| Index: crypto/ghash.cc
|
| diff --git a/crypto/ghash.cc b/crypto/ghash.cc
|
| deleted file mode 100644
|
| index 1acd474cbc69a9c066b09f4655ab1d393b14f674..0000000000000000000000000000000000000000
|
| --- a/crypto/ghash.cc
|
| +++ /dev/null
|
| @@ -1,259 +0,0 @@
|
| -// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -#include "crypto/ghash.h"
|
| -
|
| -#include <algorithm>
|
| -
|
| -#include "base/logging.h"
|
| -#include "base/sys_byteorder.h"
|
| -
|
| -namespace crypto {
|
| -
|
| -// GaloisHash is a polynomial authenticator that works in GF(2^128).
|
| -//
|
| -// Elements of the field are represented in `little-endian' order (which
|
| -// matches the description in the paper[1]), thus the most significant bit is
|
| -// the right-most bit. (This is backwards from the way that everybody else does
|
| -// it.)
|
| -//
|
| -// We store field elements in a pair of such `little-endian' uint64s. So the
|
| -// value one is represented by {low = 2**63, high = 0} and doubling a value
|
| -// involves a *right* shift.
|
| -//
|
| -// [1] http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
|
| -
|
| -namespace {
|
| -
|
| -// Get64 reads a 64-bit, big-endian number from |bytes|.
|
| -uint64 Get64(const uint8 bytes[8]) {
|
| - uint64 t;
|
| - memcpy(&t, bytes, sizeof(t));
|
| - return base::NetToHost64(t);
|
| -}
|
| -
|
| -// Put64 writes |x| to |bytes| as a 64-bit, big-endian number.
|
| -void Put64(uint8 bytes[8], uint64 x) {
|
| - x = base::HostToNet64(x);
|
| - memcpy(bytes, &x, sizeof(x));
|
| -}
|
| -
|
| -// Reverse reverses the order of the bits of 4-bit number in |i|.
|
| -int Reverse(int i) {
|
| - i = ((i << 2) & 0xc) | ((i >> 2) & 0x3);
|
| - i = ((i << 1) & 0xa) | ((i >> 1) & 0x5);
|
| - return i;
|
| -}
|
| -
|
| -} // namespace
|
| -
|
| -GaloisHash::GaloisHash(const uint8 key[16]) {
|
| - Reset();
|
| -
|
| - // We precompute 16 multiples of |key|. However, when we do lookups into this
|
| - // table we'll be using bits from a field element and therefore the bits will
|
| - // be in the reverse order. So normally one would expect, say, 4*key to be in
|
| - // index 4 of the table but due to this bit ordering it will actually be in
|
| - // index 0010 (base 2) = 2.
|
| - FieldElement x = {Get64(key), Get64(key+8)};
|
| - product_table_[0].low = 0;
|
| - product_table_[0].hi = 0;
|
| - product_table_[Reverse(1)] = x;
|
| -
|
| - for (int i = 0; i < 16; i += 2) {
|
| - product_table_[Reverse(i)] = Double(product_table_[Reverse(i/2)]);
|
| - product_table_[Reverse(i+1)] = Add(product_table_[Reverse(i)], x);
|
| - }
|
| -}
|
| -
|
| -void GaloisHash::Reset() {
|
| - state_ = kHashingAdditionalData;
|
| - additional_bytes_ = 0;
|
| - ciphertext_bytes_ = 0;
|
| - buf_used_ = 0;
|
| - y_.low = 0;
|
| - y_.hi = 0;
|
| -}
|
| -
|
| -void GaloisHash::UpdateAdditional(const uint8* data, size_t length) {
|
| - DCHECK_EQ(state_, kHashingAdditionalData);
|
| - additional_bytes_ += length;
|
| - Update(data, length);
|
| -}
|
| -
|
| -void GaloisHash::UpdateCiphertext(const uint8* data, size_t length) {
|
| - if (state_ == kHashingAdditionalData) {
|
| - // If there's any remaining additional data it's zero padded to the next
|
| - // full block.
|
| - if (buf_used_ > 0) {
|
| - memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_);
|
| - UpdateBlocks(buf_, 1);
|
| - buf_used_ = 0;
|
| - }
|
| - state_ = kHashingCiphertext;
|
| - }
|
| -
|
| - DCHECK_EQ(state_, kHashingCiphertext);
|
| - ciphertext_bytes_ += length;
|
| - Update(data, length);
|
| -}
|
| -
|
| -void GaloisHash::Finish(void* output, size_t len) {
|
| - DCHECK(state_ != kComplete);
|
| -
|
| - if (buf_used_ > 0) {
|
| - // If there's any remaining data (additional data or ciphertext), it's zero
|
| - // padded to the next full block.
|
| - memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_);
|
| - UpdateBlocks(buf_, 1);
|
| - buf_used_ = 0;
|
| - }
|
| -
|
| - state_ = kComplete;
|
| -
|
| - // The lengths of the additional data and ciphertext are included as the last
|
| - // block. The lengths are the number of bits.
|
| - y_.low ^= additional_bytes_*8;
|
| - y_.hi ^= ciphertext_bytes_*8;
|
| - MulAfterPrecomputation(product_table_, &y_);
|
| -
|
| - uint8 *result, result_tmp[16];
|
| - if (len >= 16) {
|
| - result = reinterpret_cast<uint8*>(output);
|
| - } else {
|
| - result = result_tmp;
|
| - }
|
| -
|
| - Put64(result, y_.low);
|
| - Put64(result + 8, y_.hi);
|
| -
|
| - if (len < 16)
|
| - memcpy(output, result_tmp, len);
|
| -}
|
| -
|
| -// static
|
| -GaloisHash::FieldElement GaloisHash::Add(
|
| - const FieldElement& x,
|
| - const FieldElement& y) {
|
| - // Addition in a characteristic 2 field is just XOR.
|
| - FieldElement z = {x.low^y.low, x.hi^y.hi};
|
| - return z;
|
| -}
|
| -
|
| -// static
|
| -GaloisHash::FieldElement GaloisHash::Double(const FieldElement& x) {
|
| - const bool msb_set = x.hi & 1;
|
| -
|
| - FieldElement xx;
|
| - // Because of the bit-ordering, doubling is actually a right shift.
|
| - xx.hi = x.hi >> 1;
|
| - xx.hi |= x.low << 63;
|
| - xx.low = x.low >> 1;
|
| -
|
| - // If the most-significant bit was set before shifting then it, conceptually,
|
| - // becomes a term of x^128. This is greater than the irreducible polynomial
|
| - // so the result has to be reduced. The irreducible polynomial is
|
| - // 1+x+x^2+x^7+x^128. We can subtract that to eliminate the term at x^128
|
| - // which also means subtracting the other four terms. In characteristic 2
|
| - // fields, subtraction == addition == XOR.
|
| - if (msb_set)
|
| - xx.low ^= 0xe100000000000000ULL;
|
| -
|
| - return xx;
|
| -}
|
| -
|
| -void GaloisHash::MulAfterPrecomputation(const FieldElement* table,
|
| - FieldElement* x) {
|
| - FieldElement z = {0, 0};
|
| -
|
| - // In order to efficiently multiply, we use the precomputed table of i*key,
|
| - // for i in 0..15, to handle four bits at a time. We could obviously use
|
| - // larger tables for greater speedups but the next convenient table size is
|
| - // 4K, which is a little large.
|
| - //
|
| - // In other fields one would use bit positions spread out across the field in
|
| - // order to reduce the number of doublings required. However, in
|
| - // characteristic 2 fields, repeated doublings are exceptionally cheap and
|
| - // it's not worth spending more precomputation time to eliminate them.
|
| - for (unsigned i = 0; i < 2; i++) {
|
| - uint64 word;
|
| - if (i == 0) {
|
| - word = x->hi;
|
| - } else {
|
| - word = x->low;
|
| - }
|
| -
|
| - for (unsigned j = 0; j < 64; j += 4) {
|
| - Mul16(&z);
|
| - // the values in |table| are ordered for little-endian bit positions. See
|
| - // the comment in the constructor.
|
| - const FieldElement& t = table[word & 0xf];
|
| - z.low ^= t.low;
|
| - z.hi ^= t.hi;
|
| - word >>= 4;
|
| - }
|
| - }
|
| -
|
| - *x = z;
|
| -}
|
| -
|
| -// kReductionTable allows for rapid multiplications by 16. A multiplication by
|
| -// 16 is a right shift by four bits, which results in four bits at 2**128.
|
| -// These terms have to be eliminated by dividing by the irreducible polynomial.
|
| -// In GHASH, the polynomial is such that all the terms occur in the
|
| -// least-significant 8 bits, save for the term at x^128. Therefore we can
|
| -// precompute the value to be added to the field element for each of the 16 bit
|
| -// patterns at 2**128 and the values fit within 12 bits.
|
| -static const uint16 kReductionTable[16] = {
|
| - 0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0,
|
| - 0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0,
|
| -};
|
| -
|
| -// static
|
| -void GaloisHash::Mul16(FieldElement* x) {
|
| - const unsigned msw = x->hi & 0xf;
|
| - x->hi >>= 4;
|
| - x->hi |= x->low << 60;
|
| - x->low >>= 4;
|
| - x->low ^= static_cast<uint64>(kReductionTable[msw]) << 48;
|
| -}
|
| -
|
| -void GaloisHash::UpdateBlocks(const uint8* bytes, size_t num_blocks) {
|
| - for (size_t i = 0; i < num_blocks; i++) {
|
| - y_.low ^= Get64(bytes);
|
| - bytes += 8;
|
| - y_.hi ^= Get64(bytes);
|
| - bytes += 8;
|
| - MulAfterPrecomputation(product_table_, &y_);
|
| - }
|
| -}
|
| -
|
| -void GaloisHash::Update(const uint8* data, size_t length) {
|
| - if (buf_used_ > 0) {
|
| - const size_t n = std::min(length, sizeof(buf_) - buf_used_);
|
| - memcpy(&buf_[buf_used_], data, n);
|
| - buf_used_ += n;
|
| - length -= n;
|
| - data += n;
|
| -
|
| - if (buf_used_ == sizeof(buf_)) {
|
| - UpdateBlocks(buf_, 1);
|
| - buf_used_ = 0;
|
| - }
|
| - }
|
| -
|
| - if (length >= 16) {
|
| - const size_t n = length / 16;
|
| - UpdateBlocks(data, n);
|
| - length -= n*16;
|
| - data += n*16;
|
| - }
|
| -
|
| - if (length > 0) {
|
| - memcpy(buf_, data, length);
|
| - buf_used_ = length;
|
| - }
|
| -}
|
| -
|
| -} // namespace crypto
|
|
|