| Index: third_party/sqlite/sqlite-src-3080704/src/select.c
|
| diff --git a/third_party/sqlite/sqlite-src-3080704/src/select.c b/third_party/sqlite/sqlite-src-3080704/src/select.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..3b422f1100349609920c592ba6ab4e096d1ef2ff
|
| --- /dev/null
|
| +++ b/third_party/sqlite/sqlite-src-3080704/src/select.c
|
| @@ -0,0 +1,5517 @@
|
| +/*
|
| +** 2001 September 15
|
| +**
|
| +** The author disclaims copyright to this source code. In place of
|
| +** a legal notice, here is a blessing:
|
| +**
|
| +** May you do good and not evil.
|
| +** May you find forgiveness for yourself and forgive others.
|
| +** May you share freely, never taking more than you give.
|
| +**
|
| +*************************************************************************
|
| +** This file contains C code routines that are called by the parser
|
| +** to handle SELECT statements in SQLite.
|
| +*/
|
| +#include "sqliteInt.h"
|
| +
|
| +/*
|
| +** Trace output macros
|
| +*/
|
| +#if SELECTTRACE_ENABLED
|
| +/***/ int sqlite3SelectTrace = 0;
|
| +# define SELECTTRACE(K,P,S,X) \
|
| + if(sqlite3SelectTrace&(K)) \
|
| + sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",(S)->zSelName,(S)),\
|
| + sqlite3DebugPrintf X
|
| +#else
|
| +# define SELECTTRACE(K,P,S,X)
|
| +#endif
|
| +
|
| +
|
| +/*
|
| +** An instance of the following object is used to record information about
|
| +** how to process the DISTINCT keyword, to simplify passing that information
|
| +** into the selectInnerLoop() routine.
|
| +*/
|
| +typedef struct DistinctCtx DistinctCtx;
|
| +struct DistinctCtx {
|
| + u8 isTnct; /* True if the DISTINCT keyword is present */
|
| + u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
|
| + int tabTnct; /* Ephemeral table used for DISTINCT processing */
|
| + int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
|
| +};
|
| +
|
| +/*
|
| +** An instance of the following object is used to record information about
|
| +** the ORDER BY (or GROUP BY) clause of query is being coded.
|
| +*/
|
| +typedef struct SortCtx SortCtx;
|
| +struct SortCtx {
|
| + ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */
|
| + int nOBSat; /* Number of ORDER BY terms satisfied by indices */
|
| + int iECursor; /* Cursor number for the sorter */
|
| + int regReturn; /* Register holding block-output return address */
|
| + int labelBkOut; /* Start label for the block-output subroutine */
|
| + int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
|
| + u8 sortFlags; /* Zero or more SORTFLAG_* bits */
|
| +};
|
| +#define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
|
| +
|
| +/*
|
| +** Delete all the content of a Select structure but do not deallocate
|
| +** the select structure itself.
|
| +*/
|
| +static void clearSelect(sqlite3 *db, Select *p){
|
| + sqlite3ExprListDelete(db, p->pEList);
|
| + sqlite3SrcListDelete(db, p->pSrc);
|
| + sqlite3ExprDelete(db, p->pWhere);
|
| + sqlite3ExprListDelete(db, p->pGroupBy);
|
| + sqlite3ExprDelete(db, p->pHaving);
|
| + sqlite3ExprListDelete(db, p->pOrderBy);
|
| + sqlite3SelectDelete(db, p->pPrior);
|
| + sqlite3ExprDelete(db, p->pLimit);
|
| + sqlite3ExprDelete(db, p->pOffset);
|
| + sqlite3WithDelete(db, p->pWith);
|
| +}
|
| +
|
| +/*
|
| +** Initialize a SelectDest structure.
|
| +*/
|
| +void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
|
| + pDest->eDest = (u8)eDest;
|
| + pDest->iSDParm = iParm;
|
| + pDest->affSdst = 0;
|
| + pDest->iSdst = 0;
|
| + pDest->nSdst = 0;
|
| +}
|
| +
|
| +
|
| +/*
|
| +** Allocate a new Select structure and return a pointer to that
|
| +** structure.
|
| +*/
|
| +Select *sqlite3SelectNew(
|
| + Parse *pParse, /* Parsing context */
|
| + ExprList *pEList, /* which columns to include in the result */
|
| + SrcList *pSrc, /* the FROM clause -- which tables to scan */
|
| + Expr *pWhere, /* the WHERE clause */
|
| + ExprList *pGroupBy, /* the GROUP BY clause */
|
| + Expr *pHaving, /* the HAVING clause */
|
| + ExprList *pOrderBy, /* the ORDER BY clause */
|
| + u16 selFlags, /* Flag parameters, such as SF_Distinct */
|
| + Expr *pLimit, /* LIMIT value. NULL means not used */
|
| + Expr *pOffset /* OFFSET value. NULL means no offset */
|
| +){
|
| + Select *pNew;
|
| + Select standin;
|
| + sqlite3 *db = pParse->db;
|
| + pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
|
| + assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
|
| + if( pNew==0 ){
|
| + assert( db->mallocFailed );
|
| + pNew = &standin;
|
| + memset(pNew, 0, sizeof(*pNew));
|
| + }
|
| + if( pEList==0 ){
|
| + pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
|
| + }
|
| + pNew->pEList = pEList;
|
| + if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
|
| + pNew->pSrc = pSrc;
|
| + pNew->pWhere = pWhere;
|
| + pNew->pGroupBy = pGroupBy;
|
| + pNew->pHaving = pHaving;
|
| + pNew->pOrderBy = pOrderBy;
|
| + pNew->selFlags = selFlags;
|
| + pNew->op = TK_SELECT;
|
| + pNew->pLimit = pLimit;
|
| + pNew->pOffset = pOffset;
|
| + assert( pOffset==0 || pLimit!=0 );
|
| + pNew->addrOpenEphm[0] = -1;
|
| + pNew->addrOpenEphm[1] = -1;
|
| + if( db->mallocFailed ) {
|
| + clearSelect(db, pNew);
|
| + if( pNew!=&standin ) sqlite3DbFree(db, pNew);
|
| + pNew = 0;
|
| + }else{
|
| + assert( pNew->pSrc!=0 || pParse->nErr>0 );
|
| + }
|
| + assert( pNew!=&standin );
|
| + return pNew;
|
| +}
|
| +
|
| +#if SELECTTRACE_ENABLED
|
| +/*
|
| +** Set the name of a Select object
|
| +*/
|
| +void sqlite3SelectSetName(Select *p, const char *zName){
|
| + if( p && zName ){
|
| + sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
|
| + }
|
| +}
|
| +#endif
|
| +
|
| +
|
| +/*
|
| +** Delete the given Select structure and all of its substructures.
|
| +*/
|
| +void sqlite3SelectDelete(sqlite3 *db, Select *p){
|
| + if( p ){
|
| + clearSelect(db, p);
|
| + sqlite3DbFree(db, p);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Return a pointer to the right-most SELECT statement in a compound.
|
| +*/
|
| +static Select *findRightmost(Select *p){
|
| + while( p->pNext ) p = p->pNext;
|
| + return p;
|
| +}
|
| +
|
| +/*
|
| +** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
|
| +** type of join. Return an integer constant that expresses that type
|
| +** in terms of the following bit values:
|
| +**
|
| +** JT_INNER
|
| +** JT_CROSS
|
| +** JT_OUTER
|
| +** JT_NATURAL
|
| +** JT_LEFT
|
| +** JT_RIGHT
|
| +**
|
| +** A full outer join is the combination of JT_LEFT and JT_RIGHT.
|
| +**
|
| +** If an illegal or unsupported join type is seen, then still return
|
| +** a join type, but put an error in the pParse structure.
|
| +*/
|
| +int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
|
| + int jointype = 0;
|
| + Token *apAll[3];
|
| + Token *p;
|
| + /* 0123456789 123456789 123456789 123 */
|
| + static const char zKeyText[] = "naturaleftouterightfullinnercross";
|
| + static const struct {
|
| + u8 i; /* Beginning of keyword text in zKeyText[] */
|
| + u8 nChar; /* Length of the keyword in characters */
|
| + u8 code; /* Join type mask */
|
| + } aKeyword[] = {
|
| + /* natural */ { 0, 7, JT_NATURAL },
|
| + /* left */ { 6, 4, JT_LEFT|JT_OUTER },
|
| + /* outer */ { 10, 5, JT_OUTER },
|
| + /* right */ { 14, 5, JT_RIGHT|JT_OUTER },
|
| + /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
|
| + /* inner */ { 23, 5, JT_INNER },
|
| + /* cross */ { 28, 5, JT_INNER|JT_CROSS },
|
| + };
|
| + int i, j;
|
| + apAll[0] = pA;
|
| + apAll[1] = pB;
|
| + apAll[2] = pC;
|
| + for(i=0; i<3 && apAll[i]; i++){
|
| + p = apAll[i];
|
| + for(j=0; j<ArraySize(aKeyword); j++){
|
| + if( p->n==aKeyword[j].nChar
|
| + && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
|
| + jointype |= aKeyword[j].code;
|
| + break;
|
| + }
|
| + }
|
| + testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
|
| + if( j>=ArraySize(aKeyword) ){
|
| + jointype |= JT_ERROR;
|
| + break;
|
| + }
|
| + }
|
| + if(
|
| + (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
|
| + (jointype & JT_ERROR)!=0
|
| + ){
|
| + const char *zSp = " ";
|
| + assert( pB!=0 );
|
| + if( pC==0 ){ zSp++; }
|
| + sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
|
| + "%T %T%s%T", pA, pB, zSp, pC);
|
| + jointype = JT_INNER;
|
| + }else if( (jointype & JT_OUTER)!=0
|
| + && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
|
| + sqlite3ErrorMsg(pParse,
|
| + "RIGHT and FULL OUTER JOINs are not currently supported");
|
| + jointype = JT_INNER;
|
| + }
|
| + return jointype;
|
| +}
|
| +
|
| +/*
|
| +** Return the index of a column in a table. Return -1 if the column
|
| +** is not contained in the table.
|
| +*/
|
| +static int columnIndex(Table *pTab, const char *zCol){
|
| + int i;
|
| + for(i=0; i<pTab->nCol; i++){
|
| + if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
|
| + }
|
| + return -1;
|
| +}
|
| +
|
| +/*
|
| +** Search the first N tables in pSrc, from left to right, looking for a
|
| +** table that has a column named zCol.
|
| +**
|
| +** When found, set *piTab and *piCol to the table index and column index
|
| +** of the matching column and return TRUE.
|
| +**
|
| +** If not found, return FALSE.
|
| +*/
|
| +static int tableAndColumnIndex(
|
| + SrcList *pSrc, /* Array of tables to search */
|
| + int N, /* Number of tables in pSrc->a[] to search */
|
| + const char *zCol, /* Name of the column we are looking for */
|
| + int *piTab, /* Write index of pSrc->a[] here */
|
| + int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
|
| +){
|
| + int i; /* For looping over tables in pSrc */
|
| + int iCol; /* Index of column matching zCol */
|
| +
|
| + assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
|
| + for(i=0; i<N; i++){
|
| + iCol = columnIndex(pSrc->a[i].pTab, zCol);
|
| + if( iCol>=0 ){
|
| + if( piTab ){
|
| + *piTab = i;
|
| + *piCol = iCol;
|
| + }
|
| + return 1;
|
| + }
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/*
|
| +** This function is used to add terms implied by JOIN syntax to the
|
| +** WHERE clause expression of a SELECT statement. The new term, which
|
| +** is ANDed with the existing WHERE clause, is of the form:
|
| +**
|
| +** (tab1.col1 = tab2.col2)
|
| +**
|
| +** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
|
| +** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
|
| +** column iColRight of tab2.
|
| +*/
|
| +static void addWhereTerm(
|
| + Parse *pParse, /* Parsing context */
|
| + SrcList *pSrc, /* List of tables in FROM clause */
|
| + int iLeft, /* Index of first table to join in pSrc */
|
| + int iColLeft, /* Index of column in first table */
|
| + int iRight, /* Index of second table in pSrc */
|
| + int iColRight, /* Index of column in second table */
|
| + int isOuterJoin, /* True if this is an OUTER join */
|
| + Expr **ppWhere /* IN/OUT: The WHERE clause to add to */
|
| +){
|
| + sqlite3 *db = pParse->db;
|
| + Expr *pE1;
|
| + Expr *pE2;
|
| + Expr *pEq;
|
| +
|
| + assert( iLeft<iRight );
|
| + assert( pSrc->nSrc>iRight );
|
| + assert( pSrc->a[iLeft].pTab );
|
| + assert( pSrc->a[iRight].pTab );
|
| +
|
| + pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
|
| + pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
|
| +
|
| + pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
|
| + if( pEq && isOuterJoin ){
|
| + ExprSetProperty(pEq, EP_FromJoin);
|
| + assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
|
| + ExprSetVVAProperty(pEq, EP_NoReduce);
|
| + pEq->iRightJoinTable = (i16)pE2->iTable;
|
| + }
|
| + *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
|
| +}
|
| +
|
| +/*
|
| +** Set the EP_FromJoin property on all terms of the given expression.
|
| +** And set the Expr.iRightJoinTable to iTable for every term in the
|
| +** expression.
|
| +**
|
| +** The EP_FromJoin property is used on terms of an expression to tell
|
| +** the LEFT OUTER JOIN processing logic that this term is part of the
|
| +** join restriction specified in the ON or USING clause and not a part
|
| +** of the more general WHERE clause. These terms are moved over to the
|
| +** WHERE clause during join processing but we need to remember that they
|
| +** originated in the ON or USING clause.
|
| +**
|
| +** The Expr.iRightJoinTable tells the WHERE clause processing that the
|
| +** expression depends on table iRightJoinTable even if that table is not
|
| +** explicitly mentioned in the expression. That information is needed
|
| +** for cases like this:
|
| +**
|
| +** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
|
| +**
|
| +** The where clause needs to defer the handling of the t1.x=5
|
| +** term until after the t2 loop of the join. In that way, a
|
| +** NULL t2 row will be inserted whenever t1.x!=5. If we do not
|
| +** defer the handling of t1.x=5, it will be processed immediately
|
| +** after the t1 loop and rows with t1.x!=5 will never appear in
|
| +** the output, which is incorrect.
|
| +*/
|
| +static void setJoinExpr(Expr *p, int iTable){
|
| + while( p ){
|
| + ExprSetProperty(p, EP_FromJoin);
|
| + assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
|
| + ExprSetVVAProperty(p, EP_NoReduce);
|
| + p->iRightJoinTable = (i16)iTable;
|
| + setJoinExpr(p->pLeft, iTable);
|
| + p = p->pRight;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** This routine processes the join information for a SELECT statement.
|
| +** ON and USING clauses are converted into extra terms of the WHERE clause.
|
| +** NATURAL joins also create extra WHERE clause terms.
|
| +**
|
| +** The terms of a FROM clause are contained in the Select.pSrc structure.
|
| +** The left most table is the first entry in Select.pSrc. The right-most
|
| +** table is the last entry. The join operator is held in the entry to
|
| +** the left. Thus entry 0 contains the join operator for the join between
|
| +** entries 0 and 1. Any ON or USING clauses associated with the join are
|
| +** also attached to the left entry.
|
| +**
|
| +** This routine returns the number of errors encountered.
|
| +*/
|
| +static int sqliteProcessJoin(Parse *pParse, Select *p){
|
| + SrcList *pSrc; /* All tables in the FROM clause */
|
| + int i, j; /* Loop counters */
|
| + struct SrcList_item *pLeft; /* Left table being joined */
|
| + struct SrcList_item *pRight; /* Right table being joined */
|
| +
|
| + pSrc = p->pSrc;
|
| + pLeft = &pSrc->a[0];
|
| + pRight = &pLeft[1];
|
| + for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
|
| + Table *pLeftTab = pLeft->pTab;
|
| + Table *pRightTab = pRight->pTab;
|
| + int isOuter;
|
| +
|
| + if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
|
| + isOuter = (pRight->jointype & JT_OUTER)!=0;
|
| +
|
| + /* When the NATURAL keyword is present, add WHERE clause terms for
|
| + ** every column that the two tables have in common.
|
| + */
|
| + if( pRight->jointype & JT_NATURAL ){
|
| + if( pRight->pOn || pRight->pUsing ){
|
| + sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
|
| + "an ON or USING clause", 0);
|
| + return 1;
|
| + }
|
| + for(j=0; j<pRightTab->nCol; j++){
|
| + char *zName; /* Name of column in the right table */
|
| + int iLeft; /* Matching left table */
|
| + int iLeftCol; /* Matching column in the left table */
|
| +
|
| + zName = pRightTab->aCol[j].zName;
|
| + if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
|
| + addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
|
| + isOuter, &p->pWhere);
|
| + }
|
| + }
|
| + }
|
| +
|
| + /* Disallow both ON and USING clauses in the same join
|
| + */
|
| + if( pRight->pOn && pRight->pUsing ){
|
| + sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
|
| + "clauses in the same join");
|
| + return 1;
|
| + }
|
| +
|
| + /* Add the ON clause to the end of the WHERE clause, connected by
|
| + ** an AND operator.
|
| + */
|
| + if( pRight->pOn ){
|
| + if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
|
| + p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
|
| + pRight->pOn = 0;
|
| + }
|
| +
|
| + /* Create extra terms on the WHERE clause for each column named
|
| + ** in the USING clause. Example: If the two tables to be joined are
|
| + ** A and B and the USING clause names X, Y, and Z, then add this
|
| + ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
|
| + ** Report an error if any column mentioned in the USING clause is
|
| + ** not contained in both tables to be joined.
|
| + */
|
| + if( pRight->pUsing ){
|
| + IdList *pList = pRight->pUsing;
|
| + for(j=0; j<pList->nId; j++){
|
| + char *zName; /* Name of the term in the USING clause */
|
| + int iLeft; /* Table on the left with matching column name */
|
| + int iLeftCol; /* Column number of matching column on the left */
|
| + int iRightCol; /* Column number of matching column on the right */
|
| +
|
| + zName = pList->a[j].zName;
|
| + iRightCol = columnIndex(pRightTab, zName);
|
| + if( iRightCol<0
|
| + || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
|
| + ){
|
| + sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
|
| + "not present in both tables", zName);
|
| + return 1;
|
| + }
|
| + addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
|
| + isOuter, &p->pWhere);
|
| + }
|
| + }
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/* Forward reference */
|
| +static KeyInfo *keyInfoFromExprList(
|
| + Parse *pParse, /* Parsing context */
|
| + ExprList *pList, /* Form the KeyInfo object from this ExprList */
|
| + int iStart, /* Begin with this column of pList */
|
| + int nExtra /* Add this many extra columns to the end */
|
| +);
|
| +
|
| +/*
|
| +** Generate code that will push the record in registers regData
|
| +** through regData+nData-1 onto the sorter.
|
| +*/
|
| +static void pushOntoSorter(
|
| + Parse *pParse, /* Parser context */
|
| + SortCtx *pSort, /* Information about the ORDER BY clause */
|
| + Select *pSelect, /* The whole SELECT statement */
|
| + int regData, /* First register holding data to be sorted */
|
| + int nData, /* Number of elements in the data array */
|
| + int nPrefixReg /* No. of reg prior to regData available for use */
|
| +){
|
| + Vdbe *v = pParse->pVdbe; /* Stmt under construction */
|
| + int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
|
| + int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */
|
| + int nBase = nExpr + bSeq + nData; /* Fields in sorter record */
|
| + int regBase; /* Regs for sorter record */
|
| + int regRecord = ++pParse->nMem; /* Assembled sorter record */
|
| + int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */
|
| + int op; /* Opcode to add sorter record to sorter */
|
| +
|
| + assert( bSeq==0 || bSeq==1 );
|
| + if( nPrefixReg ){
|
| + assert( nPrefixReg==nExpr+bSeq );
|
| + regBase = regData - nExpr - bSeq;
|
| + }else{
|
| + regBase = pParse->nMem + 1;
|
| + pParse->nMem += nBase;
|
| + }
|
| + sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP);
|
| + if( bSeq ){
|
| + sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
|
| + }
|
| + if( nPrefixReg==0 ){
|
| + sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
|
| + }
|
| +
|
| + sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
|
| + if( nOBSat>0 ){
|
| + int regPrevKey; /* The first nOBSat columns of the previous row */
|
| + int addrFirst; /* Address of the OP_IfNot opcode */
|
| + int addrJmp; /* Address of the OP_Jump opcode */
|
| + VdbeOp *pOp; /* Opcode that opens the sorter */
|
| + int nKey; /* Number of sorting key columns, including OP_Sequence */
|
| + KeyInfo *pKI; /* Original KeyInfo on the sorter table */
|
| +
|
| + regPrevKey = pParse->nMem+1;
|
| + pParse->nMem += pSort->nOBSat;
|
| + nKey = nExpr - pSort->nOBSat + bSeq;
|
| + if( bSeq ){
|
| + addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
|
| + }else{
|
| + addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
|
| + }
|
| + VdbeCoverage(v);
|
| + sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
|
| + pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
|
| + if( pParse->db->mallocFailed ) return;
|
| + pOp->p2 = nKey + nData;
|
| + pKI = pOp->p4.pKeyInfo;
|
| + memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
|
| + sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
|
| + pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 1);
|
| + addrJmp = sqlite3VdbeCurrentAddr(v);
|
| + sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
|
| + pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
|
| + pSort->regReturn = ++pParse->nMem;
|
| + sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
|
| + sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
|
| + sqlite3VdbeJumpHere(v, addrFirst);
|
| + sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
|
| + sqlite3VdbeJumpHere(v, addrJmp);
|
| + }
|
| + if( pSort->sortFlags & SORTFLAG_UseSorter ){
|
| + op = OP_SorterInsert;
|
| + }else{
|
| + op = OP_IdxInsert;
|
| + }
|
| + sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
|
| + if( pSelect->iLimit ){
|
| + int addr1, addr2;
|
| + int iLimit;
|
| + if( pSelect->iOffset ){
|
| + iLimit = pSelect->iOffset+1;
|
| + }else{
|
| + iLimit = pSelect->iLimit;
|
| + }
|
| + addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v);
|
| + sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
|
| + addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
|
| + sqlite3VdbeJumpHere(v, addr1);
|
| + sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
|
| + sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
|
| + sqlite3VdbeJumpHere(v, addr2);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Add code to implement the OFFSET
|
| +*/
|
| +static void codeOffset(
|
| + Vdbe *v, /* Generate code into this VM */
|
| + int iOffset, /* Register holding the offset counter */
|
| + int iContinue /* Jump here to skip the current record */
|
| +){
|
| + if( iOffset>0 ){
|
| + int addr;
|
| + addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v);
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
|
| + VdbeComment((v, "skip OFFSET records"));
|
| + sqlite3VdbeJumpHere(v, addr);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Add code that will check to make sure the N registers starting at iMem
|
| +** form a distinct entry. iTab is a sorting index that holds previously
|
| +** seen combinations of the N values. A new entry is made in iTab
|
| +** if the current N values are new.
|
| +**
|
| +** A jump to addrRepeat is made and the N+1 values are popped from the
|
| +** stack if the top N elements are not distinct.
|
| +*/
|
| +static void codeDistinct(
|
| + Parse *pParse, /* Parsing and code generating context */
|
| + int iTab, /* A sorting index used to test for distinctness */
|
| + int addrRepeat, /* Jump to here if not distinct */
|
| + int N, /* Number of elements */
|
| + int iMem /* First element */
|
| +){
|
| + Vdbe *v;
|
| + int r1;
|
| +
|
| + v = pParse->pVdbe;
|
| + r1 = sqlite3GetTempReg(pParse);
|
| + sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
|
| + sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
|
| + sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
|
| + sqlite3ReleaseTempReg(pParse, r1);
|
| +}
|
| +
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| +/*
|
| +** Generate an error message when a SELECT is used within a subexpression
|
| +** (example: "a IN (SELECT * FROM table)") but it has more than 1 result
|
| +** column. We do this in a subroutine because the error used to occur
|
| +** in multiple places. (The error only occurs in one place now, but we
|
| +** retain the subroutine to minimize code disruption.)
|
| +*/
|
| +static int checkForMultiColumnSelectError(
|
| + Parse *pParse, /* Parse context. */
|
| + SelectDest *pDest, /* Destination of SELECT results */
|
| + int nExpr /* Number of result columns returned by SELECT */
|
| +){
|
| + int eDest = pDest->eDest;
|
| + if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
|
| + sqlite3ErrorMsg(pParse, "only a single result allowed for "
|
| + "a SELECT that is part of an expression");
|
| + return 1;
|
| + }else{
|
| + return 0;
|
| + }
|
| +}
|
| +#endif
|
| +
|
| +/*
|
| +** This routine generates the code for the inside of the inner loop
|
| +** of a SELECT.
|
| +**
|
| +** If srcTab is negative, then the pEList expressions
|
| +** are evaluated in order to get the data for this row. If srcTab is
|
| +** zero or more, then data is pulled from srcTab and pEList is used only
|
| +** to get number columns and the datatype for each column.
|
| +*/
|
| +static void selectInnerLoop(
|
| + Parse *pParse, /* The parser context */
|
| + Select *p, /* The complete select statement being coded */
|
| + ExprList *pEList, /* List of values being extracted */
|
| + int srcTab, /* Pull data from this table */
|
| + SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */
|
| + DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
|
| + SelectDest *pDest, /* How to dispose of the results */
|
| + int iContinue, /* Jump here to continue with next row */
|
| + int iBreak /* Jump here to break out of the inner loop */
|
| +){
|
| + Vdbe *v = pParse->pVdbe;
|
| + int i;
|
| + int hasDistinct; /* True if the DISTINCT keyword is present */
|
| + int regResult; /* Start of memory holding result set */
|
| + int eDest = pDest->eDest; /* How to dispose of results */
|
| + int iParm = pDest->iSDParm; /* First argument to disposal method */
|
| + int nResultCol; /* Number of result columns */
|
| + int nPrefixReg = 0; /* Number of extra registers before regResult */
|
| +
|
| + assert( v );
|
| + assert( pEList!=0 );
|
| + hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
|
| + if( pSort && pSort->pOrderBy==0 ) pSort = 0;
|
| + if( pSort==0 && !hasDistinct ){
|
| + assert( iContinue!=0 );
|
| + codeOffset(v, p->iOffset, iContinue);
|
| + }
|
| +
|
| + /* Pull the requested columns.
|
| + */
|
| + nResultCol = pEList->nExpr;
|
| +
|
| + if( pDest->iSdst==0 ){
|
| + if( pSort ){
|
| + nPrefixReg = pSort->pOrderBy->nExpr;
|
| + if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
|
| + pParse->nMem += nPrefixReg;
|
| + }
|
| + pDest->iSdst = pParse->nMem+1;
|
| + pParse->nMem += nResultCol;
|
| + }else if( pDest->iSdst+nResultCol > pParse->nMem ){
|
| + /* This is an error condition that can result, for example, when a SELECT
|
| + ** on the right-hand side of an INSERT contains more result columns than
|
| + ** there are columns in the table on the left. The error will be caught
|
| + ** and reported later. But we need to make sure enough memory is allocated
|
| + ** to avoid other spurious errors in the meantime. */
|
| + pParse->nMem += nResultCol;
|
| + }
|
| + pDest->nSdst = nResultCol;
|
| + regResult = pDest->iSdst;
|
| + if( srcTab>=0 ){
|
| + for(i=0; i<nResultCol; i++){
|
| + sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
|
| + VdbeComment((v, "%s", pEList->a[i].zName));
|
| + }
|
| + }else if( eDest!=SRT_Exists ){
|
| + /* If the destination is an EXISTS(...) expression, the actual
|
| + ** values returned by the SELECT are not required.
|
| + */
|
| + sqlite3ExprCodeExprList(pParse, pEList, regResult,
|
| + (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0);
|
| + }
|
| +
|
| + /* If the DISTINCT keyword was present on the SELECT statement
|
| + ** and this row has been seen before, then do not make this row
|
| + ** part of the result.
|
| + */
|
| + if( hasDistinct ){
|
| + switch( pDistinct->eTnctType ){
|
| + case WHERE_DISTINCT_ORDERED: {
|
| + VdbeOp *pOp; /* No longer required OpenEphemeral instr. */
|
| + int iJump; /* Jump destination */
|
| + int regPrev; /* Previous row content */
|
| +
|
| + /* Allocate space for the previous row */
|
| + regPrev = pParse->nMem+1;
|
| + pParse->nMem += nResultCol;
|
| +
|
| + /* Change the OP_OpenEphemeral coded earlier to an OP_Null
|
| + ** sets the MEM_Cleared bit on the first register of the
|
| + ** previous value. This will cause the OP_Ne below to always
|
| + ** fail on the first iteration of the loop even if the first
|
| + ** row is all NULLs.
|
| + */
|
| + sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
|
| + pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
|
| + pOp->opcode = OP_Null;
|
| + pOp->p1 = 1;
|
| + pOp->p2 = regPrev;
|
| +
|
| + iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
|
| + for(i=0; i<nResultCol; i++){
|
| + CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
|
| + if( i<nResultCol-1 ){
|
| + sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
|
| + VdbeCoverage(v);
|
| + }else{
|
| + sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
|
| + VdbeCoverage(v);
|
| + }
|
| + sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
|
| + sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
|
| + }
|
| + assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
|
| + sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
|
| + break;
|
| + }
|
| +
|
| + case WHERE_DISTINCT_UNIQUE: {
|
| + sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
|
| + break;
|
| + }
|
| +
|
| + default: {
|
| + assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
|
| + codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult);
|
| + break;
|
| + }
|
| + }
|
| + if( pSort==0 ){
|
| + codeOffset(v, p->iOffset, iContinue);
|
| + }
|
| + }
|
| +
|
| + switch( eDest ){
|
| + /* In this mode, write each query result to the key of the temporary
|
| + ** table iParm.
|
| + */
|
| +#ifndef SQLITE_OMIT_COMPOUND_SELECT
|
| + case SRT_Union: {
|
| + int r1;
|
| + r1 = sqlite3GetTempReg(pParse);
|
| + sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
|
| + sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
|
| + sqlite3ReleaseTempReg(pParse, r1);
|
| + break;
|
| + }
|
| +
|
| + /* Construct a record from the query result, but instead of
|
| + ** saving that record, use it as a key to delete elements from
|
| + ** the temporary table iParm.
|
| + */
|
| + case SRT_Except: {
|
| + sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
|
| + break;
|
| + }
|
| +#endif /* SQLITE_OMIT_COMPOUND_SELECT */
|
| +
|
| + /* Store the result as data using a unique key.
|
| + */
|
| + case SRT_Fifo:
|
| + case SRT_DistFifo:
|
| + case SRT_Table:
|
| + case SRT_EphemTab: {
|
| + int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
|
| + testcase( eDest==SRT_Table );
|
| + testcase( eDest==SRT_EphemTab );
|
| + sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
|
| +#ifndef SQLITE_OMIT_CTE
|
| + if( eDest==SRT_DistFifo ){
|
| + /* If the destination is DistFifo, then cursor (iParm+1) is open
|
| + ** on an ephemeral index. If the current row is already present
|
| + ** in the index, do not write it to the output. If not, add the
|
| + ** current row to the index and proceed with writing it to the
|
| + ** output table as well. */
|
| + int addr = sqlite3VdbeCurrentAddr(v) + 4;
|
| + sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v);
|
| + sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
|
| + assert( pSort==0 );
|
| + }
|
| +#endif
|
| + if( pSort ){
|
| + pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg);
|
| + }else{
|
| + int r2 = sqlite3GetTempReg(pParse);
|
| + sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
|
| + sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
|
| + sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
| + sqlite3ReleaseTempReg(pParse, r2);
|
| + }
|
| + sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
|
| + break;
|
| + }
|
| +
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| + /* If we are creating a set for an "expr IN (SELECT ...)" construct,
|
| + ** then there should be a single item on the stack. Write this
|
| + ** item into the set table with bogus data.
|
| + */
|
| + case SRT_Set: {
|
| + assert( nResultCol==1 );
|
| + pDest->affSdst =
|
| + sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
|
| + if( pSort ){
|
| + /* At first glance you would think we could optimize out the
|
| + ** ORDER BY in this case since the order of entries in the set
|
| + ** does not matter. But there might be a LIMIT clause, in which
|
| + ** case the order does matter */
|
| + pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg);
|
| + }else{
|
| + int r1 = sqlite3GetTempReg(pParse);
|
| + sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
|
| + sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
|
| + sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
|
| + sqlite3ReleaseTempReg(pParse, r1);
|
| + }
|
| + break;
|
| + }
|
| +
|
| + /* If any row exist in the result set, record that fact and abort.
|
| + */
|
| + case SRT_Exists: {
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
|
| + /* The LIMIT clause will terminate the loop for us */
|
| + break;
|
| + }
|
| +
|
| + /* If this is a scalar select that is part of an expression, then
|
| + ** store the results in the appropriate memory cell and break out
|
| + ** of the scan loop.
|
| + */
|
| + case SRT_Mem: {
|
| + assert( nResultCol==1 );
|
| + if( pSort ){
|
| + pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg);
|
| + }else{
|
| + assert( regResult==iParm );
|
| + /* The LIMIT clause will jump out of the loop for us */
|
| + }
|
| + break;
|
| + }
|
| +#endif /* #ifndef SQLITE_OMIT_SUBQUERY */
|
| +
|
| + case SRT_Coroutine: /* Send data to a co-routine */
|
| + case SRT_Output: { /* Return the results */
|
| + testcase( eDest==SRT_Coroutine );
|
| + testcase( eDest==SRT_Output );
|
| + if( pSort ){
|
| + pushOntoSorter(pParse, pSort, p, regResult, nResultCol, nPrefixReg);
|
| + }else if( eDest==SRT_Coroutine ){
|
| + sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
|
| + }else{
|
| + sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
|
| + sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
|
| + }
|
| + break;
|
| + }
|
| +
|
| +#ifndef SQLITE_OMIT_CTE
|
| + /* Write the results into a priority queue that is order according to
|
| + ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
|
| + ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
|
| + ** pSO->nExpr columns, then make sure all keys are unique by adding a
|
| + ** final OP_Sequence column. The last column is the record as a blob.
|
| + */
|
| + case SRT_DistQueue:
|
| + case SRT_Queue: {
|
| + int nKey;
|
| + int r1, r2, r3;
|
| + int addrTest = 0;
|
| + ExprList *pSO;
|
| + pSO = pDest->pOrderBy;
|
| + assert( pSO );
|
| + nKey = pSO->nExpr;
|
| + r1 = sqlite3GetTempReg(pParse);
|
| + r2 = sqlite3GetTempRange(pParse, nKey+2);
|
| + r3 = r2+nKey+1;
|
| + if( eDest==SRT_DistQueue ){
|
| + /* If the destination is DistQueue, then cursor (iParm+1) is open
|
| + ** on a second ephemeral index that holds all values every previously
|
| + ** added to the queue. */
|
| + addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
|
| + regResult, nResultCol);
|
| + VdbeCoverage(v);
|
| + }
|
| + sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
|
| + if( eDest==SRT_DistQueue ){
|
| + sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
|
| + sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
|
| + }
|
| + for(i=0; i<nKey; i++){
|
| + sqlite3VdbeAddOp2(v, OP_SCopy,
|
| + regResult + pSO->a[i].u.x.iOrderByCol - 1,
|
| + r2+i);
|
| + }
|
| + sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
|
| + sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
|
| + sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
|
| + if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
|
| + sqlite3ReleaseTempReg(pParse, r1);
|
| + sqlite3ReleaseTempRange(pParse, r2, nKey+2);
|
| + break;
|
| + }
|
| +#endif /* SQLITE_OMIT_CTE */
|
| +
|
| +
|
| +
|
| +#if !defined(SQLITE_OMIT_TRIGGER)
|
| + /* Discard the results. This is used for SELECT statements inside
|
| + ** the body of a TRIGGER. The purpose of such selects is to call
|
| + ** user-defined functions that have side effects. We do not care
|
| + ** about the actual results of the select.
|
| + */
|
| + default: {
|
| + assert( eDest==SRT_Discard );
|
| + break;
|
| + }
|
| +#endif
|
| + }
|
| +
|
| + /* Jump to the end of the loop if the LIMIT is reached. Except, if
|
| + ** there is a sorter, in which case the sorter has already limited
|
| + ** the output for us.
|
| + */
|
| + if( pSort==0 && p->iLimit ){
|
| + sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Allocate a KeyInfo object sufficient for an index of N key columns and
|
| +** X extra columns.
|
| +*/
|
| +KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
|
| + KeyInfo *p = sqlite3DbMallocZero(0,
|
| + sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1));
|
| + if( p ){
|
| + p->aSortOrder = (u8*)&p->aColl[N+X];
|
| + p->nField = (u16)N;
|
| + p->nXField = (u16)X;
|
| + p->enc = ENC(db);
|
| + p->db = db;
|
| + p->nRef = 1;
|
| + }else{
|
| + db->mallocFailed = 1;
|
| + }
|
| + return p;
|
| +}
|
| +
|
| +/*
|
| +** Deallocate a KeyInfo object
|
| +*/
|
| +void sqlite3KeyInfoUnref(KeyInfo *p){
|
| + if( p ){
|
| + assert( p->nRef>0 );
|
| + p->nRef--;
|
| + if( p->nRef==0 ) sqlite3DbFree(0, p);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Make a new pointer to a KeyInfo object
|
| +*/
|
| +KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
|
| + if( p ){
|
| + assert( p->nRef>0 );
|
| + p->nRef++;
|
| + }
|
| + return p;
|
| +}
|
| +
|
| +#ifdef SQLITE_DEBUG
|
| +/*
|
| +** Return TRUE if a KeyInfo object can be change. The KeyInfo object
|
| +** can only be changed if this is just a single reference to the object.
|
| +**
|
| +** This routine is used only inside of assert() statements.
|
| +*/
|
| +int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
|
| +#endif /* SQLITE_DEBUG */
|
| +
|
| +/*
|
| +** Given an expression list, generate a KeyInfo structure that records
|
| +** the collating sequence for each expression in that expression list.
|
| +**
|
| +** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
|
| +** KeyInfo structure is appropriate for initializing a virtual index to
|
| +** implement that clause. If the ExprList is the result set of a SELECT
|
| +** then the KeyInfo structure is appropriate for initializing a virtual
|
| +** index to implement a DISTINCT test.
|
| +**
|
| +** Space to hold the KeyInfo structure is obtained from malloc. The calling
|
| +** function is responsible for seeing that this structure is eventually
|
| +** freed.
|
| +*/
|
| +static KeyInfo *keyInfoFromExprList(
|
| + Parse *pParse, /* Parsing context */
|
| + ExprList *pList, /* Form the KeyInfo object from this ExprList */
|
| + int iStart, /* Begin with this column of pList */
|
| + int nExtra /* Add this many extra columns to the end */
|
| +){
|
| + int nExpr;
|
| + KeyInfo *pInfo;
|
| + struct ExprList_item *pItem;
|
| + sqlite3 *db = pParse->db;
|
| + int i;
|
| +
|
| + nExpr = pList->nExpr;
|
| + pInfo = sqlite3KeyInfoAlloc(db, nExpr+nExtra-iStart, 1);
|
| + if( pInfo ){
|
| + assert( sqlite3KeyInfoIsWriteable(pInfo) );
|
| + for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
|
| + CollSeq *pColl;
|
| + pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
|
| + if( !pColl ) pColl = db->pDfltColl;
|
| + pInfo->aColl[i-iStart] = pColl;
|
| + pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
|
| + }
|
| + }
|
| + return pInfo;
|
| +}
|
| +
|
| +#ifndef SQLITE_OMIT_COMPOUND_SELECT
|
| +/*
|
| +** Name of the connection operator, used for error messages.
|
| +*/
|
| +static const char *selectOpName(int id){
|
| + char *z;
|
| + switch( id ){
|
| + case TK_ALL: z = "UNION ALL"; break;
|
| + case TK_INTERSECT: z = "INTERSECT"; break;
|
| + case TK_EXCEPT: z = "EXCEPT"; break;
|
| + default: z = "UNION"; break;
|
| + }
|
| + return z;
|
| +}
|
| +#endif /* SQLITE_OMIT_COMPOUND_SELECT */
|
| +
|
| +#ifndef SQLITE_OMIT_EXPLAIN
|
| +/*
|
| +** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
|
| +** is a no-op. Otherwise, it adds a single row of output to the EQP result,
|
| +** where the caption is of the form:
|
| +**
|
| +** "USE TEMP B-TREE FOR xxx"
|
| +**
|
| +** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
|
| +** is determined by the zUsage argument.
|
| +*/
|
| +static void explainTempTable(Parse *pParse, const char *zUsage){
|
| + if( pParse->explain==2 ){
|
| + Vdbe *v = pParse->pVdbe;
|
| + char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
|
| + sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Assign expression b to lvalue a. A second, no-op, version of this macro
|
| +** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
|
| +** in sqlite3Select() to assign values to structure member variables that
|
| +** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
|
| +** code with #ifndef directives.
|
| +*/
|
| +# define explainSetInteger(a, b) a = b
|
| +
|
| +#else
|
| +/* No-op versions of the explainXXX() functions and macros. */
|
| +# define explainTempTable(y,z)
|
| +# define explainSetInteger(y,z)
|
| +#endif
|
| +
|
| +#if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
|
| +/*
|
| +** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
|
| +** is a no-op. Otherwise, it adds a single row of output to the EQP result,
|
| +** where the caption is of one of the two forms:
|
| +**
|
| +** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
|
| +** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
|
| +**
|
| +** where iSub1 and iSub2 are the integers passed as the corresponding
|
| +** function parameters, and op is the text representation of the parameter
|
| +** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
|
| +** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
|
| +** false, or the second form if it is true.
|
| +*/
|
| +static void explainComposite(
|
| + Parse *pParse, /* Parse context */
|
| + int op, /* One of TK_UNION, TK_EXCEPT etc. */
|
| + int iSub1, /* Subquery id 1 */
|
| + int iSub2, /* Subquery id 2 */
|
| + int bUseTmp /* True if a temp table was used */
|
| +){
|
| + assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
|
| + if( pParse->explain==2 ){
|
| + Vdbe *v = pParse->pVdbe;
|
| + char *zMsg = sqlite3MPrintf(
|
| + pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
|
| + bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
|
| + );
|
| + sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
|
| + }
|
| +}
|
| +#else
|
| +/* No-op versions of the explainXXX() functions and macros. */
|
| +# define explainComposite(v,w,x,y,z)
|
| +#endif
|
| +
|
| +/*
|
| +** If the inner loop was generated using a non-null pOrderBy argument,
|
| +** then the results were placed in a sorter. After the loop is terminated
|
| +** we need to run the sorter and output the results. The following
|
| +** routine generates the code needed to do that.
|
| +*/
|
| +static void generateSortTail(
|
| + Parse *pParse, /* Parsing context */
|
| + Select *p, /* The SELECT statement */
|
| + SortCtx *pSort, /* Information on the ORDER BY clause */
|
| + int nColumn, /* Number of columns of data */
|
| + SelectDest *pDest /* Write the sorted results here */
|
| +){
|
| + Vdbe *v = pParse->pVdbe; /* The prepared statement */
|
| + int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */
|
| + int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */
|
| + int addr;
|
| + int addrOnce = 0;
|
| + int iTab;
|
| + ExprList *pOrderBy = pSort->pOrderBy;
|
| + int eDest = pDest->eDest;
|
| + int iParm = pDest->iSDParm;
|
| + int regRow;
|
| + int regRowid;
|
| + int nKey;
|
| + int iSortTab; /* Sorter cursor to read from */
|
| + int nSortData; /* Trailing values to read from sorter */
|
| + int i;
|
| + int bSeq; /* True if sorter record includes seq. no. */
|
| +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
|
| + struct ExprList_item *aOutEx = p->pEList->a;
|
| +#endif
|
| +
|
| + if( pSort->labelBkOut ){
|
| + sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak);
|
| + sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
|
| + }
|
| + iTab = pSort->iECursor;
|
| + if( eDest==SRT_Output || eDest==SRT_Coroutine ){
|
| + regRowid = 0;
|
| + regRow = pDest->iSdst;
|
| + nSortData = nColumn;
|
| + }else{
|
| + regRowid = sqlite3GetTempReg(pParse);
|
| + regRow = sqlite3GetTempReg(pParse);
|
| + nSortData = 1;
|
| + }
|
| + nKey = pOrderBy->nExpr - pSort->nOBSat;
|
| + if( pSort->sortFlags & SORTFLAG_UseSorter ){
|
| + int regSortOut = ++pParse->nMem;
|
| + iSortTab = pParse->nTab++;
|
| + if( pSort->labelBkOut ){
|
| + addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
|
| + }
|
| + sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
|
| + if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
|
| + addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
|
| + VdbeCoverage(v);
|
| + codeOffset(v, p->iOffset, addrContinue);
|
| + sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
|
| + bSeq = 0;
|
| + }else{
|
| + addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
|
| + codeOffset(v, p->iOffset, addrContinue);
|
| + iSortTab = iTab;
|
| + bSeq = 1;
|
| + }
|
| + for(i=0; i<nSortData; i++){
|
| + sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i);
|
| + VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
|
| + }
|
| + switch( eDest ){
|
| + case SRT_Table:
|
| + case SRT_EphemTab: {
|
| + testcase( eDest==SRT_Table );
|
| + testcase( eDest==SRT_EphemTab );
|
| + sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
|
| + sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
|
| + sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| + case SRT_Set: {
|
| + assert( nColumn==1 );
|
| + sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
|
| + &pDest->affSdst, 1);
|
| + sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
|
| + sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
|
| + break;
|
| + }
|
| + case SRT_Mem: {
|
| + assert( nColumn==1 );
|
| + sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
|
| + /* The LIMIT clause will terminate the loop for us */
|
| + break;
|
| + }
|
| +#endif
|
| + default: {
|
| + assert( eDest==SRT_Output || eDest==SRT_Coroutine );
|
| + testcase( eDest==SRT_Output );
|
| + testcase( eDest==SRT_Coroutine );
|
| + if( eDest==SRT_Output ){
|
| + sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
|
| + sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
|
| + }else{
|
| + sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
|
| + }
|
| + break;
|
| + }
|
| + }
|
| + if( regRowid ){
|
| + sqlite3ReleaseTempReg(pParse, regRow);
|
| + sqlite3ReleaseTempReg(pParse, regRowid);
|
| + }
|
| + /* The bottom of the loop
|
| + */
|
| + sqlite3VdbeResolveLabel(v, addrContinue);
|
| + if( pSort->sortFlags & SORTFLAG_UseSorter ){
|
| + sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
|
| + }else{
|
| + sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
|
| + }
|
| + if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
|
| + sqlite3VdbeResolveLabel(v, addrBreak);
|
| +}
|
| +
|
| +/*
|
| +** Return a pointer to a string containing the 'declaration type' of the
|
| +** expression pExpr. The string may be treated as static by the caller.
|
| +**
|
| +** Also try to estimate the size of the returned value and return that
|
| +** result in *pEstWidth.
|
| +**
|
| +** The declaration type is the exact datatype definition extracted from the
|
| +** original CREATE TABLE statement if the expression is a column. The
|
| +** declaration type for a ROWID field is INTEGER. Exactly when an expression
|
| +** is considered a column can be complex in the presence of subqueries. The
|
| +** result-set expression in all of the following SELECT statements is
|
| +** considered a column by this function.
|
| +**
|
| +** SELECT col FROM tbl;
|
| +** SELECT (SELECT col FROM tbl;
|
| +** SELECT (SELECT col FROM tbl);
|
| +** SELECT abc FROM (SELECT col AS abc FROM tbl);
|
| +**
|
| +** The declaration type for any expression other than a column is NULL.
|
| +**
|
| +** This routine has either 3 or 6 parameters depending on whether or not
|
| +** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
|
| +*/
|
| +#ifdef SQLITE_ENABLE_COLUMN_METADATA
|
| +# define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
|
| +static const char *columnTypeImpl(
|
| + NameContext *pNC,
|
| + Expr *pExpr,
|
| + const char **pzOrigDb,
|
| + const char **pzOrigTab,
|
| + const char **pzOrigCol,
|
| + u8 *pEstWidth
|
| +){
|
| + char const *zOrigDb = 0;
|
| + char const *zOrigTab = 0;
|
| + char const *zOrigCol = 0;
|
| +#else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
|
| +# define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
|
| +static const char *columnTypeImpl(
|
| + NameContext *pNC,
|
| + Expr *pExpr,
|
| + u8 *pEstWidth
|
| +){
|
| +#endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */
|
| + char const *zType = 0;
|
| + int j;
|
| + u8 estWidth = 1;
|
| +
|
| + if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
|
| + switch( pExpr->op ){
|
| + case TK_AGG_COLUMN:
|
| + case TK_COLUMN: {
|
| + /* The expression is a column. Locate the table the column is being
|
| + ** extracted from in NameContext.pSrcList. This table may be real
|
| + ** database table or a subquery.
|
| + */
|
| + Table *pTab = 0; /* Table structure column is extracted from */
|
| + Select *pS = 0; /* Select the column is extracted from */
|
| + int iCol = pExpr->iColumn; /* Index of column in pTab */
|
| + testcase( pExpr->op==TK_AGG_COLUMN );
|
| + testcase( pExpr->op==TK_COLUMN );
|
| + while( pNC && !pTab ){
|
| + SrcList *pTabList = pNC->pSrcList;
|
| + for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
|
| + if( j<pTabList->nSrc ){
|
| + pTab = pTabList->a[j].pTab;
|
| + pS = pTabList->a[j].pSelect;
|
| + }else{
|
| + pNC = pNC->pNext;
|
| + }
|
| + }
|
| +
|
| + if( pTab==0 ){
|
| + /* At one time, code such as "SELECT new.x" within a trigger would
|
| + ** cause this condition to run. Since then, we have restructured how
|
| + ** trigger code is generated and so this condition is no longer
|
| + ** possible. However, it can still be true for statements like
|
| + ** the following:
|
| + **
|
| + ** CREATE TABLE t1(col INTEGER);
|
| + ** SELECT (SELECT t1.col) FROM FROM t1;
|
| + **
|
| + ** when columnType() is called on the expression "t1.col" in the
|
| + ** sub-select. In this case, set the column type to NULL, even
|
| + ** though it should really be "INTEGER".
|
| + **
|
| + ** This is not a problem, as the column type of "t1.col" is never
|
| + ** used. When columnType() is called on the expression
|
| + ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
|
| + ** branch below. */
|
| + break;
|
| + }
|
| +
|
| + assert( pTab && pExpr->pTab==pTab );
|
| + if( pS ){
|
| + /* The "table" is actually a sub-select or a view in the FROM clause
|
| + ** of the SELECT statement. Return the declaration type and origin
|
| + ** data for the result-set column of the sub-select.
|
| + */
|
| + if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
|
| + /* If iCol is less than zero, then the expression requests the
|
| + ** rowid of the sub-select or view. This expression is legal (see
|
| + ** test case misc2.2.2) - it always evaluates to NULL.
|
| + */
|
| + NameContext sNC;
|
| + Expr *p = pS->pEList->a[iCol].pExpr;
|
| + sNC.pSrcList = pS->pSrc;
|
| + sNC.pNext = pNC;
|
| + sNC.pParse = pNC->pParse;
|
| + zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
|
| + }
|
| + }else if( pTab->pSchema ){
|
| + /* A real table */
|
| + assert( !pS );
|
| + if( iCol<0 ) iCol = pTab->iPKey;
|
| + assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
|
| +#ifdef SQLITE_ENABLE_COLUMN_METADATA
|
| + if( iCol<0 ){
|
| + zType = "INTEGER";
|
| + zOrigCol = "rowid";
|
| + }else{
|
| + zType = pTab->aCol[iCol].zType;
|
| + zOrigCol = pTab->aCol[iCol].zName;
|
| + estWidth = pTab->aCol[iCol].szEst;
|
| + }
|
| + zOrigTab = pTab->zName;
|
| + if( pNC->pParse ){
|
| + int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
|
| + zOrigDb = pNC->pParse->db->aDb[iDb].zName;
|
| + }
|
| +#else
|
| + if( iCol<0 ){
|
| + zType = "INTEGER";
|
| + }else{
|
| + zType = pTab->aCol[iCol].zType;
|
| + estWidth = pTab->aCol[iCol].szEst;
|
| + }
|
| +#endif
|
| + }
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| + case TK_SELECT: {
|
| + /* The expression is a sub-select. Return the declaration type and
|
| + ** origin info for the single column in the result set of the SELECT
|
| + ** statement.
|
| + */
|
| + NameContext sNC;
|
| + Select *pS = pExpr->x.pSelect;
|
| + Expr *p = pS->pEList->a[0].pExpr;
|
| + assert( ExprHasProperty(pExpr, EP_xIsSelect) );
|
| + sNC.pSrcList = pS->pSrc;
|
| + sNC.pNext = pNC;
|
| + sNC.pParse = pNC->pParse;
|
| + zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
|
| + break;
|
| + }
|
| +#endif
|
| + }
|
| +
|
| +#ifdef SQLITE_ENABLE_COLUMN_METADATA
|
| + if( pzOrigDb ){
|
| + assert( pzOrigTab && pzOrigCol );
|
| + *pzOrigDb = zOrigDb;
|
| + *pzOrigTab = zOrigTab;
|
| + *pzOrigCol = zOrigCol;
|
| + }
|
| +#endif
|
| + if( pEstWidth ) *pEstWidth = estWidth;
|
| + return zType;
|
| +}
|
| +
|
| +/*
|
| +** Generate code that will tell the VDBE the declaration types of columns
|
| +** in the result set.
|
| +*/
|
| +static void generateColumnTypes(
|
| + Parse *pParse, /* Parser context */
|
| + SrcList *pTabList, /* List of tables */
|
| + ExprList *pEList /* Expressions defining the result set */
|
| +){
|
| +#ifndef SQLITE_OMIT_DECLTYPE
|
| + Vdbe *v = pParse->pVdbe;
|
| + int i;
|
| + NameContext sNC;
|
| + sNC.pSrcList = pTabList;
|
| + sNC.pParse = pParse;
|
| + for(i=0; i<pEList->nExpr; i++){
|
| + Expr *p = pEList->a[i].pExpr;
|
| + const char *zType;
|
| +#ifdef SQLITE_ENABLE_COLUMN_METADATA
|
| + const char *zOrigDb = 0;
|
| + const char *zOrigTab = 0;
|
| + const char *zOrigCol = 0;
|
| + zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
|
| +
|
| + /* The vdbe must make its own copy of the column-type and other
|
| + ** column specific strings, in case the schema is reset before this
|
| + ** virtual machine is deleted.
|
| + */
|
| + sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
|
| + sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
|
| + sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
|
| +#else
|
| + zType = columnType(&sNC, p, 0, 0, 0, 0);
|
| +#endif
|
| + sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
|
| + }
|
| +#endif /* !defined(SQLITE_OMIT_DECLTYPE) */
|
| +}
|
| +
|
| +/*
|
| +** Generate code that will tell the VDBE the names of columns
|
| +** in the result set. This information is used to provide the
|
| +** azCol[] values in the callback.
|
| +*/
|
| +static void generateColumnNames(
|
| + Parse *pParse, /* Parser context */
|
| + SrcList *pTabList, /* List of tables */
|
| + ExprList *pEList /* Expressions defining the result set */
|
| +){
|
| + Vdbe *v = pParse->pVdbe;
|
| + int i, j;
|
| + sqlite3 *db = pParse->db;
|
| + int fullNames, shortNames;
|
| +
|
| +#ifndef SQLITE_OMIT_EXPLAIN
|
| + /* If this is an EXPLAIN, skip this step */
|
| + if( pParse->explain ){
|
| + return;
|
| + }
|
| +#endif
|
| +
|
| + if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
|
| + pParse->colNamesSet = 1;
|
| + fullNames = (db->flags & SQLITE_FullColNames)!=0;
|
| + shortNames = (db->flags & SQLITE_ShortColNames)!=0;
|
| + sqlite3VdbeSetNumCols(v, pEList->nExpr);
|
| + for(i=0; i<pEList->nExpr; i++){
|
| + Expr *p;
|
| + p = pEList->a[i].pExpr;
|
| + if( NEVER(p==0) ) continue;
|
| + if( pEList->a[i].zName ){
|
| + char *zName = pEList->a[i].zName;
|
| + sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
|
| + }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
|
| + Table *pTab;
|
| + char *zCol;
|
| + int iCol = p->iColumn;
|
| + for(j=0; ALWAYS(j<pTabList->nSrc); j++){
|
| + if( pTabList->a[j].iCursor==p->iTable ) break;
|
| + }
|
| + assert( j<pTabList->nSrc );
|
| + pTab = pTabList->a[j].pTab;
|
| + if( iCol<0 ) iCol = pTab->iPKey;
|
| + assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
|
| + if( iCol<0 ){
|
| + zCol = "rowid";
|
| + }else{
|
| + zCol = pTab->aCol[iCol].zName;
|
| + }
|
| + if( !shortNames && !fullNames ){
|
| + sqlite3VdbeSetColName(v, i, COLNAME_NAME,
|
| + sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
|
| + }else if( fullNames ){
|
| + char *zName = 0;
|
| + zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
|
| + sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
|
| + }else{
|
| + sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
|
| + }
|
| + }else{
|
| + const char *z = pEList->a[i].zSpan;
|
| + z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
|
| + sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
|
| + }
|
| + }
|
| + generateColumnTypes(pParse, pTabList, pEList);
|
| +}
|
| +
|
| +/*
|
| +** Given an expression list (which is really the list of expressions
|
| +** that form the result set of a SELECT statement) compute appropriate
|
| +** column names for a table that would hold the expression list.
|
| +**
|
| +** All column names will be unique.
|
| +**
|
| +** Only the column names are computed. Column.zType, Column.zColl,
|
| +** and other fields of Column are zeroed.
|
| +**
|
| +** Return SQLITE_OK on success. If a memory allocation error occurs,
|
| +** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
|
| +*/
|
| +static int selectColumnsFromExprList(
|
| + Parse *pParse, /* Parsing context */
|
| + ExprList *pEList, /* Expr list from which to derive column names */
|
| + i16 *pnCol, /* Write the number of columns here */
|
| + Column **paCol /* Write the new column list here */
|
| +){
|
| + sqlite3 *db = pParse->db; /* Database connection */
|
| + int i, j; /* Loop counters */
|
| + int cnt; /* Index added to make the name unique */
|
| + Column *aCol, *pCol; /* For looping over result columns */
|
| + int nCol; /* Number of columns in the result set */
|
| + Expr *p; /* Expression for a single result column */
|
| + char *zName; /* Column name */
|
| + int nName; /* Size of name in zName[] */
|
| +
|
| + if( pEList ){
|
| + nCol = pEList->nExpr;
|
| + aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
|
| + testcase( aCol==0 );
|
| + }else{
|
| + nCol = 0;
|
| + aCol = 0;
|
| + }
|
| + *pnCol = nCol;
|
| + *paCol = aCol;
|
| +
|
| + for(i=0, pCol=aCol; i<nCol; i++, pCol++){
|
| + /* Get an appropriate name for the column
|
| + */
|
| + p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
|
| + if( (zName = pEList->a[i].zName)!=0 ){
|
| + /* If the column contains an "AS <name>" phrase, use <name> as the name */
|
| + zName = sqlite3DbStrDup(db, zName);
|
| + }else{
|
| + Expr *pColExpr = p; /* The expression that is the result column name */
|
| + Table *pTab; /* Table associated with this expression */
|
| + while( pColExpr->op==TK_DOT ){
|
| + pColExpr = pColExpr->pRight;
|
| + assert( pColExpr!=0 );
|
| + }
|
| + if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
|
| + /* For columns use the column name name */
|
| + int iCol = pColExpr->iColumn;
|
| + pTab = pColExpr->pTab;
|
| + if( iCol<0 ) iCol = pTab->iPKey;
|
| + zName = sqlite3MPrintf(db, "%s",
|
| + iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
|
| + }else if( pColExpr->op==TK_ID ){
|
| + assert( !ExprHasProperty(pColExpr, EP_IntValue) );
|
| + zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
|
| + }else{
|
| + /* Use the original text of the column expression as its name */
|
| + zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
|
| + }
|
| + }
|
| + if( db->mallocFailed ){
|
| + sqlite3DbFree(db, zName);
|
| + break;
|
| + }
|
| +
|
| + /* Make sure the column name is unique. If the name is not unique,
|
| + ** append an integer to the name so that it becomes unique.
|
| + */
|
| + nName = sqlite3Strlen30(zName);
|
| + for(j=cnt=0; j<i; j++){
|
| + if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
|
| + char *zNewName;
|
| + int k;
|
| + for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}
|
| + if( k>=0 && zName[k]==':' ) nName = k;
|
| + zName[nName] = 0;
|
| + zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
|
| + sqlite3DbFree(db, zName);
|
| + zName = zNewName;
|
| + j = -1;
|
| + if( zName==0 ) break;
|
| + }
|
| + }
|
| + pCol->zName = zName;
|
| + }
|
| + if( db->mallocFailed ){
|
| + for(j=0; j<i; j++){
|
| + sqlite3DbFree(db, aCol[j].zName);
|
| + }
|
| + sqlite3DbFree(db, aCol);
|
| + *paCol = 0;
|
| + *pnCol = 0;
|
| + return SQLITE_NOMEM;
|
| + }
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** Add type and collation information to a column list based on
|
| +** a SELECT statement.
|
| +**
|
| +** The column list presumably came from selectColumnNamesFromExprList().
|
| +** The column list has only names, not types or collations. This
|
| +** routine goes through and adds the types and collations.
|
| +**
|
| +** This routine requires that all identifiers in the SELECT
|
| +** statement be resolved.
|
| +*/
|
| +static void selectAddColumnTypeAndCollation(
|
| + Parse *pParse, /* Parsing contexts */
|
| + Table *pTab, /* Add column type information to this table */
|
| + Select *pSelect /* SELECT used to determine types and collations */
|
| +){
|
| + sqlite3 *db = pParse->db;
|
| + NameContext sNC;
|
| + Column *pCol;
|
| + CollSeq *pColl;
|
| + int i;
|
| + Expr *p;
|
| + struct ExprList_item *a;
|
| + u64 szAll = 0;
|
| +
|
| + assert( pSelect!=0 );
|
| + assert( (pSelect->selFlags & SF_Resolved)!=0 );
|
| + assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
|
| + if( db->mallocFailed ) return;
|
| + memset(&sNC, 0, sizeof(sNC));
|
| + sNC.pSrcList = pSelect->pSrc;
|
| + a = pSelect->pEList->a;
|
| + for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
|
| + p = a[i].pExpr;
|
| + pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst));
|
| + szAll += pCol->szEst;
|
| + pCol->affinity = sqlite3ExprAffinity(p);
|
| + if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
|
| + pColl = sqlite3ExprCollSeq(pParse, p);
|
| + if( pColl ){
|
| + pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
|
| + }
|
| + }
|
| + pTab->szTabRow = sqlite3LogEst(szAll*4);
|
| +}
|
| +
|
| +/*
|
| +** Given a SELECT statement, generate a Table structure that describes
|
| +** the result set of that SELECT.
|
| +*/
|
| +Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
|
| + Table *pTab;
|
| + sqlite3 *db = pParse->db;
|
| + int savedFlags;
|
| +
|
| + savedFlags = db->flags;
|
| + db->flags &= ~SQLITE_FullColNames;
|
| + db->flags |= SQLITE_ShortColNames;
|
| + sqlite3SelectPrep(pParse, pSelect, 0);
|
| + if( pParse->nErr ) return 0;
|
| + while( pSelect->pPrior ) pSelect = pSelect->pPrior;
|
| + db->flags = savedFlags;
|
| + pTab = sqlite3DbMallocZero(db, sizeof(Table) );
|
| + if( pTab==0 ){
|
| + return 0;
|
| + }
|
| + /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
|
| + ** is disabled */
|
| + assert( db->lookaside.bEnabled==0 );
|
| + pTab->nRef = 1;
|
| + pTab->zName = 0;
|
| + pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
|
| + selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
|
| + selectAddColumnTypeAndCollation(pParse, pTab, pSelect);
|
| + pTab->iPKey = -1;
|
| + if( db->mallocFailed ){
|
| + sqlite3DeleteTable(db, pTab);
|
| + return 0;
|
| + }
|
| + return pTab;
|
| +}
|
| +
|
| +/*
|
| +** Get a VDBE for the given parser context. Create a new one if necessary.
|
| +** If an error occurs, return NULL and leave a message in pParse.
|
| +*/
|
| +Vdbe *sqlite3GetVdbe(Parse *pParse){
|
| + Vdbe *v = pParse->pVdbe;
|
| + if( v==0 ){
|
| + v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
|
| + if( v ) sqlite3VdbeAddOp0(v, OP_Init);
|
| + if( pParse->pToplevel==0
|
| + && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
|
| + ){
|
| + pParse->okConstFactor = 1;
|
| + }
|
| +
|
| + }
|
| + return v;
|
| +}
|
| +
|
| +
|
| +/*
|
| +** Compute the iLimit and iOffset fields of the SELECT based on the
|
| +** pLimit and pOffset expressions. pLimit and pOffset hold the expressions
|
| +** that appear in the original SQL statement after the LIMIT and OFFSET
|
| +** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
|
| +** are the integer memory register numbers for counters used to compute
|
| +** the limit and offset. If there is no limit and/or offset, then
|
| +** iLimit and iOffset are negative.
|
| +**
|
| +** This routine changes the values of iLimit and iOffset only if
|
| +** a limit or offset is defined by pLimit and pOffset. iLimit and
|
| +** iOffset should have been preset to appropriate default values (zero)
|
| +** prior to calling this routine.
|
| +**
|
| +** The iOffset register (if it exists) is initialized to the value
|
| +** of the OFFSET. The iLimit register is initialized to LIMIT. Register
|
| +** iOffset+1 is initialized to LIMIT+OFFSET.
|
| +**
|
| +** Only if pLimit!=0 or pOffset!=0 do the limit registers get
|
| +** redefined. The UNION ALL operator uses this property to force
|
| +** the reuse of the same limit and offset registers across multiple
|
| +** SELECT statements.
|
| +*/
|
| +static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
|
| + Vdbe *v = 0;
|
| + int iLimit = 0;
|
| + int iOffset;
|
| + int addr1, n;
|
| + if( p->iLimit ) return;
|
| +
|
| + /*
|
| + ** "LIMIT -1" always shows all rows. There is some
|
| + ** controversy about what the correct behavior should be.
|
| + ** The current implementation interprets "LIMIT 0" to mean
|
| + ** no rows.
|
| + */
|
| + sqlite3ExprCacheClear(pParse);
|
| + assert( p->pOffset==0 || p->pLimit!=0 );
|
| + if( p->pLimit ){
|
| + p->iLimit = iLimit = ++pParse->nMem;
|
| + v = sqlite3GetVdbe(pParse);
|
| + assert( v!=0 );
|
| + if( sqlite3ExprIsInteger(p->pLimit, &n) ){
|
| + sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
|
| + VdbeComment((v, "LIMIT counter"));
|
| + if( n==0 ){
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
|
| + }else if( n>=0 && p->nSelectRow>(u64)n ){
|
| + p->nSelectRow = n;
|
| + }
|
| + }else{
|
| + sqlite3ExprCode(pParse, p->pLimit, iLimit);
|
| + sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
|
| + VdbeComment((v, "LIMIT counter"));
|
| + sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); VdbeCoverage(v);
|
| + }
|
| + if( p->pOffset ){
|
| + p->iOffset = iOffset = ++pParse->nMem;
|
| + pParse->nMem++; /* Allocate an extra register for limit+offset */
|
| + sqlite3ExprCode(pParse, p->pOffset, iOffset);
|
| + sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
|
| + VdbeComment((v, "OFFSET counter"));
|
| + addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v);
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
|
| + sqlite3VdbeJumpHere(v, addr1);
|
| + sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
|
| + VdbeComment((v, "LIMIT+OFFSET"));
|
| + addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v);
|
| + sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
|
| + sqlite3VdbeJumpHere(v, addr1);
|
| + }
|
| + }
|
| +}
|
| +
|
| +#ifndef SQLITE_OMIT_COMPOUND_SELECT
|
| +/*
|
| +** Return the appropriate collating sequence for the iCol-th column of
|
| +** the result set for the compound-select statement "p". Return NULL if
|
| +** the column has no default collating sequence.
|
| +**
|
| +** The collating sequence for the compound select is taken from the
|
| +** left-most term of the select that has a collating sequence.
|
| +*/
|
| +static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
|
| + CollSeq *pRet;
|
| + if( p->pPrior ){
|
| + pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
|
| + }else{
|
| + pRet = 0;
|
| + }
|
| + assert( iCol>=0 );
|
| + if( pRet==0 && iCol<p->pEList->nExpr ){
|
| + pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
|
| + }
|
| + return pRet;
|
| +}
|
| +
|
| +/*
|
| +** The select statement passed as the second parameter is a compound SELECT
|
| +** with an ORDER BY clause. This function allocates and returns a KeyInfo
|
| +** structure suitable for implementing the ORDER BY.
|
| +**
|
| +** Space to hold the KeyInfo structure is obtained from malloc. The calling
|
| +** function is responsible for ensuring that this structure is eventually
|
| +** freed.
|
| +*/
|
| +static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
|
| + ExprList *pOrderBy = p->pOrderBy;
|
| + int nOrderBy = p->pOrderBy->nExpr;
|
| + sqlite3 *db = pParse->db;
|
| + KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
|
| + if( pRet ){
|
| + int i;
|
| + for(i=0; i<nOrderBy; i++){
|
| + struct ExprList_item *pItem = &pOrderBy->a[i];
|
| + Expr *pTerm = pItem->pExpr;
|
| + CollSeq *pColl;
|
| +
|
| + if( pTerm->flags & EP_Collate ){
|
| + pColl = sqlite3ExprCollSeq(pParse, pTerm);
|
| + }else{
|
| + pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
|
| + if( pColl==0 ) pColl = db->pDfltColl;
|
| + pOrderBy->a[i].pExpr =
|
| + sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
|
| + }
|
| + assert( sqlite3KeyInfoIsWriteable(pRet) );
|
| + pRet->aColl[i] = pColl;
|
| + pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
|
| + }
|
| + }
|
| +
|
| + return pRet;
|
| +}
|
| +
|
| +#ifndef SQLITE_OMIT_CTE
|
| +/*
|
| +** This routine generates VDBE code to compute the content of a WITH RECURSIVE
|
| +** query of the form:
|
| +**
|
| +** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
|
| +** \___________/ \_______________/
|
| +** p->pPrior p
|
| +**
|
| +**
|
| +** There is exactly one reference to the recursive-table in the FROM clause
|
| +** of recursive-query, marked with the SrcList->a[].isRecursive flag.
|
| +**
|
| +** The setup-query runs once to generate an initial set of rows that go
|
| +** into a Queue table. Rows are extracted from the Queue table one by
|
| +** one. Each row extracted from Queue is output to pDest. Then the single
|
| +** extracted row (now in the iCurrent table) becomes the content of the
|
| +** recursive-table for a recursive-query run. The output of the recursive-query
|
| +** is added back into the Queue table. Then another row is extracted from Queue
|
| +** and the iteration continues until the Queue table is empty.
|
| +**
|
| +** If the compound query operator is UNION then no duplicate rows are ever
|
| +** inserted into the Queue table. The iDistinct table keeps a copy of all rows
|
| +** that have ever been inserted into Queue and causes duplicates to be
|
| +** discarded. If the operator is UNION ALL, then duplicates are allowed.
|
| +**
|
| +** If the query has an ORDER BY, then entries in the Queue table are kept in
|
| +** ORDER BY order and the first entry is extracted for each cycle. Without
|
| +** an ORDER BY, the Queue table is just a FIFO.
|
| +**
|
| +** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
|
| +** have been output to pDest. A LIMIT of zero means to output no rows and a
|
| +** negative LIMIT means to output all rows. If there is also an OFFSET clause
|
| +** with a positive value, then the first OFFSET outputs are discarded rather
|
| +** than being sent to pDest. The LIMIT count does not begin until after OFFSET
|
| +** rows have been skipped.
|
| +*/
|
| +static void generateWithRecursiveQuery(
|
| + Parse *pParse, /* Parsing context */
|
| + Select *p, /* The recursive SELECT to be coded */
|
| + SelectDest *pDest /* What to do with query results */
|
| +){
|
| + SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */
|
| + int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */
|
| + Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */
|
| + Select *pSetup = p->pPrior; /* The setup query */
|
| + int addrTop; /* Top of the loop */
|
| + int addrCont, addrBreak; /* CONTINUE and BREAK addresses */
|
| + int iCurrent = 0; /* The Current table */
|
| + int regCurrent; /* Register holding Current table */
|
| + int iQueue; /* The Queue table */
|
| + int iDistinct = 0; /* To ensure unique results if UNION */
|
| + int eDest = SRT_Fifo; /* How to write to Queue */
|
| + SelectDest destQueue; /* SelectDest targetting the Queue table */
|
| + int i; /* Loop counter */
|
| + int rc; /* Result code */
|
| + ExprList *pOrderBy; /* The ORDER BY clause */
|
| + Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */
|
| + int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */
|
| +
|
| + /* Obtain authorization to do a recursive query */
|
| + if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
|
| +
|
| + /* Process the LIMIT and OFFSET clauses, if they exist */
|
| + addrBreak = sqlite3VdbeMakeLabel(v);
|
| + computeLimitRegisters(pParse, p, addrBreak);
|
| + pLimit = p->pLimit;
|
| + pOffset = p->pOffset;
|
| + regLimit = p->iLimit;
|
| + regOffset = p->iOffset;
|
| + p->pLimit = p->pOffset = 0;
|
| + p->iLimit = p->iOffset = 0;
|
| + pOrderBy = p->pOrderBy;
|
| +
|
| + /* Locate the cursor number of the Current table */
|
| + for(i=0; ALWAYS(i<pSrc->nSrc); i++){
|
| + if( pSrc->a[i].isRecursive ){
|
| + iCurrent = pSrc->a[i].iCursor;
|
| + break;
|
| + }
|
| + }
|
| +
|
| + /* Allocate cursors numbers for Queue and Distinct. The cursor number for
|
| + ** the Distinct table must be exactly one greater than Queue in order
|
| + ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
|
| + iQueue = pParse->nTab++;
|
| + if( p->op==TK_UNION ){
|
| + eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
|
| + iDistinct = pParse->nTab++;
|
| + }else{
|
| + eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
|
| + }
|
| + sqlite3SelectDestInit(&destQueue, eDest, iQueue);
|
| +
|
| + /* Allocate cursors for Current, Queue, and Distinct. */
|
| + regCurrent = ++pParse->nMem;
|
| + sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
|
| + if( pOrderBy ){
|
| + KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
|
| + sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
|
| + (char*)pKeyInfo, P4_KEYINFO);
|
| + destQueue.pOrderBy = pOrderBy;
|
| + }else{
|
| + sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
|
| + }
|
| + VdbeComment((v, "Queue table"));
|
| + if( iDistinct ){
|
| + p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
|
| + p->selFlags |= SF_UsesEphemeral;
|
| + }
|
| +
|
| + /* Detach the ORDER BY clause from the compound SELECT */
|
| + p->pOrderBy = 0;
|
| +
|
| + /* Store the results of the setup-query in Queue. */
|
| + pSetup->pNext = 0;
|
| + rc = sqlite3Select(pParse, pSetup, &destQueue);
|
| + pSetup->pNext = p;
|
| + if( rc ) goto end_of_recursive_query;
|
| +
|
| + /* Find the next row in the Queue and output that row */
|
| + addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
|
| +
|
| + /* Transfer the next row in Queue over to Current */
|
| + sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
|
| + if( pOrderBy ){
|
| + sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
|
| + }else{
|
| + sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
|
| + }
|
| + sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
|
| +
|
| + /* Output the single row in Current */
|
| + addrCont = sqlite3VdbeMakeLabel(v);
|
| + codeOffset(v, regOffset, addrCont);
|
| + selectInnerLoop(pParse, p, p->pEList, iCurrent,
|
| + 0, 0, pDest, addrCont, addrBreak);
|
| + if( regLimit ){
|
| + sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1);
|
| + VdbeCoverage(v);
|
| + }
|
| + sqlite3VdbeResolveLabel(v, addrCont);
|
| +
|
| + /* Execute the recursive SELECT taking the single row in Current as
|
| + ** the value for the recursive-table. Store the results in the Queue.
|
| + */
|
| + p->pPrior = 0;
|
| + sqlite3Select(pParse, p, &destQueue);
|
| + assert( p->pPrior==0 );
|
| + p->pPrior = pSetup;
|
| +
|
| + /* Keep running the loop until the Queue is empty */
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
|
| + sqlite3VdbeResolveLabel(v, addrBreak);
|
| +
|
| +end_of_recursive_query:
|
| + sqlite3ExprListDelete(pParse->db, p->pOrderBy);
|
| + p->pOrderBy = pOrderBy;
|
| + p->pLimit = pLimit;
|
| + p->pOffset = pOffset;
|
| + return;
|
| +}
|
| +#endif /* SQLITE_OMIT_CTE */
|
| +
|
| +/* Forward references */
|
| +static int multiSelectOrderBy(
|
| + Parse *pParse, /* Parsing context */
|
| + Select *p, /* The right-most of SELECTs to be coded */
|
| + SelectDest *pDest /* What to do with query results */
|
| +);
|
| +
|
| +
|
| +/*
|
| +** This routine is called to process a compound query form from
|
| +** two or more separate queries using UNION, UNION ALL, EXCEPT, or
|
| +** INTERSECT
|
| +**
|
| +** "p" points to the right-most of the two queries. the query on the
|
| +** left is p->pPrior. The left query could also be a compound query
|
| +** in which case this routine will be called recursively.
|
| +**
|
| +** The results of the total query are to be written into a destination
|
| +** of type eDest with parameter iParm.
|
| +**
|
| +** Example 1: Consider a three-way compound SQL statement.
|
| +**
|
| +** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
|
| +**
|
| +** This statement is parsed up as follows:
|
| +**
|
| +** SELECT c FROM t3
|
| +** |
|
| +** `-----> SELECT b FROM t2
|
| +** |
|
| +** `------> SELECT a FROM t1
|
| +**
|
| +** The arrows in the diagram above represent the Select.pPrior pointer.
|
| +** So if this routine is called with p equal to the t3 query, then
|
| +** pPrior will be the t2 query. p->op will be TK_UNION in this case.
|
| +**
|
| +** Notice that because of the way SQLite parses compound SELECTs, the
|
| +** individual selects always group from left to right.
|
| +*/
|
| +static int multiSelect(
|
| + Parse *pParse, /* Parsing context */
|
| + Select *p, /* The right-most of SELECTs to be coded */
|
| + SelectDest *pDest /* What to do with query results */
|
| +){
|
| + int rc = SQLITE_OK; /* Success code from a subroutine */
|
| + Select *pPrior; /* Another SELECT immediately to our left */
|
| + Vdbe *v; /* Generate code to this VDBE */
|
| + SelectDest dest; /* Alternative data destination */
|
| + Select *pDelete = 0; /* Chain of simple selects to delete */
|
| + sqlite3 *db; /* Database connection */
|
| +#ifndef SQLITE_OMIT_EXPLAIN
|
| + int iSub1 = 0; /* EQP id of left-hand query */
|
| + int iSub2 = 0; /* EQP id of right-hand query */
|
| +#endif
|
| +
|
| + /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
|
| + ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
|
| + */
|
| + assert( p && p->pPrior ); /* Calling function guarantees this much */
|
| + assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
|
| + db = pParse->db;
|
| + pPrior = p->pPrior;
|
| + dest = *pDest;
|
| + if( pPrior->pOrderBy ){
|
| + sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
|
| + selectOpName(p->op));
|
| + rc = 1;
|
| + goto multi_select_end;
|
| + }
|
| + if( pPrior->pLimit ){
|
| + sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
|
| + selectOpName(p->op));
|
| + rc = 1;
|
| + goto multi_select_end;
|
| + }
|
| +
|
| + v = sqlite3GetVdbe(pParse);
|
| + assert( v!=0 ); /* The VDBE already created by calling function */
|
| +
|
| + /* Create the destination temporary table if necessary
|
| + */
|
| + if( dest.eDest==SRT_EphemTab ){
|
| + assert( p->pEList );
|
| + sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
|
| + sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
|
| + dest.eDest = SRT_Table;
|
| + }
|
| +
|
| + /* Make sure all SELECTs in the statement have the same number of elements
|
| + ** in their result sets.
|
| + */
|
| + assert( p->pEList && pPrior->pEList );
|
| + if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
|
| + if( p->selFlags & SF_Values ){
|
| + sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
|
| + }else{
|
| + sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
|
| + " do not have the same number of result columns", selectOpName(p->op));
|
| + }
|
| + rc = 1;
|
| + goto multi_select_end;
|
| + }
|
| +
|
| +#ifndef SQLITE_OMIT_CTE
|
| + if( p->selFlags & SF_Recursive ){
|
| + generateWithRecursiveQuery(pParse, p, &dest);
|
| + }else
|
| +#endif
|
| +
|
| + /* Compound SELECTs that have an ORDER BY clause are handled separately.
|
| + */
|
| + if( p->pOrderBy ){
|
| + return multiSelectOrderBy(pParse, p, pDest);
|
| + }else
|
| +
|
| + /* Generate code for the left and right SELECT statements.
|
| + */
|
| + switch( p->op ){
|
| + case TK_ALL: {
|
| + int addr = 0;
|
| + int nLimit;
|
| + assert( !pPrior->pLimit );
|
| + pPrior->iLimit = p->iLimit;
|
| + pPrior->iOffset = p->iOffset;
|
| + pPrior->pLimit = p->pLimit;
|
| + pPrior->pOffset = p->pOffset;
|
| + explainSetInteger(iSub1, pParse->iNextSelectId);
|
| + rc = sqlite3Select(pParse, pPrior, &dest);
|
| + p->pLimit = 0;
|
| + p->pOffset = 0;
|
| + if( rc ){
|
| + goto multi_select_end;
|
| + }
|
| + p->pPrior = 0;
|
| + p->iLimit = pPrior->iLimit;
|
| + p->iOffset = pPrior->iOffset;
|
| + if( p->iLimit ){
|
| + addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeCoverage(v);
|
| + VdbeComment((v, "Jump ahead if LIMIT reached"));
|
| + }
|
| + explainSetInteger(iSub2, pParse->iNextSelectId);
|
| + rc = sqlite3Select(pParse, p, &dest);
|
| + testcase( rc!=SQLITE_OK );
|
| + pDelete = p->pPrior;
|
| + p->pPrior = pPrior;
|
| + p->nSelectRow += pPrior->nSelectRow;
|
| + if( pPrior->pLimit
|
| + && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
|
| + && nLimit>0 && p->nSelectRow > (u64)nLimit
|
| + ){
|
| + p->nSelectRow = nLimit;
|
| + }
|
| + if( addr ){
|
| + sqlite3VdbeJumpHere(v, addr);
|
| + }
|
| + break;
|
| + }
|
| + case TK_EXCEPT:
|
| + case TK_UNION: {
|
| + int unionTab; /* Cursor number of the temporary table holding result */
|
| + u8 op = 0; /* One of the SRT_ operations to apply to self */
|
| + int priorOp; /* The SRT_ operation to apply to prior selects */
|
| + Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
|
| + int addr;
|
| + SelectDest uniondest;
|
| +
|
| + testcase( p->op==TK_EXCEPT );
|
| + testcase( p->op==TK_UNION );
|
| + priorOp = SRT_Union;
|
| + if( dest.eDest==priorOp ){
|
| + /* We can reuse a temporary table generated by a SELECT to our
|
| + ** right.
|
| + */
|
| + assert( p->pLimit==0 ); /* Not allowed on leftward elements */
|
| + assert( p->pOffset==0 ); /* Not allowed on leftward elements */
|
| + unionTab = dest.iSDParm;
|
| + }else{
|
| + /* We will need to create our own temporary table to hold the
|
| + ** intermediate results.
|
| + */
|
| + unionTab = pParse->nTab++;
|
| + assert( p->pOrderBy==0 );
|
| + addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
|
| + assert( p->addrOpenEphm[0] == -1 );
|
| + p->addrOpenEphm[0] = addr;
|
| + findRightmost(p)->selFlags |= SF_UsesEphemeral;
|
| + assert( p->pEList );
|
| + }
|
| +
|
| + /* Code the SELECT statements to our left
|
| + */
|
| + assert( !pPrior->pOrderBy );
|
| + sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
|
| + explainSetInteger(iSub1, pParse->iNextSelectId);
|
| + rc = sqlite3Select(pParse, pPrior, &uniondest);
|
| + if( rc ){
|
| + goto multi_select_end;
|
| + }
|
| +
|
| + /* Code the current SELECT statement
|
| + */
|
| + if( p->op==TK_EXCEPT ){
|
| + op = SRT_Except;
|
| + }else{
|
| + assert( p->op==TK_UNION );
|
| + op = SRT_Union;
|
| + }
|
| + p->pPrior = 0;
|
| + pLimit = p->pLimit;
|
| + p->pLimit = 0;
|
| + pOffset = p->pOffset;
|
| + p->pOffset = 0;
|
| + uniondest.eDest = op;
|
| + explainSetInteger(iSub2, pParse->iNextSelectId);
|
| + rc = sqlite3Select(pParse, p, &uniondest);
|
| + testcase( rc!=SQLITE_OK );
|
| + /* Query flattening in sqlite3Select() might refill p->pOrderBy.
|
| + ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
|
| + sqlite3ExprListDelete(db, p->pOrderBy);
|
| + pDelete = p->pPrior;
|
| + p->pPrior = pPrior;
|
| + p->pOrderBy = 0;
|
| + if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
|
| + sqlite3ExprDelete(db, p->pLimit);
|
| + p->pLimit = pLimit;
|
| + p->pOffset = pOffset;
|
| + p->iLimit = 0;
|
| + p->iOffset = 0;
|
| +
|
| + /* Convert the data in the temporary table into whatever form
|
| + ** it is that we currently need.
|
| + */
|
| + assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
|
| + if( dest.eDest!=priorOp ){
|
| + int iCont, iBreak, iStart;
|
| + assert( p->pEList );
|
| + if( dest.eDest==SRT_Output ){
|
| + Select *pFirst = p;
|
| + while( pFirst->pPrior ) pFirst = pFirst->pPrior;
|
| + generateColumnNames(pParse, 0, pFirst->pEList);
|
| + }
|
| + iBreak = sqlite3VdbeMakeLabel(v);
|
| + iCont = sqlite3VdbeMakeLabel(v);
|
| + computeLimitRegisters(pParse, p, iBreak);
|
| + sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
|
| + iStart = sqlite3VdbeCurrentAddr(v);
|
| + selectInnerLoop(pParse, p, p->pEList, unionTab,
|
| + 0, 0, &dest, iCont, iBreak);
|
| + sqlite3VdbeResolveLabel(v, iCont);
|
| + sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
|
| + sqlite3VdbeResolveLabel(v, iBreak);
|
| + sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
|
| + }
|
| + break;
|
| + }
|
| + default: assert( p->op==TK_INTERSECT ); {
|
| + int tab1, tab2;
|
| + int iCont, iBreak, iStart;
|
| + Expr *pLimit, *pOffset;
|
| + int addr;
|
| + SelectDest intersectdest;
|
| + int r1;
|
| +
|
| + /* INTERSECT is different from the others since it requires
|
| + ** two temporary tables. Hence it has its own case. Begin
|
| + ** by allocating the tables we will need.
|
| + */
|
| + tab1 = pParse->nTab++;
|
| + tab2 = pParse->nTab++;
|
| + assert( p->pOrderBy==0 );
|
| +
|
| + addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
|
| + assert( p->addrOpenEphm[0] == -1 );
|
| + p->addrOpenEphm[0] = addr;
|
| + findRightmost(p)->selFlags |= SF_UsesEphemeral;
|
| + assert( p->pEList );
|
| +
|
| + /* Code the SELECTs to our left into temporary table "tab1".
|
| + */
|
| + sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
|
| + explainSetInteger(iSub1, pParse->iNextSelectId);
|
| + rc = sqlite3Select(pParse, pPrior, &intersectdest);
|
| + if( rc ){
|
| + goto multi_select_end;
|
| + }
|
| +
|
| + /* Code the current SELECT into temporary table "tab2"
|
| + */
|
| + addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
|
| + assert( p->addrOpenEphm[1] == -1 );
|
| + p->addrOpenEphm[1] = addr;
|
| + p->pPrior = 0;
|
| + pLimit = p->pLimit;
|
| + p->pLimit = 0;
|
| + pOffset = p->pOffset;
|
| + p->pOffset = 0;
|
| + intersectdest.iSDParm = tab2;
|
| + explainSetInteger(iSub2, pParse->iNextSelectId);
|
| + rc = sqlite3Select(pParse, p, &intersectdest);
|
| + testcase( rc!=SQLITE_OK );
|
| + pDelete = p->pPrior;
|
| + p->pPrior = pPrior;
|
| + if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
|
| + sqlite3ExprDelete(db, p->pLimit);
|
| + p->pLimit = pLimit;
|
| + p->pOffset = pOffset;
|
| +
|
| + /* Generate code to take the intersection of the two temporary
|
| + ** tables.
|
| + */
|
| + assert( p->pEList );
|
| + if( dest.eDest==SRT_Output ){
|
| + Select *pFirst = p;
|
| + while( pFirst->pPrior ) pFirst = pFirst->pPrior;
|
| + generateColumnNames(pParse, 0, pFirst->pEList);
|
| + }
|
| + iBreak = sqlite3VdbeMakeLabel(v);
|
| + iCont = sqlite3VdbeMakeLabel(v);
|
| + computeLimitRegisters(pParse, p, iBreak);
|
| + sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
|
| + r1 = sqlite3GetTempReg(pParse);
|
| + iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
|
| + sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
|
| + sqlite3ReleaseTempReg(pParse, r1);
|
| + selectInnerLoop(pParse, p, p->pEList, tab1,
|
| + 0, 0, &dest, iCont, iBreak);
|
| + sqlite3VdbeResolveLabel(v, iCont);
|
| + sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
|
| + sqlite3VdbeResolveLabel(v, iBreak);
|
| + sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
|
| + sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
|
| + break;
|
| + }
|
| + }
|
| +
|
| + explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
|
| +
|
| + /* Compute collating sequences used by
|
| + ** temporary tables needed to implement the compound select.
|
| + ** Attach the KeyInfo structure to all temporary tables.
|
| + **
|
| + ** This section is run by the right-most SELECT statement only.
|
| + ** SELECT statements to the left always skip this part. The right-most
|
| + ** SELECT might also skip this part if it has no ORDER BY clause and
|
| + ** no temp tables are required.
|
| + */
|
| + if( p->selFlags & SF_UsesEphemeral ){
|
| + int i; /* Loop counter */
|
| + KeyInfo *pKeyInfo; /* Collating sequence for the result set */
|
| + Select *pLoop; /* For looping through SELECT statements */
|
| + CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
|
| + int nCol; /* Number of columns in result set */
|
| +
|
| + assert( p->pNext==0 );
|
| + nCol = p->pEList->nExpr;
|
| + pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
|
| + if( !pKeyInfo ){
|
| + rc = SQLITE_NOMEM;
|
| + goto multi_select_end;
|
| + }
|
| + for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
|
| + *apColl = multiSelectCollSeq(pParse, p, i);
|
| + if( 0==*apColl ){
|
| + *apColl = db->pDfltColl;
|
| + }
|
| + }
|
| +
|
| + for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
|
| + for(i=0; i<2; i++){
|
| + int addr = pLoop->addrOpenEphm[i];
|
| + if( addr<0 ){
|
| + /* If [0] is unused then [1] is also unused. So we can
|
| + ** always safely abort as soon as the first unused slot is found */
|
| + assert( pLoop->addrOpenEphm[1]<0 );
|
| + break;
|
| + }
|
| + sqlite3VdbeChangeP2(v, addr, nCol);
|
| + sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
|
| + P4_KEYINFO);
|
| + pLoop->addrOpenEphm[i] = -1;
|
| + }
|
| + }
|
| + sqlite3KeyInfoUnref(pKeyInfo);
|
| + }
|
| +
|
| +multi_select_end:
|
| + pDest->iSdst = dest.iSdst;
|
| + pDest->nSdst = dest.nSdst;
|
| + sqlite3SelectDelete(db, pDelete);
|
| + return rc;
|
| +}
|
| +#endif /* SQLITE_OMIT_COMPOUND_SELECT */
|
| +
|
| +/*
|
| +** Code an output subroutine for a coroutine implementation of a
|
| +** SELECT statment.
|
| +**
|
| +** The data to be output is contained in pIn->iSdst. There are
|
| +** pIn->nSdst columns to be output. pDest is where the output should
|
| +** be sent.
|
| +**
|
| +** regReturn is the number of the register holding the subroutine
|
| +** return address.
|
| +**
|
| +** If regPrev>0 then it is the first register in a vector that
|
| +** records the previous output. mem[regPrev] is a flag that is false
|
| +** if there has been no previous output. If regPrev>0 then code is
|
| +** generated to suppress duplicates. pKeyInfo is used for comparing
|
| +** keys.
|
| +**
|
| +** If the LIMIT found in p->iLimit is reached, jump immediately to
|
| +** iBreak.
|
| +*/
|
| +static int generateOutputSubroutine(
|
| + Parse *pParse, /* Parsing context */
|
| + Select *p, /* The SELECT statement */
|
| + SelectDest *pIn, /* Coroutine supplying data */
|
| + SelectDest *pDest, /* Where to send the data */
|
| + int regReturn, /* The return address register */
|
| + int regPrev, /* Previous result register. No uniqueness if 0 */
|
| + KeyInfo *pKeyInfo, /* For comparing with previous entry */
|
| + int iBreak /* Jump here if we hit the LIMIT */
|
| +){
|
| + Vdbe *v = pParse->pVdbe;
|
| + int iContinue;
|
| + int addr;
|
| +
|
| + addr = sqlite3VdbeCurrentAddr(v);
|
| + iContinue = sqlite3VdbeMakeLabel(v);
|
| +
|
| + /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
|
| + */
|
| + if( regPrev ){
|
| + int j1, j2;
|
| + j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
|
| + j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
|
| + (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
|
| + sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v);
|
| + sqlite3VdbeJumpHere(v, j1);
|
| + sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
|
| + }
|
| + if( pParse->db->mallocFailed ) return 0;
|
| +
|
| + /* Suppress the first OFFSET entries if there is an OFFSET clause
|
| + */
|
| + codeOffset(v, p->iOffset, iContinue);
|
| +
|
| + switch( pDest->eDest ){
|
| + /* Store the result as data using a unique key.
|
| + */
|
| + case SRT_Table:
|
| + case SRT_EphemTab: {
|
| + int r1 = sqlite3GetTempReg(pParse);
|
| + int r2 = sqlite3GetTempReg(pParse);
|
| + testcase( pDest->eDest==SRT_Table );
|
| + testcase( pDest->eDest==SRT_EphemTab );
|
| + sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
|
| + sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
|
| + sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
|
| + sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
| + sqlite3ReleaseTempReg(pParse, r2);
|
| + sqlite3ReleaseTempReg(pParse, r1);
|
| + break;
|
| + }
|
| +
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| + /* If we are creating a set for an "expr IN (SELECT ...)" construct,
|
| + ** then there should be a single item on the stack. Write this
|
| + ** item into the set table with bogus data.
|
| + */
|
| + case SRT_Set: {
|
| + int r1;
|
| + assert( pIn->nSdst==1 );
|
| + pDest->affSdst =
|
| + sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
|
| + r1 = sqlite3GetTempReg(pParse);
|
| + sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);
|
| + sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
|
| + sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
|
| + sqlite3ReleaseTempReg(pParse, r1);
|
| + break;
|
| + }
|
| +
|
| +#if 0 /* Never occurs on an ORDER BY query */
|
| + /* If any row exist in the result set, record that fact and abort.
|
| + */
|
| + case SRT_Exists: {
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm);
|
| + /* The LIMIT clause will terminate the loop for us */
|
| + break;
|
| + }
|
| +#endif
|
| +
|
| + /* If this is a scalar select that is part of an expression, then
|
| + ** store the results in the appropriate memory cell and break out
|
| + ** of the scan loop.
|
| + */
|
| + case SRT_Mem: {
|
| + assert( pIn->nSdst==1 );
|
| + sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
|
| + /* The LIMIT clause will jump out of the loop for us */
|
| + break;
|
| + }
|
| +#endif /* #ifndef SQLITE_OMIT_SUBQUERY */
|
| +
|
| + /* The results are stored in a sequence of registers
|
| + ** starting at pDest->iSdst. Then the co-routine yields.
|
| + */
|
| + case SRT_Coroutine: {
|
| + if( pDest->iSdst==0 ){
|
| + pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
|
| + pDest->nSdst = pIn->nSdst;
|
| + }
|
| + sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst);
|
| + sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
|
| + break;
|
| + }
|
| +
|
| + /* If none of the above, then the result destination must be
|
| + ** SRT_Output. This routine is never called with any other
|
| + ** destination other than the ones handled above or SRT_Output.
|
| + **
|
| + ** For SRT_Output, results are stored in a sequence of registers.
|
| + ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
|
| + ** return the next row of result.
|
| + */
|
| + default: {
|
| + assert( pDest->eDest==SRT_Output );
|
| + sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
|
| + sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
|
| + break;
|
| + }
|
| + }
|
| +
|
| + /* Jump to the end of the loop if the LIMIT is reached.
|
| + */
|
| + if( p->iLimit ){
|
| + sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
|
| + }
|
| +
|
| + /* Generate the subroutine return
|
| + */
|
| + sqlite3VdbeResolveLabel(v, iContinue);
|
| + sqlite3VdbeAddOp1(v, OP_Return, regReturn);
|
| +
|
| + return addr;
|
| +}
|
| +
|
| +/*
|
| +** Alternative compound select code generator for cases when there
|
| +** is an ORDER BY clause.
|
| +**
|
| +** We assume a query of the following form:
|
| +**
|
| +** <selectA> <operator> <selectB> ORDER BY <orderbylist>
|
| +**
|
| +** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
|
| +** is to code both <selectA> and <selectB> with the ORDER BY clause as
|
| +** co-routines. Then run the co-routines in parallel and merge the results
|
| +** into the output. In addition to the two coroutines (called selectA and
|
| +** selectB) there are 7 subroutines:
|
| +**
|
| +** outA: Move the output of the selectA coroutine into the output
|
| +** of the compound query.
|
| +**
|
| +** outB: Move the output of the selectB coroutine into the output
|
| +** of the compound query. (Only generated for UNION and
|
| +** UNION ALL. EXCEPT and INSERTSECT never output a row that
|
| +** appears only in B.)
|
| +**
|
| +** AltB: Called when there is data from both coroutines and A<B.
|
| +**
|
| +** AeqB: Called when there is data from both coroutines and A==B.
|
| +**
|
| +** AgtB: Called when there is data from both coroutines and A>B.
|
| +**
|
| +** EofA: Called when data is exhausted from selectA.
|
| +**
|
| +** EofB: Called when data is exhausted from selectB.
|
| +**
|
| +** The implementation of the latter five subroutines depend on which
|
| +** <operator> is used:
|
| +**
|
| +**
|
| +** UNION ALL UNION EXCEPT INTERSECT
|
| +** ------------- ----------------- -------------- -----------------
|
| +** AltB: outA, nextA outA, nextA outA, nextA nextA
|
| +**
|
| +** AeqB: outA, nextA nextA nextA outA, nextA
|
| +**
|
| +** AgtB: outB, nextB outB, nextB nextB nextB
|
| +**
|
| +** EofA: outB, nextB outB, nextB halt halt
|
| +**
|
| +** EofB: outA, nextA outA, nextA outA, nextA halt
|
| +**
|
| +** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
|
| +** causes an immediate jump to EofA and an EOF on B following nextB causes
|
| +** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
|
| +** following nextX causes a jump to the end of the select processing.
|
| +**
|
| +** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
|
| +** within the output subroutine. The regPrev register set holds the previously
|
| +** output value. A comparison is made against this value and the output
|
| +** is skipped if the next results would be the same as the previous.
|
| +**
|
| +** The implementation plan is to implement the two coroutines and seven
|
| +** subroutines first, then put the control logic at the bottom. Like this:
|
| +**
|
| +** goto Init
|
| +** coA: coroutine for left query (A)
|
| +** coB: coroutine for right query (B)
|
| +** outA: output one row of A
|
| +** outB: output one row of B (UNION and UNION ALL only)
|
| +** EofA: ...
|
| +** EofB: ...
|
| +** AltB: ...
|
| +** AeqB: ...
|
| +** AgtB: ...
|
| +** Init: initialize coroutine registers
|
| +** yield coA
|
| +** if eof(A) goto EofA
|
| +** yield coB
|
| +** if eof(B) goto EofB
|
| +** Cmpr: Compare A, B
|
| +** Jump AltB, AeqB, AgtB
|
| +** End: ...
|
| +**
|
| +** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
|
| +** actually called using Gosub and they do not Return. EofA and EofB loop
|
| +** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
|
| +** and AgtB jump to either L2 or to one of EofA or EofB.
|
| +*/
|
| +#ifndef SQLITE_OMIT_COMPOUND_SELECT
|
| +static int multiSelectOrderBy(
|
| + Parse *pParse, /* Parsing context */
|
| + Select *p, /* The right-most of SELECTs to be coded */
|
| + SelectDest *pDest /* What to do with query results */
|
| +){
|
| + int i, j; /* Loop counters */
|
| + Select *pPrior; /* Another SELECT immediately to our left */
|
| + Vdbe *v; /* Generate code to this VDBE */
|
| + SelectDest destA; /* Destination for coroutine A */
|
| + SelectDest destB; /* Destination for coroutine B */
|
| + int regAddrA; /* Address register for select-A coroutine */
|
| + int regAddrB; /* Address register for select-B coroutine */
|
| + int addrSelectA; /* Address of the select-A coroutine */
|
| + int addrSelectB; /* Address of the select-B coroutine */
|
| + int regOutA; /* Address register for the output-A subroutine */
|
| + int regOutB; /* Address register for the output-B subroutine */
|
| + int addrOutA; /* Address of the output-A subroutine */
|
| + int addrOutB = 0; /* Address of the output-B subroutine */
|
| + int addrEofA; /* Address of the select-A-exhausted subroutine */
|
| + int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
|
| + int addrEofB; /* Address of the select-B-exhausted subroutine */
|
| + int addrAltB; /* Address of the A<B subroutine */
|
| + int addrAeqB; /* Address of the A==B subroutine */
|
| + int addrAgtB; /* Address of the A>B subroutine */
|
| + int regLimitA; /* Limit register for select-A */
|
| + int regLimitB; /* Limit register for select-A */
|
| + int regPrev; /* A range of registers to hold previous output */
|
| + int savedLimit; /* Saved value of p->iLimit */
|
| + int savedOffset; /* Saved value of p->iOffset */
|
| + int labelCmpr; /* Label for the start of the merge algorithm */
|
| + int labelEnd; /* Label for the end of the overall SELECT stmt */
|
| + int j1; /* Jump instructions that get retargetted */
|
| + int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
|
| + KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
|
| + KeyInfo *pKeyMerge; /* Comparison information for merging rows */
|
| + sqlite3 *db; /* Database connection */
|
| + ExprList *pOrderBy; /* The ORDER BY clause */
|
| + int nOrderBy; /* Number of terms in the ORDER BY clause */
|
| + int *aPermute; /* Mapping from ORDER BY terms to result set columns */
|
| +#ifndef SQLITE_OMIT_EXPLAIN
|
| + int iSub1; /* EQP id of left-hand query */
|
| + int iSub2; /* EQP id of right-hand query */
|
| +#endif
|
| +
|
| + assert( p->pOrderBy!=0 );
|
| + assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
|
| + db = pParse->db;
|
| + v = pParse->pVdbe;
|
| + assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
|
| + labelEnd = sqlite3VdbeMakeLabel(v);
|
| + labelCmpr = sqlite3VdbeMakeLabel(v);
|
| +
|
| +
|
| + /* Patch up the ORDER BY clause
|
| + */
|
| + op = p->op;
|
| + pPrior = p->pPrior;
|
| + assert( pPrior->pOrderBy==0 );
|
| + pOrderBy = p->pOrderBy;
|
| + assert( pOrderBy );
|
| + nOrderBy = pOrderBy->nExpr;
|
| +
|
| + /* For operators other than UNION ALL we have to make sure that
|
| + ** the ORDER BY clause covers every term of the result set. Add
|
| + ** terms to the ORDER BY clause as necessary.
|
| + */
|
| + if( op!=TK_ALL ){
|
| + for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
|
| + struct ExprList_item *pItem;
|
| + for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
|
| + assert( pItem->u.x.iOrderByCol>0 );
|
| + if( pItem->u.x.iOrderByCol==i ) break;
|
| + }
|
| + if( j==nOrderBy ){
|
| + Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
|
| + if( pNew==0 ) return SQLITE_NOMEM;
|
| + pNew->flags |= EP_IntValue;
|
| + pNew->u.iValue = i;
|
| + pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
|
| + if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
|
| + }
|
| + }
|
| + }
|
| +
|
| + /* Compute the comparison permutation and keyinfo that is used with
|
| + ** the permutation used to determine if the next
|
| + ** row of results comes from selectA or selectB. Also add explicit
|
| + ** collations to the ORDER BY clause terms so that when the subqueries
|
| + ** to the right and the left are evaluated, they use the correct
|
| + ** collation.
|
| + */
|
| + aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
|
| + if( aPermute ){
|
| + struct ExprList_item *pItem;
|
| + for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
|
| + assert( pItem->u.x.iOrderByCol>0
|
| + && pItem->u.x.iOrderByCol<=p->pEList->nExpr );
|
| + aPermute[i] = pItem->u.x.iOrderByCol - 1;
|
| + }
|
| + pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
|
| + }else{
|
| + pKeyMerge = 0;
|
| + }
|
| +
|
| + /* Reattach the ORDER BY clause to the query.
|
| + */
|
| + p->pOrderBy = pOrderBy;
|
| + pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
|
| +
|
| + /* Allocate a range of temporary registers and the KeyInfo needed
|
| + ** for the logic that removes duplicate result rows when the
|
| + ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
|
| + */
|
| + if( op==TK_ALL ){
|
| + regPrev = 0;
|
| + }else{
|
| + int nExpr = p->pEList->nExpr;
|
| + assert( nOrderBy>=nExpr || db->mallocFailed );
|
| + regPrev = pParse->nMem+1;
|
| + pParse->nMem += nExpr+1;
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
|
| + pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
|
| + if( pKeyDup ){
|
| + assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
|
| + for(i=0; i<nExpr; i++){
|
| + pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
|
| + pKeyDup->aSortOrder[i] = 0;
|
| + }
|
| + }
|
| + }
|
| +
|
| + /* Separate the left and the right query from one another
|
| + */
|
| + p->pPrior = 0;
|
| + pPrior->pNext = 0;
|
| + sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
|
| + if( pPrior->pPrior==0 ){
|
| + sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
|
| + }
|
| +
|
| + /* Compute the limit registers */
|
| + computeLimitRegisters(pParse, p, labelEnd);
|
| + if( p->iLimit && op==TK_ALL ){
|
| + regLimitA = ++pParse->nMem;
|
| + regLimitB = ++pParse->nMem;
|
| + sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
|
| + regLimitA);
|
| + sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
|
| + }else{
|
| + regLimitA = regLimitB = 0;
|
| + }
|
| + sqlite3ExprDelete(db, p->pLimit);
|
| + p->pLimit = 0;
|
| + sqlite3ExprDelete(db, p->pOffset);
|
| + p->pOffset = 0;
|
| +
|
| + regAddrA = ++pParse->nMem;
|
| + regAddrB = ++pParse->nMem;
|
| + regOutA = ++pParse->nMem;
|
| + regOutB = ++pParse->nMem;
|
| + sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
|
| + sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
|
| +
|
| + /* Generate a coroutine to evaluate the SELECT statement to the
|
| + ** left of the compound operator - the "A" select.
|
| + */
|
| + addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
|
| + j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
|
| + VdbeComment((v, "left SELECT"));
|
| + pPrior->iLimit = regLimitA;
|
| + explainSetInteger(iSub1, pParse->iNextSelectId);
|
| + sqlite3Select(pParse, pPrior, &destA);
|
| + sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA);
|
| + sqlite3VdbeJumpHere(v, j1);
|
| +
|
| + /* Generate a coroutine to evaluate the SELECT statement on
|
| + ** the right - the "B" select
|
| + */
|
| + addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
|
| + j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
|
| + VdbeComment((v, "right SELECT"));
|
| + savedLimit = p->iLimit;
|
| + savedOffset = p->iOffset;
|
| + p->iLimit = regLimitB;
|
| + p->iOffset = 0;
|
| + explainSetInteger(iSub2, pParse->iNextSelectId);
|
| + sqlite3Select(pParse, p, &destB);
|
| + p->iLimit = savedLimit;
|
| + p->iOffset = savedOffset;
|
| + sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB);
|
| +
|
| + /* Generate a subroutine that outputs the current row of the A
|
| + ** select as the next output row of the compound select.
|
| + */
|
| + VdbeNoopComment((v, "Output routine for A"));
|
| + addrOutA = generateOutputSubroutine(pParse,
|
| + p, &destA, pDest, regOutA,
|
| + regPrev, pKeyDup, labelEnd);
|
| +
|
| + /* Generate a subroutine that outputs the current row of the B
|
| + ** select as the next output row of the compound select.
|
| + */
|
| + if( op==TK_ALL || op==TK_UNION ){
|
| + VdbeNoopComment((v, "Output routine for B"));
|
| + addrOutB = generateOutputSubroutine(pParse,
|
| + p, &destB, pDest, regOutB,
|
| + regPrev, pKeyDup, labelEnd);
|
| + }
|
| + sqlite3KeyInfoUnref(pKeyDup);
|
| +
|
| + /* Generate a subroutine to run when the results from select A
|
| + ** are exhausted and only data in select B remains.
|
| + */
|
| + if( op==TK_EXCEPT || op==TK_INTERSECT ){
|
| + addrEofA_noB = addrEofA = labelEnd;
|
| + }else{
|
| + VdbeNoopComment((v, "eof-A subroutine"));
|
| + addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
|
| + addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
|
| + VdbeCoverage(v);
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
|
| + p->nSelectRow += pPrior->nSelectRow;
|
| + }
|
| +
|
| + /* Generate a subroutine to run when the results from select B
|
| + ** are exhausted and only data in select A remains.
|
| + */
|
| + if( op==TK_INTERSECT ){
|
| + addrEofB = addrEofA;
|
| + if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
|
| + }else{
|
| + VdbeNoopComment((v, "eof-B subroutine"));
|
| + addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
|
| + sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
|
| + }
|
| +
|
| + /* Generate code to handle the case of A<B
|
| + */
|
| + VdbeNoopComment((v, "A-lt-B subroutine"));
|
| + addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
|
| + sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
|
| +
|
| + /* Generate code to handle the case of A==B
|
| + */
|
| + if( op==TK_ALL ){
|
| + addrAeqB = addrAltB;
|
| + }else if( op==TK_INTERSECT ){
|
| + addrAeqB = addrAltB;
|
| + addrAltB++;
|
| + }else{
|
| + VdbeNoopComment((v, "A-eq-B subroutine"));
|
| + addrAeqB =
|
| + sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
|
| + }
|
| +
|
| + /* Generate code to handle the case of A>B
|
| + */
|
| + VdbeNoopComment((v, "A-gt-B subroutine"));
|
| + addrAgtB = sqlite3VdbeCurrentAddr(v);
|
| + if( op==TK_ALL || op==TK_UNION ){
|
| + sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
|
| + }
|
| + sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
|
| +
|
| + /* This code runs once to initialize everything.
|
| + */
|
| + sqlite3VdbeJumpHere(v, j1);
|
| + sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
|
| + sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
|
| +
|
| + /* Implement the main merge loop
|
| + */
|
| + sqlite3VdbeResolveLabel(v, labelCmpr);
|
| + sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
|
| + sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
|
| + (char*)pKeyMerge, P4_KEYINFO);
|
| + sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
|
| + sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
|
| +
|
| + /* Jump to the this point in order to terminate the query.
|
| + */
|
| + sqlite3VdbeResolveLabel(v, labelEnd);
|
| +
|
| + /* Set the number of output columns
|
| + */
|
| + if( pDest->eDest==SRT_Output ){
|
| + Select *pFirst = pPrior;
|
| + while( pFirst->pPrior ) pFirst = pFirst->pPrior;
|
| + generateColumnNames(pParse, 0, pFirst->pEList);
|
| + }
|
| +
|
| + /* Reassembly the compound query so that it will be freed correctly
|
| + ** by the calling function */
|
| + if( p->pPrior ){
|
| + sqlite3SelectDelete(db, p->pPrior);
|
| + }
|
| + p->pPrior = pPrior;
|
| + pPrior->pNext = p;
|
| +
|
| + /*** TBD: Insert subroutine calls to close cursors on incomplete
|
| + **** subqueries ****/
|
| + explainComposite(pParse, p->op, iSub1, iSub2, 0);
|
| + return SQLITE_OK;
|
| +}
|
| +#endif
|
| +
|
| +#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
|
| +/* Forward Declarations */
|
| +static void substExprList(sqlite3*, ExprList*, int, ExprList*);
|
| +static void substSelect(sqlite3*, Select *, int, ExprList *);
|
| +
|
| +/*
|
| +** Scan through the expression pExpr. Replace every reference to
|
| +** a column in table number iTable with a copy of the iColumn-th
|
| +** entry in pEList. (But leave references to the ROWID column
|
| +** unchanged.)
|
| +**
|
| +** This routine is part of the flattening procedure. A subquery
|
| +** whose result set is defined by pEList appears as entry in the
|
| +** FROM clause of a SELECT such that the VDBE cursor assigned to that
|
| +** FORM clause entry is iTable. This routine make the necessary
|
| +** changes to pExpr so that it refers directly to the source table
|
| +** of the subquery rather the result set of the subquery.
|
| +*/
|
| +static Expr *substExpr(
|
| + sqlite3 *db, /* Report malloc errors to this connection */
|
| + Expr *pExpr, /* Expr in which substitution occurs */
|
| + int iTable, /* Table to be substituted */
|
| + ExprList *pEList /* Substitute expressions */
|
| +){
|
| + if( pExpr==0 ) return 0;
|
| + if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
|
| + if( pExpr->iColumn<0 ){
|
| + pExpr->op = TK_NULL;
|
| + }else{
|
| + Expr *pNew;
|
| + assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
|
| + assert( pExpr->pLeft==0 && pExpr->pRight==0 );
|
| + pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
|
| + sqlite3ExprDelete(db, pExpr);
|
| + pExpr = pNew;
|
| + }
|
| + }else{
|
| + pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
|
| + pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
|
| + if( ExprHasProperty(pExpr, EP_xIsSelect) ){
|
| + substSelect(db, pExpr->x.pSelect, iTable, pEList);
|
| + }else{
|
| + substExprList(db, pExpr->x.pList, iTable, pEList);
|
| + }
|
| + }
|
| + return pExpr;
|
| +}
|
| +static void substExprList(
|
| + sqlite3 *db, /* Report malloc errors here */
|
| + ExprList *pList, /* List to scan and in which to make substitutes */
|
| + int iTable, /* Table to be substituted */
|
| + ExprList *pEList /* Substitute values */
|
| +){
|
| + int i;
|
| + if( pList==0 ) return;
|
| + for(i=0; i<pList->nExpr; i++){
|
| + pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
|
| + }
|
| +}
|
| +static void substSelect(
|
| + sqlite3 *db, /* Report malloc errors here */
|
| + Select *p, /* SELECT statement in which to make substitutions */
|
| + int iTable, /* Table to be replaced */
|
| + ExprList *pEList /* Substitute values */
|
| +){
|
| + SrcList *pSrc;
|
| + struct SrcList_item *pItem;
|
| + int i;
|
| + if( !p ) return;
|
| + substExprList(db, p->pEList, iTable, pEList);
|
| + substExprList(db, p->pGroupBy, iTable, pEList);
|
| + substExprList(db, p->pOrderBy, iTable, pEList);
|
| + p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
|
| + p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
|
| + substSelect(db, p->pPrior, iTable, pEList);
|
| + pSrc = p->pSrc;
|
| + assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
|
| + if( ALWAYS(pSrc) ){
|
| + for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
|
| + substSelect(db, pItem->pSelect, iTable, pEList);
|
| + }
|
| + }
|
| +}
|
| +#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
|
| +
|
| +#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
|
| +/*
|
| +** This routine attempts to flatten subqueries as a performance optimization.
|
| +** This routine returns 1 if it makes changes and 0 if no flattening occurs.
|
| +**
|
| +** To understand the concept of flattening, consider the following
|
| +** query:
|
| +**
|
| +** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
|
| +**
|
| +** The default way of implementing this query is to execute the
|
| +** subquery first and store the results in a temporary table, then
|
| +** run the outer query on that temporary table. This requires two
|
| +** passes over the data. Furthermore, because the temporary table
|
| +** has no indices, the WHERE clause on the outer query cannot be
|
| +** optimized.
|
| +**
|
| +** This routine attempts to rewrite queries such as the above into
|
| +** a single flat select, like this:
|
| +**
|
| +** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
|
| +**
|
| +** The code generated for this simplification gives the same result
|
| +** but only has to scan the data once. And because indices might
|
| +** exist on the table t1, a complete scan of the data might be
|
| +** avoided.
|
| +**
|
| +** Flattening is only attempted if all of the following are true:
|
| +**
|
| +** (1) The subquery and the outer query do not both use aggregates.
|
| +**
|
| +** (2) The subquery is not an aggregate or the outer query is not a join.
|
| +**
|
| +** (3) The subquery is not the right operand of a left outer join
|
| +** (Originally ticket #306. Strengthened by ticket #3300)
|
| +**
|
| +** (4) The subquery is not DISTINCT.
|
| +**
|
| +** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
|
| +** sub-queries that were excluded from this optimization. Restriction
|
| +** (4) has since been expanded to exclude all DISTINCT subqueries.
|
| +**
|
| +** (6) The subquery does not use aggregates or the outer query is not
|
| +** DISTINCT.
|
| +**
|
| +** (7) The subquery has a FROM clause. TODO: For subqueries without
|
| +** A FROM clause, consider adding a FROM close with the special
|
| +** table sqlite_once that consists of a single row containing a
|
| +** single NULL.
|
| +**
|
| +** (8) The subquery does not use LIMIT or the outer query is not a join.
|
| +**
|
| +** (9) The subquery does not use LIMIT or the outer query does not use
|
| +** aggregates.
|
| +**
|
| +** (**) Restriction (10) was removed from the code on 2005-02-05 but we
|
| +** accidently carried the comment forward until 2014-09-15. Original
|
| +** text: "The subquery does not use aggregates or the outer query does not
|
| +** use LIMIT."
|
| +**
|
| +** (11) The subquery and the outer query do not both have ORDER BY clauses.
|
| +**
|
| +** (**) Not implemented. Subsumed into restriction (3). Was previously
|
| +** a separate restriction deriving from ticket #350.
|
| +**
|
| +** (13) The subquery and outer query do not both use LIMIT.
|
| +**
|
| +** (14) The subquery does not use OFFSET.
|
| +**
|
| +** (15) The outer query is not part of a compound select or the
|
| +** subquery does not have a LIMIT clause.
|
| +** (See ticket #2339 and ticket [02a8e81d44]).
|
| +**
|
| +** (16) The outer query is not an aggregate or the subquery does
|
| +** not contain ORDER BY. (Ticket #2942) This used to not matter
|
| +** until we introduced the group_concat() function.
|
| +**
|
| +** (17) The sub-query is not a compound select, or it is a UNION ALL
|
| +** compound clause made up entirely of non-aggregate queries, and
|
| +** the parent query:
|
| +**
|
| +** * is not itself part of a compound select,
|
| +** * is not an aggregate or DISTINCT query, and
|
| +** * is not a join
|
| +**
|
| +** The parent and sub-query may contain WHERE clauses. Subject to
|
| +** rules (11), (13) and (14), they may also contain ORDER BY,
|
| +** LIMIT and OFFSET clauses. The subquery cannot use any compound
|
| +** operator other than UNION ALL because all the other compound
|
| +** operators have an implied DISTINCT which is disallowed by
|
| +** restriction (4).
|
| +**
|
| +** Also, each component of the sub-query must return the same number
|
| +** of result columns. This is actually a requirement for any compound
|
| +** SELECT statement, but all the code here does is make sure that no
|
| +** such (illegal) sub-query is flattened. The caller will detect the
|
| +** syntax error and return a detailed message.
|
| +**
|
| +** (18) If the sub-query is a compound select, then all terms of the
|
| +** ORDER by clause of the parent must be simple references to
|
| +** columns of the sub-query.
|
| +**
|
| +** (19) The subquery does not use LIMIT or the outer query does not
|
| +** have a WHERE clause.
|
| +**
|
| +** (20) If the sub-query is a compound select, then it must not use
|
| +** an ORDER BY clause. Ticket #3773. We could relax this constraint
|
| +** somewhat by saying that the terms of the ORDER BY clause must
|
| +** appear as unmodified result columns in the outer query. But we
|
| +** have other optimizations in mind to deal with that case.
|
| +**
|
| +** (21) The subquery does not use LIMIT or the outer query is not
|
| +** DISTINCT. (See ticket [752e1646fc]).
|
| +**
|
| +** (22) The subquery is not a recursive CTE.
|
| +**
|
| +** (23) The parent is not a recursive CTE, or the sub-query is not a
|
| +** compound query. This restriction is because transforming the
|
| +** parent to a compound query confuses the code that handles
|
| +** recursive queries in multiSelect().
|
| +**
|
| +** (24) The subquery is not an aggregate that uses the built-in min() or
|
| +** or max() functions. (Without this restriction, a query like:
|
| +** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
|
| +** return the value X for which Y was maximal.)
|
| +**
|
| +**
|
| +** In this routine, the "p" parameter is a pointer to the outer query.
|
| +** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
|
| +** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
|
| +**
|
| +** If flattening is not attempted, this routine is a no-op and returns 0.
|
| +** If flattening is attempted this routine returns 1.
|
| +**
|
| +** All of the expression analysis must occur on both the outer query and
|
| +** the subquery before this routine runs.
|
| +*/
|
| +static int flattenSubquery(
|
| + Parse *pParse, /* Parsing context */
|
| + Select *p, /* The parent or outer SELECT statement */
|
| + int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
|
| + int isAgg, /* True if outer SELECT uses aggregate functions */
|
| + int subqueryIsAgg /* True if the subquery uses aggregate functions */
|
| +){
|
| + const char *zSavedAuthContext = pParse->zAuthContext;
|
| + Select *pParent;
|
| + Select *pSub; /* The inner query or "subquery" */
|
| + Select *pSub1; /* Pointer to the rightmost select in sub-query */
|
| + SrcList *pSrc; /* The FROM clause of the outer query */
|
| + SrcList *pSubSrc; /* The FROM clause of the subquery */
|
| + ExprList *pList; /* The result set of the outer query */
|
| + int iParent; /* VDBE cursor number of the pSub result set temp table */
|
| + int i; /* Loop counter */
|
| + Expr *pWhere; /* The WHERE clause */
|
| + struct SrcList_item *pSubitem; /* The subquery */
|
| + sqlite3 *db = pParse->db;
|
| +
|
| + /* Check to see if flattening is permitted. Return 0 if not.
|
| + */
|
| + assert( p!=0 );
|
| + assert( p->pPrior==0 ); /* Unable to flatten compound queries */
|
| + if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
|
| + pSrc = p->pSrc;
|
| + assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
|
| + pSubitem = &pSrc->a[iFrom];
|
| + iParent = pSubitem->iCursor;
|
| + pSub = pSubitem->pSelect;
|
| + assert( pSub!=0 );
|
| + if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */
|
| + if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */
|
| + pSubSrc = pSub->pSrc;
|
| + assert( pSubSrc );
|
| + /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
|
| + ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
|
| + ** because they could be computed at compile-time. But when LIMIT and OFFSET
|
| + ** became arbitrary expressions, we were forced to add restrictions (13)
|
| + ** and (14). */
|
| + if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
|
| + if( pSub->pOffset ) return 0; /* Restriction (14) */
|
| + if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
|
| + return 0; /* Restriction (15) */
|
| + }
|
| + if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
|
| + if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */
|
| + if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
|
| + return 0; /* Restrictions (8)(9) */
|
| + }
|
| + if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
|
| + return 0; /* Restriction (6) */
|
| + }
|
| + if( p->pOrderBy && pSub->pOrderBy ){
|
| + return 0; /* Restriction (11) */
|
| + }
|
| + if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
|
| + if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
|
| + if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
|
| + return 0; /* Restriction (21) */
|
| + }
|
| + testcase( pSub->selFlags & SF_Recursive );
|
| + testcase( pSub->selFlags & SF_MinMaxAgg );
|
| + if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
|
| + return 0; /* Restrictions (22) and (24) */
|
| + }
|
| + if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
|
| + return 0; /* Restriction (23) */
|
| + }
|
| +
|
| + /* OBSOLETE COMMENT 1:
|
| + ** Restriction 3: If the subquery is a join, make sure the subquery is
|
| + ** not used as the right operand of an outer join. Examples of why this
|
| + ** is not allowed:
|
| + **
|
| + ** t1 LEFT OUTER JOIN (t2 JOIN t3)
|
| + **
|
| + ** If we flatten the above, we would get
|
| + **
|
| + ** (t1 LEFT OUTER JOIN t2) JOIN t3
|
| + **
|
| + ** which is not at all the same thing.
|
| + **
|
| + ** OBSOLETE COMMENT 2:
|
| + ** Restriction 12: If the subquery is the right operand of a left outer
|
| + ** join, make sure the subquery has no WHERE clause.
|
| + ** An examples of why this is not allowed:
|
| + **
|
| + ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
|
| + **
|
| + ** If we flatten the above, we would get
|
| + **
|
| + ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
|
| + **
|
| + ** But the t2.x>0 test will always fail on a NULL row of t2, which
|
| + ** effectively converts the OUTER JOIN into an INNER JOIN.
|
| + **
|
| + ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
|
| + ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
|
| + ** is fraught with danger. Best to avoid the whole thing. If the
|
| + ** subquery is the right term of a LEFT JOIN, then do not flatten.
|
| + */
|
| + if( (pSubitem->jointype & JT_OUTER)!=0 ){
|
| + return 0;
|
| + }
|
| +
|
| + /* Restriction 17: If the sub-query is a compound SELECT, then it must
|
| + ** use only the UNION ALL operator. And none of the simple select queries
|
| + ** that make up the compound SELECT are allowed to be aggregate or distinct
|
| + ** queries.
|
| + */
|
| + if( pSub->pPrior ){
|
| + if( pSub->pOrderBy ){
|
| + return 0; /* Restriction 20 */
|
| + }
|
| + if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
|
| + return 0;
|
| + }
|
| + for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
|
| + testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
|
| + testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
|
| + assert( pSub->pSrc!=0 );
|
| + if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
|
| + || (pSub1->pPrior && pSub1->op!=TK_ALL)
|
| + || pSub1->pSrc->nSrc<1
|
| + || pSub->pEList->nExpr!=pSub1->pEList->nExpr
|
| + ){
|
| + return 0;
|
| + }
|
| + testcase( pSub1->pSrc->nSrc>1 );
|
| + }
|
| +
|
| + /* Restriction 18. */
|
| + if( p->pOrderBy ){
|
| + int ii;
|
| + for(ii=0; ii<p->pOrderBy->nExpr; ii++){
|
| + if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
|
| + }
|
| + }
|
| + }
|
| +
|
| + /***** If we reach this point, flattening is permitted. *****/
|
| + SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
|
| + pSub->zSelName, pSub, iFrom));
|
| +
|
| + /* Authorize the subquery */
|
| + pParse->zAuthContext = pSubitem->zName;
|
| + TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
|
| + testcase( i==SQLITE_DENY );
|
| + pParse->zAuthContext = zSavedAuthContext;
|
| +
|
| + /* If the sub-query is a compound SELECT statement, then (by restrictions
|
| + ** 17 and 18 above) it must be a UNION ALL and the parent query must
|
| + ** be of the form:
|
| + **
|
| + ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
|
| + **
|
| + ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
|
| + ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
|
| + ** OFFSET clauses and joins them to the left-hand-side of the original
|
| + ** using UNION ALL operators. In this case N is the number of simple
|
| + ** select statements in the compound sub-query.
|
| + **
|
| + ** Example:
|
| + **
|
| + ** SELECT a+1 FROM (
|
| + ** SELECT x FROM tab
|
| + ** UNION ALL
|
| + ** SELECT y FROM tab
|
| + ** UNION ALL
|
| + ** SELECT abs(z*2) FROM tab2
|
| + ** ) WHERE a!=5 ORDER BY 1
|
| + **
|
| + ** Transformed into:
|
| + **
|
| + ** SELECT x+1 FROM tab WHERE x+1!=5
|
| + ** UNION ALL
|
| + ** SELECT y+1 FROM tab WHERE y+1!=5
|
| + ** UNION ALL
|
| + ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
|
| + ** ORDER BY 1
|
| + **
|
| + ** We call this the "compound-subquery flattening".
|
| + */
|
| + for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
|
| + Select *pNew;
|
| + ExprList *pOrderBy = p->pOrderBy;
|
| + Expr *pLimit = p->pLimit;
|
| + Expr *pOffset = p->pOffset;
|
| + Select *pPrior = p->pPrior;
|
| + p->pOrderBy = 0;
|
| + p->pSrc = 0;
|
| + p->pPrior = 0;
|
| + p->pLimit = 0;
|
| + p->pOffset = 0;
|
| + pNew = sqlite3SelectDup(db, p, 0);
|
| + sqlite3SelectSetName(pNew, pSub->zSelName);
|
| + p->pOffset = pOffset;
|
| + p->pLimit = pLimit;
|
| + p->pOrderBy = pOrderBy;
|
| + p->pSrc = pSrc;
|
| + p->op = TK_ALL;
|
| + if( pNew==0 ){
|
| + p->pPrior = pPrior;
|
| + }else{
|
| + pNew->pPrior = pPrior;
|
| + if( pPrior ) pPrior->pNext = pNew;
|
| + pNew->pNext = p;
|
| + p->pPrior = pNew;
|
| + SELECTTRACE(2,pParse,p,
|
| + ("compound-subquery flattener creates %s.%p as peer\n",
|
| + pNew->zSelName, pNew));
|
| + }
|
| + if( db->mallocFailed ) return 1;
|
| + }
|
| +
|
| + /* Begin flattening the iFrom-th entry of the FROM clause
|
| + ** in the outer query.
|
| + */
|
| + pSub = pSub1 = pSubitem->pSelect;
|
| +
|
| + /* Delete the transient table structure associated with the
|
| + ** subquery
|
| + */
|
| + sqlite3DbFree(db, pSubitem->zDatabase);
|
| + sqlite3DbFree(db, pSubitem->zName);
|
| + sqlite3DbFree(db, pSubitem->zAlias);
|
| + pSubitem->zDatabase = 0;
|
| + pSubitem->zName = 0;
|
| + pSubitem->zAlias = 0;
|
| + pSubitem->pSelect = 0;
|
| +
|
| + /* Defer deleting the Table object associated with the
|
| + ** subquery until code generation is
|
| + ** complete, since there may still exist Expr.pTab entries that
|
| + ** refer to the subquery even after flattening. Ticket #3346.
|
| + **
|
| + ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
|
| + */
|
| + if( ALWAYS(pSubitem->pTab!=0) ){
|
| + Table *pTabToDel = pSubitem->pTab;
|
| + if( pTabToDel->nRef==1 ){
|
| + Parse *pToplevel = sqlite3ParseToplevel(pParse);
|
| + pTabToDel->pNextZombie = pToplevel->pZombieTab;
|
| + pToplevel->pZombieTab = pTabToDel;
|
| + }else{
|
| + pTabToDel->nRef--;
|
| + }
|
| + pSubitem->pTab = 0;
|
| + }
|
| +
|
| + /* The following loop runs once for each term in a compound-subquery
|
| + ** flattening (as described above). If we are doing a different kind
|
| + ** of flattening - a flattening other than a compound-subquery flattening -
|
| + ** then this loop only runs once.
|
| + **
|
| + ** This loop moves all of the FROM elements of the subquery into the
|
| + ** the FROM clause of the outer query. Before doing this, remember
|
| + ** the cursor number for the original outer query FROM element in
|
| + ** iParent. The iParent cursor will never be used. Subsequent code
|
| + ** will scan expressions looking for iParent references and replace
|
| + ** those references with expressions that resolve to the subquery FROM
|
| + ** elements we are now copying in.
|
| + */
|
| + for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
|
| + int nSubSrc;
|
| + u8 jointype = 0;
|
| + pSubSrc = pSub->pSrc; /* FROM clause of subquery */
|
| + nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
|
| + pSrc = pParent->pSrc; /* FROM clause of the outer query */
|
| +
|
| + if( pSrc ){
|
| + assert( pParent==p ); /* First time through the loop */
|
| + jointype = pSubitem->jointype;
|
| + }else{
|
| + assert( pParent!=p ); /* 2nd and subsequent times through the loop */
|
| + pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
|
| + if( pSrc==0 ){
|
| + assert( db->mallocFailed );
|
| + break;
|
| + }
|
| + }
|
| +
|
| + /* The subquery uses a single slot of the FROM clause of the outer
|
| + ** query. If the subquery has more than one element in its FROM clause,
|
| + ** then expand the outer query to make space for it to hold all elements
|
| + ** of the subquery.
|
| + **
|
| + ** Example:
|
| + **
|
| + ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
|
| + **
|
| + ** The outer query has 3 slots in its FROM clause. One slot of the
|
| + ** outer query (the middle slot) is used by the subquery. The next
|
| + ** block of code will expand the out query to 4 slots. The middle
|
| + ** slot is expanded to two slots in order to make space for the
|
| + ** two elements in the FROM clause of the subquery.
|
| + */
|
| + if( nSubSrc>1 ){
|
| + pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
|
| + if( db->mallocFailed ){
|
| + break;
|
| + }
|
| + }
|
| +
|
| + /* Transfer the FROM clause terms from the subquery into the
|
| + ** outer query.
|
| + */
|
| + for(i=0; i<nSubSrc; i++){
|
| + sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
|
| + pSrc->a[i+iFrom] = pSubSrc->a[i];
|
| + memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
|
| + }
|
| + pSrc->a[iFrom].jointype = jointype;
|
| +
|
| + /* Now begin substituting subquery result set expressions for
|
| + ** references to the iParent in the outer query.
|
| + **
|
| + ** Example:
|
| + **
|
| + ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
|
| + ** \ \_____________ subquery __________/ /
|
| + ** \_____________________ outer query ______________________________/
|
| + **
|
| + ** We look at every expression in the outer query and every place we see
|
| + ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
|
| + */
|
| + pList = pParent->pEList;
|
| + for(i=0; i<pList->nExpr; i++){
|
| + if( pList->a[i].zName==0 ){
|
| + char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
|
| + sqlite3Dequote(zName);
|
| + pList->a[i].zName = zName;
|
| + }
|
| + }
|
| + substExprList(db, pParent->pEList, iParent, pSub->pEList);
|
| + if( isAgg ){
|
| + substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
|
| + pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
|
| + }
|
| + if( pSub->pOrderBy ){
|
| + /* At this point, any non-zero iOrderByCol values indicate that the
|
| + ** ORDER BY column expression is identical to the iOrderByCol'th
|
| + ** expression returned by SELECT statement pSub. Since these values
|
| + ** do not necessarily correspond to columns in SELECT statement pParent,
|
| + ** zero them before transfering the ORDER BY clause.
|
| + **
|
| + ** Not doing this may cause an error if a subsequent call to this
|
| + ** function attempts to flatten a compound sub-query into pParent
|
| + ** (the only way this can happen is if the compound sub-query is
|
| + ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
|
| + ExprList *pOrderBy = pSub->pOrderBy;
|
| + for(i=0; i<pOrderBy->nExpr; i++){
|
| + pOrderBy->a[i].u.x.iOrderByCol = 0;
|
| + }
|
| + assert( pParent->pOrderBy==0 );
|
| + assert( pSub->pPrior==0 );
|
| + pParent->pOrderBy = pOrderBy;
|
| + pSub->pOrderBy = 0;
|
| + }else if( pParent->pOrderBy ){
|
| + substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
|
| + }
|
| + if( pSub->pWhere ){
|
| + pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
|
| + }else{
|
| + pWhere = 0;
|
| + }
|
| + if( subqueryIsAgg ){
|
| + assert( pParent->pHaving==0 );
|
| + pParent->pHaving = pParent->pWhere;
|
| + pParent->pWhere = pWhere;
|
| + pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
|
| + pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
|
| + sqlite3ExprDup(db, pSub->pHaving, 0));
|
| + assert( pParent->pGroupBy==0 );
|
| + pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
|
| + }else{
|
| + pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
|
| + pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
|
| + }
|
| +
|
| + /* The flattened query is distinct if either the inner or the
|
| + ** outer query is distinct.
|
| + */
|
| + pParent->selFlags |= pSub->selFlags & SF_Distinct;
|
| +
|
| + /*
|
| + ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
|
| + **
|
| + ** One is tempted to try to add a and b to combine the limits. But this
|
| + ** does not work if either limit is negative.
|
| + */
|
| + if( pSub->pLimit ){
|
| + pParent->pLimit = pSub->pLimit;
|
| + pSub->pLimit = 0;
|
| + }
|
| + }
|
| +
|
| + /* Finially, delete what is left of the subquery and return
|
| + ** success.
|
| + */
|
| + sqlite3SelectDelete(db, pSub1);
|
| +
|
| +#if SELECTTRACE_ENABLED
|
| + if( sqlite3SelectTrace & 0x100 ){
|
| + sqlite3DebugPrintf("After flattening:\n");
|
| + sqlite3TreeViewSelect(0, p, 0);
|
| + }
|
| +#endif
|
| +
|
| + return 1;
|
| +}
|
| +#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
|
| +
|
| +/*
|
| +** Based on the contents of the AggInfo structure indicated by the first
|
| +** argument, this function checks if the following are true:
|
| +**
|
| +** * the query contains just a single aggregate function,
|
| +** * the aggregate function is either min() or max(), and
|
| +** * the argument to the aggregate function is a column value.
|
| +**
|
| +** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
|
| +** is returned as appropriate. Also, *ppMinMax is set to point to the
|
| +** list of arguments passed to the aggregate before returning.
|
| +**
|
| +** Or, if the conditions above are not met, *ppMinMax is set to 0 and
|
| +** WHERE_ORDERBY_NORMAL is returned.
|
| +*/
|
| +static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
|
| + int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
|
| +
|
| + *ppMinMax = 0;
|
| + if( pAggInfo->nFunc==1 ){
|
| + Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
|
| + ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */
|
| +
|
| + assert( pExpr->op==TK_AGG_FUNCTION );
|
| + if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
|
| + const char *zFunc = pExpr->u.zToken;
|
| + if( sqlite3StrICmp(zFunc, "min")==0 ){
|
| + eRet = WHERE_ORDERBY_MIN;
|
| + *ppMinMax = pEList;
|
| + }else if( sqlite3StrICmp(zFunc, "max")==0 ){
|
| + eRet = WHERE_ORDERBY_MAX;
|
| + *ppMinMax = pEList;
|
| + }
|
| + }
|
| + }
|
| +
|
| + assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
|
| + return eRet;
|
| +}
|
| +
|
| +/*
|
| +** The select statement passed as the first argument is an aggregate query.
|
| +** The second argument is the associated aggregate-info object. This
|
| +** function tests if the SELECT is of the form:
|
| +**
|
| +** SELECT count(*) FROM <tbl>
|
| +**
|
| +** where table is a database table, not a sub-select or view. If the query
|
| +** does match this pattern, then a pointer to the Table object representing
|
| +** <tbl> is returned. Otherwise, 0 is returned.
|
| +*/
|
| +static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
|
| + Table *pTab;
|
| + Expr *pExpr;
|
| +
|
| + assert( !p->pGroupBy );
|
| +
|
| + if( p->pWhere || p->pEList->nExpr!=1
|
| + || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
|
| + ){
|
| + return 0;
|
| + }
|
| + pTab = p->pSrc->a[0].pTab;
|
| + pExpr = p->pEList->a[0].pExpr;
|
| + assert( pTab && !pTab->pSelect && pExpr );
|
| +
|
| + if( IsVirtual(pTab) ) return 0;
|
| + if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
|
| + if( NEVER(pAggInfo->nFunc==0) ) return 0;
|
| + if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
|
| + if( pExpr->flags&EP_Distinct ) return 0;
|
| +
|
| + return pTab;
|
| +}
|
| +
|
| +/*
|
| +** If the source-list item passed as an argument was augmented with an
|
| +** INDEXED BY clause, then try to locate the specified index. If there
|
| +** was such a clause and the named index cannot be found, return
|
| +** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
|
| +** pFrom->pIndex and return SQLITE_OK.
|
| +*/
|
| +int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
|
| + if( pFrom->pTab && pFrom->zIndex ){
|
| + Table *pTab = pFrom->pTab;
|
| + char *zIndex = pFrom->zIndex;
|
| + Index *pIdx;
|
| + for(pIdx=pTab->pIndex;
|
| + pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
|
| + pIdx=pIdx->pNext
|
| + );
|
| + if( !pIdx ){
|
| + sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
|
| + pParse->checkSchema = 1;
|
| + return SQLITE_ERROR;
|
| + }
|
| + pFrom->pIndex = pIdx;
|
| + }
|
| + return SQLITE_OK;
|
| +}
|
| +/*
|
| +** Detect compound SELECT statements that use an ORDER BY clause with
|
| +** an alternative collating sequence.
|
| +**
|
| +** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
|
| +**
|
| +** These are rewritten as a subquery:
|
| +**
|
| +** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
|
| +** ORDER BY ... COLLATE ...
|
| +**
|
| +** This transformation is necessary because the multiSelectOrderBy() routine
|
| +** above that generates the code for a compound SELECT with an ORDER BY clause
|
| +** uses a merge algorithm that requires the same collating sequence on the
|
| +** result columns as on the ORDER BY clause. See ticket
|
| +** http://www.sqlite.org/src/info/6709574d2a
|
| +**
|
| +** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
|
| +** The UNION ALL operator works fine with multiSelectOrderBy() even when
|
| +** there are COLLATE terms in the ORDER BY.
|
| +*/
|
| +static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
|
| + int i;
|
| + Select *pNew;
|
| + Select *pX;
|
| + sqlite3 *db;
|
| + struct ExprList_item *a;
|
| + SrcList *pNewSrc;
|
| + Parse *pParse;
|
| + Token dummy;
|
| +
|
| + if( p->pPrior==0 ) return WRC_Continue;
|
| + if( p->pOrderBy==0 ) return WRC_Continue;
|
| + for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
|
| + if( pX==0 ) return WRC_Continue;
|
| + a = p->pOrderBy->a;
|
| + for(i=p->pOrderBy->nExpr-1; i>=0; i--){
|
| + if( a[i].pExpr->flags & EP_Collate ) break;
|
| + }
|
| + if( i<0 ) return WRC_Continue;
|
| +
|
| + /* If we reach this point, that means the transformation is required. */
|
| +
|
| + pParse = pWalker->pParse;
|
| + db = pParse->db;
|
| + pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
|
| + if( pNew==0 ) return WRC_Abort;
|
| + memset(&dummy, 0, sizeof(dummy));
|
| + pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
|
| + if( pNewSrc==0 ) return WRC_Abort;
|
| + *pNew = *p;
|
| + p->pSrc = pNewSrc;
|
| + p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0));
|
| + p->op = TK_SELECT;
|
| + p->pWhere = 0;
|
| + pNew->pGroupBy = 0;
|
| + pNew->pHaving = 0;
|
| + pNew->pOrderBy = 0;
|
| + p->pPrior = 0;
|
| + p->pNext = 0;
|
| + p->selFlags &= ~SF_Compound;
|
| + assert( pNew->pPrior!=0 );
|
| + pNew->pPrior->pNext = pNew;
|
| + pNew->pLimit = 0;
|
| + pNew->pOffset = 0;
|
| + return WRC_Continue;
|
| +}
|
| +
|
| +#ifndef SQLITE_OMIT_CTE
|
| +/*
|
| +** Argument pWith (which may be NULL) points to a linked list of nested
|
| +** WITH contexts, from inner to outermost. If the table identified by
|
| +** FROM clause element pItem is really a common-table-expression (CTE)
|
| +** then return a pointer to the CTE definition for that table. Otherwise
|
| +** return NULL.
|
| +**
|
| +** If a non-NULL value is returned, set *ppContext to point to the With
|
| +** object that the returned CTE belongs to.
|
| +*/
|
| +static struct Cte *searchWith(
|
| + With *pWith, /* Current outermost WITH clause */
|
| + struct SrcList_item *pItem, /* FROM clause element to resolve */
|
| + With **ppContext /* OUT: WITH clause return value belongs to */
|
| +){
|
| + const char *zName;
|
| + if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
|
| + With *p;
|
| + for(p=pWith; p; p=p->pOuter){
|
| + int i;
|
| + for(i=0; i<p->nCte; i++){
|
| + if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
|
| + *ppContext = p;
|
| + return &p->a[i];
|
| + }
|
| + }
|
| + }
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/* The code generator maintains a stack of active WITH clauses
|
| +** with the inner-most WITH clause being at the top of the stack.
|
| +**
|
| +** This routine pushes the WITH clause passed as the second argument
|
| +** onto the top of the stack. If argument bFree is true, then this
|
| +** WITH clause will never be popped from the stack. In this case it
|
| +** should be freed along with the Parse object. In other cases, when
|
| +** bFree==0, the With object will be freed along with the SELECT
|
| +** statement with which it is associated.
|
| +*/
|
| +void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
|
| + assert( bFree==0 || pParse->pWith==0 );
|
| + if( pWith ){
|
| + pWith->pOuter = pParse->pWith;
|
| + pParse->pWith = pWith;
|
| + pParse->bFreeWith = bFree;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** This function checks if argument pFrom refers to a CTE declared by
|
| +** a WITH clause on the stack currently maintained by the parser. And,
|
| +** if currently processing a CTE expression, if it is a recursive
|
| +** reference to the current CTE.
|
| +**
|
| +** If pFrom falls into either of the two categories above, pFrom->pTab
|
| +** and other fields are populated accordingly. The caller should check
|
| +** (pFrom->pTab!=0) to determine whether or not a successful match
|
| +** was found.
|
| +**
|
| +** Whether or not a match is found, SQLITE_OK is returned if no error
|
| +** occurs. If an error does occur, an error message is stored in the
|
| +** parser and some error code other than SQLITE_OK returned.
|
| +*/
|
| +static int withExpand(
|
| + Walker *pWalker,
|
| + struct SrcList_item *pFrom
|
| +){
|
| + Parse *pParse = pWalker->pParse;
|
| + sqlite3 *db = pParse->db;
|
| + struct Cte *pCte; /* Matched CTE (or NULL if no match) */
|
| + With *pWith; /* WITH clause that pCte belongs to */
|
| +
|
| + assert( pFrom->pTab==0 );
|
| +
|
| + pCte = searchWith(pParse->pWith, pFrom, &pWith);
|
| + if( pCte ){
|
| + Table *pTab;
|
| + ExprList *pEList;
|
| + Select *pSel;
|
| + Select *pLeft; /* Left-most SELECT statement */
|
| + int bMayRecursive; /* True if compound joined by UNION [ALL] */
|
| + With *pSavedWith; /* Initial value of pParse->pWith */
|
| +
|
| + /* If pCte->zErr is non-NULL at this point, then this is an illegal
|
| + ** recursive reference to CTE pCte. Leave an error in pParse and return
|
| + ** early. If pCte->zErr is NULL, then this is not a recursive reference.
|
| + ** In this case, proceed. */
|
| + if( pCte->zErr ){
|
| + sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName);
|
| + return SQLITE_ERROR;
|
| + }
|
| +
|
| + assert( pFrom->pTab==0 );
|
| + pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
|
| + if( pTab==0 ) return WRC_Abort;
|
| + pTab->nRef = 1;
|
| + pTab->zName = sqlite3DbStrDup(db, pCte->zName);
|
| + pTab->iPKey = -1;
|
| + pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
|
| + pTab->tabFlags |= TF_Ephemeral;
|
| + pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
|
| + if( db->mallocFailed ) return SQLITE_NOMEM;
|
| + assert( pFrom->pSelect );
|
| +
|
| + /* Check if this is a recursive CTE. */
|
| + pSel = pFrom->pSelect;
|
| + bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
|
| + if( bMayRecursive ){
|
| + int i;
|
| + SrcList *pSrc = pFrom->pSelect->pSrc;
|
| + for(i=0; i<pSrc->nSrc; i++){
|
| + struct SrcList_item *pItem = &pSrc->a[i];
|
| + if( pItem->zDatabase==0
|
| + && pItem->zName!=0
|
| + && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
|
| + ){
|
| + pItem->pTab = pTab;
|
| + pItem->isRecursive = 1;
|
| + pTab->nRef++;
|
| + pSel->selFlags |= SF_Recursive;
|
| + }
|
| + }
|
| + }
|
| +
|
| + /* Only one recursive reference is permitted. */
|
| + if( pTab->nRef>2 ){
|
| + sqlite3ErrorMsg(
|
| + pParse, "multiple references to recursive table: %s", pCte->zName
|
| + );
|
| + return SQLITE_ERROR;
|
| + }
|
| + assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));
|
| +
|
| + pCte->zErr = "circular reference: %s";
|
| + pSavedWith = pParse->pWith;
|
| + pParse->pWith = pWith;
|
| + sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);
|
| +
|
| + for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
|
| + pEList = pLeft->pEList;
|
| + if( pCte->pCols ){
|
| + if( pEList->nExpr!=pCte->pCols->nExpr ){
|
| + sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
|
| + pCte->zName, pEList->nExpr, pCte->pCols->nExpr
|
| + );
|
| + pParse->pWith = pSavedWith;
|
| + return SQLITE_ERROR;
|
| + }
|
| + pEList = pCte->pCols;
|
| + }
|
| +
|
| + selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
|
| + if( bMayRecursive ){
|
| + if( pSel->selFlags & SF_Recursive ){
|
| + pCte->zErr = "multiple recursive references: %s";
|
| + }else{
|
| + pCte->zErr = "recursive reference in a subquery: %s";
|
| + }
|
| + sqlite3WalkSelect(pWalker, pSel);
|
| + }
|
| + pCte->zErr = 0;
|
| + pParse->pWith = pSavedWith;
|
| + }
|
| +
|
| + return SQLITE_OK;
|
| +}
|
| +#endif
|
| +
|
| +#ifndef SQLITE_OMIT_CTE
|
| +/*
|
| +** If the SELECT passed as the second argument has an associated WITH
|
| +** clause, pop it from the stack stored as part of the Parse object.
|
| +**
|
| +** This function is used as the xSelectCallback2() callback by
|
| +** sqlite3SelectExpand() when walking a SELECT tree to resolve table
|
| +** names and other FROM clause elements.
|
| +*/
|
| +static void selectPopWith(Walker *pWalker, Select *p){
|
| + Parse *pParse = pWalker->pParse;
|
| + With *pWith = findRightmost(p)->pWith;
|
| + if( pWith!=0 ){
|
| + assert( pParse->pWith==pWith );
|
| + pParse->pWith = pWith->pOuter;
|
| + }
|
| +}
|
| +#else
|
| +#define selectPopWith 0
|
| +#endif
|
| +
|
| +/*
|
| +** This routine is a Walker callback for "expanding" a SELECT statement.
|
| +** "Expanding" means to do the following:
|
| +**
|
| +** (1) Make sure VDBE cursor numbers have been assigned to every
|
| +** element of the FROM clause.
|
| +**
|
| +** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
|
| +** defines FROM clause. When views appear in the FROM clause,
|
| +** fill pTabList->a[].pSelect with a copy of the SELECT statement
|
| +** that implements the view. A copy is made of the view's SELECT
|
| +** statement so that we can freely modify or delete that statement
|
| +** without worrying about messing up the persistent representation
|
| +** of the view.
|
| +**
|
| +** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
|
| +** on joins and the ON and USING clause of joins.
|
| +**
|
| +** (4) Scan the list of columns in the result set (pEList) looking
|
| +** for instances of the "*" operator or the TABLE.* operator.
|
| +** If found, expand each "*" to be every column in every table
|
| +** and TABLE.* to be every column in TABLE.
|
| +**
|
| +*/
|
| +static int selectExpander(Walker *pWalker, Select *p){
|
| + Parse *pParse = pWalker->pParse;
|
| + int i, j, k;
|
| + SrcList *pTabList;
|
| + ExprList *pEList;
|
| + struct SrcList_item *pFrom;
|
| + sqlite3 *db = pParse->db;
|
| + Expr *pE, *pRight, *pExpr;
|
| + u16 selFlags = p->selFlags;
|
| +
|
| + p->selFlags |= SF_Expanded;
|
| + if( db->mallocFailed ){
|
| + return WRC_Abort;
|
| + }
|
| + if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
|
| + return WRC_Prune;
|
| + }
|
| + pTabList = p->pSrc;
|
| + pEList = p->pEList;
|
| + sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
|
| +
|
| + /* Make sure cursor numbers have been assigned to all entries in
|
| + ** the FROM clause of the SELECT statement.
|
| + */
|
| + sqlite3SrcListAssignCursors(pParse, pTabList);
|
| +
|
| + /* Look up every table named in the FROM clause of the select. If
|
| + ** an entry of the FROM clause is a subquery instead of a table or view,
|
| + ** then create a transient table structure to describe the subquery.
|
| + */
|
| + for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
|
| + Table *pTab;
|
| + assert( pFrom->isRecursive==0 || pFrom->pTab );
|
| + if( pFrom->isRecursive ) continue;
|
| + if( pFrom->pTab!=0 ){
|
| + /* This statement has already been prepared. There is no need
|
| + ** to go further. */
|
| + assert( i==0 );
|
| +#ifndef SQLITE_OMIT_CTE
|
| + selectPopWith(pWalker, p);
|
| +#endif
|
| + return WRC_Prune;
|
| + }
|
| +#ifndef SQLITE_OMIT_CTE
|
| + if( withExpand(pWalker, pFrom) ) return WRC_Abort;
|
| + if( pFrom->pTab ) {} else
|
| +#endif
|
| + if( pFrom->zName==0 ){
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| + Select *pSel = pFrom->pSelect;
|
| + /* A sub-query in the FROM clause of a SELECT */
|
| + assert( pSel!=0 );
|
| + assert( pFrom->pTab==0 );
|
| + sqlite3WalkSelect(pWalker, pSel);
|
| + pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
|
| + if( pTab==0 ) return WRC_Abort;
|
| + pTab->nRef = 1;
|
| + pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
|
| + while( pSel->pPrior ){ pSel = pSel->pPrior; }
|
| + selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
|
| + pTab->iPKey = -1;
|
| + pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
|
| + pTab->tabFlags |= TF_Ephemeral;
|
| +#endif
|
| + }else{
|
| + /* An ordinary table or view name in the FROM clause */
|
| + assert( pFrom->pTab==0 );
|
| + pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
|
| + if( pTab==0 ) return WRC_Abort;
|
| + if( pTab->nRef==0xffff ){
|
| + sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
|
| + pTab->zName);
|
| + pFrom->pTab = 0;
|
| + return WRC_Abort;
|
| + }
|
| + pTab->nRef++;
|
| +#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
|
| + if( pTab->pSelect || IsVirtual(pTab) ){
|
| + /* We reach here if the named table is a really a view */
|
| + if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
|
| + assert( pFrom->pSelect==0 );
|
| + pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
|
| + sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
|
| + sqlite3WalkSelect(pWalker, pFrom->pSelect);
|
| + }
|
| +#endif
|
| + }
|
| +
|
| + /* Locate the index named by the INDEXED BY clause, if any. */
|
| + if( sqlite3IndexedByLookup(pParse, pFrom) ){
|
| + return WRC_Abort;
|
| + }
|
| + }
|
| +
|
| + /* Process NATURAL keywords, and ON and USING clauses of joins.
|
| + */
|
| + if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
|
| + return WRC_Abort;
|
| + }
|
| +
|
| + /* For every "*" that occurs in the column list, insert the names of
|
| + ** all columns in all tables. And for every TABLE.* insert the names
|
| + ** of all columns in TABLE. The parser inserted a special expression
|
| + ** with the TK_ALL operator for each "*" that it found in the column list.
|
| + ** The following code just has to locate the TK_ALL expressions and expand
|
| + ** each one to the list of all columns in all tables.
|
| + **
|
| + ** The first loop just checks to see if there are any "*" operators
|
| + ** that need expanding.
|
| + */
|
| + for(k=0; k<pEList->nExpr; k++){
|
| + pE = pEList->a[k].pExpr;
|
| + if( pE->op==TK_ALL ) break;
|
| + assert( pE->op!=TK_DOT || pE->pRight!=0 );
|
| + assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
|
| + if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
|
| + }
|
| + if( k<pEList->nExpr ){
|
| + /*
|
| + ** If we get here it means the result set contains one or more "*"
|
| + ** operators that need to be expanded. Loop through each expression
|
| + ** in the result set and expand them one by one.
|
| + */
|
| + struct ExprList_item *a = pEList->a;
|
| + ExprList *pNew = 0;
|
| + int flags = pParse->db->flags;
|
| + int longNames = (flags & SQLITE_FullColNames)!=0
|
| + && (flags & SQLITE_ShortColNames)==0;
|
| +
|
| + /* When processing FROM-clause subqueries, it is always the case
|
| + ** that full_column_names=OFF and short_column_names=ON. The
|
| + ** sqlite3ResultSetOfSelect() routine makes it so. */
|
| + assert( (p->selFlags & SF_NestedFrom)==0
|
| + || ((flags & SQLITE_FullColNames)==0 &&
|
| + (flags & SQLITE_ShortColNames)!=0) );
|
| +
|
| + for(k=0; k<pEList->nExpr; k++){
|
| + pE = a[k].pExpr;
|
| + pRight = pE->pRight;
|
| + assert( pE->op!=TK_DOT || pRight!=0 );
|
| + if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){
|
| + /* This particular expression does not need to be expanded.
|
| + */
|
| + pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
|
| + if( pNew ){
|
| + pNew->a[pNew->nExpr-1].zName = a[k].zName;
|
| + pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
|
| + a[k].zName = 0;
|
| + a[k].zSpan = 0;
|
| + }
|
| + a[k].pExpr = 0;
|
| + }else{
|
| + /* This expression is a "*" or a "TABLE.*" and needs to be
|
| + ** expanded. */
|
| + int tableSeen = 0; /* Set to 1 when TABLE matches */
|
| + char *zTName = 0; /* text of name of TABLE */
|
| + if( pE->op==TK_DOT ){
|
| + assert( pE->pLeft!=0 );
|
| + assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
|
| + zTName = pE->pLeft->u.zToken;
|
| + }
|
| + for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
|
| + Table *pTab = pFrom->pTab;
|
| + Select *pSub = pFrom->pSelect;
|
| + char *zTabName = pFrom->zAlias;
|
| + const char *zSchemaName = 0;
|
| + int iDb;
|
| + if( zTabName==0 ){
|
| + zTabName = pTab->zName;
|
| + }
|
| + if( db->mallocFailed ) break;
|
| + if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
|
| + pSub = 0;
|
| + if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
|
| + continue;
|
| + }
|
| + iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
| + zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
|
| + }
|
| + for(j=0; j<pTab->nCol; j++){
|
| + char *zName = pTab->aCol[j].zName;
|
| + char *zColname; /* The computed column name */
|
| + char *zToFree; /* Malloced string that needs to be freed */
|
| + Token sColname; /* Computed column name as a token */
|
| +
|
| + assert( zName );
|
| + if( zTName && pSub
|
| + && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
|
| + ){
|
| + continue;
|
| + }
|
| +
|
| + /* If a column is marked as 'hidden' (currently only possible
|
| + ** for virtual tables), do not include it in the expanded
|
| + ** result-set list.
|
| + */
|
| + if( IsHiddenColumn(&pTab->aCol[j]) ){
|
| + assert(IsVirtual(pTab));
|
| + continue;
|
| + }
|
| + tableSeen = 1;
|
| +
|
| + if( i>0 && zTName==0 ){
|
| + if( (pFrom->jointype & JT_NATURAL)!=0
|
| + && tableAndColumnIndex(pTabList, i, zName, 0, 0)
|
| + ){
|
| + /* In a NATURAL join, omit the join columns from the
|
| + ** table to the right of the join */
|
| + continue;
|
| + }
|
| + if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
|
| + /* In a join with a USING clause, omit columns in the
|
| + ** using clause from the table on the right. */
|
| + continue;
|
| + }
|
| + }
|
| + pRight = sqlite3Expr(db, TK_ID, zName);
|
| + zColname = zName;
|
| + zToFree = 0;
|
| + if( longNames || pTabList->nSrc>1 ){
|
| + Expr *pLeft;
|
| + pLeft = sqlite3Expr(db, TK_ID, zTabName);
|
| + pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
|
| + if( zSchemaName ){
|
| + pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
|
| + pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
|
| + }
|
| + if( longNames ){
|
| + zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
|
| + zToFree = zColname;
|
| + }
|
| + }else{
|
| + pExpr = pRight;
|
| + }
|
| + pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
|
| + sColname.z = zColname;
|
| + sColname.n = sqlite3Strlen30(zColname);
|
| + sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
|
| + if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
|
| + struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
|
| + if( pSub ){
|
| + pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
|
| + testcase( pX->zSpan==0 );
|
| + }else{
|
| + pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
|
| + zSchemaName, zTabName, zColname);
|
| + testcase( pX->zSpan==0 );
|
| + }
|
| + pX->bSpanIsTab = 1;
|
| + }
|
| + sqlite3DbFree(db, zToFree);
|
| + }
|
| + }
|
| + if( !tableSeen ){
|
| + if( zTName ){
|
| + sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
|
| + }else{
|
| + sqlite3ErrorMsg(pParse, "no tables specified");
|
| + }
|
| + }
|
| + }
|
| + }
|
| + sqlite3ExprListDelete(db, pEList);
|
| + p->pEList = pNew;
|
| + }
|
| +#if SQLITE_MAX_COLUMN
|
| + if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
|
| + sqlite3ErrorMsg(pParse, "too many columns in result set");
|
| + }
|
| +#endif
|
| + return WRC_Continue;
|
| +}
|
| +
|
| +/*
|
| +** No-op routine for the parse-tree walker.
|
| +**
|
| +** When this routine is the Walker.xExprCallback then expression trees
|
| +** are walked without any actions being taken at each node. Presumably,
|
| +** when this routine is used for Walker.xExprCallback then
|
| +** Walker.xSelectCallback is set to do something useful for every
|
| +** subquery in the parser tree.
|
| +*/
|
| +static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
|
| + UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
| + return WRC_Continue;
|
| +}
|
| +
|
| +/*
|
| +** This routine "expands" a SELECT statement and all of its subqueries.
|
| +** For additional information on what it means to "expand" a SELECT
|
| +** statement, see the comment on the selectExpand worker callback above.
|
| +**
|
| +** Expanding a SELECT statement is the first step in processing a
|
| +** SELECT statement. The SELECT statement must be expanded before
|
| +** name resolution is performed.
|
| +**
|
| +** If anything goes wrong, an error message is written into pParse.
|
| +** The calling function can detect the problem by looking at pParse->nErr
|
| +** and/or pParse->db->mallocFailed.
|
| +*/
|
| +static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
|
| + Walker w;
|
| + memset(&w, 0, sizeof(w));
|
| + w.xExprCallback = exprWalkNoop;
|
| + w.pParse = pParse;
|
| + if( pParse->hasCompound ){
|
| + w.xSelectCallback = convertCompoundSelectToSubquery;
|
| + sqlite3WalkSelect(&w, pSelect);
|
| + }
|
| + w.xSelectCallback = selectExpander;
|
| + w.xSelectCallback2 = selectPopWith;
|
| + sqlite3WalkSelect(&w, pSelect);
|
| +}
|
| +
|
| +
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| +/*
|
| +** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
|
| +** interface.
|
| +**
|
| +** For each FROM-clause subquery, add Column.zType and Column.zColl
|
| +** information to the Table structure that represents the result set
|
| +** of that subquery.
|
| +**
|
| +** The Table structure that represents the result set was constructed
|
| +** by selectExpander() but the type and collation information was omitted
|
| +** at that point because identifiers had not yet been resolved. This
|
| +** routine is called after identifier resolution.
|
| +*/
|
| +static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
|
| + Parse *pParse;
|
| + int i;
|
| + SrcList *pTabList;
|
| + struct SrcList_item *pFrom;
|
| +
|
| + assert( p->selFlags & SF_Resolved );
|
| + if( (p->selFlags & SF_HasTypeInfo)==0 ){
|
| + p->selFlags |= SF_HasTypeInfo;
|
| + pParse = pWalker->pParse;
|
| + pTabList = p->pSrc;
|
| + for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
|
| + Table *pTab = pFrom->pTab;
|
| + if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
|
| + /* A sub-query in the FROM clause of a SELECT */
|
| + Select *pSel = pFrom->pSelect;
|
| + if( pSel ){
|
| + while( pSel->pPrior ) pSel = pSel->pPrior;
|
| + selectAddColumnTypeAndCollation(pParse, pTab, pSel);
|
| + }
|
| + }
|
| + }
|
| + }
|
| +}
|
| +#endif
|
| +
|
| +
|
| +/*
|
| +** This routine adds datatype and collating sequence information to
|
| +** the Table structures of all FROM-clause subqueries in a
|
| +** SELECT statement.
|
| +**
|
| +** Use this routine after name resolution.
|
| +*/
|
| +static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| + Walker w;
|
| + memset(&w, 0, sizeof(w));
|
| + w.xSelectCallback2 = selectAddSubqueryTypeInfo;
|
| + w.xExprCallback = exprWalkNoop;
|
| + w.pParse = pParse;
|
| + sqlite3WalkSelect(&w, pSelect);
|
| +#endif
|
| +}
|
| +
|
| +
|
| +/*
|
| +** This routine sets up a SELECT statement for processing. The
|
| +** following is accomplished:
|
| +**
|
| +** * VDBE Cursor numbers are assigned to all FROM-clause terms.
|
| +** * Ephemeral Table objects are created for all FROM-clause subqueries.
|
| +** * ON and USING clauses are shifted into WHERE statements
|
| +** * Wildcards "*" and "TABLE.*" in result sets are expanded.
|
| +** * Identifiers in expression are matched to tables.
|
| +**
|
| +** This routine acts recursively on all subqueries within the SELECT.
|
| +*/
|
| +void sqlite3SelectPrep(
|
| + Parse *pParse, /* The parser context */
|
| + Select *p, /* The SELECT statement being coded. */
|
| + NameContext *pOuterNC /* Name context for container */
|
| +){
|
| + sqlite3 *db;
|
| + if( NEVER(p==0) ) return;
|
| + db = pParse->db;
|
| + if( db->mallocFailed ) return;
|
| + if( p->selFlags & SF_HasTypeInfo ) return;
|
| + sqlite3SelectExpand(pParse, p);
|
| + if( pParse->nErr || db->mallocFailed ) return;
|
| + sqlite3ResolveSelectNames(pParse, p, pOuterNC);
|
| + if( pParse->nErr || db->mallocFailed ) return;
|
| + sqlite3SelectAddTypeInfo(pParse, p);
|
| +}
|
| +
|
| +/*
|
| +** Reset the aggregate accumulator.
|
| +**
|
| +** The aggregate accumulator is a set of memory cells that hold
|
| +** intermediate results while calculating an aggregate. This
|
| +** routine generates code that stores NULLs in all of those memory
|
| +** cells.
|
| +*/
|
| +static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
|
| + Vdbe *v = pParse->pVdbe;
|
| + int i;
|
| + struct AggInfo_func *pFunc;
|
| + int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
|
| + if( nReg==0 ) return;
|
| +#ifdef SQLITE_DEBUG
|
| + /* Verify that all AggInfo registers are within the range specified by
|
| + ** AggInfo.mnReg..AggInfo.mxReg */
|
| + assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
|
| + for(i=0; i<pAggInfo->nColumn; i++){
|
| + assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
|
| + && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
|
| + }
|
| + for(i=0; i<pAggInfo->nFunc; i++){
|
| + assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
|
| + && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
|
| + }
|
| +#endif
|
| + sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
|
| + for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
|
| + if( pFunc->iDistinct>=0 ){
|
| + Expr *pE = pFunc->pExpr;
|
| + assert( !ExprHasProperty(pE, EP_xIsSelect) );
|
| + if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
|
| + sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
|
| + "argument");
|
| + pFunc->iDistinct = -1;
|
| + }else{
|
| + KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
|
| + sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
|
| + (char*)pKeyInfo, P4_KEYINFO);
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Invoke the OP_AggFinalize opcode for every aggregate function
|
| +** in the AggInfo structure.
|
| +*/
|
| +static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
|
| + Vdbe *v = pParse->pVdbe;
|
| + int i;
|
| + struct AggInfo_func *pF;
|
| + for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
|
| + ExprList *pList = pF->pExpr->x.pList;
|
| + assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
|
| + sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
|
| + (void*)pF->pFunc, P4_FUNCDEF);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Update the accumulator memory cells for an aggregate based on
|
| +** the current cursor position.
|
| +*/
|
| +static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
|
| + Vdbe *v = pParse->pVdbe;
|
| + int i;
|
| + int regHit = 0;
|
| + int addrHitTest = 0;
|
| + struct AggInfo_func *pF;
|
| + struct AggInfo_col *pC;
|
| +
|
| + pAggInfo->directMode = 1;
|
| + for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
|
| + int nArg;
|
| + int addrNext = 0;
|
| + int regAgg;
|
| + ExprList *pList = pF->pExpr->x.pList;
|
| + assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
|
| + if( pList ){
|
| + nArg = pList->nExpr;
|
| + regAgg = sqlite3GetTempRange(pParse, nArg);
|
| + sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP);
|
| + }else{
|
| + nArg = 0;
|
| + regAgg = 0;
|
| + }
|
| + if( pF->iDistinct>=0 ){
|
| + addrNext = sqlite3VdbeMakeLabel(v);
|
| + assert( nArg==1 );
|
| + codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
|
| + }
|
| + if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
|
| + CollSeq *pColl = 0;
|
| + struct ExprList_item *pItem;
|
| + int j;
|
| + assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
|
| + for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
|
| + pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
|
| + }
|
| + if( !pColl ){
|
| + pColl = pParse->db->pDfltColl;
|
| + }
|
| + if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
|
| + sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
|
| + }
|
| + sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
|
| + (void*)pF->pFunc, P4_FUNCDEF);
|
| + sqlite3VdbeChangeP5(v, (u8)nArg);
|
| + sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
|
| + sqlite3ReleaseTempRange(pParse, regAgg, nArg);
|
| + if( addrNext ){
|
| + sqlite3VdbeResolveLabel(v, addrNext);
|
| + sqlite3ExprCacheClear(pParse);
|
| + }
|
| + }
|
| +
|
| + /* Before populating the accumulator registers, clear the column cache.
|
| + ** Otherwise, if any of the required column values are already present
|
| + ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
|
| + ** to pC->iMem. But by the time the value is used, the original register
|
| + ** may have been used, invalidating the underlying buffer holding the
|
| + ** text or blob value. See ticket [883034dcb5].
|
| + **
|
| + ** Another solution would be to change the OP_SCopy used to copy cached
|
| + ** values to an OP_Copy.
|
| + */
|
| + if( regHit ){
|
| + addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
|
| + }
|
| + sqlite3ExprCacheClear(pParse);
|
| + for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
|
| + sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
|
| + }
|
| + pAggInfo->directMode = 0;
|
| + sqlite3ExprCacheClear(pParse);
|
| + if( addrHitTest ){
|
| + sqlite3VdbeJumpHere(v, addrHitTest);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Add a single OP_Explain instruction to the VDBE to explain a simple
|
| +** count(*) query ("SELECT count(*) FROM pTab").
|
| +*/
|
| +#ifndef SQLITE_OMIT_EXPLAIN
|
| +static void explainSimpleCount(
|
| + Parse *pParse, /* Parse context */
|
| + Table *pTab, /* Table being queried */
|
| + Index *pIdx /* Index used to optimize scan, or NULL */
|
| +){
|
| + if( pParse->explain==2 ){
|
| + int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
|
| + char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
|
| + pTab->zName,
|
| + bCover ? " USING COVERING INDEX " : "",
|
| + bCover ? pIdx->zName : ""
|
| + );
|
| + sqlite3VdbeAddOp4(
|
| + pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
|
| + );
|
| + }
|
| +}
|
| +#else
|
| +# define explainSimpleCount(a,b,c)
|
| +#endif
|
| +
|
| +/*
|
| +** Generate code for the SELECT statement given in the p argument.
|
| +**
|
| +** The results are returned according to the SelectDest structure.
|
| +** See comments in sqliteInt.h for further information.
|
| +**
|
| +** This routine returns the number of errors. If any errors are
|
| +** encountered, then an appropriate error message is left in
|
| +** pParse->zErrMsg.
|
| +**
|
| +** This routine does NOT free the Select structure passed in. The
|
| +** calling function needs to do that.
|
| +*/
|
| +int sqlite3Select(
|
| + Parse *pParse, /* The parser context */
|
| + Select *p, /* The SELECT statement being coded. */
|
| + SelectDest *pDest /* What to do with the query results */
|
| +){
|
| + int i, j; /* Loop counters */
|
| + WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
|
| + Vdbe *v; /* The virtual machine under construction */
|
| + int isAgg; /* True for select lists like "count(*)" */
|
| + ExprList *pEList; /* List of columns to extract. */
|
| + SrcList *pTabList; /* List of tables to select from */
|
| + Expr *pWhere; /* The WHERE clause. May be NULL */
|
| + ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
|
| + Expr *pHaving; /* The HAVING clause. May be NULL */
|
| + int rc = 1; /* Value to return from this function */
|
| + DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
|
| + SortCtx sSort; /* Info on how to code the ORDER BY clause */
|
| + AggInfo sAggInfo; /* Information used by aggregate queries */
|
| + int iEnd; /* Address of the end of the query */
|
| + sqlite3 *db; /* The database connection */
|
| +
|
| +#ifndef SQLITE_OMIT_EXPLAIN
|
| + int iRestoreSelectId = pParse->iSelectId;
|
| + pParse->iSelectId = pParse->iNextSelectId++;
|
| +#endif
|
| +
|
| + db = pParse->db;
|
| + if( p==0 || db->mallocFailed || pParse->nErr ){
|
| + return 1;
|
| + }
|
| + if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
|
| + memset(&sAggInfo, 0, sizeof(sAggInfo));
|
| +#if SELECTTRACE_ENABLED
|
| + pParse->nSelectIndent++;
|
| + SELECTTRACE(1,pParse,p, ("begin processing:\n"));
|
| + if( sqlite3SelectTrace & 0x100 ){
|
| + sqlite3TreeViewSelect(0, p, 0);
|
| + }
|
| +#endif
|
| +
|
| + assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
|
| + assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
|
| + assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
|
| + assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
|
| + if( IgnorableOrderby(pDest) ){
|
| + assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
|
| + pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
|
| + pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo ||
|
| + pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
|
| + /* If ORDER BY makes no difference in the output then neither does
|
| + ** DISTINCT so it can be removed too. */
|
| + sqlite3ExprListDelete(db, p->pOrderBy);
|
| + p->pOrderBy = 0;
|
| + p->selFlags &= ~SF_Distinct;
|
| + }
|
| + sqlite3SelectPrep(pParse, p, 0);
|
| + memset(&sSort, 0, sizeof(sSort));
|
| + sSort.pOrderBy = p->pOrderBy;
|
| + pTabList = p->pSrc;
|
| + pEList = p->pEList;
|
| + if( pParse->nErr || db->mallocFailed ){
|
| + goto select_end;
|
| + }
|
| + isAgg = (p->selFlags & SF_Aggregate)!=0;
|
| + assert( pEList!=0 );
|
| +
|
| + /* Begin generating code.
|
| + */
|
| + v = sqlite3GetVdbe(pParse);
|
| + if( v==0 ) goto select_end;
|
| +
|
| + /* If writing to memory or generating a set
|
| + ** only a single column may be output.
|
| + */
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| + if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
|
| + goto select_end;
|
| + }
|
| +#endif
|
| +
|
| + /* Generate code for all sub-queries in the FROM clause
|
| + */
|
| +#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
|
| + for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
|
| + struct SrcList_item *pItem = &pTabList->a[i];
|
| + SelectDest dest;
|
| + Select *pSub = pItem->pSelect;
|
| + int isAggSub;
|
| +
|
| + if( pSub==0 ) continue;
|
| +
|
| + /* Sometimes the code for a subquery will be generated more than
|
| + ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
|
| + ** for example. In that case, do not regenerate the code to manifest
|
| + ** a view or the co-routine to implement a view. The first instance
|
| + ** is sufficient, though the subroutine to manifest the view does need
|
| + ** to be invoked again. */
|
| + if( pItem->addrFillSub ){
|
| + if( pItem->viaCoroutine==0 ){
|
| + sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
|
| + }
|
| + continue;
|
| + }
|
| +
|
| + /* Increment Parse.nHeight by the height of the largest expression
|
| + ** tree referred to by this, the parent select. The child select
|
| + ** may contain expression trees of at most
|
| + ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
|
| + ** more conservative than necessary, but much easier than enforcing
|
| + ** an exact limit.
|
| + */
|
| + pParse->nHeight += sqlite3SelectExprHeight(p);
|
| +
|
| + isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
|
| + if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
|
| + /* This subquery can be absorbed into its parent. */
|
| + if( isAggSub ){
|
| + isAgg = 1;
|
| + p->selFlags |= SF_Aggregate;
|
| + }
|
| + i = -1;
|
| + }else if( pTabList->nSrc==1
|
| + && OptimizationEnabled(db, SQLITE_SubqCoroutine)
|
| + ){
|
| + /* Implement a co-routine that will return a single row of the result
|
| + ** set on each invocation.
|
| + */
|
| + int addrTop = sqlite3VdbeCurrentAddr(v)+1;
|
| + pItem->regReturn = ++pParse->nMem;
|
| + sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
|
| + VdbeComment((v, "%s", pItem->pTab->zName));
|
| + pItem->addrFillSub = addrTop;
|
| + sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
|
| + explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
|
| + sqlite3Select(pParse, pSub, &dest);
|
| + pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
|
| + pItem->viaCoroutine = 1;
|
| + pItem->regResult = dest.iSdst;
|
| + sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn);
|
| + sqlite3VdbeJumpHere(v, addrTop-1);
|
| + sqlite3ClearTempRegCache(pParse);
|
| + }else{
|
| + /* Generate a subroutine that will fill an ephemeral table with
|
| + ** the content of this subquery. pItem->addrFillSub will point
|
| + ** to the address of the generated subroutine. pItem->regReturn
|
| + ** is a register allocated to hold the subroutine return address
|
| + */
|
| + int topAddr;
|
| + int onceAddr = 0;
|
| + int retAddr;
|
| + assert( pItem->addrFillSub==0 );
|
| + pItem->regReturn = ++pParse->nMem;
|
| + topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
|
| + pItem->addrFillSub = topAddr+1;
|
| + if( pItem->isCorrelated==0 ){
|
| + /* If the subquery is not correlated and if we are not inside of
|
| + ** a trigger, then we only need to compute the value of the subquery
|
| + ** once. */
|
| + onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
|
| + VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
|
| + }else{
|
| + VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
|
| + }
|
| + sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
|
| + explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
|
| + sqlite3Select(pParse, pSub, &dest);
|
| + pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
|
| + if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
|
| + retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
|
| + VdbeComment((v, "end %s", pItem->pTab->zName));
|
| + sqlite3VdbeChangeP1(v, topAddr, retAddr);
|
| + sqlite3ClearTempRegCache(pParse);
|
| + }
|
| + if( /*pParse->nErr ||*/ db->mallocFailed ){
|
| + goto select_end;
|
| + }
|
| + pParse->nHeight -= sqlite3SelectExprHeight(p);
|
| + pTabList = p->pSrc;
|
| + if( !IgnorableOrderby(pDest) ){
|
| + sSort.pOrderBy = p->pOrderBy;
|
| + }
|
| + }
|
| + pEList = p->pEList;
|
| +#endif
|
| + pWhere = p->pWhere;
|
| + pGroupBy = p->pGroupBy;
|
| + pHaving = p->pHaving;
|
| + sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
|
| +
|
| +#ifndef SQLITE_OMIT_COMPOUND_SELECT
|
| + /* If there is are a sequence of queries, do the earlier ones first.
|
| + */
|
| + if( p->pPrior ){
|
| + rc = multiSelect(pParse, p, pDest);
|
| + explainSetInteger(pParse->iSelectId, iRestoreSelectId);
|
| +#if SELECTTRACE_ENABLED
|
| + SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
|
| + pParse->nSelectIndent--;
|
| +#endif
|
| + return rc;
|
| + }
|
| +#endif
|
| +
|
| + /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
|
| + ** if the select-list is the same as the ORDER BY list, then this query
|
| + ** can be rewritten as a GROUP BY. In other words, this:
|
| + **
|
| + ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
|
| + **
|
| + ** is transformed to:
|
| + **
|
| + ** SELECT xyz FROM ... GROUP BY xyz
|
| + **
|
| + ** The second form is preferred as a single index (or temp-table) may be
|
| + ** used for both the ORDER BY and DISTINCT processing. As originally
|
| + ** written the query must use a temp-table for at least one of the ORDER
|
| + ** BY and DISTINCT, and an index or separate temp-table for the other.
|
| + */
|
| + if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
|
| + && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0
|
| + ){
|
| + p->selFlags &= ~SF_Distinct;
|
| + p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
|
| + pGroupBy = p->pGroupBy;
|
| + sSort.pOrderBy = 0;
|
| + /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
|
| + ** the sDistinct.isTnct is still set. Hence, isTnct represents the
|
| + ** original setting of the SF_Distinct flag, not the current setting */
|
| + assert( sDistinct.isTnct );
|
| + }
|
| +
|
| + /* If there is an ORDER BY clause, then this sorting
|
| + ** index might end up being unused if the data can be
|
| + ** extracted in pre-sorted order. If that is the case, then the
|
| + ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
|
| + ** we figure out that the sorting index is not needed. The addrSortIndex
|
| + ** variable is used to facilitate that change.
|
| + */
|
| + if( sSort.pOrderBy ){
|
| + KeyInfo *pKeyInfo;
|
| + pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, 0);
|
| + sSort.iECursor = pParse->nTab++;
|
| + sSort.addrSortIndex =
|
| + sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
|
| + sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
|
| + (char*)pKeyInfo, P4_KEYINFO
|
| + );
|
| + }else{
|
| + sSort.addrSortIndex = -1;
|
| + }
|
| +
|
| + /* If the output is destined for a temporary table, open that table.
|
| + */
|
| + if( pDest->eDest==SRT_EphemTab ){
|
| + sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
|
| + }
|
| +
|
| + /* Set the limiter.
|
| + */
|
| + iEnd = sqlite3VdbeMakeLabel(v);
|
| + p->nSelectRow = LARGEST_INT64;
|
| + computeLimitRegisters(pParse, p, iEnd);
|
| + if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
|
| + sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen;
|
| + sSort.sortFlags |= SORTFLAG_UseSorter;
|
| + }
|
| +
|
| + /* Open a virtual index to use for the distinct set.
|
| + */
|
| + if( p->selFlags & SF_Distinct ){
|
| + sDistinct.tabTnct = pParse->nTab++;
|
| + sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
|
| + sDistinct.tabTnct, 0, 0,
|
| + (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
|
| + P4_KEYINFO);
|
| + sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
|
| + sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
|
| + }else{
|
| + sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
|
| + }
|
| +
|
| + if( !isAgg && pGroupBy==0 ){
|
| + /* No aggregate functions and no GROUP BY clause */
|
| + u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
|
| +
|
| + /* Begin the database scan. */
|
| + pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
|
| + p->pEList, wctrlFlags, 0);
|
| + if( pWInfo==0 ) goto select_end;
|
| + if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
|
| + p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
|
| + }
|
| + if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
|
| + sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
|
| + }
|
| + if( sSort.pOrderBy ){
|
| + sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
|
| + if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
|
| + sSort.pOrderBy = 0;
|
| + }
|
| + }
|
| +
|
| + /* If sorting index that was created by a prior OP_OpenEphemeral
|
| + ** instruction ended up not being needed, then change the OP_OpenEphemeral
|
| + ** into an OP_Noop.
|
| + */
|
| + if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
|
| + sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
|
| + }
|
| +
|
| + /* Use the standard inner loop. */
|
| + selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
|
| + sqlite3WhereContinueLabel(pWInfo),
|
| + sqlite3WhereBreakLabel(pWInfo));
|
| +
|
| + /* End the database scan loop.
|
| + */
|
| + sqlite3WhereEnd(pWInfo);
|
| + }else{
|
| + /* This case when there exist aggregate functions or a GROUP BY clause
|
| + ** or both */
|
| + NameContext sNC; /* Name context for processing aggregate information */
|
| + int iAMem; /* First Mem address for storing current GROUP BY */
|
| + int iBMem; /* First Mem address for previous GROUP BY */
|
| + int iUseFlag; /* Mem address holding flag indicating that at least
|
| + ** one row of the input to the aggregator has been
|
| + ** processed */
|
| + int iAbortFlag; /* Mem address which causes query abort if positive */
|
| + int groupBySort; /* Rows come from source in GROUP BY order */
|
| + int addrEnd; /* End of processing for this SELECT */
|
| + int sortPTab = 0; /* Pseudotable used to decode sorting results */
|
| + int sortOut = 0; /* Output register from the sorter */
|
| + int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
|
| +
|
| + /* Remove any and all aliases between the result set and the
|
| + ** GROUP BY clause.
|
| + */
|
| + if( pGroupBy ){
|
| + int k; /* Loop counter */
|
| + struct ExprList_item *pItem; /* For looping over expression in a list */
|
| +
|
| + for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
|
| + pItem->u.x.iAlias = 0;
|
| + }
|
| + for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
|
| + pItem->u.x.iAlias = 0;
|
| + }
|
| + if( p->nSelectRow>100 ) p->nSelectRow = 100;
|
| + }else{
|
| + p->nSelectRow = 1;
|
| + }
|
| +
|
| +
|
| + /* If there is both a GROUP BY and an ORDER BY clause and they are
|
| + ** identical, then it may be possible to disable the ORDER BY clause
|
| + ** on the grounds that the GROUP BY will cause elements to come out
|
| + ** in the correct order. It also may not - the GROUP BY may use a
|
| + ** database index that causes rows to be grouped together as required
|
| + ** but not actually sorted. Either way, record the fact that the
|
| + ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
|
| + ** variable. */
|
| + if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
|
| + orderByGrp = 1;
|
| + }
|
| +
|
| + /* Create a label to jump to when we want to abort the query */
|
| + addrEnd = sqlite3VdbeMakeLabel(v);
|
| +
|
| + /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
|
| + ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
|
| + ** SELECT statement.
|
| + */
|
| + memset(&sNC, 0, sizeof(sNC));
|
| + sNC.pParse = pParse;
|
| + sNC.pSrcList = pTabList;
|
| + sNC.pAggInfo = &sAggInfo;
|
| + sAggInfo.mnReg = pParse->nMem+1;
|
| + sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
|
| + sAggInfo.pGroupBy = pGroupBy;
|
| + sqlite3ExprAnalyzeAggList(&sNC, pEList);
|
| + sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
|
| + if( pHaving ){
|
| + sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
|
| + }
|
| + sAggInfo.nAccumulator = sAggInfo.nColumn;
|
| + for(i=0; i<sAggInfo.nFunc; i++){
|
| + assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
|
| + sNC.ncFlags |= NC_InAggFunc;
|
| + sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
|
| + sNC.ncFlags &= ~NC_InAggFunc;
|
| + }
|
| + sAggInfo.mxReg = pParse->nMem;
|
| + if( db->mallocFailed ) goto select_end;
|
| +
|
| + /* Processing for aggregates with GROUP BY is very different and
|
| + ** much more complex than aggregates without a GROUP BY.
|
| + */
|
| + if( pGroupBy ){
|
| + KeyInfo *pKeyInfo; /* Keying information for the group by clause */
|
| + int j1; /* A-vs-B comparision jump */
|
| + int addrOutputRow; /* Start of subroutine that outputs a result row */
|
| + int regOutputRow; /* Return address register for output subroutine */
|
| + int addrSetAbort; /* Set the abort flag and return */
|
| + int addrTopOfLoop; /* Top of the input loop */
|
| + int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
|
| + int addrReset; /* Subroutine for resetting the accumulator */
|
| + int regReset; /* Return address register for reset subroutine */
|
| +
|
| + /* If there is a GROUP BY clause we might need a sorting index to
|
| + ** implement it. Allocate that sorting index now. If it turns out
|
| + ** that we do not need it after all, the OP_SorterOpen instruction
|
| + ** will be converted into a Noop.
|
| + */
|
| + sAggInfo.sortingIdx = pParse->nTab++;
|
| + pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, 0);
|
| + addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
|
| + sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
|
| + 0, (char*)pKeyInfo, P4_KEYINFO);
|
| +
|
| + /* Initialize memory locations used by GROUP BY aggregate processing
|
| + */
|
| + iUseFlag = ++pParse->nMem;
|
| + iAbortFlag = ++pParse->nMem;
|
| + regOutputRow = ++pParse->nMem;
|
| + addrOutputRow = sqlite3VdbeMakeLabel(v);
|
| + regReset = ++pParse->nMem;
|
| + addrReset = sqlite3VdbeMakeLabel(v);
|
| + iAMem = pParse->nMem + 1;
|
| + pParse->nMem += pGroupBy->nExpr;
|
| + iBMem = pParse->nMem + 1;
|
| + pParse->nMem += pGroupBy->nExpr;
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
|
| + VdbeComment((v, "clear abort flag"));
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
|
| + VdbeComment((v, "indicate accumulator empty"));
|
| + sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
|
| +
|
| + /* Begin a loop that will extract all source rows in GROUP BY order.
|
| + ** This might involve two separate loops with an OP_Sort in between, or
|
| + ** it might be a single loop that uses an index to extract information
|
| + ** in the right order to begin with.
|
| + */
|
| + sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
|
| + pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
|
| + WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
|
| + );
|
| + if( pWInfo==0 ) goto select_end;
|
| + if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
|
| + /* The optimizer is able to deliver rows in group by order so
|
| + ** we do not have to sort. The OP_OpenEphemeral table will be
|
| + ** cancelled later because we still need to use the pKeyInfo
|
| + */
|
| + groupBySort = 0;
|
| + }else{
|
| + /* Rows are coming out in undetermined order. We have to push
|
| + ** each row into a sorting index, terminate the first loop,
|
| + ** then loop over the sorting index in order to get the output
|
| + ** in sorted order
|
| + */
|
| + int regBase;
|
| + int regRecord;
|
| + int nCol;
|
| + int nGroupBy;
|
| +
|
| + explainTempTable(pParse,
|
| + (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
|
| + "DISTINCT" : "GROUP BY");
|
| +
|
| + groupBySort = 1;
|
| + nGroupBy = pGroupBy->nExpr;
|
| + nCol = nGroupBy;
|
| + j = nGroupBy;
|
| + for(i=0; i<sAggInfo.nColumn; i++){
|
| + if( sAggInfo.aCol[i].iSorterColumn>=j ){
|
| + nCol++;
|
| + j++;
|
| + }
|
| + }
|
| + regBase = sqlite3GetTempRange(pParse, nCol);
|
| + sqlite3ExprCacheClear(pParse);
|
| + sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
|
| + j = nGroupBy;
|
| + for(i=0; i<sAggInfo.nColumn; i++){
|
| + struct AggInfo_col *pCol = &sAggInfo.aCol[i];
|
| + if( pCol->iSorterColumn>=j ){
|
| + int r1 = j + regBase;
|
| + int r2;
|
| +
|
| + r2 = sqlite3ExprCodeGetColumn(pParse,
|
| + pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
|
| + if( r1!=r2 ){
|
| + sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
|
| + }
|
| + j++;
|
| + }
|
| + }
|
| + regRecord = sqlite3GetTempReg(pParse);
|
| + sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
|
| + sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
|
| + sqlite3ReleaseTempReg(pParse, regRecord);
|
| + sqlite3ReleaseTempRange(pParse, regBase, nCol);
|
| + sqlite3WhereEnd(pWInfo);
|
| + sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
|
| + sortOut = sqlite3GetTempReg(pParse);
|
| + sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
|
| + sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
|
| + VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
|
| + sAggInfo.useSortingIdx = 1;
|
| + sqlite3ExprCacheClear(pParse);
|
| +
|
| + }
|
| +
|
| + /* If the index or temporary table used by the GROUP BY sort
|
| + ** will naturally deliver rows in the order required by the ORDER BY
|
| + ** clause, cancel the ephemeral table open coded earlier.
|
| + **
|
| + ** This is an optimization - the correct answer should result regardless.
|
| + ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
|
| + ** disable this optimization for testing purposes. */
|
| + if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
|
| + && (groupBySort || sqlite3WhereIsSorted(pWInfo))
|
| + ){
|
| + sSort.pOrderBy = 0;
|
| + sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
|
| + }
|
| +
|
| + /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
|
| + ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
|
| + ** Then compare the current GROUP BY terms against the GROUP BY terms
|
| + ** from the previous row currently stored in a0, a1, a2...
|
| + */
|
| + addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
|
| + sqlite3ExprCacheClear(pParse);
|
| + if( groupBySort ){
|
| + sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, sortOut,sortPTab);
|
| + }
|
| + for(j=0; j<pGroupBy->nExpr; j++){
|
| + if( groupBySort ){
|
| + sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
|
| + }else{
|
| + sAggInfo.directMode = 1;
|
| + sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
|
| + }
|
| + }
|
| + sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
|
| + (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
|
| + j1 = sqlite3VdbeCurrentAddr(v);
|
| + sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v);
|
| +
|
| + /* Generate code that runs whenever the GROUP BY changes.
|
| + ** Changes in the GROUP BY are detected by the previous code
|
| + ** block. If there were no changes, this block is skipped.
|
| + **
|
| + ** This code copies current group by terms in b0,b1,b2,...
|
| + ** over to a0,a1,a2. It then calls the output subroutine
|
| + ** and resets the aggregate accumulator registers in preparation
|
| + ** for the next GROUP BY batch.
|
| + */
|
| + sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
|
| + sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
|
| + VdbeComment((v, "output one row"));
|
| + sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
|
| + VdbeComment((v, "check abort flag"));
|
| + sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
|
| + VdbeComment((v, "reset accumulator"));
|
| +
|
| + /* Update the aggregate accumulators based on the content of
|
| + ** the current row
|
| + */
|
| + sqlite3VdbeJumpHere(v, j1);
|
| + updateAccumulator(pParse, &sAggInfo);
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
|
| + VdbeComment((v, "indicate data in accumulator"));
|
| +
|
| + /* End of the loop
|
| + */
|
| + if( groupBySort ){
|
| + sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
|
| + VdbeCoverage(v);
|
| + }else{
|
| + sqlite3WhereEnd(pWInfo);
|
| + sqlite3VdbeChangeToNoop(v, addrSortingIdx);
|
| + }
|
| +
|
| + /* Output the final row of result
|
| + */
|
| + sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
|
| + VdbeComment((v, "output final row"));
|
| +
|
| + /* Jump over the subroutines
|
| + */
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
|
| +
|
| + /* Generate a subroutine that outputs a single row of the result
|
| + ** set. This subroutine first looks at the iUseFlag. If iUseFlag
|
| + ** is less than or equal to zero, the subroutine is a no-op. If
|
| + ** the processing calls for the query to abort, this subroutine
|
| + ** increments the iAbortFlag memory location before returning in
|
| + ** order to signal the caller to abort.
|
| + */
|
| + addrSetAbort = sqlite3VdbeCurrentAddr(v);
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
|
| + VdbeComment((v, "set abort flag"));
|
| + sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
|
| + sqlite3VdbeResolveLabel(v, addrOutputRow);
|
| + addrOutputRow = sqlite3VdbeCurrentAddr(v);
|
| + sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v);
|
| + VdbeComment((v, "Groupby result generator entry point"));
|
| + sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
|
| + finalizeAggFunctions(pParse, &sAggInfo);
|
| + sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
|
| + selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
|
| + &sDistinct, pDest,
|
| + addrOutputRow+1, addrSetAbort);
|
| + sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
|
| + VdbeComment((v, "end groupby result generator"));
|
| +
|
| + /* Generate a subroutine that will reset the group-by accumulator
|
| + */
|
| + sqlite3VdbeResolveLabel(v, addrReset);
|
| + resetAccumulator(pParse, &sAggInfo);
|
| + sqlite3VdbeAddOp1(v, OP_Return, regReset);
|
| +
|
| + } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
|
| + else {
|
| + ExprList *pDel = 0;
|
| +#ifndef SQLITE_OMIT_BTREECOUNT
|
| + Table *pTab;
|
| + if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
|
| + /* If isSimpleCount() returns a pointer to a Table structure, then
|
| + ** the SQL statement is of the form:
|
| + **
|
| + ** SELECT count(*) FROM <tbl>
|
| + **
|
| + ** where the Table structure returned represents table <tbl>.
|
| + **
|
| + ** This statement is so common that it is optimized specially. The
|
| + ** OP_Count instruction is executed either on the intkey table that
|
| + ** contains the data for table <tbl> or on one of its indexes. It
|
| + ** is better to execute the op on an index, as indexes are almost
|
| + ** always spread across less pages than their corresponding tables.
|
| + */
|
| + const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
| + const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
|
| + Index *pIdx; /* Iterator variable */
|
| + KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
|
| + Index *pBest = 0; /* Best index found so far */
|
| + int iRoot = pTab->tnum; /* Root page of scanned b-tree */
|
| +
|
| + sqlite3CodeVerifySchema(pParse, iDb);
|
| + sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
|
| +
|
| + /* Search for the index that has the lowest scan cost.
|
| + **
|
| + ** (2011-04-15) Do not do a full scan of an unordered index.
|
| + **
|
| + ** (2013-10-03) Do not count the entries in a partial index.
|
| + **
|
| + ** In practice the KeyInfo structure will not be used. It is only
|
| + ** passed to keep OP_OpenRead happy.
|
| + */
|
| + if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
|
| + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
| + if( pIdx->bUnordered==0
|
| + && pIdx->szIdxRow<pTab->szTabRow
|
| + && pIdx->pPartIdxWhere==0
|
| + && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
|
| + ){
|
| + pBest = pIdx;
|
| + }
|
| + }
|
| + if( pBest ){
|
| + iRoot = pBest->tnum;
|
| + pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
|
| + }
|
| +
|
| + /* Open a read-only cursor, execute the OP_Count, close the cursor. */
|
| + sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
|
| + if( pKeyInfo ){
|
| + sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
|
| + }
|
| + sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
|
| + sqlite3VdbeAddOp1(v, OP_Close, iCsr);
|
| + explainSimpleCount(pParse, pTab, pBest);
|
| + }else
|
| +#endif /* SQLITE_OMIT_BTREECOUNT */
|
| + {
|
| + /* Check if the query is of one of the following forms:
|
| + **
|
| + ** SELECT min(x) FROM ...
|
| + ** SELECT max(x) FROM ...
|
| + **
|
| + ** If it is, then ask the code in where.c to attempt to sort results
|
| + ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
|
| + ** If where.c is able to produce results sorted in this order, then
|
| + ** add vdbe code to break out of the processing loop after the
|
| + ** first iteration (since the first iteration of the loop is
|
| + ** guaranteed to operate on the row with the minimum or maximum
|
| + ** value of x, the only row required).
|
| + **
|
| + ** A special flag must be passed to sqlite3WhereBegin() to slightly
|
| + ** modify behavior as follows:
|
| + **
|
| + ** + If the query is a "SELECT min(x)", then the loop coded by
|
| + ** where.c should not iterate over any values with a NULL value
|
| + ** for x.
|
| + **
|
| + ** + The optimizer code in where.c (the thing that decides which
|
| + ** index or indices to use) should place a different priority on
|
| + ** satisfying the 'ORDER BY' clause than it does in other cases.
|
| + ** Refer to code and comments in where.c for details.
|
| + */
|
| + ExprList *pMinMax = 0;
|
| + u8 flag = WHERE_ORDERBY_NORMAL;
|
| +
|
| + assert( p->pGroupBy==0 );
|
| + assert( flag==0 );
|
| + if( p->pHaving==0 ){
|
| + flag = minMaxQuery(&sAggInfo, &pMinMax);
|
| + }
|
| + assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
|
| +
|
| + if( flag ){
|
| + pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
|
| + pDel = pMinMax;
|
| + if( pMinMax && !db->mallocFailed ){
|
| + pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
|
| + pMinMax->a[0].pExpr->op = TK_COLUMN;
|
| + }
|
| + }
|
| +
|
| + /* This case runs if the aggregate has no GROUP BY clause. The
|
| + ** processing is much simpler since there is only a single row
|
| + ** of output.
|
| + */
|
| + resetAccumulator(pParse, &sAggInfo);
|
| + pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
|
| + if( pWInfo==0 ){
|
| + sqlite3ExprListDelete(db, pDel);
|
| + goto select_end;
|
| + }
|
| + updateAccumulator(pParse, &sAggInfo);
|
| + assert( pMinMax==0 || pMinMax->nExpr==1 );
|
| + if( sqlite3WhereIsOrdered(pWInfo)>0 ){
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo));
|
| + VdbeComment((v, "%s() by index",
|
| + (flag==WHERE_ORDERBY_MIN?"min":"max")));
|
| + }
|
| + sqlite3WhereEnd(pWInfo);
|
| + finalizeAggFunctions(pParse, &sAggInfo);
|
| + }
|
| +
|
| + sSort.pOrderBy = 0;
|
| + sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
|
| + selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
|
| + pDest, addrEnd, addrEnd);
|
| + sqlite3ExprListDelete(db, pDel);
|
| + }
|
| + sqlite3VdbeResolveLabel(v, addrEnd);
|
| +
|
| + } /* endif aggregate query */
|
| +
|
| + if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
|
| + explainTempTable(pParse, "DISTINCT");
|
| + }
|
| +
|
| + /* If there is an ORDER BY clause, then we need to sort the results
|
| + ** and send them to the callback one by one.
|
| + */
|
| + if( sSort.pOrderBy ){
|
| + explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
|
| + generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
|
| + }
|
| +
|
| + /* Jump here to skip this query
|
| + */
|
| + sqlite3VdbeResolveLabel(v, iEnd);
|
| +
|
| + /* The SELECT was successfully coded. Set the return code to 0
|
| + ** to indicate no errors.
|
| + */
|
| + rc = 0;
|
| +
|
| + /* Control jumps to here if an error is encountered above, or upon
|
| + ** successful coding of the SELECT.
|
| + */
|
| +select_end:
|
| + explainSetInteger(pParse->iSelectId, iRestoreSelectId);
|
| +
|
| + /* Identify column names if results of the SELECT are to be output.
|
| + */
|
| + if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
|
| + generateColumnNames(pParse, pTabList, pEList);
|
| + }
|
| +
|
| + sqlite3DbFree(db, sAggInfo.aCol);
|
| + sqlite3DbFree(db, sAggInfo.aFunc);
|
| +#if SELECTTRACE_ENABLED
|
| + SELECTTRACE(1,pParse,p,("end processing\n"));
|
| + pParse->nSelectIndent--;
|
| +#endif
|
| + return rc;
|
| +}
|
| +
|
| +#ifdef SQLITE_DEBUG
|
| +/*
|
| +** Generate a human-readable description of a the Select object.
|
| +*/
|
| +void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){
|
| + int n = 0;
|
| + pView = sqlite3TreeViewPush(pView, moreToFollow);
|
| + sqlite3TreeViewLine(pView, "SELECT%s%s",
|
| + ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""),
|
| + ((p->selFlags & SF_Aggregate) ? " agg_flag" : "")
|
| + );
|
| + if( p->pSrc && p->pSrc->nSrc ) n++;
|
| + if( p->pWhere ) n++;
|
| + if( p->pGroupBy ) n++;
|
| + if( p->pHaving ) n++;
|
| + if( p->pOrderBy ) n++;
|
| + if( p->pLimit ) n++;
|
| + if( p->pOffset ) n++;
|
| + if( p->pPrior ) n++;
|
| + sqlite3TreeViewExprList(pView, p->pEList, (n--)>0, "result-set");
|
| + if( p->pSrc && p->pSrc->nSrc ){
|
| + int i;
|
| + pView = sqlite3TreeViewPush(pView, (n--)>0);
|
| + sqlite3TreeViewLine(pView, "FROM");
|
| + for(i=0; i<p->pSrc->nSrc; i++){
|
| + struct SrcList_item *pItem = &p->pSrc->a[i];
|
| + StrAccum x;
|
| + char zLine[100];
|
| + sqlite3StrAccumInit(&x, zLine, sizeof(zLine), 0);
|
| + sqlite3XPrintf(&x, 0, "{%d,*}", pItem->iCursor);
|
| + if( pItem->zDatabase ){
|
| + sqlite3XPrintf(&x, 0, " %s.%s", pItem->zDatabase, pItem->zName);
|
| + }else if( pItem->zName ){
|
| + sqlite3XPrintf(&x, 0, " %s", pItem->zName);
|
| + }
|
| + if( pItem->pTab ){
|
| + sqlite3XPrintf(&x, 0, " tabname=%Q", pItem->pTab->zName);
|
| + }
|
| + if( pItem->zAlias ){
|
| + sqlite3XPrintf(&x, 0, " (AS %s)", pItem->zAlias);
|
| + }
|
| + if( pItem->jointype & JT_LEFT ){
|
| + sqlite3XPrintf(&x, 0, " LEFT-JOIN");
|
| + }
|
| + sqlite3StrAccumFinish(&x);
|
| + sqlite3TreeViewItem(pView, zLine, i<p->pSrc->nSrc-1);
|
| + if( pItem->pSelect ){
|
| + sqlite3TreeViewSelect(pView, pItem->pSelect, 0);
|
| + }
|
| + sqlite3TreeViewPop(pView);
|
| + }
|
| + sqlite3TreeViewPop(pView);
|
| + }
|
| + if( p->pWhere ){
|
| + sqlite3TreeViewItem(pView, "WHERE", (n--)>0);
|
| + sqlite3TreeViewExpr(pView, p->pWhere, 0);
|
| + sqlite3TreeViewPop(pView);
|
| + }
|
| + if( p->pGroupBy ){
|
| + sqlite3TreeViewExprList(pView, p->pGroupBy, (n--)>0, "GROUPBY");
|
| + }
|
| + if( p->pHaving ){
|
| + sqlite3TreeViewItem(pView, "HAVING", (n--)>0);
|
| + sqlite3TreeViewExpr(pView, p->pHaving, 0);
|
| + sqlite3TreeViewPop(pView);
|
| + }
|
| + if( p->pOrderBy ){
|
| + sqlite3TreeViewExprList(pView, p->pOrderBy, (n--)>0, "ORDERBY");
|
| + }
|
| + if( p->pLimit ){
|
| + sqlite3TreeViewItem(pView, "LIMIT", (n--)>0);
|
| + sqlite3TreeViewExpr(pView, p->pLimit, 0);
|
| + sqlite3TreeViewPop(pView);
|
| + }
|
| + if( p->pOffset ){
|
| + sqlite3TreeViewItem(pView, "OFFSET", (n--)>0);
|
| + sqlite3TreeViewExpr(pView, p->pOffset, 0);
|
| + sqlite3TreeViewPop(pView);
|
| + }
|
| + if( p->pPrior ){
|
| + const char *zOp = "UNION";
|
| + switch( p->op ){
|
| + case TK_ALL: zOp = "UNION ALL"; break;
|
| + case TK_INTERSECT: zOp = "INTERSECT"; break;
|
| + case TK_EXCEPT: zOp = "EXCEPT"; break;
|
| + }
|
| + sqlite3TreeViewItem(pView, zOp, (n--)>0);
|
| + sqlite3TreeViewSelect(pView, p->pPrior, 0);
|
| + sqlite3TreeViewPop(pView);
|
| + }
|
| + sqlite3TreeViewPop(pView);
|
| +}
|
| +#endif /* SQLITE_DEBUG */
|
|
|