Index: third_party/sqlite/sqlite-src-3080704/src/pcache1.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/src/pcache1.c b/third_party/sqlite/sqlite-src-3080704/src/pcache1.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..a8c3217382a10b170f017a2648a8759e0dd28b5f |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3080704/src/pcache1.c |
@@ -0,0 +1,1039 @@ |
+/* |
+** 2008 November 05 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** |
+** This file implements the default page cache implementation (the |
+** sqlite3_pcache interface). It also contains part of the implementation |
+** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features. |
+** If the default page cache implementation is overridden, then neither of |
+** these two features are available. |
+*/ |
+ |
+#include "sqliteInt.h" |
+ |
+typedef struct PCache1 PCache1; |
+typedef struct PgHdr1 PgHdr1; |
+typedef struct PgFreeslot PgFreeslot; |
+typedef struct PGroup PGroup; |
+ |
+/* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set |
+** of one or more PCaches that are able to recycle each other's unpinned |
+** pages when they are under memory pressure. A PGroup is an instance of |
+** the following object. |
+** |
+** This page cache implementation works in one of two modes: |
+** |
+** (1) Every PCache is the sole member of its own PGroup. There is |
+** one PGroup per PCache. |
+** |
+** (2) There is a single global PGroup that all PCaches are a member |
+** of. |
+** |
+** Mode 1 uses more memory (since PCache instances are not able to rob |
+** unused pages from other PCaches) but it also operates without a mutex, |
+** and is therefore often faster. Mode 2 requires a mutex in order to be |
+** threadsafe, but recycles pages more efficiently. |
+** |
+** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single |
+** PGroup which is the pcache1.grp global variable and its mutex is |
+** SQLITE_MUTEX_STATIC_LRU. |
+*/ |
+struct PGroup { |
+ sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */ |
+ unsigned int nMaxPage; /* Sum of nMax for purgeable caches */ |
+ unsigned int nMinPage; /* Sum of nMin for purgeable caches */ |
+ unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */ |
+ unsigned int nCurrentPage; /* Number of purgeable pages allocated */ |
+ PgHdr1 *pLruHead, *pLruTail; /* LRU list of unpinned pages */ |
+}; |
+ |
+/* Each page cache is an instance of the following object. Every |
+** open database file (including each in-memory database and each |
+** temporary or transient database) has a single page cache which |
+** is an instance of this object. |
+** |
+** Pointers to structures of this type are cast and returned as |
+** opaque sqlite3_pcache* handles. |
+*/ |
+struct PCache1 { |
+ /* Cache configuration parameters. Page size (szPage) and the purgeable |
+ ** flag (bPurgeable) are set when the cache is created. nMax may be |
+ ** modified at any time by a call to the pcache1Cachesize() method. |
+ ** The PGroup mutex must be held when accessing nMax. |
+ */ |
+ PGroup *pGroup; /* PGroup this cache belongs to */ |
+ int szPage; /* Size of allocated pages in bytes */ |
+ int szExtra; /* Size of extra space in bytes */ |
+ int bPurgeable; /* True if cache is purgeable */ |
+ unsigned int nMin; /* Minimum number of pages reserved */ |
+ unsigned int nMax; /* Configured "cache_size" value */ |
+ unsigned int n90pct; /* nMax*9/10 */ |
+ unsigned int iMaxKey; /* Largest key seen since xTruncate() */ |
+ |
+ /* Hash table of all pages. The following variables may only be accessed |
+ ** when the accessor is holding the PGroup mutex. |
+ */ |
+ unsigned int nRecyclable; /* Number of pages in the LRU list */ |
+ unsigned int nPage; /* Total number of pages in apHash */ |
+ unsigned int nHash; /* Number of slots in apHash[] */ |
+ PgHdr1 **apHash; /* Hash table for fast lookup by key */ |
+}; |
+ |
+/* |
+** Each cache entry is represented by an instance of the following |
+** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of |
+** PgHdr1.pCache->szPage bytes is allocated directly before this structure |
+** in memory. |
+*/ |
+struct PgHdr1 { |
+ sqlite3_pcache_page page; |
+ unsigned int iKey; /* Key value (page number) */ |
+ u8 isPinned; /* Page in use, not on the LRU list */ |
+ PgHdr1 *pNext; /* Next in hash table chain */ |
+ PCache1 *pCache; /* Cache that currently owns this page */ |
+ PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */ |
+ PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */ |
+}; |
+ |
+/* |
+** Free slots in the allocator used to divide up the buffer provided using |
+** the SQLITE_CONFIG_PAGECACHE mechanism. |
+*/ |
+struct PgFreeslot { |
+ PgFreeslot *pNext; /* Next free slot */ |
+}; |
+ |
+/* |
+** Global data used by this cache. |
+*/ |
+static SQLITE_WSD struct PCacheGlobal { |
+ PGroup grp; /* The global PGroup for mode (2) */ |
+ |
+ /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The |
+ ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all |
+ ** fixed at sqlite3_initialize() time and do not require mutex protection. |
+ ** The nFreeSlot and pFree values do require mutex protection. |
+ */ |
+ int isInit; /* True if initialized */ |
+ int szSlot; /* Size of each free slot */ |
+ int nSlot; /* The number of pcache slots */ |
+ int nReserve; /* Try to keep nFreeSlot above this */ |
+ void *pStart, *pEnd; /* Bounds of pagecache malloc range */ |
+ /* Above requires no mutex. Use mutex below for variable that follow. */ |
+ sqlite3_mutex *mutex; /* Mutex for accessing the following: */ |
+ PgFreeslot *pFree; /* Free page blocks */ |
+ int nFreeSlot; /* Number of unused pcache slots */ |
+ /* The following value requires a mutex to change. We skip the mutex on |
+ ** reading because (1) most platforms read a 32-bit integer atomically and |
+ ** (2) even if an incorrect value is read, no great harm is done since this |
+ ** is really just an optimization. */ |
+ int bUnderPressure; /* True if low on PAGECACHE memory */ |
+} pcache1_g; |
+ |
+/* |
+** All code in this file should access the global structure above via the |
+** alias "pcache1". This ensures that the WSD emulation is used when |
+** compiling for systems that do not support real WSD. |
+*/ |
+#define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g)) |
+ |
+/* |
+** Macros to enter and leave the PCache LRU mutex. |
+*/ |
+#define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex) |
+#define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex) |
+ |
+/******************************************************************************/ |
+/******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/ |
+ |
+/* |
+** This function is called during initialization if a static buffer is |
+** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE |
+** verb to sqlite3_config(). Parameter pBuf points to an allocation large |
+** enough to contain 'n' buffers of 'sz' bytes each. |
+** |
+** This routine is called from sqlite3_initialize() and so it is guaranteed |
+** to be serialized already. There is no need for further mutexing. |
+*/ |
+void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){ |
+ if( pcache1.isInit ){ |
+ PgFreeslot *p; |
+ sz = ROUNDDOWN8(sz); |
+ pcache1.szSlot = sz; |
+ pcache1.nSlot = pcache1.nFreeSlot = n; |
+ pcache1.nReserve = n>90 ? 10 : (n/10 + 1); |
+ pcache1.pStart = pBuf; |
+ pcache1.pFree = 0; |
+ pcache1.bUnderPressure = 0; |
+ while( n-- ){ |
+ p = (PgFreeslot*)pBuf; |
+ p->pNext = pcache1.pFree; |
+ pcache1.pFree = p; |
+ pBuf = (void*)&((char*)pBuf)[sz]; |
+ } |
+ pcache1.pEnd = pBuf; |
+ } |
+} |
+ |
+/* |
+** Malloc function used within this file to allocate space from the buffer |
+** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no |
+** such buffer exists or there is no space left in it, this function falls |
+** back to sqlite3Malloc(). |
+** |
+** Multiple threads can run this routine at the same time. Global variables |
+** in pcache1 need to be protected via mutex. |
+*/ |
+static void *pcache1Alloc(int nByte){ |
+ void *p = 0; |
+ assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); |
+ sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte); |
+ if( nByte<=pcache1.szSlot ){ |
+ sqlite3_mutex_enter(pcache1.mutex); |
+ p = (PgHdr1 *)pcache1.pFree; |
+ if( p ){ |
+ pcache1.pFree = pcache1.pFree->pNext; |
+ pcache1.nFreeSlot--; |
+ pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; |
+ assert( pcache1.nFreeSlot>=0 ); |
+ sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1); |
+ } |
+ sqlite3_mutex_leave(pcache1.mutex); |
+ } |
+ if( p==0 ){ |
+ /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get |
+ ** it from sqlite3Malloc instead. |
+ */ |
+ p = sqlite3Malloc(nByte); |
+#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS |
+ if( p ){ |
+ int sz = sqlite3MallocSize(p); |
+ sqlite3_mutex_enter(pcache1.mutex); |
+ sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz); |
+ sqlite3_mutex_leave(pcache1.mutex); |
+ } |
+#endif |
+ sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); |
+ } |
+ return p; |
+} |
+ |
+/* |
+** Free an allocated buffer obtained from pcache1Alloc(). |
+*/ |
+static int pcache1Free(void *p){ |
+ int nFreed = 0; |
+ if( p==0 ) return 0; |
+ if( p>=pcache1.pStart && p<pcache1.pEnd ){ |
+ PgFreeslot *pSlot; |
+ sqlite3_mutex_enter(pcache1.mutex); |
+ sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1); |
+ pSlot = (PgFreeslot*)p; |
+ pSlot->pNext = pcache1.pFree; |
+ pcache1.pFree = pSlot; |
+ pcache1.nFreeSlot++; |
+ pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; |
+ assert( pcache1.nFreeSlot<=pcache1.nSlot ); |
+ sqlite3_mutex_leave(pcache1.mutex); |
+ }else{ |
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); |
+ sqlite3MemdebugSetType(p, MEMTYPE_HEAP); |
+ nFreed = sqlite3MallocSize(p); |
+#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS |
+ sqlite3_mutex_enter(pcache1.mutex); |
+ sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -nFreed); |
+ sqlite3_mutex_leave(pcache1.mutex); |
+#endif |
+ sqlite3_free(p); |
+ } |
+ return nFreed; |
+} |
+ |
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
+/* |
+** Return the size of a pcache allocation |
+*/ |
+static int pcache1MemSize(void *p){ |
+ if( p>=pcache1.pStart && p<pcache1.pEnd ){ |
+ return pcache1.szSlot; |
+ }else{ |
+ int iSize; |
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); |
+ sqlite3MemdebugSetType(p, MEMTYPE_HEAP); |
+ iSize = sqlite3MallocSize(p); |
+ sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); |
+ return iSize; |
+ } |
+} |
+#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ |
+ |
+/* |
+** Allocate a new page object initially associated with cache pCache. |
+*/ |
+static PgHdr1 *pcache1AllocPage(PCache1 *pCache){ |
+ PgHdr1 *p = 0; |
+ void *pPg; |
+ |
+ /* The group mutex must be released before pcache1Alloc() is called. This |
+ ** is because it may call sqlite3_release_memory(), which assumes that |
+ ** this mutex is not held. */ |
+ assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); |
+ pcache1LeaveMutex(pCache->pGroup); |
+#ifdef SQLITE_PCACHE_SEPARATE_HEADER |
+ pPg = pcache1Alloc(pCache->szPage); |
+ p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra); |
+ if( !pPg || !p ){ |
+ pcache1Free(pPg); |
+ sqlite3_free(p); |
+ pPg = 0; |
+ } |
+#else |
+ pPg = pcache1Alloc(sizeof(PgHdr1) + pCache->szPage + pCache->szExtra); |
+ p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage]; |
+#endif |
+ pcache1EnterMutex(pCache->pGroup); |
+ |
+ if( pPg ){ |
+ p->page.pBuf = pPg; |
+ p->page.pExtra = &p[1]; |
+ if( pCache->bPurgeable ){ |
+ pCache->pGroup->nCurrentPage++; |
+ } |
+ return p; |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** Free a page object allocated by pcache1AllocPage(). |
+** |
+** The pointer is allowed to be NULL, which is prudent. But it turns out |
+** that the current implementation happens to never call this routine |
+** with a NULL pointer, so we mark the NULL test with ALWAYS(). |
+*/ |
+static void pcache1FreePage(PgHdr1 *p){ |
+ if( ALWAYS(p) ){ |
+ PCache1 *pCache = p->pCache; |
+ assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) ); |
+ pcache1Free(p->page.pBuf); |
+#ifdef SQLITE_PCACHE_SEPARATE_HEADER |
+ sqlite3_free(p); |
+#endif |
+ if( pCache->bPurgeable ){ |
+ pCache->pGroup->nCurrentPage--; |
+ } |
+ } |
+} |
+ |
+/* |
+** Malloc function used by SQLite to obtain space from the buffer configured |
+** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer |
+** exists, this function falls back to sqlite3Malloc(). |
+*/ |
+void *sqlite3PageMalloc(int sz){ |
+ return pcache1Alloc(sz); |
+} |
+ |
+/* |
+** Free an allocated buffer obtained from sqlite3PageMalloc(). |
+*/ |
+void sqlite3PageFree(void *p){ |
+ pcache1Free(p); |
+} |
+ |
+ |
+/* |
+** Return true if it desirable to avoid allocating a new page cache |
+** entry. |
+** |
+** If memory was allocated specifically to the page cache using |
+** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then |
+** it is desirable to avoid allocating a new page cache entry because |
+** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient |
+** for all page cache needs and we should not need to spill the |
+** allocation onto the heap. |
+** |
+** Or, the heap is used for all page cache memory but the heap is |
+** under memory pressure, then again it is desirable to avoid |
+** allocating a new page cache entry in order to avoid stressing |
+** the heap even further. |
+*/ |
+static int pcache1UnderMemoryPressure(PCache1 *pCache){ |
+ if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){ |
+ return pcache1.bUnderPressure; |
+ }else{ |
+ return sqlite3HeapNearlyFull(); |
+ } |
+} |
+ |
+/******************************************************************************/ |
+/******** General Implementation Functions ************************************/ |
+ |
+/* |
+** This function is used to resize the hash table used by the cache passed |
+** as the first argument. |
+** |
+** The PCache mutex must be held when this function is called. |
+*/ |
+static void pcache1ResizeHash(PCache1 *p){ |
+ PgHdr1 **apNew; |
+ unsigned int nNew; |
+ unsigned int i; |
+ |
+ assert( sqlite3_mutex_held(p->pGroup->mutex) ); |
+ |
+ nNew = p->nHash*2; |
+ if( nNew<256 ){ |
+ nNew = 256; |
+ } |
+ |
+ pcache1LeaveMutex(p->pGroup); |
+ if( p->nHash ){ sqlite3BeginBenignMalloc(); } |
+ apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew); |
+ if( p->nHash ){ sqlite3EndBenignMalloc(); } |
+ pcache1EnterMutex(p->pGroup); |
+ if( apNew ){ |
+ for(i=0; i<p->nHash; i++){ |
+ PgHdr1 *pPage; |
+ PgHdr1 *pNext = p->apHash[i]; |
+ while( (pPage = pNext)!=0 ){ |
+ unsigned int h = pPage->iKey % nNew; |
+ pNext = pPage->pNext; |
+ pPage->pNext = apNew[h]; |
+ apNew[h] = pPage; |
+ } |
+ } |
+ sqlite3_free(p->apHash); |
+ p->apHash = apNew; |
+ p->nHash = nNew; |
+ } |
+} |
+ |
+/* |
+** This function is used internally to remove the page pPage from the |
+** PGroup LRU list, if is part of it. If pPage is not part of the PGroup |
+** LRU list, then this function is a no-op. |
+** |
+** The PGroup mutex must be held when this function is called. |
+*/ |
+static void pcache1PinPage(PgHdr1 *pPage){ |
+ PCache1 *pCache; |
+ PGroup *pGroup; |
+ |
+ assert( pPage!=0 ); |
+ assert( pPage->isPinned==0 ); |
+ pCache = pPage->pCache; |
+ pGroup = pCache->pGroup; |
+ assert( pPage->pLruNext || pPage==pGroup->pLruTail ); |
+ assert( pPage->pLruPrev || pPage==pGroup->pLruHead ); |
+ assert( sqlite3_mutex_held(pGroup->mutex) ); |
+ if( pPage->pLruPrev ){ |
+ pPage->pLruPrev->pLruNext = pPage->pLruNext; |
+ }else{ |
+ pGroup->pLruHead = pPage->pLruNext; |
+ } |
+ if( pPage->pLruNext ){ |
+ pPage->pLruNext->pLruPrev = pPage->pLruPrev; |
+ }else{ |
+ pGroup->pLruTail = pPage->pLruPrev; |
+ } |
+ pPage->pLruNext = 0; |
+ pPage->pLruPrev = 0; |
+ pPage->isPinned = 1; |
+ pCache->nRecyclable--; |
+} |
+ |
+ |
+/* |
+** Remove the page supplied as an argument from the hash table |
+** (PCache1.apHash structure) that it is currently stored in. |
+** |
+** The PGroup mutex must be held when this function is called. |
+*/ |
+static void pcache1RemoveFromHash(PgHdr1 *pPage){ |
+ unsigned int h; |
+ PCache1 *pCache = pPage->pCache; |
+ PgHdr1 **pp; |
+ |
+ assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); |
+ h = pPage->iKey % pCache->nHash; |
+ for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext); |
+ *pp = (*pp)->pNext; |
+ |
+ pCache->nPage--; |
+} |
+ |
+/* |
+** If there are currently more than nMaxPage pages allocated, try |
+** to recycle pages to reduce the number allocated to nMaxPage. |
+*/ |
+static void pcache1EnforceMaxPage(PGroup *pGroup){ |
+ assert( sqlite3_mutex_held(pGroup->mutex) ); |
+ while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){ |
+ PgHdr1 *p = pGroup->pLruTail; |
+ assert( p->pCache->pGroup==pGroup ); |
+ assert( p->isPinned==0 ); |
+ pcache1PinPage(p); |
+ pcache1RemoveFromHash(p); |
+ pcache1FreePage(p); |
+ } |
+} |
+ |
+/* |
+** Discard all pages from cache pCache with a page number (key value) |
+** greater than or equal to iLimit. Any pinned pages that meet this |
+** criteria are unpinned before they are discarded. |
+** |
+** The PCache mutex must be held when this function is called. |
+*/ |
+static void pcache1TruncateUnsafe( |
+ PCache1 *pCache, /* The cache to truncate */ |
+ unsigned int iLimit /* Drop pages with this pgno or larger */ |
+){ |
+ TESTONLY( unsigned int nPage = 0; ) /* To assert pCache->nPage is correct */ |
+ unsigned int h; |
+ assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); |
+ for(h=0; h<pCache->nHash; h++){ |
+ PgHdr1 **pp = &pCache->apHash[h]; |
+ PgHdr1 *pPage; |
+ while( (pPage = *pp)!=0 ){ |
+ if( pPage->iKey>=iLimit ){ |
+ pCache->nPage--; |
+ *pp = pPage->pNext; |
+ if( !pPage->isPinned ) pcache1PinPage(pPage); |
+ pcache1FreePage(pPage); |
+ }else{ |
+ pp = &pPage->pNext; |
+ TESTONLY( nPage++; ) |
+ } |
+ } |
+ } |
+ assert( pCache->nPage==nPage ); |
+} |
+ |
+/******************************************************************************/ |
+/******** sqlite3_pcache Methods **********************************************/ |
+ |
+/* |
+** Implementation of the sqlite3_pcache.xInit method. |
+*/ |
+static int pcache1Init(void *NotUsed){ |
+ UNUSED_PARAMETER(NotUsed); |
+ assert( pcache1.isInit==0 ); |
+ memset(&pcache1, 0, sizeof(pcache1)); |
+ if( sqlite3GlobalConfig.bCoreMutex ){ |
+ pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU); |
+ pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM); |
+ } |
+ pcache1.grp.mxPinned = 10; |
+ pcache1.isInit = 1; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Implementation of the sqlite3_pcache.xShutdown method. |
+** Note that the static mutex allocated in xInit does |
+** not need to be freed. |
+*/ |
+static void pcache1Shutdown(void *NotUsed){ |
+ UNUSED_PARAMETER(NotUsed); |
+ assert( pcache1.isInit!=0 ); |
+ memset(&pcache1, 0, sizeof(pcache1)); |
+} |
+ |
+/* forward declaration */ |
+static void pcache1Destroy(sqlite3_pcache *p); |
+ |
+/* |
+** Implementation of the sqlite3_pcache.xCreate method. |
+** |
+** Allocate a new cache. |
+*/ |
+static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){ |
+ PCache1 *pCache; /* The newly created page cache */ |
+ PGroup *pGroup; /* The group the new page cache will belong to */ |
+ int sz; /* Bytes of memory required to allocate the new cache */ |
+ |
+ /* |
+ ** The separateCache variable is true if each PCache has its own private |
+ ** PGroup. In other words, separateCache is true for mode (1) where no |
+ ** mutexing is required. |
+ ** |
+ ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT |
+ ** |
+ ** * Always use a unified cache in single-threaded applications |
+ ** |
+ ** * Otherwise (if multi-threaded and ENABLE_MEMORY_MANAGEMENT is off) |
+ ** use separate caches (mode-1) |
+ */ |
+#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0 |
+ const int separateCache = 0; |
+#else |
+ int separateCache = sqlite3GlobalConfig.bCoreMutex>0; |
+#endif |
+ |
+ assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 ); |
+ assert( szExtra < 300 ); |
+ |
+ sz = sizeof(PCache1) + sizeof(PGroup)*separateCache; |
+ pCache = (PCache1 *)sqlite3MallocZero(sz); |
+ if( pCache ){ |
+ if( separateCache ){ |
+ pGroup = (PGroup*)&pCache[1]; |
+ pGroup->mxPinned = 10; |
+ }else{ |
+ pGroup = &pcache1.grp; |
+ } |
+ pCache->pGroup = pGroup; |
+ pCache->szPage = szPage; |
+ pCache->szExtra = szExtra; |
+ pCache->bPurgeable = (bPurgeable ? 1 : 0); |
+ pcache1EnterMutex(pGroup); |
+ pcache1ResizeHash(pCache); |
+ if( bPurgeable ){ |
+ pCache->nMin = 10; |
+ pGroup->nMinPage += pCache->nMin; |
+ pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; |
+ } |
+ pcache1LeaveMutex(pGroup); |
+ if( pCache->nHash==0 ){ |
+ pcache1Destroy((sqlite3_pcache*)pCache); |
+ pCache = 0; |
+ } |
+ } |
+ return (sqlite3_pcache *)pCache; |
+} |
+ |
+/* |
+** Implementation of the sqlite3_pcache.xCachesize method. |
+** |
+** Configure the cache_size limit for a cache. |
+*/ |
+static void pcache1Cachesize(sqlite3_pcache *p, int nMax){ |
+ PCache1 *pCache = (PCache1 *)p; |
+ if( pCache->bPurgeable ){ |
+ PGroup *pGroup = pCache->pGroup; |
+ pcache1EnterMutex(pGroup); |
+ pGroup->nMaxPage += (nMax - pCache->nMax); |
+ pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; |
+ pCache->nMax = nMax; |
+ pCache->n90pct = pCache->nMax*9/10; |
+ pcache1EnforceMaxPage(pGroup); |
+ pcache1LeaveMutex(pGroup); |
+ } |
+} |
+ |
+/* |
+** Implementation of the sqlite3_pcache.xShrink method. |
+** |
+** Free up as much memory as possible. |
+*/ |
+static void pcache1Shrink(sqlite3_pcache *p){ |
+ PCache1 *pCache = (PCache1*)p; |
+ if( pCache->bPurgeable ){ |
+ PGroup *pGroup = pCache->pGroup; |
+ int savedMaxPage; |
+ pcache1EnterMutex(pGroup); |
+ savedMaxPage = pGroup->nMaxPage; |
+ pGroup->nMaxPage = 0; |
+ pcache1EnforceMaxPage(pGroup); |
+ pGroup->nMaxPage = savedMaxPage; |
+ pcache1LeaveMutex(pGroup); |
+ } |
+} |
+ |
+/* |
+** Implementation of the sqlite3_pcache.xPagecount method. |
+*/ |
+static int pcache1Pagecount(sqlite3_pcache *p){ |
+ int n; |
+ PCache1 *pCache = (PCache1*)p; |
+ pcache1EnterMutex(pCache->pGroup); |
+ n = pCache->nPage; |
+ pcache1LeaveMutex(pCache->pGroup); |
+ return n; |
+} |
+ |
+ |
+/* |
+** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described |
+** in the header of the pcache1Fetch() procedure. |
+** |
+** This steps are broken out into a separate procedure because they are |
+** usually not needed, and by avoiding the stack initialization required |
+** for these steps, the main pcache1Fetch() procedure can run faster. |
+*/ |
+static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2( |
+ PCache1 *pCache, |
+ unsigned int iKey, |
+ int createFlag |
+){ |
+ unsigned int nPinned; |
+ PGroup *pGroup = pCache->pGroup; |
+ PgHdr1 *pPage = 0; |
+ |
+ /* Step 3: Abort if createFlag is 1 but the cache is nearly full */ |
+ assert( pCache->nPage >= pCache->nRecyclable ); |
+ nPinned = pCache->nPage - pCache->nRecyclable; |
+ assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); |
+ assert( pCache->n90pct == pCache->nMax*9/10 ); |
+ if( createFlag==1 && ( |
+ nPinned>=pGroup->mxPinned |
+ || nPinned>=pCache->n90pct |
+ || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned) |
+ )){ |
+ return 0; |
+ } |
+ |
+ if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache); |
+ assert( pCache->nHash>0 && pCache->apHash ); |
+ |
+ /* Step 4. Try to recycle a page. */ |
+ if( pCache->bPurgeable && pGroup->pLruTail && ( |
+ (pCache->nPage+1>=pCache->nMax) |
+ || pGroup->nCurrentPage>=pGroup->nMaxPage |
+ || pcache1UnderMemoryPressure(pCache) |
+ )){ |
+ PCache1 *pOther; |
+ pPage = pGroup->pLruTail; |
+ assert( pPage->isPinned==0 ); |
+ pcache1RemoveFromHash(pPage); |
+ pcache1PinPage(pPage); |
+ pOther = pPage->pCache; |
+ |
+ /* We want to verify that szPage and szExtra are the same for pOther |
+ ** and pCache. Assert that we can verify this by comparing sums. */ |
+ assert( (pCache->szPage & (pCache->szPage-1))==0 && pCache->szPage>=512 ); |
+ assert( pCache->szExtra<512 ); |
+ assert( (pOther->szPage & (pOther->szPage-1))==0 && pOther->szPage>=512 ); |
+ assert( pOther->szExtra<512 ); |
+ |
+ if( pOther->szPage+pOther->szExtra != pCache->szPage+pCache->szExtra ){ |
+ pcache1FreePage(pPage); |
+ pPage = 0; |
+ }else{ |
+ pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable); |
+ } |
+ } |
+ |
+ /* Step 5. If a usable page buffer has still not been found, |
+ ** attempt to allocate a new one. |
+ */ |
+ if( !pPage ){ |
+ if( createFlag==1 ) sqlite3BeginBenignMalloc(); |
+ pPage = pcache1AllocPage(pCache); |
+ if( createFlag==1 ) sqlite3EndBenignMalloc(); |
+ } |
+ |
+ if( pPage ){ |
+ unsigned int h = iKey % pCache->nHash; |
+ pCache->nPage++; |
+ pPage->iKey = iKey; |
+ pPage->pNext = pCache->apHash[h]; |
+ pPage->pCache = pCache; |
+ pPage->pLruPrev = 0; |
+ pPage->pLruNext = 0; |
+ pPage->isPinned = 1; |
+ *(void **)pPage->page.pExtra = 0; |
+ pCache->apHash[h] = pPage; |
+ if( iKey>pCache->iMaxKey ){ |
+ pCache->iMaxKey = iKey; |
+ } |
+ } |
+ return pPage; |
+} |
+ |
+/* |
+** Implementation of the sqlite3_pcache.xFetch method. |
+** |
+** Fetch a page by key value. |
+** |
+** Whether or not a new page may be allocated by this function depends on |
+** the value of the createFlag argument. 0 means do not allocate a new |
+** page. 1 means allocate a new page if space is easily available. 2 |
+** means to try really hard to allocate a new page. |
+** |
+** For a non-purgeable cache (a cache used as the storage for an in-memory |
+** database) there is really no difference between createFlag 1 and 2. So |
+** the calling function (pcache.c) will never have a createFlag of 1 on |
+** a non-purgeable cache. |
+** |
+** There are three different approaches to obtaining space for a page, |
+** depending on the value of parameter createFlag (which may be 0, 1 or 2). |
+** |
+** 1. Regardless of the value of createFlag, the cache is searched for a |
+** copy of the requested page. If one is found, it is returned. |
+** |
+** 2. If createFlag==0 and the page is not already in the cache, NULL is |
+** returned. |
+** |
+** 3. If createFlag is 1, and the page is not already in the cache, then |
+** return NULL (do not allocate a new page) if any of the following |
+** conditions are true: |
+** |
+** (a) the number of pages pinned by the cache is greater than |
+** PCache1.nMax, or |
+** |
+** (b) the number of pages pinned by the cache is greater than |
+** the sum of nMax for all purgeable caches, less the sum of |
+** nMin for all other purgeable caches, or |
+** |
+** 4. If none of the first three conditions apply and the cache is marked |
+** as purgeable, and if one of the following is true: |
+** |
+** (a) The number of pages allocated for the cache is already |
+** PCache1.nMax, or |
+** |
+** (b) The number of pages allocated for all purgeable caches is |
+** already equal to or greater than the sum of nMax for all |
+** purgeable caches, |
+** |
+** (c) The system is under memory pressure and wants to avoid |
+** unnecessary pages cache entry allocations |
+** |
+** then attempt to recycle a page from the LRU list. If it is the right |
+** size, return the recycled buffer. Otherwise, free the buffer and |
+** proceed to step 5. |
+** |
+** 5. Otherwise, allocate and return a new page buffer. |
+*/ |
+static sqlite3_pcache_page *pcache1Fetch( |
+ sqlite3_pcache *p, |
+ unsigned int iKey, |
+ int createFlag |
+){ |
+ PCache1 *pCache = (PCache1 *)p; |
+ PgHdr1 *pPage = 0; |
+ |
+ assert( offsetof(PgHdr1,page)==0 ); |
+ assert( pCache->bPurgeable || createFlag!=1 ); |
+ assert( pCache->bPurgeable || pCache->nMin==0 ); |
+ assert( pCache->bPurgeable==0 || pCache->nMin==10 ); |
+ assert( pCache->nMin==0 || pCache->bPurgeable ); |
+ assert( pCache->nHash>0 ); |
+ pcache1EnterMutex(pCache->pGroup); |
+ |
+ /* Step 1: Search the hash table for an existing entry. */ |
+ pPage = pCache->apHash[iKey % pCache->nHash]; |
+ while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; } |
+ |
+ /* Step 2: Abort if no existing page is found and createFlag is 0 */ |
+ if( pPage ){ |
+ if( !pPage->isPinned ) pcache1PinPage(pPage); |
+ }else if( createFlag ){ |
+ /* Steps 3, 4, and 5 implemented by this subroutine */ |
+ pPage = pcache1FetchStage2(pCache, iKey, createFlag); |
+ } |
+ assert( pPage==0 || pCache->iMaxKey>=iKey ); |
+ pcache1LeaveMutex(pCache->pGroup); |
+ return (sqlite3_pcache_page*)pPage; |
+} |
+ |
+ |
+/* |
+** Implementation of the sqlite3_pcache.xUnpin method. |
+** |
+** Mark a page as unpinned (eligible for asynchronous recycling). |
+*/ |
+static void pcache1Unpin( |
+ sqlite3_pcache *p, |
+ sqlite3_pcache_page *pPg, |
+ int reuseUnlikely |
+){ |
+ PCache1 *pCache = (PCache1 *)p; |
+ PgHdr1 *pPage = (PgHdr1 *)pPg; |
+ PGroup *pGroup = pCache->pGroup; |
+ |
+ assert( pPage->pCache==pCache ); |
+ pcache1EnterMutex(pGroup); |
+ |
+ /* It is an error to call this function if the page is already |
+ ** part of the PGroup LRU list. |
+ */ |
+ assert( pPage->pLruPrev==0 && pPage->pLruNext==0 ); |
+ assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage ); |
+ assert( pPage->isPinned==1 ); |
+ |
+ if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){ |
+ pcache1RemoveFromHash(pPage); |
+ pcache1FreePage(pPage); |
+ }else{ |
+ /* Add the page to the PGroup LRU list. */ |
+ if( pGroup->pLruHead ){ |
+ pGroup->pLruHead->pLruPrev = pPage; |
+ pPage->pLruNext = pGroup->pLruHead; |
+ pGroup->pLruHead = pPage; |
+ }else{ |
+ pGroup->pLruTail = pPage; |
+ pGroup->pLruHead = pPage; |
+ } |
+ pCache->nRecyclable++; |
+ pPage->isPinned = 0; |
+ } |
+ |
+ pcache1LeaveMutex(pCache->pGroup); |
+} |
+ |
+/* |
+** Implementation of the sqlite3_pcache.xRekey method. |
+*/ |
+static void pcache1Rekey( |
+ sqlite3_pcache *p, |
+ sqlite3_pcache_page *pPg, |
+ unsigned int iOld, |
+ unsigned int iNew |
+){ |
+ PCache1 *pCache = (PCache1 *)p; |
+ PgHdr1 *pPage = (PgHdr1 *)pPg; |
+ PgHdr1 **pp; |
+ unsigned int h; |
+ assert( pPage->iKey==iOld ); |
+ assert( pPage->pCache==pCache ); |
+ |
+ pcache1EnterMutex(pCache->pGroup); |
+ |
+ h = iOld%pCache->nHash; |
+ pp = &pCache->apHash[h]; |
+ while( (*pp)!=pPage ){ |
+ pp = &(*pp)->pNext; |
+ } |
+ *pp = pPage->pNext; |
+ |
+ h = iNew%pCache->nHash; |
+ pPage->iKey = iNew; |
+ pPage->pNext = pCache->apHash[h]; |
+ pCache->apHash[h] = pPage; |
+ if( iNew>pCache->iMaxKey ){ |
+ pCache->iMaxKey = iNew; |
+ } |
+ |
+ pcache1LeaveMutex(pCache->pGroup); |
+} |
+ |
+/* |
+** Implementation of the sqlite3_pcache.xTruncate method. |
+** |
+** Discard all unpinned pages in the cache with a page number equal to |
+** or greater than parameter iLimit. Any pinned pages with a page number |
+** equal to or greater than iLimit are implicitly unpinned. |
+*/ |
+static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){ |
+ PCache1 *pCache = (PCache1 *)p; |
+ pcache1EnterMutex(pCache->pGroup); |
+ if( iLimit<=pCache->iMaxKey ){ |
+ pcache1TruncateUnsafe(pCache, iLimit); |
+ pCache->iMaxKey = iLimit-1; |
+ } |
+ pcache1LeaveMutex(pCache->pGroup); |
+} |
+ |
+/* |
+** Implementation of the sqlite3_pcache.xDestroy method. |
+** |
+** Destroy a cache allocated using pcache1Create(). |
+*/ |
+static void pcache1Destroy(sqlite3_pcache *p){ |
+ PCache1 *pCache = (PCache1 *)p; |
+ PGroup *pGroup = pCache->pGroup; |
+ assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) ); |
+ pcache1EnterMutex(pGroup); |
+ pcache1TruncateUnsafe(pCache, 0); |
+ assert( pGroup->nMaxPage >= pCache->nMax ); |
+ pGroup->nMaxPage -= pCache->nMax; |
+ assert( pGroup->nMinPage >= pCache->nMin ); |
+ pGroup->nMinPage -= pCache->nMin; |
+ pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; |
+ pcache1EnforceMaxPage(pGroup); |
+ pcache1LeaveMutex(pGroup); |
+ sqlite3_free(pCache->apHash); |
+ sqlite3_free(pCache); |
+} |
+ |
+/* |
+** This function is called during initialization (sqlite3_initialize()) to |
+** install the default pluggable cache module, assuming the user has not |
+** already provided an alternative. |
+*/ |
+void sqlite3PCacheSetDefault(void){ |
+ static const sqlite3_pcache_methods2 defaultMethods = { |
+ 1, /* iVersion */ |
+ 0, /* pArg */ |
+ pcache1Init, /* xInit */ |
+ pcache1Shutdown, /* xShutdown */ |
+ pcache1Create, /* xCreate */ |
+ pcache1Cachesize, /* xCachesize */ |
+ pcache1Pagecount, /* xPagecount */ |
+ pcache1Fetch, /* xFetch */ |
+ pcache1Unpin, /* xUnpin */ |
+ pcache1Rekey, /* xRekey */ |
+ pcache1Truncate, /* xTruncate */ |
+ pcache1Destroy, /* xDestroy */ |
+ pcache1Shrink /* xShrink */ |
+ }; |
+ sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods); |
+} |
+ |
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
+/* |
+** This function is called to free superfluous dynamically allocated memory |
+** held by the pager system. Memory in use by any SQLite pager allocated |
+** by the current thread may be sqlite3_free()ed. |
+** |
+** nReq is the number of bytes of memory required. Once this much has |
+** been released, the function returns. The return value is the total number |
+** of bytes of memory released. |
+*/ |
+int sqlite3PcacheReleaseMemory(int nReq){ |
+ int nFree = 0; |
+ assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); |
+ assert( sqlite3_mutex_notheld(pcache1.mutex) ); |
+ if( pcache1.pStart==0 ){ |
+ PgHdr1 *p; |
+ pcache1EnterMutex(&pcache1.grp); |
+ while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){ |
+ nFree += pcache1MemSize(p->page.pBuf); |
+#ifdef SQLITE_PCACHE_SEPARATE_HEADER |
+ nFree += sqlite3MemSize(p); |
+#endif |
+ assert( p->isPinned==0 ); |
+ pcache1PinPage(p); |
+ pcache1RemoveFromHash(p); |
+ pcache1FreePage(p); |
+ } |
+ pcache1LeaveMutex(&pcache1.grp); |
+ } |
+ return nFree; |
+} |
+#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ |
+ |
+#ifdef SQLITE_TEST |
+/* |
+** This function is used by test procedures to inspect the internal state |
+** of the global cache. |
+*/ |
+void sqlite3PcacheStats( |
+ int *pnCurrent, /* OUT: Total number of pages cached */ |
+ int *pnMax, /* OUT: Global maximum cache size */ |
+ int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */ |
+ int *pnRecyclable /* OUT: Total number of pages available for recycling */ |
+){ |
+ PgHdr1 *p; |
+ int nRecyclable = 0; |
+ for(p=pcache1.grp.pLruHead; p; p=p->pLruNext){ |
+ assert( p->isPinned==0 ); |
+ nRecyclable++; |
+ } |
+ *pnCurrent = pcache1.grp.nCurrentPage; |
+ *pnMax = (int)pcache1.grp.nMaxPage; |
+ *pnMin = (int)pcache1.grp.nMinPage; |
+ *pnRecyclable = nRecyclable; |
+} |
+#endif |