_n_f32(0.0));
+ return vuzpq_f32(zip.val[1], zip.val[0]).val[0];
+}
+// Note that XYAB and ZWCD share code. If both are needed, they could be
+// implemented more efficiently together. Also, ABXY and CDZW are available
+// as well.
+M(Sk4f) XYAB(const Sk4f& xyzw, const Sk4f& abcd) {
+ float32x4x2_t xayb_zcwd = vzipq_f32(xyzw.fVec, abcd.fVec);
+ float32x4x2_t axby_czdw = vzipq_f32(abcd.fVec, xyzw.fVec);
+ return vuzpq_f32(xayb_zcwd.val[0], axby_czdw.val[0]).val[0];
+}
+M(Sk4f) ZWCD(const Sk4f& xyzw, const Sk4f& abcd) {
+ float32x4x2_t xayb_zcwd = vzipq_f32(xyzw.fVec, abcd.fVec);
+ float32x4x2_t axby_czdw = vzipq_f32(abcd.fVec, xyzw.fVec);
+ return vuzpq_f32(xayb_zcwd.val[1], axby_czdw.val[1]).val[0];
+}
+
+// Sk4i Methods
+#undef M
+#define M(...) template <> inline __VA_ARGS__ Sk4i::
+
+M() Sk4x(int32_t v) : fVec(vdupq_n_s32(v)) {}
+M() Sk4x(int32_t a, int32_t b, int32_t c, int32_t d) {
+ // NEON lacks an intrinsic to make this easy. It is recommended to avoid
+ // this constructor unless it is absolutely necessary.
+
+ // There are a few different implementation strategies.
+
+ // uint64_t ab_i = ((uint32_t) a) | (((uint64_t) b) << 32);
+ // uint64_t cd_i = ((uint32_t) c) | (((uint64_t) d) << 32);
+ // int32x2_t ab = vcreate_s32(ab_i);
+ // int32x2_t cd = vcreate_s32(cd_i);
+ // fVec = vcombine_s32(ab, cd);
+ // This might not be a bad idea for the integer case. Either way I think,
+ // we will need to move values from general registers to NEON registers.
+
+ // I am choosing to use the set lane intrinsics. I am not certain that
+ // this is the fastest approach. It may be useful to try the above code
+ // for integers.
+ fVec = vsetq_lane_s32(a, fVec, 0);
+ fVec = vsetq_lane_s32(b, fVec, 1);
+ fVec = vsetq_lane_s32(c, fVec, 2);
+ fVec = vsetq_lane_s32(d, fVec, 3);
+}
+
+// As far as I can tell, it's not possible to provide an alignment hint to
+// NEON using intrinsics. However, I think it is possible at the assembly
+// level if we want to get into that.
+M(Sk4i) Load (const int32_t is[4]) { return vld1q_s32(is); }
+M(Sk4i) LoadAligned(const int32_t is[4]) { return vld1q_s32(is); }
+M(void) store (int32_t is[4]) const { vst1q_s32(is, fVec); }
+M(void) storeAligned(int32_t is[4]) const { vst1q_s32 (is, fVec); }
+
+template <>
+M(Sk4f) reinterpret<Sk4f>() const { return vreinterpretq_f32_s32(fVec); }
+
+template <>
+M(Sk4f) cast<Sk4f>() const { return vcvtq_f32_s32(fVec); }
+
+M(bool) allTrue() const {
+ int32_t a = vgetq_lane_s32(fVec, 0);
+ int32_t b = vgetq_lane_s32(fVec, 1);
+ int32_t c = vgetq_lane_s32(fVec, 2);
+ int32_t d = vgetq_lane_s32(fVec, 3);
+ return a & b & c & d;
+}
+M(bool) anyTrue() const {
+ int32_t a = vgetq_lane_s32(fVec, 0);
+ int32_t b = vgetq_lane_s32(fVec, 1);
+ int32_t c = vgetq_lane_s32(fVec, 2);
+ int32_t d = vgetq_lane_s32(fVec, 3);
+ return a | b | c | d;
+}
+
+M(Sk4i) bitNot() const { return vmvnq_s32(fVec); }
+M(Sk4i) bitAnd(const Sk4i& o) const { return vandq_s32(fVec, o.fVec); }
+M(Sk4i) bitOr (const Sk4i& o) const { return vorrq_s32(fVec, o.fVec); }
+
+M(Sk4i) equal (const Sk4i& o) const { return vreinterpretq_s32_u32(vceqq_s32(fVec, o.fVec)); }
+M(Sk4i) notEqual (const Sk4i& o) const { return vreinterpretq_s32_u32(vmvnq_u32(vceqq_s32(fVec, o.fVec))); }
+M(Sk4i) lessThan (const Sk4i& o) const { return vreinterpretq_s32_u32(vcltq_s32(fVec, o.fVec)); }
+M(Sk4i) greaterThan (const Sk4i& o) const { return vreinterpretq_s32_u32(vcgtq_s32(fVec, o.fVec)); }
+M(Sk4i) lessThanEqual (const Sk4i& o) const { return vreinterpretq_s32_u32(vcleq_s32(fVec, o.fVec)); }
+M(Sk4i) greaterThanEqual(const Sk4i& o) const { return vreinterpretq_s32_u32(vcgeq_s32(fVec, o.fVec)); }
+
+M(Sk4i) add (const Sk4i& o) const { return vaddq_s32(fVec, o.fVec); }
+M(Sk4i) subtract(const Sk4i& o) const { return vsubq_s32(fVec, o.fVec); }
+M(Sk4i) multiply(const Sk4i& o) const { return vmulq_s32(fVec, o.fVec); }
+// NEON does not have integer reciprocal, sqrt, or division.
+M(Sk4i) Min(const Sk4i& a, const Sk4i& b) { return vminq_s32(a.fVec, b.fVec); }
+M(Sk4i) Max(const Sk4i& a, const Sk4i& b) { return vmaxq_s32(a.fVec, b.fVec); }
+
+// These shuffle operations are implemented more efficiently with SSE.
+// NEON has efficient zip, unzip, and transpose, but it is more costly to
+// exploit zip and unzip in order to shuffle.
+M(Sk4i) zwxy() const {
+ int32x4x2_t zip = vzipq_s32(fVec, vdupq_n_s32(0.0));
+ return vuzpq_s32(zip.val[1], zip.val[0]).val[0];
+}
+// Note that XYAB and ZWCD share code. If both are needed, they could be
+// implemented more efficiently together. Also, ABXY and CDZW are available
+// as well.
+M(Sk4i) XYAB(const Sk4i& xyzw, const Sk4i& abcd) {
+ int32x4x2_t xayb_zcwd = vzipq_s32(xyzw.fVec, abcd.fVec);
+ int32x4x2_t axby_czdw = vzipq_s32(abcd.fVec, xyzw.fVec);
+ return vuzpq_s32(xayb_zcwd.val[0], axby_czdw.val[0]).val[0];
+}
+M(Sk4i) ZWCD(const Sk4i& xyzw, const Sk4i& abcd) {
+ int32x4x2_t xayb_zcwd = vzipq_s32(xyzw.fVec, abcd.fVec);
+ int32x4x2_t axby_czdw = vzipq_s32(abcd.fVec, xyzw.fVec);
+ return vuzpq_s32(xayb_zcwd.val[1], axby_czdw.val[1]).val[0];
+}
+
+#undef M
+
+#endif
« no previous file with comments | « src/core/Sk4x.h ('k') | tests/Sk4xTest.cpp » ('j') | tests/Sk4xTest.cpp » ('J')

Powered by Google App Engine
This is Rietveld 408576698