Index: third_party/sqlite/sqlite-src-3080704/src/select.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/src/select.c b/third_party/sqlite/sqlite-src-3080704/src/select.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..3b422f1100349609920c592ba6ab4e096d1ef2ff |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3080704/src/select.c |
@@ -0,0 +1,5517 @@ |
+/* |
+** 2001 September 15 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** This file contains C code routines that are called by the parser |
+** to handle SELECT statements in SQLite. |
+*/ |
+#include "sqliteInt.h" |
+ |
+/* |
+** Trace output macros |
+*/ |
+#if SELECTTRACE_ENABLED |
+/***/ int sqlite3SelectTrace = 0; |
+# define SELECTTRACE(K,P,S,X) \ |
+ if(sqlite3SelectTrace&(K)) \ |
+ sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",(S)->zSelName,(S)),\ |
+ sqlite3DebugPrintf X |
+#else |
+# define SELECTTRACE(K,P,S,X) |
+#endif |
+ |
+ |
+/* |
+** An instance of the following object is used to record information about |
+** how to process the DISTINCT keyword, to simplify passing that information |
+** into the selectInnerLoop() routine. |
+*/ |
+typedef struct DistinctCtx DistinctCtx; |
+struct DistinctCtx { |
+ u8 isTnct; /* True if the DISTINCT keyword is present */ |
+ u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ |
+ int tabTnct; /* Ephemeral table used for DISTINCT processing */ |
+ int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ |
+}; |
+ |
+/* |
+** An instance of the following object is used to record information about |
+** the ORDER BY (or GROUP BY) clause of query is being coded. |
+*/ |
+typedef struct SortCtx SortCtx; |
+struct SortCtx { |
+ ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ |
+ int nOBSat; /* Number of ORDER BY terms satisfied by indices */ |
+ int iECursor; /* Cursor number for the sorter */ |
+ int regReturn; /* Register holding block-output return address */ |
+ int labelBkOut; /* Start label for the block-output subroutine */ |
+ int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ |
+ u8 sortFlags; /* Zero or more SORTFLAG_* bits */ |
+}; |
+#define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ |
+ |
+/* |
+** Delete all the content of a Select structure but do not deallocate |
+** the select structure itself. |
+*/ |
+static void clearSelect(sqlite3 *db, Select *p){ |
+ sqlite3ExprListDelete(db, p->pEList); |
+ sqlite3SrcListDelete(db, p->pSrc); |
+ sqlite3ExprDelete(db, p->pWhere); |
+ sqlite3ExprListDelete(db, p->pGroupBy); |
+ sqlite3ExprDelete(db, p->pHaving); |
+ sqlite3ExprListDelete(db, p->pOrderBy); |
+ sqlite3SelectDelete(db, p->pPrior); |
+ sqlite3ExprDelete(db, p->pLimit); |
+ sqlite3ExprDelete(db, p->pOffset); |
+ sqlite3WithDelete(db, p->pWith); |
+} |
+ |
+/* |
+** Initialize a SelectDest structure. |
+*/ |
+void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ |
+ pDest->eDest = (u8)eDest; |
+ pDest->iSDParm = iParm; |
+ pDest->affSdst = 0; |
+ pDest->iSdst = 0; |
+ pDest->nSdst = 0; |
+} |
+ |
+ |
+/* |
+** Allocate a new Select structure and return a pointer to that |
+** structure. |
+*/ |
+Select *sqlite3SelectNew( |
+ Parse *pParse, /* Parsing context */ |
+ ExprList *pEList, /* which columns to include in the result */ |
+ SrcList *pSrc, /* the FROM clause -- which tables to scan */ |
+ Expr *pWhere, /* the WHERE clause */ |
+ ExprList *pGroupBy, /* the GROUP BY clause */ |
+ Expr *pHaving, /* the HAVING clause */ |
+ ExprList *pOrderBy, /* the ORDER BY clause */ |
+ u16 selFlags, /* Flag parameters, such as SF_Distinct */ |
+ Expr *pLimit, /* LIMIT value. NULL means not used */ |
+ Expr *pOffset /* OFFSET value. NULL means no offset */ |
+){ |
+ Select *pNew; |
+ Select standin; |
+ sqlite3 *db = pParse->db; |
+ pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); |
+ assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ |
+ if( pNew==0 ){ |
+ assert( db->mallocFailed ); |
+ pNew = &standin; |
+ memset(pNew, 0, sizeof(*pNew)); |
+ } |
+ if( pEList==0 ){ |
+ pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); |
+ } |
+ pNew->pEList = pEList; |
+ if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); |
+ pNew->pSrc = pSrc; |
+ pNew->pWhere = pWhere; |
+ pNew->pGroupBy = pGroupBy; |
+ pNew->pHaving = pHaving; |
+ pNew->pOrderBy = pOrderBy; |
+ pNew->selFlags = selFlags; |
+ pNew->op = TK_SELECT; |
+ pNew->pLimit = pLimit; |
+ pNew->pOffset = pOffset; |
+ assert( pOffset==0 || pLimit!=0 ); |
+ pNew->addrOpenEphm[0] = -1; |
+ pNew->addrOpenEphm[1] = -1; |
+ if( db->mallocFailed ) { |
+ clearSelect(db, pNew); |
+ if( pNew!=&standin ) sqlite3DbFree(db, pNew); |
+ pNew = 0; |
+ }else{ |
+ assert( pNew->pSrc!=0 || pParse->nErr>0 ); |
+ } |
+ assert( pNew!=&standin ); |
+ return pNew; |
+} |
+ |
+#if SELECTTRACE_ENABLED |
+/* |
+** Set the name of a Select object |
+*/ |
+void sqlite3SelectSetName(Select *p, const char *zName){ |
+ if( p && zName ){ |
+ sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); |
+ } |
+} |
+#endif |
+ |
+ |
+/* |
+** Delete the given Select structure and all of its substructures. |
+*/ |
+void sqlite3SelectDelete(sqlite3 *db, Select *p){ |
+ if( p ){ |
+ clearSelect(db, p); |
+ sqlite3DbFree(db, p); |
+ } |
+} |
+ |
+/* |
+** Return a pointer to the right-most SELECT statement in a compound. |
+*/ |
+static Select *findRightmost(Select *p){ |
+ while( p->pNext ) p = p->pNext; |
+ return p; |
+} |
+ |
+/* |
+** Given 1 to 3 identifiers preceding the JOIN keyword, determine the |
+** type of join. Return an integer constant that expresses that type |
+** in terms of the following bit values: |
+** |
+** JT_INNER |
+** JT_CROSS |
+** JT_OUTER |
+** JT_NATURAL |
+** JT_LEFT |
+** JT_RIGHT |
+** |
+** A full outer join is the combination of JT_LEFT and JT_RIGHT. |
+** |
+** If an illegal or unsupported join type is seen, then still return |
+** a join type, but put an error in the pParse structure. |
+*/ |
+int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ |
+ int jointype = 0; |
+ Token *apAll[3]; |
+ Token *p; |
+ /* 0123456789 123456789 123456789 123 */ |
+ static const char zKeyText[] = "naturaleftouterightfullinnercross"; |
+ static const struct { |
+ u8 i; /* Beginning of keyword text in zKeyText[] */ |
+ u8 nChar; /* Length of the keyword in characters */ |
+ u8 code; /* Join type mask */ |
+ } aKeyword[] = { |
+ /* natural */ { 0, 7, JT_NATURAL }, |
+ /* left */ { 6, 4, JT_LEFT|JT_OUTER }, |
+ /* outer */ { 10, 5, JT_OUTER }, |
+ /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, |
+ /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, |
+ /* inner */ { 23, 5, JT_INNER }, |
+ /* cross */ { 28, 5, JT_INNER|JT_CROSS }, |
+ }; |
+ int i, j; |
+ apAll[0] = pA; |
+ apAll[1] = pB; |
+ apAll[2] = pC; |
+ for(i=0; i<3 && apAll[i]; i++){ |
+ p = apAll[i]; |
+ for(j=0; j<ArraySize(aKeyword); j++){ |
+ if( p->n==aKeyword[j].nChar |
+ && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ |
+ jointype |= aKeyword[j].code; |
+ break; |
+ } |
+ } |
+ testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); |
+ if( j>=ArraySize(aKeyword) ){ |
+ jointype |= JT_ERROR; |
+ break; |
+ } |
+ } |
+ if( |
+ (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || |
+ (jointype & JT_ERROR)!=0 |
+ ){ |
+ const char *zSp = " "; |
+ assert( pB!=0 ); |
+ if( pC==0 ){ zSp++; } |
+ sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " |
+ "%T %T%s%T", pA, pB, zSp, pC); |
+ jointype = JT_INNER; |
+ }else if( (jointype & JT_OUTER)!=0 |
+ && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ |
+ sqlite3ErrorMsg(pParse, |
+ "RIGHT and FULL OUTER JOINs are not currently supported"); |
+ jointype = JT_INNER; |
+ } |
+ return jointype; |
+} |
+ |
+/* |
+** Return the index of a column in a table. Return -1 if the column |
+** is not contained in the table. |
+*/ |
+static int columnIndex(Table *pTab, const char *zCol){ |
+ int i; |
+ for(i=0; i<pTab->nCol; i++){ |
+ if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; |
+ } |
+ return -1; |
+} |
+ |
+/* |
+** Search the first N tables in pSrc, from left to right, looking for a |
+** table that has a column named zCol. |
+** |
+** When found, set *piTab and *piCol to the table index and column index |
+** of the matching column and return TRUE. |
+** |
+** If not found, return FALSE. |
+*/ |
+static int tableAndColumnIndex( |
+ SrcList *pSrc, /* Array of tables to search */ |
+ int N, /* Number of tables in pSrc->a[] to search */ |
+ const char *zCol, /* Name of the column we are looking for */ |
+ int *piTab, /* Write index of pSrc->a[] here */ |
+ int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ |
+){ |
+ int i; /* For looping over tables in pSrc */ |
+ int iCol; /* Index of column matching zCol */ |
+ |
+ assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ |
+ for(i=0; i<N; i++){ |
+ iCol = columnIndex(pSrc->a[i].pTab, zCol); |
+ if( iCol>=0 ){ |
+ if( piTab ){ |
+ *piTab = i; |
+ *piCol = iCol; |
+ } |
+ return 1; |
+ } |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** This function is used to add terms implied by JOIN syntax to the |
+** WHERE clause expression of a SELECT statement. The new term, which |
+** is ANDed with the existing WHERE clause, is of the form: |
+** |
+** (tab1.col1 = tab2.col2) |
+** |
+** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the |
+** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is |
+** column iColRight of tab2. |
+*/ |
+static void addWhereTerm( |
+ Parse *pParse, /* Parsing context */ |
+ SrcList *pSrc, /* List of tables in FROM clause */ |
+ int iLeft, /* Index of first table to join in pSrc */ |
+ int iColLeft, /* Index of column in first table */ |
+ int iRight, /* Index of second table in pSrc */ |
+ int iColRight, /* Index of column in second table */ |
+ int isOuterJoin, /* True if this is an OUTER join */ |
+ Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ |
+){ |
+ sqlite3 *db = pParse->db; |
+ Expr *pE1; |
+ Expr *pE2; |
+ Expr *pEq; |
+ |
+ assert( iLeft<iRight ); |
+ assert( pSrc->nSrc>iRight ); |
+ assert( pSrc->a[iLeft].pTab ); |
+ assert( pSrc->a[iRight].pTab ); |
+ |
+ pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); |
+ pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); |
+ |
+ pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); |
+ if( pEq && isOuterJoin ){ |
+ ExprSetProperty(pEq, EP_FromJoin); |
+ assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); |
+ ExprSetVVAProperty(pEq, EP_NoReduce); |
+ pEq->iRightJoinTable = (i16)pE2->iTable; |
+ } |
+ *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); |
+} |
+ |
+/* |
+** Set the EP_FromJoin property on all terms of the given expression. |
+** And set the Expr.iRightJoinTable to iTable for every term in the |
+** expression. |
+** |
+** The EP_FromJoin property is used on terms of an expression to tell |
+** the LEFT OUTER JOIN processing logic that this term is part of the |
+** join restriction specified in the ON or USING clause and not a part |
+** of the more general WHERE clause. These terms are moved over to the |
+** WHERE clause during join processing but we need to remember that they |
+** originated in the ON or USING clause. |
+** |
+** The Expr.iRightJoinTable tells the WHERE clause processing that the |
+** expression depends on table iRightJoinTable even if that table is not |
+** explicitly mentioned in the expression. That information is needed |
+** for cases like this: |
+** |
+** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 |
+** |
+** The where clause needs to defer the handling of the t1.x=5 |
+** term until after the t2 loop of the join. In that way, a |
+** NULL t2 row will be inserted whenever t1.x!=5. If we do not |
+** defer the handling of t1.x=5, it will be processed immediately |
+** after the t1 loop and rows with t1.x!=5 will never appear in |
+** the output, which is incorrect. |
+*/ |
+static void setJoinExpr(Expr *p, int iTable){ |
+ while( p ){ |
+ ExprSetProperty(p, EP_FromJoin); |
+ assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); |
+ ExprSetVVAProperty(p, EP_NoReduce); |
+ p->iRightJoinTable = (i16)iTable; |
+ setJoinExpr(p->pLeft, iTable); |
+ p = p->pRight; |
+ } |
+} |
+ |
+/* |
+** This routine processes the join information for a SELECT statement. |
+** ON and USING clauses are converted into extra terms of the WHERE clause. |
+** NATURAL joins also create extra WHERE clause terms. |
+** |
+** The terms of a FROM clause are contained in the Select.pSrc structure. |
+** The left most table is the first entry in Select.pSrc. The right-most |
+** table is the last entry. The join operator is held in the entry to |
+** the left. Thus entry 0 contains the join operator for the join between |
+** entries 0 and 1. Any ON or USING clauses associated with the join are |
+** also attached to the left entry. |
+** |
+** This routine returns the number of errors encountered. |
+*/ |
+static int sqliteProcessJoin(Parse *pParse, Select *p){ |
+ SrcList *pSrc; /* All tables in the FROM clause */ |
+ int i, j; /* Loop counters */ |
+ struct SrcList_item *pLeft; /* Left table being joined */ |
+ struct SrcList_item *pRight; /* Right table being joined */ |
+ |
+ pSrc = p->pSrc; |
+ pLeft = &pSrc->a[0]; |
+ pRight = &pLeft[1]; |
+ for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ |
+ Table *pLeftTab = pLeft->pTab; |
+ Table *pRightTab = pRight->pTab; |
+ int isOuter; |
+ |
+ if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; |
+ isOuter = (pRight->jointype & JT_OUTER)!=0; |
+ |
+ /* When the NATURAL keyword is present, add WHERE clause terms for |
+ ** every column that the two tables have in common. |
+ */ |
+ if( pRight->jointype & JT_NATURAL ){ |
+ if( pRight->pOn || pRight->pUsing ){ |
+ sqlite3ErrorMsg(pParse, "a NATURAL join may not have " |
+ "an ON or USING clause", 0); |
+ return 1; |
+ } |
+ for(j=0; j<pRightTab->nCol; j++){ |
+ char *zName; /* Name of column in the right table */ |
+ int iLeft; /* Matching left table */ |
+ int iLeftCol; /* Matching column in the left table */ |
+ |
+ zName = pRightTab->aCol[j].zName; |
+ if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ |
+ addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, |
+ isOuter, &p->pWhere); |
+ } |
+ } |
+ } |
+ |
+ /* Disallow both ON and USING clauses in the same join |
+ */ |
+ if( pRight->pOn && pRight->pUsing ){ |
+ sqlite3ErrorMsg(pParse, "cannot have both ON and USING " |
+ "clauses in the same join"); |
+ return 1; |
+ } |
+ |
+ /* Add the ON clause to the end of the WHERE clause, connected by |
+ ** an AND operator. |
+ */ |
+ if( pRight->pOn ){ |
+ if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); |
+ p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); |
+ pRight->pOn = 0; |
+ } |
+ |
+ /* Create extra terms on the WHERE clause for each column named |
+ ** in the USING clause. Example: If the two tables to be joined are |
+ ** A and B and the USING clause names X, Y, and Z, then add this |
+ ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z |
+ ** Report an error if any column mentioned in the USING clause is |
+ ** not contained in both tables to be joined. |
+ */ |
+ if( pRight->pUsing ){ |
+ IdList *pList = pRight->pUsing; |
+ for(j=0; j<pList->nId; j++){ |
+ char *zName; /* Name of the term in the USING clause */ |
+ int iLeft; /* Table on the left with matching column name */ |
+ int iLeftCol; /* Column number of matching column on the left */ |
+ int iRightCol; /* Column number of matching column on the right */ |
+ |
+ zName = pList->a[j].zName; |
+ iRightCol = columnIndex(pRightTab, zName); |
+ if( iRightCol<0 |
+ || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) |
+ ){ |
+ sqlite3ErrorMsg(pParse, "cannot join using column %s - column " |
+ "not present in both tables", zName); |
+ return 1; |
+ } |
+ addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, |
+ isOuter, &p->pWhere); |
+ } |
+ } |
+ } |
+ return 0; |
+} |
+ |
+/* Forward reference */ |
+static KeyInfo *keyInfoFromExprList( |
+ Parse *pParse, /* Parsing context */ |
+ ExprList *pList, /* Form the KeyInfo object from this ExprList */ |
+ int iStart, /* Begin with this column of pList */ |
+ int nExtra /* Add this many extra columns to the end */ |
+); |
+ |
+/* |
+** Generate code that will push the record in registers regData |
+** through regData+nData-1 onto the sorter. |
+*/ |
+static void pushOntoSorter( |
+ Parse *pParse, /* Parser context */ |
+ SortCtx *pSort, /* Information about the ORDER BY clause */ |
+ Select *pSelect, /* The whole SELECT statement */ |
+ int regData, /* First register holding data to be sorted */ |
+ int nData, /* Number of elements in the data array */ |
+ int nPrefixReg /* No. of reg prior to regData available for use */ |
+){ |
+ Vdbe *v = pParse->pVdbe; /* Stmt under construction */ |
+ int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); |
+ int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ |
+ int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ |
+ int regBase; /* Regs for sorter record */ |
+ int regRecord = ++pParse->nMem; /* Assembled sorter record */ |
+ int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ |
+ int op; /* Opcode to add sorter record to sorter */ |
+ |
+ assert( bSeq==0 || bSeq==1 ); |
+ if( nPrefixReg ){ |
+ assert( nPrefixReg==nExpr+bSeq ); |
+ regBase = regData - nExpr - bSeq; |
+ }else{ |
+ regBase = pParse->nMem + 1; |
+ pParse->nMem += nBase; |
+ } |
+ sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP); |
+ if( bSeq ){ |
+ sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); |
+ } |
+ if( nPrefixReg==0 ){ |
+ sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); |
+ } |
+ |
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); |
+ if( nOBSat>0 ){ |
+ int regPrevKey; /* The first nOBSat columns of the previous row */ |
+ int addrFirst; /* Address of the OP_IfNot opcode */ |
+ int addrJmp; /* Address of the OP_Jump opcode */ |
+ VdbeOp *pOp; /* Opcode that opens the sorter */ |
+ int nKey; /* Number of sorting key columns, including OP_Sequence */ |
+ KeyInfo *pKI; /* Original KeyInfo on the sorter table */ |
+ |
+ regPrevKey = pParse->nMem+1; |
+ pParse->nMem += pSort->nOBSat; |
+ nKey = nExpr - pSort->nOBSat + bSeq; |
+ if( bSeq ){ |
+ addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); |
+ }else{ |
+ addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); |
+ } |
+ VdbeCoverage(v); |
+ sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); |
+ pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); |
+ if( pParse->db->mallocFailed ) return; |
+ pOp->p2 = nKey + nData; |
+ pKI = pOp->p4.pKeyInfo; |
+ memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ |
+ sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); |
+ pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 1); |
+ addrJmp = sqlite3VdbeCurrentAddr(v); |
+ sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); |
+ pSort->labelBkOut = sqlite3VdbeMakeLabel(v); |
+ pSort->regReturn = ++pParse->nMem; |
+ sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); |
+ sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); |
+ sqlite3VdbeJumpHere(v, addrFirst); |
+ sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); |
+ sqlite3VdbeJumpHere(v, addrJmp); |
+ } |
+ if( pSort->sortFlags & SORTFLAG_UseSorter ){ |
+ op = OP_SorterInsert; |
+ }else{ |
+ op = OP_IdxInsert; |
+ } |
+ sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); |
+ if( pSelect->iLimit ){ |
+ int addr1, addr2; |
+ int iLimit; |
+ if( pSelect->iOffset ){ |
+ iLimit = pSelect->iOffset+1; |
+ }else{ |
+ iLimit = pSelect->iLimit; |
+ } |
+ addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v); |
+ sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); |
+ addr2 = sqlite3VdbeAddOp0(v, OP_Goto); |
+ sqlite3VdbeJumpHere(v, addr1); |
+ sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); |
+ sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); |
+ sqlite3VdbeJumpHere(v, addr2); |
+ } |
+} |
+ |
+/* |
+** Add code to implement the OFFSET |
+*/ |
+static void codeOffset( |
+ Vdbe *v, /* Generate code into this VM */ |
+ int iOffset, /* Register holding the offset counter */ |
+ int iContinue /* Jump here to skip the current record */ |
+){ |
+ if( iOffset>0 ){ |
+ int addr; |
+ addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v); |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); |
+ VdbeComment((v, "skip OFFSET records")); |
+ sqlite3VdbeJumpHere(v, addr); |
+ } |
+} |
+ |
+/* |
+** Add code that will check to make sure the N registers starting at iMem |
+** form a distinct entry. iTab is a sorting index that holds previously |
+** seen combinations of the N values. A new entry is made in iTab |
+** if the current N values are new. |
+** |
+** A jump to addrRepeat is made and the N+1 values are popped from the |
+** stack if the top N elements are not distinct. |
+*/ |
+static void codeDistinct( |
+ Parse *pParse, /* Parsing and code generating context */ |
+ int iTab, /* A sorting index used to test for distinctness */ |
+ int addrRepeat, /* Jump to here if not distinct */ |
+ int N, /* Number of elements */ |
+ int iMem /* First element */ |
+){ |
+ Vdbe *v; |
+ int r1; |
+ |
+ v = pParse->pVdbe; |
+ r1 = sqlite3GetTempReg(pParse); |
+ sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); |
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); |
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); |
+ sqlite3ReleaseTempReg(pParse, r1); |
+} |
+ |
+#ifndef SQLITE_OMIT_SUBQUERY |
+/* |
+** Generate an error message when a SELECT is used within a subexpression |
+** (example: "a IN (SELECT * FROM table)") but it has more than 1 result |
+** column. We do this in a subroutine because the error used to occur |
+** in multiple places. (The error only occurs in one place now, but we |
+** retain the subroutine to minimize code disruption.) |
+*/ |
+static int checkForMultiColumnSelectError( |
+ Parse *pParse, /* Parse context. */ |
+ SelectDest *pDest, /* Destination of SELECT results */ |
+ int nExpr /* Number of result columns returned by SELECT */ |
+){ |
+ int eDest = pDest->eDest; |
+ if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ |
+ sqlite3ErrorMsg(pParse, "only a single result allowed for " |
+ "a SELECT that is part of an expression"); |
+ return 1; |
+ }else{ |
+ return 0; |
+ } |
+} |
+#endif |
+ |
+/* |
+** This routine generates the code for the inside of the inner loop |
+** of a SELECT. |
+** |
+** If srcTab is negative, then the pEList expressions |
+** are evaluated in order to get the data for this row. If srcTab is |
+** zero or more, then data is pulled from srcTab and pEList is used only |
+** to get number columns and the datatype for each column. |
+*/ |
+static void selectInnerLoop( |
+ Parse *pParse, /* The parser context */ |
+ Select *p, /* The complete select statement being coded */ |
+ ExprList *pEList, /* List of values being extracted */ |
+ int srcTab, /* Pull data from this table */ |
+ SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ |
+ DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ |
+ SelectDest *pDest, /* How to dispose of the results */ |
+ int iContinue, /* Jump here to continue with next row */ |
+ int iBreak /* Jump here to break out of the inner loop */ |
+){ |
+ Vdbe *v = pParse->pVdbe; |
+ int i; |
+ int hasDistinct; /* True if the DISTINCT keyword is present */ |
+ int regResult; /* Start of memory holding result set */ |
+ int eDest = pDest->eDest; /* How to dispose of results */ |
+ int iParm = pDest->iSDParm; /* First argument to disposal method */ |
+ int nResultCol; /* Number of result columns */ |
+ int nPrefixReg = 0; /* Number of extra registers before regResult */ |
+ |
+ assert( v ); |
+ assert( pEList!=0 ); |
+ hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; |
+ if( pSort && pSort->pOrderBy==0 ) pSort = 0; |
+ if( pSort==0 && !hasDistinct ){ |
+ assert( iContinue!=0 ); |
+ codeOffset(v, p->iOffset, iContinue); |
+ } |
+ |
+ /* Pull the requested columns. |
+ */ |
+ nResultCol = pEList->nExpr; |
+ |
+ if( pDest->iSdst==0 ){ |
+ if( pSort ){ |
+ nPrefixReg = pSort->pOrderBy->nExpr; |
+ if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; |
+ pParse->nMem += nPrefixReg; |
+ } |
+ pDest->iSdst = pParse->nMem+1; |
+ pParse->nMem += nResultCol; |
+ }else if( pDest->iSdst+nResultCol > pParse->nMem ){ |
+ /* This is an error condition that can result, for example, when a SELECT |
+ ** on the right-hand side of an INSERT contains more result columns than |
+ ** there are columns in the table on the left. The error will be caught |
+ ** and reported later. But we need to make sure enough memory is allocated |
+ ** to avoid other spurious errors in the meantime. */ |
+ pParse->nMem += nResultCol; |
+ } |
+ pDest->nSdst = nResultCol; |
+ regResult = pDest->iSdst; |
+ if( srcTab>=0 ){ |
+ for(i=0; i<nResultCol; i++){ |
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); |
+ VdbeComment((v, "%s", pEList->a[i].zName)); |
+ } |
+ }else if( eDest!=SRT_Exists ){ |
+ /* If the destination is an EXISTS(...) expression, the actual |
+ ** values returned by the SELECT are not required. |
+ */ |
+ sqlite3ExprCodeExprList(pParse, pEList, regResult, |
+ (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0); |
+ } |
+ |
+ /* If the DISTINCT keyword was present on the SELECT statement |
+ ** and this row has been seen before, then do not make this row |
+ ** part of the result. |
+ */ |
+ if( hasDistinct ){ |
+ switch( pDistinct->eTnctType ){ |
+ case WHERE_DISTINCT_ORDERED: { |
+ VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ |
+ int iJump; /* Jump destination */ |
+ int regPrev; /* Previous row content */ |
+ |
+ /* Allocate space for the previous row */ |
+ regPrev = pParse->nMem+1; |
+ pParse->nMem += nResultCol; |
+ |
+ /* Change the OP_OpenEphemeral coded earlier to an OP_Null |
+ ** sets the MEM_Cleared bit on the first register of the |
+ ** previous value. This will cause the OP_Ne below to always |
+ ** fail on the first iteration of the loop even if the first |
+ ** row is all NULLs. |
+ */ |
+ sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); |
+ pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); |
+ pOp->opcode = OP_Null; |
+ pOp->p1 = 1; |
+ pOp->p2 = regPrev; |
+ |
+ iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; |
+ for(i=0; i<nResultCol; i++){ |
+ CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); |
+ if( i<nResultCol-1 ){ |
+ sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); |
+ VdbeCoverage(v); |
+ }else{ |
+ sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); |
+ VdbeCoverage(v); |
+ } |
+ sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); |
+ sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); |
+ } |
+ assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); |
+ sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); |
+ break; |
+ } |
+ |
+ case WHERE_DISTINCT_UNIQUE: { |
+ sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); |
+ break; |
+ } |
+ |
+ default: { |
+ assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); |
+ codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult); |
+ break; |
+ } |
+ } |
+ if( pSort==0 ){ |
+ codeOffset(v, p->iOffset, iContinue); |
+ } |
+ } |
+ |
+ switch( eDest ){ |
+ /* In this mode, write each query result to the key of the temporary |
+ ** table iParm. |
+ */ |
+#ifndef SQLITE_OMIT_COMPOUND_SELECT |
+ case SRT_Union: { |
+ int r1; |
+ r1 = sqlite3GetTempReg(pParse); |
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); |
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); |
+ sqlite3ReleaseTempReg(pParse, r1); |
+ break; |
+ } |
+ |
+ /* Construct a record from the query result, but instead of |
+ ** saving that record, use it as a key to delete elements from |
+ ** the temporary table iParm. |
+ */ |
+ case SRT_Except: { |
+ sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); |
+ break; |
+ } |
+#endif /* SQLITE_OMIT_COMPOUND_SELECT */ |
+ |
+ /* Store the result as data using a unique key. |
+ */ |
+ case SRT_Fifo: |
+ case SRT_DistFifo: |
+ case SRT_Table: |
+ case SRT_EphemTab: { |
+ int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); |
+ testcase( eDest==SRT_Table ); |
+ testcase( eDest==SRT_EphemTab ); |
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); |
+#ifndef SQLITE_OMIT_CTE |
+ if( eDest==SRT_DistFifo ){ |
+ /* If the destination is DistFifo, then cursor (iParm+1) is open |
+ ** on an ephemeral index. If the current row is already present |
+ ** in the index, do not write it to the output. If not, add the |
+ ** current row to the index and proceed with writing it to the |
+ ** output table as well. */ |
+ int addr = sqlite3VdbeCurrentAddr(v) + 4; |
+ sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v); |
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); |
+ assert( pSort==0 ); |
+ } |
+#endif |
+ if( pSort ){ |
+ pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg); |
+ }else{ |
+ int r2 = sqlite3GetTempReg(pParse); |
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); |
+ sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); |
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
+ sqlite3ReleaseTempReg(pParse, r2); |
+ } |
+ sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); |
+ break; |
+ } |
+ |
+#ifndef SQLITE_OMIT_SUBQUERY |
+ /* If we are creating a set for an "expr IN (SELECT ...)" construct, |
+ ** then there should be a single item on the stack. Write this |
+ ** item into the set table with bogus data. |
+ */ |
+ case SRT_Set: { |
+ assert( nResultCol==1 ); |
+ pDest->affSdst = |
+ sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); |
+ if( pSort ){ |
+ /* At first glance you would think we could optimize out the |
+ ** ORDER BY in this case since the order of entries in the set |
+ ** does not matter. But there might be a LIMIT clause, in which |
+ ** case the order does matter */ |
+ pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); |
+ }else{ |
+ int r1 = sqlite3GetTempReg(pParse); |
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); |
+ sqlite3ExprCacheAffinityChange(pParse, regResult, 1); |
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); |
+ sqlite3ReleaseTempReg(pParse, r1); |
+ } |
+ break; |
+ } |
+ |
+ /* If any row exist in the result set, record that fact and abort. |
+ */ |
+ case SRT_Exists: { |
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); |
+ /* The LIMIT clause will terminate the loop for us */ |
+ break; |
+ } |
+ |
+ /* If this is a scalar select that is part of an expression, then |
+ ** store the results in the appropriate memory cell and break out |
+ ** of the scan loop. |
+ */ |
+ case SRT_Mem: { |
+ assert( nResultCol==1 ); |
+ if( pSort ){ |
+ pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); |
+ }else{ |
+ assert( regResult==iParm ); |
+ /* The LIMIT clause will jump out of the loop for us */ |
+ } |
+ break; |
+ } |
+#endif /* #ifndef SQLITE_OMIT_SUBQUERY */ |
+ |
+ case SRT_Coroutine: /* Send data to a co-routine */ |
+ case SRT_Output: { /* Return the results */ |
+ testcase( eDest==SRT_Coroutine ); |
+ testcase( eDest==SRT_Output ); |
+ if( pSort ){ |
+ pushOntoSorter(pParse, pSort, p, regResult, nResultCol, nPrefixReg); |
+ }else if( eDest==SRT_Coroutine ){ |
+ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); |
+ }else{ |
+ sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); |
+ sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); |
+ } |
+ break; |
+ } |
+ |
+#ifndef SQLITE_OMIT_CTE |
+ /* Write the results into a priority queue that is order according to |
+ ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an |
+ ** index with pSO->nExpr+2 columns. Build a key using pSO for the first |
+ ** pSO->nExpr columns, then make sure all keys are unique by adding a |
+ ** final OP_Sequence column. The last column is the record as a blob. |
+ */ |
+ case SRT_DistQueue: |
+ case SRT_Queue: { |
+ int nKey; |
+ int r1, r2, r3; |
+ int addrTest = 0; |
+ ExprList *pSO; |
+ pSO = pDest->pOrderBy; |
+ assert( pSO ); |
+ nKey = pSO->nExpr; |
+ r1 = sqlite3GetTempReg(pParse); |
+ r2 = sqlite3GetTempRange(pParse, nKey+2); |
+ r3 = r2+nKey+1; |
+ if( eDest==SRT_DistQueue ){ |
+ /* If the destination is DistQueue, then cursor (iParm+1) is open |
+ ** on a second ephemeral index that holds all values every previously |
+ ** added to the queue. */ |
+ addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, |
+ regResult, nResultCol); |
+ VdbeCoverage(v); |
+ } |
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); |
+ if( eDest==SRT_DistQueue ){ |
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); |
+ sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); |
+ } |
+ for(i=0; i<nKey; i++){ |
+ sqlite3VdbeAddOp2(v, OP_SCopy, |
+ regResult + pSO->a[i].u.x.iOrderByCol - 1, |
+ r2+i); |
+ } |
+ sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); |
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); |
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); |
+ if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); |
+ sqlite3ReleaseTempReg(pParse, r1); |
+ sqlite3ReleaseTempRange(pParse, r2, nKey+2); |
+ break; |
+ } |
+#endif /* SQLITE_OMIT_CTE */ |
+ |
+ |
+ |
+#if !defined(SQLITE_OMIT_TRIGGER) |
+ /* Discard the results. This is used for SELECT statements inside |
+ ** the body of a TRIGGER. The purpose of such selects is to call |
+ ** user-defined functions that have side effects. We do not care |
+ ** about the actual results of the select. |
+ */ |
+ default: { |
+ assert( eDest==SRT_Discard ); |
+ break; |
+ } |
+#endif |
+ } |
+ |
+ /* Jump to the end of the loop if the LIMIT is reached. Except, if |
+ ** there is a sorter, in which case the sorter has already limited |
+ ** the output for us. |
+ */ |
+ if( pSort==0 && p->iLimit ){ |
+ sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v); |
+ } |
+} |
+ |
+/* |
+** Allocate a KeyInfo object sufficient for an index of N key columns and |
+** X extra columns. |
+*/ |
+KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ |
+ KeyInfo *p = sqlite3DbMallocZero(0, |
+ sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1)); |
+ if( p ){ |
+ p->aSortOrder = (u8*)&p->aColl[N+X]; |
+ p->nField = (u16)N; |
+ p->nXField = (u16)X; |
+ p->enc = ENC(db); |
+ p->db = db; |
+ p->nRef = 1; |
+ }else{ |
+ db->mallocFailed = 1; |
+ } |
+ return p; |
+} |
+ |
+/* |
+** Deallocate a KeyInfo object |
+*/ |
+void sqlite3KeyInfoUnref(KeyInfo *p){ |
+ if( p ){ |
+ assert( p->nRef>0 ); |
+ p->nRef--; |
+ if( p->nRef==0 ) sqlite3DbFree(0, p); |
+ } |
+} |
+ |
+/* |
+** Make a new pointer to a KeyInfo object |
+*/ |
+KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ |
+ if( p ){ |
+ assert( p->nRef>0 ); |
+ p->nRef++; |
+ } |
+ return p; |
+} |
+ |
+#ifdef SQLITE_DEBUG |
+/* |
+** Return TRUE if a KeyInfo object can be change. The KeyInfo object |
+** can only be changed if this is just a single reference to the object. |
+** |
+** This routine is used only inside of assert() statements. |
+*/ |
+int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } |
+#endif /* SQLITE_DEBUG */ |
+ |
+/* |
+** Given an expression list, generate a KeyInfo structure that records |
+** the collating sequence for each expression in that expression list. |
+** |
+** If the ExprList is an ORDER BY or GROUP BY clause then the resulting |
+** KeyInfo structure is appropriate for initializing a virtual index to |
+** implement that clause. If the ExprList is the result set of a SELECT |
+** then the KeyInfo structure is appropriate for initializing a virtual |
+** index to implement a DISTINCT test. |
+** |
+** Space to hold the KeyInfo structure is obtained from malloc. The calling |
+** function is responsible for seeing that this structure is eventually |
+** freed. |
+*/ |
+static KeyInfo *keyInfoFromExprList( |
+ Parse *pParse, /* Parsing context */ |
+ ExprList *pList, /* Form the KeyInfo object from this ExprList */ |
+ int iStart, /* Begin with this column of pList */ |
+ int nExtra /* Add this many extra columns to the end */ |
+){ |
+ int nExpr; |
+ KeyInfo *pInfo; |
+ struct ExprList_item *pItem; |
+ sqlite3 *db = pParse->db; |
+ int i; |
+ |
+ nExpr = pList->nExpr; |
+ pInfo = sqlite3KeyInfoAlloc(db, nExpr+nExtra-iStart, 1); |
+ if( pInfo ){ |
+ assert( sqlite3KeyInfoIsWriteable(pInfo) ); |
+ for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ |
+ CollSeq *pColl; |
+ pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); |
+ if( !pColl ) pColl = db->pDfltColl; |
+ pInfo->aColl[i-iStart] = pColl; |
+ pInfo->aSortOrder[i-iStart] = pItem->sortOrder; |
+ } |
+ } |
+ return pInfo; |
+} |
+ |
+#ifndef SQLITE_OMIT_COMPOUND_SELECT |
+/* |
+** Name of the connection operator, used for error messages. |
+*/ |
+static const char *selectOpName(int id){ |
+ char *z; |
+ switch( id ){ |
+ case TK_ALL: z = "UNION ALL"; break; |
+ case TK_INTERSECT: z = "INTERSECT"; break; |
+ case TK_EXCEPT: z = "EXCEPT"; break; |
+ default: z = "UNION"; break; |
+ } |
+ return z; |
+} |
+#endif /* SQLITE_OMIT_COMPOUND_SELECT */ |
+ |
+#ifndef SQLITE_OMIT_EXPLAIN |
+/* |
+** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function |
+** is a no-op. Otherwise, it adds a single row of output to the EQP result, |
+** where the caption is of the form: |
+** |
+** "USE TEMP B-TREE FOR xxx" |
+** |
+** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which |
+** is determined by the zUsage argument. |
+*/ |
+static void explainTempTable(Parse *pParse, const char *zUsage){ |
+ if( pParse->explain==2 ){ |
+ Vdbe *v = pParse->pVdbe; |
+ char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); |
+ sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); |
+ } |
+} |
+ |
+/* |
+** Assign expression b to lvalue a. A second, no-op, version of this macro |
+** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code |
+** in sqlite3Select() to assign values to structure member variables that |
+** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the |
+** code with #ifndef directives. |
+*/ |
+# define explainSetInteger(a, b) a = b |
+ |
+#else |
+/* No-op versions of the explainXXX() functions and macros. */ |
+# define explainTempTable(y,z) |
+# define explainSetInteger(y,z) |
+#endif |
+ |
+#if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) |
+/* |
+** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function |
+** is a no-op. Otherwise, it adds a single row of output to the EQP result, |
+** where the caption is of one of the two forms: |
+** |
+** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" |
+** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" |
+** |
+** where iSub1 and iSub2 are the integers passed as the corresponding |
+** function parameters, and op is the text representation of the parameter |
+** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, |
+** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is |
+** false, or the second form if it is true. |
+*/ |
+static void explainComposite( |
+ Parse *pParse, /* Parse context */ |
+ int op, /* One of TK_UNION, TK_EXCEPT etc. */ |
+ int iSub1, /* Subquery id 1 */ |
+ int iSub2, /* Subquery id 2 */ |
+ int bUseTmp /* True if a temp table was used */ |
+){ |
+ assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); |
+ if( pParse->explain==2 ){ |
+ Vdbe *v = pParse->pVdbe; |
+ char *zMsg = sqlite3MPrintf( |
+ pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, |
+ bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) |
+ ); |
+ sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); |
+ } |
+} |
+#else |
+/* No-op versions of the explainXXX() functions and macros. */ |
+# define explainComposite(v,w,x,y,z) |
+#endif |
+ |
+/* |
+** If the inner loop was generated using a non-null pOrderBy argument, |
+** then the results were placed in a sorter. After the loop is terminated |
+** we need to run the sorter and output the results. The following |
+** routine generates the code needed to do that. |
+*/ |
+static void generateSortTail( |
+ Parse *pParse, /* Parsing context */ |
+ Select *p, /* The SELECT statement */ |
+ SortCtx *pSort, /* Information on the ORDER BY clause */ |
+ int nColumn, /* Number of columns of data */ |
+ SelectDest *pDest /* Write the sorted results here */ |
+){ |
+ Vdbe *v = pParse->pVdbe; /* The prepared statement */ |
+ int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ |
+ int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ |
+ int addr; |
+ int addrOnce = 0; |
+ int iTab; |
+ ExprList *pOrderBy = pSort->pOrderBy; |
+ int eDest = pDest->eDest; |
+ int iParm = pDest->iSDParm; |
+ int regRow; |
+ int regRowid; |
+ int nKey; |
+ int iSortTab; /* Sorter cursor to read from */ |
+ int nSortData; /* Trailing values to read from sorter */ |
+ int i; |
+ int bSeq; /* True if sorter record includes seq. no. */ |
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
+ struct ExprList_item *aOutEx = p->pEList->a; |
+#endif |
+ |
+ if( pSort->labelBkOut ){ |
+ sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak); |
+ sqlite3VdbeResolveLabel(v, pSort->labelBkOut); |
+ } |
+ iTab = pSort->iECursor; |
+ if( eDest==SRT_Output || eDest==SRT_Coroutine ){ |
+ regRowid = 0; |
+ regRow = pDest->iSdst; |
+ nSortData = nColumn; |
+ }else{ |
+ regRowid = sqlite3GetTempReg(pParse); |
+ regRow = sqlite3GetTempReg(pParse); |
+ nSortData = 1; |
+ } |
+ nKey = pOrderBy->nExpr - pSort->nOBSat; |
+ if( pSort->sortFlags & SORTFLAG_UseSorter ){ |
+ int regSortOut = ++pParse->nMem; |
+ iSortTab = pParse->nTab++; |
+ if( pSort->labelBkOut ){ |
+ addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v); |
+ } |
+ sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); |
+ if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); |
+ addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); |
+ VdbeCoverage(v); |
+ codeOffset(v, p->iOffset, addrContinue); |
+ sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); |
+ bSeq = 0; |
+ }else{ |
+ addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); |
+ codeOffset(v, p->iOffset, addrContinue); |
+ iSortTab = iTab; |
+ bSeq = 1; |
+ } |
+ for(i=0; i<nSortData; i++){ |
+ sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i); |
+ VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); |
+ } |
+ switch( eDest ){ |
+ case SRT_Table: |
+ case SRT_EphemTab: { |
+ testcase( eDest==SRT_Table ); |
+ testcase( eDest==SRT_EphemTab ); |
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); |
+ sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); |
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
+ break; |
+ } |
+#ifndef SQLITE_OMIT_SUBQUERY |
+ case SRT_Set: { |
+ assert( nColumn==1 ); |
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, |
+ &pDest->affSdst, 1); |
+ sqlite3ExprCacheAffinityChange(pParse, regRow, 1); |
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); |
+ break; |
+ } |
+ case SRT_Mem: { |
+ assert( nColumn==1 ); |
+ sqlite3ExprCodeMove(pParse, regRow, iParm, 1); |
+ /* The LIMIT clause will terminate the loop for us */ |
+ break; |
+ } |
+#endif |
+ default: { |
+ assert( eDest==SRT_Output || eDest==SRT_Coroutine ); |
+ testcase( eDest==SRT_Output ); |
+ testcase( eDest==SRT_Coroutine ); |
+ if( eDest==SRT_Output ){ |
+ sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); |
+ sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); |
+ }else{ |
+ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); |
+ } |
+ break; |
+ } |
+ } |
+ if( regRowid ){ |
+ sqlite3ReleaseTempReg(pParse, regRow); |
+ sqlite3ReleaseTempReg(pParse, regRowid); |
+ } |
+ /* The bottom of the loop |
+ */ |
+ sqlite3VdbeResolveLabel(v, addrContinue); |
+ if( pSort->sortFlags & SORTFLAG_UseSorter ){ |
+ sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); |
+ }else{ |
+ sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); |
+ } |
+ if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); |
+ sqlite3VdbeResolveLabel(v, addrBreak); |
+} |
+ |
+/* |
+** Return a pointer to a string containing the 'declaration type' of the |
+** expression pExpr. The string may be treated as static by the caller. |
+** |
+** Also try to estimate the size of the returned value and return that |
+** result in *pEstWidth. |
+** |
+** The declaration type is the exact datatype definition extracted from the |
+** original CREATE TABLE statement if the expression is a column. The |
+** declaration type for a ROWID field is INTEGER. Exactly when an expression |
+** is considered a column can be complex in the presence of subqueries. The |
+** result-set expression in all of the following SELECT statements is |
+** considered a column by this function. |
+** |
+** SELECT col FROM tbl; |
+** SELECT (SELECT col FROM tbl; |
+** SELECT (SELECT col FROM tbl); |
+** SELECT abc FROM (SELECT col AS abc FROM tbl); |
+** |
+** The declaration type for any expression other than a column is NULL. |
+** |
+** This routine has either 3 or 6 parameters depending on whether or not |
+** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. |
+*/ |
+#ifdef SQLITE_ENABLE_COLUMN_METADATA |
+# define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) |
+static const char *columnTypeImpl( |
+ NameContext *pNC, |
+ Expr *pExpr, |
+ const char **pzOrigDb, |
+ const char **pzOrigTab, |
+ const char **pzOrigCol, |
+ u8 *pEstWidth |
+){ |
+ char const *zOrigDb = 0; |
+ char const *zOrigTab = 0; |
+ char const *zOrigCol = 0; |
+#else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ |
+# define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) |
+static const char *columnTypeImpl( |
+ NameContext *pNC, |
+ Expr *pExpr, |
+ u8 *pEstWidth |
+){ |
+#endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */ |
+ char const *zType = 0; |
+ int j; |
+ u8 estWidth = 1; |
+ |
+ if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; |
+ switch( pExpr->op ){ |
+ case TK_AGG_COLUMN: |
+ case TK_COLUMN: { |
+ /* The expression is a column. Locate the table the column is being |
+ ** extracted from in NameContext.pSrcList. This table may be real |
+ ** database table or a subquery. |
+ */ |
+ Table *pTab = 0; /* Table structure column is extracted from */ |
+ Select *pS = 0; /* Select the column is extracted from */ |
+ int iCol = pExpr->iColumn; /* Index of column in pTab */ |
+ testcase( pExpr->op==TK_AGG_COLUMN ); |
+ testcase( pExpr->op==TK_COLUMN ); |
+ while( pNC && !pTab ){ |
+ SrcList *pTabList = pNC->pSrcList; |
+ for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); |
+ if( j<pTabList->nSrc ){ |
+ pTab = pTabList->a[j].pTab; |
+ pS = pTabList->a[j].pSelect; |
+ }else{ |
+ pNC = pNC->pNext; |
+ } |
+ } |
+ |
+ if( pTab==0 ){ |
+ /* At one time, code such as "SELECT new.x" within a trigger would |
+ ** cause this condition to run. Since then, we have restructured how |
+ ** trigger code is generated and so this condition is no longer |
+ ** possible. However, it can still be true for statements like |
+ ** the following: |
+ ** |
+ ** CREATE TABLE t1(col INTEGER); |
+ ** SELECT (SELECT t1.col) FROM FROM t1; |
+ ** |
+ ** when columnType() is called on the expression "t1.col" in the |
+ ** sub-select. In this case, set the column type to NULL, even |
+ ** though it should really be "INTEGER". |
+ ** |
+ ** This is not a problem, as the column type of "t1.col" is never |
+ ** used. When columnType() is called on the expression |
+ ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT |
+ ** branch below. */ |
+ break; |
+ } |
+ |
+ assert( pTab && pExpr->pTab==pTab ); |
+ if( pS ){ |
+ /* The "table" is actually a sub-select or a view in the FROM clause |
+ ** of the SELECT statement. Return the declaration type and origin |
+ ** data for the result-set column of the sub-select. |
+ */ |
+ if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ |
+ /* If iCol is less than zero, then the expression requests the |
+ ** rowid of the sub-select or view. This expression is legal (see |
+ ** test case misc2.2.2) - it always evaluates to NULL. |
+ */ |
+ NameContext sNC; |
+ Expr *p = pS->pEList->a[iCol].pExpr; |
+ sNC.pSrcList = pS->pSrc; |
+ sNC.pNext = pNC; |
+ sNC.pParse = pNC->pParse; |
+ zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); |
+ } |
+ }else if( pTab->pSchema ){ |
+ /* A real table */ |
+ assert( !pS ); |
+ if( iCol<0 ) iCol = pTab->iPKey; |
+ assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); |
+#ifdef SQLITE_ENABLE_COLUMN_METADATA |
+ if( iCol<0 ){ |
+ zType = "INTEGER"; |
+ zOrigCol = "rowid"; |
+ }else{ |
+ zType = pTab->aCol[iCol].zType; |
+ zOrigCol = pTab->aCol[iCol].zName; |
+ estWidth = pTab->aCol[iCol].szEst; |
+ } |
+ zOrigTab = pTab->zName; |
+ if( pNC->pParse ){ |
+ int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); |
+ zOrigDb = pNC->pParse->db->aDb[iDb].zName; |
+ } |
+#else |
+ if( iCol<0 ){ |
+ zType = "INTEGER"; |
+ }else{ |
+ zType = pTab->aCol[iCol].zType; |
+ estWidth = pTab->aCol[iCol].szEst; |
+ } |
+#endif |
+ } |
+ break; |
+ } |
+#ifndef SQLITE_OMIT_SUBQUERY |
+ case TK_SELECT: { |
+ /* The expression is a sub-select. Return the declaration type and |
+ ** origin info for the single column in the result set of the SELECT |
+ ** statement. |
+ */ |
+ NameContext sNC; |
+ Select *pS = pExpr->x.pSelect; |
+ Expr *p = pS->pEList->a[0].pExpr; |
+ assert( ExprHasProperty(pExpr, EP_xIsSelect) ); |
+ sNC.pSrcList = pS->pSrc; |
+ sNC.pNext = pNC; |
+ sNC.pParse = pNC->pParse; |
+ zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); |
+ break; |
+ } |
+#endif |
+ } |
+ |
+#ifdef SQLITE_ENABLE_COLUMN_METADATA |
+ if( pzOrigDb ){ |
+ assert( pzOrigTab && pzOrigCol ); |
+ *pzOrigDb = zOrigDb; |
+ *pzOrigTab = zOrigTab; |
+ *pzOrigCol = zOrigCol; |
+ } |
+#endif |
+ if( pEstWidth ) *pEstWidth = estWidth; |
+ return zType; |
+} |
+ |
+/* |
+** Generate code that will tell the VDBE the declaration types of columns |
+** in the result set. |
+*/ |
+static void generateColumnTypes( |
+ Parse *pParse, /* Parser context */ |
+ SrcList *pTabList, /* List of tables */ |
+ ExprList *pEList /* Expressions defining the result set */ |
+){ |
+#ifndef SQLITE_OMIT_DECLTYPE |
+ Vdbe *v = pParse->pVdbe; |
+ int i; |
+ NameContext sNC; |
+ sNC.pSrcList = pTabList; |
+ sNC.pParse = pParse; |
+ for(i=0; i<pEList->nExpr; i++){ |
+ Expr *p = pEList->a[i].pExpr; |
+ const char *zType; |
+#ifdef SQLITE_ENABLE_COLUMN_METADATA |
+ const char *zOrigDb = 0; |
+ const char *zOrigTab = 0; |
+ const char *zOrigCol = 0; |
+ zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); |
+ |
+ /* The vdbe must make its own copy of the column-type and other |
+ ** column specific strings, in case the schema is reset before this |
+ ** virtual machine is deleted. |
+ */ |
+ sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); |
+ sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); |
+ sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); |
+#else |
+ zType = columnType(&sNC, p, 0, 0, 0, 0); |
+#endif |
+ sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); |
+ } |
+#endif /* !defined(SQLITE_OMIT_DECLTYPE) */ |
+} |
+ |
+/* |
+** Generate code that will tell the VDBE the names of columns |
+** in the result set. This information is used to provide the |
+** azCol[] values in the callback. |
+*/ |
+static void generateColumnNames( |
+ Parse *pParse, /* Parser context */ |
+ SrcList *pTabList, /* List of tables */ |
+ ExprList *pEList /* Expressions defining the result set */ |
+){ |
+ Vdbe *v = pParse->pVdbe; |
+ int i, j; |
+ sqlite3 *db = pParse->db; |
+ int fullNames, shortNames; |
+ |
+#ifndef SQLITE_OMIT_EXPLAIN |
+ /* If this is an EXPLAIN, skip this step */ |
+ if( pParse->explain ){ |
+ return; |
+ } |
+#endif |
+ |
+ if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; |
+ pParse->colNamesSet = 1; |
+ fullNames = (db->flags & SQLITE_FullColNames)!=0; |
+ shortNames = (db->flags & SQLITE_ShortColNames)!=0; |
+ sqlite3VdbeSetNumCols(v, pEList->nExpr); |
+ for(i=0; i<pEList->nExpr; i++){ |
+ Expr *p; |
+ p = pEList->a[i].pExpr; |
+ if( NEVER(p==0) ) continue; |
+ if( pEList->a[i].zName ){ |
+ char *zName = pEList->a[i].zName; |
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); |
+ }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ |
+ Table *pTab; |
+ char *zCol; |
+ int iCol = p->iColumn; |
+ for(j=0; ALWAYS(j<pTabList->nSrc); j++){ |
+ if( pTabList->a[j].iCursor==p->iTable ) break; |
+ } |
+ assert( j<pTabList->nSrc ); |
+ pTab = pTabList->a[j].pTab; |
+ if( iCol<0 ) iCol = pTab->iPKey; |
+ assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); |
+ if( iCol<0 ){ |
+ zCol = "rowid"; |
+ }else{ |
+ zCol = pTab->aCol[iCol].zName; |
+ } |
+ if( !shortNames && !fullNames ){ |
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, |
+ sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); |
+ }else if( fullNames ){ |
+ char *zName = 0; |
+ zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); |
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); |
+ }else{ |
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); |
+ } |
+ }else{ |
+ const char *z = pEList->a[i].zSpan; |
+ z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); |
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); |
+ } |
+ } |
+ generateColumnTypes(pParse, pTabList, pEList); |
+} |
+ |
+/* |
+** Given an expression list (which is really the list of expressions |
+** that form the result set of a SELECT statement) compute appropriate |
+** column names for a table that would hold the expression list. |
+** |
+** All column names will be unique. |
+** |
+** Only the column names are computed. Column.zType, Column.zColl, |
+** and other fields of Column are zeroed. |
+** |
+** Return SQLITE_OK on success. If a memory allocation error occurs, |
+** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. |
+*/ |
+static int selectColumnsFromExprList( |
+ Parse *pParse, /* Parsing context */ |
+ ExprList *pEList, /* Expr list from which to derive column names */ |
+ i16 *pnCol, /* Write the number of columns here */ |
+ Column **paCol /* Write the new column list here */ |
+){ |
+ sqlite3 *db = pParse->db; /* Database connection */ |
+ int i, j; /* Loop counters */ |
+ int cnt; /* Index added to make the name unique */ |
+ Column *aCol, *pCol; /* For looping over result columns */ |
+ int nCol; /* Number of columns in the result set */ |
+ Expr *p; /* Expression for a single result column */ |
+ char *zName; /* Column name */ |
+ int nName; /* Size of name in zName[] */ |
+ |
+ if( pEList ){ |
+ nCol = pEList->nExpr; |
+ aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); |
+ testcase( aCol==0 ); |
+ }else{ |
+ nCol = 0; |
+ aCol = 0; |
+ } |
+ *pnCol = nCol; |
+ *paCol = aCol; |
+ |
+ for(i=0, pCol=aCol; i<nCol; i++, pCol++){ |
+ /* Get an appropriate name for the column |
+ */ |
+ p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); |
+ if( (zName = pEList->a[i].zName)!=0 ){ |
+ /* If the column contains an "AS <name>" phrase, use <name> as the name */ |
+ zName = sqlite3DbStrDup(db, zName); |
+ }else{ |
+ Expr *pColExpr = p; /* The expression that is the result column name */ |
+ Table *pTab; /* Table associated with this expression */ |
+ while( pColExpr->op==TK_DOT ){ |
+ pColExpr = pColExpr->pRight; |
+ assert( pColExpr!=0 ); |
+ } |
+ if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ |
+ /* For columns use the column name name */ |
+ int iCol = pColExpr->iColumn; |
+ pTab = pColExpr->pTab; |
+ if( iCol<0 ) iCol = pTab->iPKey; |
+ zName = sqlite3MPrintf(db, "%s", |
+ iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); |
+ }else if( pColExpr->op==TK_ID ){ |
+ assert( !ExprHasProperty(pColExpr, EP_IntValue) ); |
+ zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); |
+ }else{ |
+ /* Use the original text of the column expression as its name */ |
+ zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); |
+ } |
+ } |
+ if( db->mallocFailed ){ |
+ sqlite3DbFree(db, zName); |
+ break; |
+ } |
+ |
+ /* Make sure the column name is unique. If the name is not unique, |
+ ** append an integer to the name so that it becomes unique. |
+ */ |
+ nName = sqlite3Strlen30(zName); |
+ for(j=cnt=0; j<i; j++){ |
+ if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ |
+ char *zNewName; |
+ int k; |
+ for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){} |
+ if( k>=0 && zName[k]==':' ) nName = k; |
+ zName[nName] = 0; |
+ zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); |
+ sqlite3DbFree(db, zName); |
+ zName = zNewName; |
+ j = -1; |
+ if( zName==0 ) break; |
+ } |
+ } |
+ pCol->zName = zName; |
+ } |
+ if( db->mallocFailed ){ |
+ for(j=0; j<i; j++){ |
+ sqlite3DbFree(db, aCol[j].zName); |
+ } |
+ sqlite3DbFree(db, aCol); |
+ *paCol = 0; |
+ *pnCol = 0; |
+ return SQLITE_NOMEM; |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Add type and collation information to a column list based on |
+** a SELECT statement. |
+** |
+** The column list presumably came from selectColumnNamesFromExprList(). |
+** The column list has only names, not types or collations. This |
+** routine goes through and adds the types and collations. |
+** |
+** This routine requires that all identifiers in the SELECT |
+** statement be resolved. |
+*/ |
+static void selectAddColumnTypeAndCollation( |
+ Parse *pParse, /* Parsing contexts */ |
+ Table *pTab, /* Add column type information to this table */ |
+ Select *pSelect /* SELECT used to determine types and collations */ |
+){ |
+ sqlite3 *db = pParse->db; |
+ NameContext sNC; |
+ Column *pCol; |
+ CollSeq *pColl; |
+ int i; |
+ Expr *p; |
+ struct ExprList_item *a; |
+ u64 szAll = 0; |
+ |
+ assert( pSelect!=0 ); |
+ assert( (pSelect->selFlags & SF_Resolved)!=0 ); |
+ assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); |
+ if( db->mallocFailed ) return; |
+ memset(&sNC, 0, sizeof(sNC)); |
+ sNC.pSrcList = pSelect->pSrc; |
+ a = pSelect->pEList->a; |
+ for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ |
+ p = a[i].pExpr; |
+ pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst)); |
+ szAll += pCol->szEst; |
+ pCol->affinity = sqlite3ExprAffinity(p); |
+ if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; |
+ pColl = sqlite3ExprCollSeq(pParse, p); |
+ if( pColl ){ |
+ pCol->zColl = sqlite3DbStrDup(db, pColl->zName); |
+ } |
+ } |
+ pTab->szTabRow = sqlite3LogEst(szAll*4); |
+} |
+ |
+/* |
+** Given a SELECT statement, generate a Table structure that describes |
+** the result set of that SELECT. |
+*/ |
+Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ |
+ Table *pTab; |
+ sqlite3 *db = pParse->db; |
+ int savedFlags; |
+ |
+ savedFlags = db->flags; |
+ db->flags &= ~SQLITE_FullColNames; |
+ db->flags |= SQLITE_ShortColNames; |
+ sqlite3SelectPrep(pParse, pSelect, 0); |
+ if( pParse->nErr ) return 0; |
+ while( pSelect->pPrior ) pSelect = pSelect->pPrior; |
+ db->flags = savedFlags; |
+ pTab = sqlite3DbMallocZero(db, sizeof(Table) ); |
+ if( pTab==0 ){ |
+ return 0; |
+ } |
+ /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside |
+ ** is disabled */ |
+ assert( db->lookaside.bEnabled==0 ); |
+ pTab->nRef = 1; |
+ pTab->zName = 0; |
+ pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); |
+ selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); |
+ selectAddColumnTypeAndCollation(pParse, pTab, pSelect); |
+ pTab->iPKey = -1; |
+ if( db->mallocFailed ){ |
+ sqlite3DeleteTable(db, pTab); |
+ return 0; |
+ } |
+ return pTab; |
+} |
+ |
+/* |
+** Get a VDBE for the given parser context. Create a new one if necessary. |
+** If an error occurs, return NULL and leave a message in pParse. |
+*/ |
+Vdbe *sqlite3GetVdbe(Parse *pParse){ |
+ Vdbe *v = pParse->pVdbe; |
+ if( v==0 ){ |
+ v = pParse->pVdbe = sqlite3VdbeCreate(pParse); |
+ if( v ) sqlite3VdbeAddOp0(v, OP_Init); |
+ if( pParse->pToplevel==0 |
+ && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) |
+ ){ |
+ pParse->okConstFactor = 1; |
+ } |
+ |
+ } |
+ return v; |
+} |
+ |
+ |
+/* |
+** Compute the iLimit and iOffset fields of the SELECT based on the |
+** pLimit and pOffset expressions. pLimit and pOffset hold the expressions |
+** that appear in the original SQL statement after the LIMIT and OFFSET |
+** keywords. Or NULL if those keywords are omitted. iLimit and iOffset |
+** are the integer memory register numbers for counters used to compute |
+** the limit and offset. If there is no limit and/or offset, then |
+** iLimit and iOffset are negative. |
+** |
+** This routine changes the values of iLimit and iOffset only if |
+** a limit or offset is defined by pLimit and pOffset. iLimit and |
+** iOffset should have been preset to appropriate default values (zero) |
+** prior to calling this routine. |
+** |
+** The iOffset register (if it exists) is initialized to the value |
+** of the OFFSET. The iLimit register is initialized to LIMIT. Register |
+** iOffset+1 is initialized to LIMIT+OFFSET. |
+** |
+** Only if pLimit!=0 or pOffset!=0 do the limit registers get |
+** redefined. The UNION ALL operator uses this property to force |
+** the reuse of the same limit and offset registers across multiple |
+** SELECT statements. |
+*/ |
+static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ |
+ Vdbe *v = 0; |
+ int iLimit = 0; |
+ int iOffset; |
+ int addr1, n; |
+ if( p->iLimit ) return; |
+ |
+ /* |
+ ** "LIMIT -1" always shows all rows. There is some |
+ ** controversy about what the correct behavior should be. |
+ ** The current implementation interprets "LIMIT 0" to mean |
+ ** no rows. |
+ */ |
+ sqlite3ExprCacheClear(pParse); |
+ assert( p->pOffset==0 || p->pLimit!=0 ); |
+ if( p->pLimit ){ |
+ p->iLimit = iLimit = ++pParse->nMem; |
+ v = sqlite3GetVdbe(pParse); |
+ assert( v!=0 ); |
+ if( sqlite3ExprIsInteger(p->pLimit, &n) ){ |
+ sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); |
+ VdbeComment((v, "LIMIT counter")); |
+ if( n==0 ){ |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); |
+ }else if( n>=0 && p->nSelectRow>(u64)n ){ |
+ p->nSelectRow = n; |
+ } |
+ }else{ |
+ sqlite3ExprCode(pParse, p->pLimit, iLimit); |
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); |
+ VdbeComment((v, "LIMIT counter")); |
+ sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); VdbeCoverage(v); |
+ } |
+ if( p->pOffset ){ |
+ p->iOffset = iOffset = ++pParse->nMem; |
+ pParse->nMem++; /* Allocate an extra register for limit+offset */ |
+ sqlite3ExprCode(pParse, p->pOffset, iOffset); |
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); |
+ VdbeComment((v, "OFFSET counter")); |
+ addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v); |
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); |
+ sqlite3VdbeJumpHere(v, addr1); |
+ sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); |
+ VdbeComment((v, "LIMIT+OFFSET")); |
+ addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v); |
+ sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); |
+ sqlite3VdbeJumpHere(v, addr1); |
+ } |
+ } |
+} |
+ |
+#ifndef SQLITE_OMIT_COMPOUND_SELECT |
+/* |
+** Return the appropriate collating sequence for the iCol-th column of |
+** the result set for the compound-select statement "p". Return NULL if |
+** the column has no default collating sequence. |
+** |
+** The collating sequence for the compound select is taken from the |
+** left-most term of the select that has a collating sequence. |
+*/ |
+static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ |
+ CollSeq *pRet; |
+ if( p->pPrior ){ |
+ pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); |
+ }else{ |
+ pRet = 0; |
+ } |
+ assert( iCol>=0 ); |
+ if( pRet==0 && iCol<p->pEList->nExpr ){ |
+ pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); |
+ } |
+ return pRet; |
+} |
+ |
+/* |
+** The select statement passed as the second parameter is a compound SELECT |
+** with an ORDER BY clause. This function allocates and returns a KeyInfo |
+** structure suitable for implementing the ORDER BY. |
+** |
+** Space to hold the KeyInfo structure is obtained from malloc. The calling |
+** function is responsible for ensuring that this structure is eventually |
+** freed. |
+*/ |
+static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ |
+ ExprList *pOrderBy = p->pOrderBy; |
+ int nOrderBy = p->pOrderBy->nExpr; |
+ sqlite3 *db = pParse->db; |
+ KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); |
+ if( pRet ){ |
+ int i; |
+ for(i=0; i<nOrderBy; i++){ |
+ struct ExprList_item *pItem = &pOrderBy->a[i]; |
+ Expr *pTerm = pItem->pExpr; |
+ CollSeq *pColl; |
+ |
+ if( pTerm->flags & EP_Collate ){ |
+ pColl = sqlite3ExprCollSeq(pParse, pTerm); |
+ }else{ |
+ pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); |
+ if( pColl==0 ) pColl = db->pDfltColl; |
+ pOrderBy->a[i].pExpr = |
+ sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); |
+ } |
+ assert( sqlite3KeyInfoIsWriteable(pRet) ); |
+ pRet->aColl[i] = pColl; |
+ pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; |
+ } |
+ } |
+ |
+ return pRet; |
+} |
+ |
+#ifndef SQLITE_OMIT_CTE |
+/* |
+** This routine generates VDBE code to compute the content of a WITH RECURSIVE |
+** query of the form: |
+** |
+** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) |
+** \___________/ \_______________/ |
+** p->pPrior p |
+** |
+** |
+** There is exactly one reference to the recursive-table in the FROM clause |
+** of recursive-query, marked with the SrcList->a[].isRecursive flag. |
+** |
+** The setup-query runs once to generate an initial set of rows that go |
+** into a Queue table. Rows are extracted from the Queue table one by |
+** one. Each row extracted from Queue is output to pDest. Then the single |
+** extracted row (now in the iCurrent table) becomes the content of the |
+** recursive-table for a recursive-query run. The output of the recursive-query |
+** is added back into the Queue table. Then another row is extracted from Queue |
+** and the iteration continues until the Queue table is empty. |
+** |
+** If the compound query operator is UNION then no duplicate rows are ever |
+** inserted into the Queue table. The iDistinct table keeps a copy of all rows |
+** that have ever been inserted into Queue and causes duplicates to be |
+** discarded. If the operator is UNION ALL, then duplicates are allowed. |
+** |
+** If the query has an ORDER BY, then entries in the Queue table are kept in |
+** ORDER BY order and the first entry is extracted for each cycle. Without |
+** an ORDER BY, the Queue table is just a FIFO. |
+** |
+** If a LIMIT clause is provided, then the iteration stops after LIMIT rows |
+** have been output to pDest. A LIMIT of zero means to output no rows and a |
+** negative LIMIT means to output all rows. If there is also an OFFSET clause |
+** with a positive value, then the first OFFSET outputs are discarded rather |
+** than being sent to pDest. The LIMIT count does not begin until after OFFSET |
+** rows have been skipped. |
+*/ |
+static void generateWithRecursiveQuery( |
+ Parse *pParse, /* Parsing context */ |
+ Select *p, /* The recursive SELECT to be coded */ |
+ SelectDest *pDest /* What to do with query results */ |
+){ |
+ SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ |
+ int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ |
+ Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ |
+ Select *pSetup = p->pPrior; /* The setup query */ |
+ int addrTop; /* Top of the loop */ |
+ int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ |
+ int iCurrent = 0; /* The Current table */ |
+ int regCurrent; /* Register holding Current table */ |
+ int iQueue; /* The Queue table */ |
+ int iDistinct = 0; /* To ensure unique results if UNION */ |
+ int eDest = SRT_Fifo; /* How to write to Queue */ |
+ SelectDest destQueue; /* SelectDest targetting the Queue table */ |
+ int i; /* Loop counter */ |
+ int rc; /* Result code */ |
+ ExprList *pOrderBy; /* The ORDER BY clause */ |
+ Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ |
+ int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ |
+ |
+ /* Obtain authorization to do a recursive query */ |
+ if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; |
+ |
+ /* Process the LIMIT and OFFSET clauses, if they exist */ |
+ addrBreak = sqlite3VdbeMakeLabel(v); |
+ computeLimitRegisters(pParse, p, addrBreak); |
+ pLimit = p->pLimit; |
+ pOffset = p->pOffset; |
+ regLimit = p->iLimit; |
+ regOffset = p->iOffset; |
+ p->pLimit = p->pOffset = 0; |
+ p->iLimit = p->iOffset = 0; |
+ pOrderBy = p->pOrderBy; |
+ |
+ /* Locate the cursor number of the Current table */ |
+ for(i=0; ALWAYS(i<pSrc->nSrc); i++){ |
+ if( pSrc->a[i].isRecursive ){ |
+ iCurrent = pSrc->a[i].iCursor; |
+ break; |
+ } |
+ } |
+ |
+ /* Allocate cursors numbers for Queue and Distinct. The cursor number for |
+ ** the Distinct table must be exactly one greater than Queue in order |
+ ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ |
+ iQueue = pParse->nTab++; |
+ if( p->op==TK_UNION ){ |
+ eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; |
+ iDistinct = pParse->nTab++; |
+ }else{ |
+ eDest = pOrderBy ? SRT_Queue : SRT_Fifo; |
+ } |
+ sqlite3SelectDestInit(&destQueue, eDest, iQueue); |
+ |
+ /* Allocate cursors for Current, Queue, and Distinct. */ |
+ regCurrent = ++pParse->nMem; |
+ sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); |
+ if( pOrderBy ){ |
+ KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); |
+ sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, |
+ (char*)pKeyInfo, P4_KEYINFO); |
+ destQueue.pOrderBy = pOrderBy; |
+ }else{ |
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); |
+ } |
+ VdbeComment((v, "Queue table")); |
+ if( iDistinct ){ |
+ p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); |
+ p->selFlags |= SF_UsesEphemeral; |
+ } |
+ |
+ /* Detach the ORDER BY clause from the compound SELECT */ |
+ p->pOrderBy = 0; |
+ |
+ /* Store the results of the setup-query in Queue. */ |
+ pSetup->pNext = 0; |
+ rc = sqlite3Select(pParse, pSetup, &destQueue); |
+ pSetup->pNext = p; |
+ if( rc ) goto end_of_recursive_query; |
+ |
+ /* Find the next row in the Queue and output that row */ |
+ addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); |
+ |
+ /* Transfer the next row in Queue over to Current */ |
+ sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ |
+ if( pOrderBy ){ |
+ sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); |
+ }else{ |
+ sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); |
+ } |
+ sqlite3VdbeAddOp1(v, OP_Delete, iQueue); |
+ |
+ /* Output the single row in Current */ |
+ addrCont = sqlite3VdbeMakeLabel(v); |
+ codeOffset(v, regOffset, addrCont); |
+ selectInnerLoop(pParse, p, p->pEList, iCurrent, |
+ 0, 0, pDest, addrCont, addrBreak); |
+ if( regLimit ){ |
+ sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1); |
+ VdbeCoverage(v); |
+ } |
+ sqlite3VdbeResolveLabel(v, addrCont); |
+ |
+ /* Execute the recursive SELECT taking the single row in Current as |
+ ** the value for the recursive-table. Store the results in the Queue. |
+ */ |
+ p->pPrior = 0; |
+ sqlite3Select(pParse, p, &destQueue); |
+ assert( p->pPrior==0 ); |
+ p->pPrior = pSetup; |
+ |
+ /* Keep running the loop until the Queue is empty */ |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); |
+ sqlite3VdbeResolveLabel(v, addrBreak); |
+ |
+end_of_recursive_query: |
+ sqlite3ExprListDelete(pParse->db, p->pOrderBy); |
+ p->pOrderBy = pOrderBy; |
+ p->pLimit = pLimit; |
+ p->pOffset = pOffset; |
+ return; |
+} |
+#endif /* SQLITE_OMIT_CTE */ |
+ |
+/* Forward references */ |
+static int multiSelectOrderBy( |
+ Parse *pParse, /* Parsing context */ |
+ Select *p, /* The right-most of SELECTs to be coded */ |
+ SelectDest *pDest /* What to do with query results */ |
+); |
+ |
+ |
+/* |
+** This routine is called to process a compound query form from |
+** two or more separate queries using UNION, UNION ALL, EXCEPT, or |
+** INTERSECT |
+** |
+** "p" points to the right-most of the two queries. the query on the |
+** left is p->pPrior. The left query could also be a compound query |
+** in which case this routine will be called recursively. |
+** |
+** The results of the total query are to be written into a destination |
+** of type eDest with parameter iParm. |
+** |
+** Example 1: Consider a three-way compound SQL statement. |
+** |
+** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 |
+** |
+** This statement is parsed up as follows: |
+** |
+** SELECT c FROM t3 |
+** | |
+** `-----> SELECT b FROM t2 |
+** | |
+** `------> SELECT a FROM t1 |
+** |
+** The arrows in the diagram above represent the Select.pPrior pointer. |
+** So if this routine is called with p equal to the t3 query, then |
+** pPrior will be the t2 query. p->op will be TK_UNION in this case. |
+** |
+** Notice that because of the way SQLite parses compound SELECTs, the |
+** individual selects always group from left to right. |
+*/ |
+static int multiSelect( |
+ Parse *pParse, /* Parsing context */ |
+ Select *p, /* The right-most of SELECTs to be coded */ |
+ SelectDest *pDest /* What to do with query results */ |
+){ |
+ int rc = SQLITE_OK; /* Success code from a subroutine */ |
+ Select *pPrior; /* Another SELECT immediately to our left */ |
+ Vdbe *v; /* Generate code to this VDBE */ |
+ SelectDest dest; /* Alternative data destination */ |
+ Select *pDelete = 0; /* Chain of simple selects to delete */ |
+ sqlite3 *db; /* Database connection */ |
+#ifndef SQLITE_OMIT_EXPLAIN |
+ int iSub1 = 0; /* EQP id of left-hand query */ |
+ int iSub2 = 0; /* EQP id of right-hand query */ |
+#endif |
+ |
+ /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only |
+ ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. |
+ */ |
+ assert( p && p->pPrior ); /* Calling function guarantees this much */ |
+ assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); |
+ db = pParse->db; |
+ pPrior = p->pPrior; |
+ dest = *pDest; |
+ if( pPrior->pOrderBy ){ |
+ sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", |
+ selectOpName(p->op)); |
+ rc = 1; |
+ goto multi_select_end; |
+ } |
+ if( pPrior->pLimit ){ |
+ sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", |
+ selectOpName(p->op)); |
+ rc = 1; |
+ goto multi_select_end; |
+ } |
+ |
+ v = sqlite3GetVdbe(pParse); |
+ assert( v!=0 ); /* The VDBE already created by calling function */ |
+ |
+ /* Create the destination temporary table if necessary |
+ */ |
+ if( dest.eDest==SRT_EphemTab ){ |
+ assert( p->pEList ); |
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); |
+ sqlite3VdbeChangeP5(v, BTREE_UNORDERED); |
+ dest.eDest = SRT_Table; |
+ } |
+ |
+ /* Make sure all SELECTs in the statement have the same number of elements |
+ ** in their result sets. |
+ */ |
+ assert( p->pEList && pPrior->pEList ); |
+ if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ |
+ if( p->selFlags & SF_Values ){ |
+ sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); |
+ }else{ |
+ sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" |
+ " do not have the same number of result columns", selectOpName(p->op)); |
+ } |
+ rc = 1; |
+ goto multi_select_end; |
+ } |
+ |
+#ifndef SQLITE_OMIT_CTE |
+ if( p->selFlags & SF_Recursive ){ |
+ generateWithRecursiveQuery(pParse, p, &dest); |
+ }else |
+#endif |
+ |
+ /* Compound SELECTs that have an ORDER BY clause are handled separately. |
+ */ |
+ if( p->pOrderBy ){ |
+ return multiSelectOrderBy(pParse, p, pDest); |
+ }else |
+ |
+ /* Generate code for the left and right SELECT statements. |
+ */ |
+ switch( p->op ){ |
+ case TK_ALL: { |
+ int addr = 0; |
+ int nLimit; |
+ assert( !pPrior->pLimit ); |
+ pPrior->iLimit = p->iLimit; |
+ pPrior->iOffset = p->iOffset; |
+ pPrior->pLimit = p->pLimit; |
+ pPrior->pOffset = p->pOffset; |
+ explainSetInteger(iSub1, pParse->iNextSelectId); |
+ rc = sqlite3Select(pParse, pPrior, &dest); |
+ p->pLimit = 0; |
+ p->pOffset = 0; |
+ if( rc ){ |
+ goto multi_select_end; |
+ } |
+ p->pPrior = 0; |
+ p->iLimit = pPrior->iLimit; |
+ p->iOffset = pPrior->iOffset; |
+ if( p->iLimit ){ |
+ addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeCoverage(v); |
+ VdbeComment((v, "Jump ahead if LIMIT reached")); |
+ } |
+ explainSetInteger(iSub2, pParse->iNextSelectId); |
+ rc = sqlite3Select(pParse, p, &dest); |
+ testcase( rc!=SQLITE_OK ); |
+ pDelete = p->pPrior; |
+ p->pPrior = pPrior; |
+ p->nSelectRow += pPrior->nSelectRow; |
+ if( pPrior->pLimit |
+ && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) |
+ && nLimit>0 && p->nSelectRow > (u64)nLimit |
+ ){ |
+ p->nSelectRow = nLimit; |
+ } |
+ if( addr ){ |
+ sqlite3VdbeJumpHere(v, addr); |
+ } |
+ break; |
+ } |
+ case TK_EXCEPT: |
+ case TK_UNION: { |
+ int unionTab; /* Cursor number of the temporary table holding result */ |
+ u8 op = 0; /* One of the SRT_ operations to apply to self */ |
+ int priorOp; /* The SRT_ operation to apply to prior selects */ |
+ Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ |
+ int addr; |
+ SelectDest uniondest; |
+ |
+ testcase( p->op==TK_EXCEPT ); |
+ testcase( p->op==TK_UNION ); |
+ priorOp = SRT_Union; |
+ if( dest.eDest==priorOp ){ |
+ /* We can reuse a temporary table generated by a SELECT to our |
+ ** right. |
+ */ |
+ assert( p->pLimit==0 ); /* Not allowed on leftward elements */ |
+ assert( p->pOffset==0 ); /* Not allowed on leftward elements */ |
+ unionTab = dest.iSDParm; |
+ }else{ |
+ /* We will need to create our own temporary table to hold the |
+ ** intermediate results. |
+ */ |
+ unionTab = pParse->nTab++; |
+ assert( p->pOrderBy==0 ); |
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); |
+ assert( p->addrOpenEphm[0] == -1 ); |
+ p->addrOpenEphm[0] = addr; |
+ findRightmost(p)->selFlags |= SF_UsesEphemeral; |
+ assert( p->pEList ); |
+ } |
+ |
+ /* Code the SELECT statements to our left |
+ */ |
+ assert( !pPrior->pOrderBy ); |
+ sqlite3SelectDestInit(&uniondest, priorOp, unionTab); |
+ explainSetInteger(iSub1, pParse->iNextSelectId); |
+ rc = sqlite3Select(pParse, pPrior, &uniondest); |
+ if( rc ){ |
+ goto multi_select_end; |
+ } |
+ |
+ /* Code the current SELECT statement |
+ */ |
+ if( p->op==TK_EXCEPT ){ |
+ op = SRT_Except; |
+ }else{ |
+ assert( p->op==TK_UNION ); |
+ op = SRT_Union; |
+ } |
+ p->pPrior = 0; |
+ pLimit = p->pLimit; |
+ p->pLimit = 0; |
+ pOffset = p->pOffset; |
+ p->pOffset = 0; |
+ uniondest.eDest = op; |
+ explainSetInteger(iSub2, pParse->iNextSelectId); |
+ rc = sqlite3Select(pParse, p, &uniondest); |
+ testcase( rc!=SQLITE_OK ); |
+ /* Query flattening in sqlite3Select() might refill p->pOrderBy. |
+ ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ |
+ sqlite3ExprListDelete(db, p->pOrderBy); |
+ pDelete = p->pPrior; |
+ p->pPrior = pPrior; |
+ p->pOrderBy = 0; |
+ if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; |
+ sqlite3ExprDelete(db, p->pLimit); |
+ p->pLimit = pLimit; |
+ p->pOffset = pOffset; |
+ p->iLimit = 0; |
+ p->iOffset = 0; |
+ |
+ /* Convert the data in the temporary table into whatever form |
+ ** it is that we currently need. |
+ */ |
+ assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); |
+ if( dest.eDest!=priorOp ){ |
+ int iCont, iBreak, iStart; |
+ assert( p->pEList ); |
+ if( dest.eDest==SRT_Output ){ |
+ Select *pFirst = p; |
+ while( pFirst->pPrior ) pFirst = pFirst->pPrior; |
+ generateColumnNames(pParse, 0, pFirst->pEList); |
+ } |
+ iBreak = sqlite3VdbeMakeLabel(v); |
+ iCont = sqlite3VdbeMakeLabel(v); |
+ computeLimitRegisters(pParse, p, iBreak); |
+ sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); |
+ iStart = sqlite3VdbeCurrentAddr(v); |
+ selectInnerLoop(pParse, p, p->pEList, unionTab, |
+ 0, 0, &dest, iCont, iBreak); |
+ sqlite3VdbeResolveLabel(v, iCont); |
+ sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); |
+ sqlite3VdbeResolveLabel(v, iBreak); |
+ sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); |
+ } |
+ break; |
+ } |
+ default: assert( p->op==TK_INTERSECT ); { |
+ int tab1, tab2; |
+ int iCont, iBreak, iStart; |
+ Expr *pLimit, *pOffset; |
+ int addr; |
+ SelectDest intersectdest; |
+ int r1; |
+ |
+ /* INTERSECT is different from the others since it requires |
+ ** two temporary tables. Hence it has its own case. Begin |
+ ** by allocating the tables we will need. |
+ */ |
+ tab1 = pParse->nTab++; |
+ tab2 = pParse->nTab++; |
+ assert( p->pOrderBy==0 ); |
+ |
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); |
+ assert( p->addrOpenEphm[0] == -1 ); |
+ p->addrOpenEphm[0] = addr; |
+ findRightmost(p)->selFlags |= SF_UsesEphemeral; |
+ assert( p->pEList ); |
+ |
+ /* Code the SELECTs to our left into temporary table "tab1". |
+ */ |
+ sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); |
+ explainSetInteger(iSub1, pParse->iNextSelectId); |
+ rc = sqlite3Select(pParse, pPrior, &intersectdest); |
+ if( rc ){ |
+ goto multi_select_end; |
+ } |
+ |
+ /* Code the current SELECT into temporary table "tab2" |
+ */ |
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); |
+ assert( p->addrOpenEphm[1] == -1 ); |
+ p->addrOpenEphm[1] = addr; |
+ p->pPrior = 0; |
+ pLimit = p->pLimit; |
+ p->pLimit = 0; |
+ pOffset = p->pOffset; |
+ p->pOffset = 0; |
+ intersectdest.iSDParm = tab2; |
+ explainSetInteger(iSub2, pParse->iNextSelectId); |
+ rc = sqlite3Select(pParse, p, &intersectdest); |
+ testcase( rc!=SQLITE_OK ); |
+ pDelete = p->pPrior; |
+ p->pPrior = pPrior; |
+ if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; |
+ sqlite3ExprDelete(db, p->pLimit); |
+ p->pLimit = pLimit; |
+ p->pOffset = pOffset; |
+ |
+ /* Generate code to take the intersection of the two temporary |
+ ** tables. |
+ */ |
+ assert( p->pEList ); |
+ if( dest.eDest==SRT_Output ){ |
+ Select *pFirst = p; |
+ while( pFirst->pPrior ) pFirst = pFirst->pPrior; |
+ generateColumnNames(pParse, 0, pFirst->pEList); |
+ } |
+ iBreak = sqlite3VdbeMakeLabel(v); |
+ iCont = sqlite3VdbeMakeLabel(v); |
+ computeLimitRegisters(pParse, p, iBreak); |
+ sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); |
+ r1 = sqlite3GetTempReg(pParse); |
+ iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); |
+ sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); |
+ sqlite3ReleaseTempReg(pParse, r1); |
+ selectInnerLoop(pParse, p, p->pEList, tab1, |
+ 0, 0, &dest, iCont, iBreak); |
+ sqlite3VdbeResolveLabel(v, iCont); |
+ sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); |
+ sqlite3VdbeResolveLabel(v, iBreak); |
+ sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); |
+ sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); |
+ break; |
+ } |
+ } |
+ |
+ explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); |
+ |
+ /* Compute collating sequences used by |
+ ** temporary tables needed to implement the compound select. |
+ ** Attach the KeyInfo structure to all temporary tables. |
+ ** |
+ ** This section is run by the right-most SELECT statement only. |
+ ** SELECT statements to the left always skip this part. The right-most |
+ ** SELECT might also skip this part if it has no ORDER BY clause and |
+ ** no temp tables are required. |
+ */ |
+ if( p->selFlags & SF_UsesEphemeral ){ |
+ int i; /* Loop counter */ |
+ KeyInfo *pKeyInfo; /* Collating sequence for the result set */ |
+ Select *pLoop; /* For looping through SELECT statements */ |
+ CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ |
+ int nCol; /* Number of columns in result set */ |
+ |
+ assert( p->pNext==0 ); |
+ nCol = p->pEList->nExpr; |
+ pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); |
+ if( !pKeyInfo ){ |
+ rc = SQLITE_NOMEM; |
+ goto multi_select_end; |
+ } |
+ for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ |
+ *apColl = multiSelectCollSeq(pParse, p, i); |
+ if( 0==*apColl ){ |
+ *apColl = db->pDfltColl; |
+ } |
+ } |
+ |
+ for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ |
+ for(i=0; i<2; i++){ |
+ int addr = pLoop->addrOpenEphm[i]; |
+ if( addr<0 ){ |
+ /* If [0] is unused then [1] is also unused. So we can |
+ ** always safely abort as soon as the first unused slot is found */ |
+ assert( pLoop->addrOpenEphm[1]<0 ); |
+ break; |
+ } |
+ sqlite3VdbeChangeP2(v, addr, nCol); |
+ sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), |
+ P4_KEYINFO); |
+ pLoop->addrOpenEphm[i] = -1; |
+ } |
+ } |
+ sqlite3KeyInfoUnref(pKeyInfo); |
+ } |
+ |
+multi_select_end: |
+ pDest->iSdst = dest.iSdst; |
+ pDest->nSdst = dest.nSdst; |
+ sqlite3SelectDelete(db, pDelete); |
+ return rc; |
+} |
+#endif /* SQLITE_OMIT_COMPOUND_SELECT */ |
+ |
+/* |
+** Code an output subroutine for a coroutine implementation of a |
+** SELECT statment. |
+** |
+** The data to be output is contained in pIn->iSdst. There are |
+** pIn->nSdst columns to be output. pDest is where the output should |
+** be sent. |
+** |
+** regReturn is the number of the register holding the subroutine |
+** return address. |
+** |
+** If regPrev>0 then it is the first register in a vector that |
+** records the previous output. mem[regPrev] is a flag that is false |
+** if there has been no previous output. If regPrev>0 then code is |
+** generated to suppress duplicates. pKeyInfo is used for comparing |
+** keys. |
+** |
+** If the LIMIT found in p->iLimit is reached, jump immediately to |
+** iBreak. |
+*/ |
+static int generateOutputSubroutine( |
+ Parse *pParse, /* Parsing context */ |
+ Select *p, /* The SELECT statement */ |
+ SelectDest *pIn, /* Coroutine supplying data */ |
+ SelectDest *pDest, /* Where to send the data */ |
+ int regReturn, /* The return address register */ |
+ int regPrev, /* Previous result register. No uniqueness if 0 */ |
+ KeyInfo *pKeyInfo, /* For comparing with previous entry */ |
+ int iBreak /* Jump here if we hit the LIMIT */ |
+){ |
+ Vdbe *v = pParse->pVdbe; |
+ int iContinue; |
+ int addr; |
+ |
+ addr = sqlite3VdbeCurrentAddr(v); |
+ iContinue = sqlite3VdbeMakeLabel(v); |
+ |
+ /* Suppress duplicates for UNION, EXCEPT, and INTERSECT |
+ */ |
+ if( regPrev ){ |
+ int j1, j2; |
+ j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); |
+ j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, |
+ (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); |
+ sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v); |
+ sqlite3VdbeJumpHere(v, j1); |
+ sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); |
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); |
+ } |
+ if( pParse->db->mallocFailed ) return 0; |
+ |
+ /* Suppress the first OFFSET entries if there is an OFFSET clause |
+ */ |
+ codeOffset(v, p->iOffset, iContinue); |
+ |
+ switch( pDest->eDest ){ |
+ /* Store the result as data using a unique key. |
+ */ |
+ case SRT_Table: |
+ case SRT_EphemTab: { |
+ int r1 = sqlite3GetTempReg(pParse); |
+ int r2 = sqlite3GetTempReg(pParse); |
+ testcase( pDest->eDest==SRT_Table ); |
+ testcase( pDest->eDest==SRT_EphemTab ); |
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); |
+ sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); |
+ sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); |
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
+ sqlite3ReleaseTempReg(pParse, r2); |
+ sqlite3ReleaseTempReg(pParse, r1); |
+ break; |
+ } |
+ |
+#ifndef SQLITE_OMIT_SUBQUERY |
+ /* If we are creating a set for an "expr IN (SELECT ...)" construct, |
+ ** then there should be a single item on the stack. Write this |
+ ** item into the set table with bogus data. |
+ */ |
+ case SRT_Set: { |
+ int r1; |
+ assert( pIn->nSdst==1 ); |
+ pDest->affSdst = |
+ sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); |
+ r1 = sqlite3GetTempReg(pParse); |
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); |
+ sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); |
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); |
+ sqlite3ReleaseTempReg(pParse, r1); |
+ break; |
+ } |
+ |
+#if 0 /* Never occurs on an ORDER BY query */ |
+ /* If any row exist in the result set, record that fact and abort. |
+ */ |
+ case SRT_Exists: { |
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm); |
+ /* The LIMIT clause will terminate the loop for us */ |
+ break; |
+ } |
+#endif |
+ |
+ /* If this is a scalar select that is part of an expression, then |
+ ** store the results in the appropriate memory cell and break out |
+ ** of the scan loop. |
+ */ |
+ case SRT_Mem: { |
+ assert( pIn->nSdst==1 ); |
+ sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); |
+ /* The LIMIT clause will jump out of the loop for us */ |
+ break; |
+ } |
+#endif /* #ifndef SQLITE_OMIT_SUBQUERY */ |
+ |
+ /* The results are stored in a sequence of registers |
+ ** starting at pDest->iSdst. Then the co-routine yields. |
+ */ |
+ case SRT_Coroutine: { |
+ if( pDest->iSdst==0 ){ |
+ pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); |
+ pDest->nSdst = pIn->nSdst; |
+ } |
+ sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst); |
+ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); |
+ break; |
+ } |
+ |
+ /* If none of the above, then the result destination must be |
+ ** SRT_Output. This routine is never called with any other |
+ ** destination other than the ones handled above or SRT_Output. |
+ ** |
+ ** For SRT_Output, results are stored in a sequence of registers. |
+ ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to |
+ ** return the next row of result. |
+ */ |
+ default: { |
+ assert( pDest->eDest==SRT_Output ); |
+ sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); |
+ sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); |
+ break; |
+ } |
+ } |
+ |
+ /* Jump to the end of the loop if the LIMIT is reached. |
+ */ |
+ if( p->iLimit ){ |
+ sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v); |
+ } |
+ |
+ /* Generate the subroutine return |
+ */ |
+ sqlite3VdbeResolveLabel(v, iContinue); |
+ sqlite3VdbeAddOp1(v, OP_Return, regReturn); |
+ |
+ return addr; |
+} |
+ |
+/* |
+** Alternative compound select code generator for cases when there |
+** is an ORDER BY clause. |
+** |
+** We assume a query of the following form: |
+** |
+** <selectA> <operator> <selectB> ORDER BY <orderbylist> |
+** |
+** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea |
+** is to code both <selectA> and <selectB> with the ORDER BY clause as |
+** co-routines. Then run the co-routines in parallel and merge the results |
+** into the output. In addition to the two coroutines (called selectA and |
+** selectB) there are 7 subroutines: |
+** |
+** outA: Move the output of the selectA coroutine into the output |
+** of the compound query. |
+** |
+** outB: Move the output of the selectB coroutine into the output |
+** of the compound query. (Only generated for UNION and |
+** UNION ALL. EXCEPT and INSERTSECT never output a row that |
+** appears only in B.) |
+** |
+** AltB: Called when there is data from both coroutines and A<B. |
+** |
+** AeqB: Called when there is data from both coroutines and A==B. |
+** |
+** AgtB: Called when there is data from both coroutines and A>B. |
+** |
+** EofA: Called when data is exhausted from selectA. |
+** |
+** EofB: Called when data is exhausted from selectB. |
+** |
+** The implementation of the latter five subroutines depend on which |
+** <operator> is used: |
+** |
+** |
+** UNION ALL UNION EXCEPT INTERSECT |
+** ------------- ----------------- -------------- ----------------- |
+** AltB: outA, nextA outA, nextA outA, nextA nextA |
+** |
+** AeqB: outA, nextA nextA nextA outA, nextA |
+** |
+** AgtB: outB, nextB outB, nextB nextB nextB |
+** |
+** EofA: outB, nextB outB, nextB halt halt |
+** |
+** EofB: outA, nextA outA, nextA outA, nextA halt |
+** |
+** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA |
+** causes an immediate jump to EofA and an EOF on B following nextB causes |
+** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or |
+** following nextX causes a jump to the end of the select processing. |
+** |
+** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled |
+** within the output subroutine. The regPrev register set holds the previously |
+** output value. A comparison is made against this value and the output |
+** is skipped if the next results would be the same as the previous. |
+** |
+** The implementation plan is to implement the two coroutines and seven |
+** subroutines first, then put the control logic at the bottom. Like this: |
+** |
+** goto Init |
+** coA: coroutine for left query (A) |
+** coB: coroutine for right query (B) |
+** outA: output one row of A |
+** outB: output one row of B (UNION and UNION ALL only) |
+** EofA: ... |
+** EofB: ... |
+** AltB: ... |
+** AeqB: ... |
+** AgtB: ... |
+** Init: initialize coroutine registers |
+** yield coA |
+** if eof(A) goto EofA |
+** yield coB |
+** if eof(B) goto EofB |
+** Cmpr: Compare A, B |
+** Jump AltB, AeqB, AgtB |
+** End: ... |
+** |
+** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not |
+** actually called using Gosub and they do not Return. EofA and EofB loop |
+** until all data is exhausted then jump to the "end" labe. AltB, AeqB, |
+** and AgtB jump to either L2 or to one of EofA or EofB. |
+*/ |
+#ifndef SQLITE_OMIT_COMPOUND_SELECT |
+static int multiSelectOrderBy( |
+ Parse *pParse, /* Parsing context */ |
+ Select *p, /* The right-most of SELECTs to be coded */ |
+ SelectDest *pDest /* What to do with query results */ |
+){ |
+ int i, j; /* Loop counters */ |
+ Select *pPrior; /* Another SELECT immediately to our left */ |
+ Vdbe *v; /* Generate code to this VDBE */ |
+ SelectDest destA; /* Destination for coroutine A */ |
+ SelectDest destB; /* Destination for coroutine B */ |
+ int regAddrA; /* Address register for select-A coroutine */ |
+ int regAddrB; /* Address register for select-B coroutine */ |
+ int addrSelectA; /* Address of the select-A coroutine */ |
+ int addrSelectB; /* Address of the select-B coroutine */ |
+ int regOutA; /* Address register for the output-A subroutine */ |
+ int regOutB; /* Address register for the output-B subroutine */ |
+ int addrOutA; /* Address of the output-A subroutine */ |
+ int addrOutB = 0; /* Address of the output-B subroutine */ |
+ int addrEofA; /* Address of the select-A-exhausted subroutine */ |
+ int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ |
+ int addrEofB; /* Address of the select-B-exhausted subroutine */ |
+ int addrAltB; /* Address of the A<B subroutine */ |
+ int addrAeqB; /* Address of the A==B subroutine */ |
+ int addrAgtB; /* Address of the A>B subroutine */ |
+ int regLimitA; /* Limit register for select-A */ |
+ int regLimitB; /* Limit register for select-A */ |
+ int regPrev; /* A range of registers to hold previous output */ |
+ int savedLimit; /* Saved value of p->iLimit */ |
+ int savedOffset; /* Saved value of p->iOffset */ |
+ int labelCmpr; /* Label for the start of the merge algorithm */ |
+ int labelEnd; /* Label for the end of the overall SELECT stmt */ |
+ int j1; /* Jump instructions that get retargetted */ |
+ int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ |
+ KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ |
+ KeyInfo *pKeyMerge; /* Comparison information for merging rows */ |
+ sqlite3 *db; /* Database connection */ |
+ ExprList *pOrderBy; /* The ORDER BY clause */ |
+ int nOrderBy; /* Number of terms in the ORDER BY clause */ |
+ int *aPermute; /* Mapping from ORDER BY terms to result set columns */ |
+#ifndef SQLITE_OMIT_EXPLAIN |
+ int iSub1; /* EQP id of left-hand query */ |
+ int iSub2; /* EQP id of right-hand query */ |
+#endif |
+ |
+ assert( p->pOrderBy!=0 ); |
+ assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ |
+ db = pParse->db; |
+ v = pParse->pVdbe; |
+ assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ |
+ labelEnd = sqlite3VdbeMakeLabel(v); |
+ labelCmpr = sqlite3VdbeMakeLabel(v); |
+ |
+ |
+ /* Patch up the ORDER BY clause |
+ */ |
+ op = p->op; |
+ pPrior = p->pPrior; |
+ assert( pPrior->pOrderBy==0 ); |
+ pOrderBy = p->pOrderBy; |
+ assert( pOrderBy ); |
+ nOrderBy = pOrderBy->nExpr; |
+ |
+ /* For operators other than UNION ALL we have to make sure that |
+ ** the ORDER BY clause covers every term of the result set. Add |
+ ** terms to the ORDER BY clause as necessary. |
+ */ |
+ if( op!=TK_ALL ){ |
+ for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ |
+ struct ExprList_item *pItem; |
+ for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ |
+ assert( pItem->u.x.iOrderByCol>0 ); |
+ if( pItem->u.x.iOrderByCol==i ) break; |
+ } |
+ if( j==nOrderBy ){ |
+ Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); |
+ if( pNew==0 ) return SQLITE_NOMEM; |
+ pNew->flags |= EP_IntValue; |
+ pNew->u.iValue = i; |
+ pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); |
+ if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; |
+ } |
+ } |
+ } |
+ |
+ /* Compute the comparison permutation and keyinfo that is used with |
+ ** the permutation used to determine if the next |
+ ** row of results comes from selectA or selectB. Also add explicit |
+ ** collations to the ORDER BY clause terms so that when the subqueries |
+ ** to the right and the left are evaluated, they use the correct |
+ ** collation. |
+ */ |
+ aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); |
+ if( aPermute ){ |
+ struct ExprList_item *pItem; |
+ for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ |
+ assert( pItem->u.x.iOrderByCol>0 |
+ && pItem->u.x.iOrderByCol<=p->pEList->nExpr ); |
+ aPermute[i] = pItem->u.x.iOrderByCol - 1; |
+ } |
+ pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); |
+ }else{ |
+ pKeyMerge = 0; |
+ } |
+ |
+ /* Reattach the ORDER BY clause to the query. |
+ */ |
+ p->pOrderBy = pOrderBy; |
+ pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); |
+ |
+ /* Allocate a range of temporary registers and the KeyInfo needed |
+ ** for the logic that removes duplicate result rows when the |
+ ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). |
+ */ |
+ if( op==TK_ALL ){ |
+ regPrev = 0; |
+ }else{ |
+ int nExpr = p->pEList->nExpr; |
+ assert( nOrderBy>=nExpr || db->mallocFailed ); |
+ regPrev = pParse->nMem+1; |
+ pParse->nMem += nExpr+1; |
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); |
+ pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); |
+ if( pKeyDup ){ |
+ assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); |
+ for(i=0; i<nExpr; i++){ |
+ pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); |
+ pKeyDup->aSortOrder[i] = 0; |
+ } |
+ } |
+ } |
+ |
+ /* Separate the left and the right query from one another |
+ */ |
+ p->pPrior = 0; |
+ pPrior->pNext = 0; |
+ sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); |
+ if( pPrior->pPrior==0 ){ |
+ sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); |
+ } |
+ |
+ /* Compute the limit registers */ |
+ computeLimitRegisters(pParse, p, labelEnd); |
+ if( p->iLimit && op==TK_ALL ){ |
+ regLimitA = ++pParse->nMem; |
+ regLimitB = ++pParse->nMem; |
+ sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, |
+ regLimitA); |
+ sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); |
+ }else{ |
+ regLimitA = regLimitB = 0; |
+ } |
+ sqlite3ExprDelete(db, p->pLimit); |
+ p->pLimit = 0; |
+ sqlite3ExprDelete(db, p->pOffset); |
+ p->pOffset = 0; |
+ |
+ regAddrA = ++pParse->nMem; |
+ regAddrB = ++pParse->nMem; |
+ regOutA = ++pParse->nMem; |
+ regOutB = ++pParse->nMem; |
+ sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); |
+ sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); |
+ |
+ /* Generate a coroutine to evaluate the SELECT statement to the |
+ ** left of the compound operator - the "A" select. |
+ */ |
+ addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; |
+ j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); |
+ VdbeComment((v, "left SELECT")); |
+ pPrior->iLimit = regLimitA; |
+ explainSetInteger(iSub1, pParse->iNextSelectId); |
+ sqlite3Select(pParse, pPrior, &destA); |
+ sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA); |
+ sqlite3VdbeJumpHere(v, j1); |
+ |
+ /* Generate a coroutine to evaluate the SELECT statement on |
+ ** the right - the "B" select |
+ */ |
+ addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; |
+ j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); |
+ VdbeComment((v, "right SELECT")); |
+ savedLimit = p->iLimit; |
+ savedOffset = p->iOffset; |
+ p->iLimit = regLimitB; |
+ p->iOffset = 0; |
+ explainSetInteger(iSub2, pParse->iNextSelectId); |
+ sqlite3Select(pParse, p, &destB); |
+ p->iLimit = savedLimit; |
+ p->iOffset = savedOffset; |
+ sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB); |
+ |
+ /* Generate a subroutine that outputs the current row of the A |
+ ** select as the next output row of the compound select. |
+ */ |
+ VdbeNoopComment((v, "Output routine for A")); |
+ addrOutA = generateOutputSubroutine(pParse, |
+ p, &destA, pDest, regOutA, |
+ regPrev, pKeyDup, labelEnd); |
+ |
+ /* Generate a subroutine that outputs the current row of the B |
+ ** select as the next output row of the compound select. |
+ */ |
+ if( op==TK_ALL || op==TK_UNION ){ |
+ VdbeNoopComment((v, "Output routine for B")); |
+ addrOutB = generateOutputSubroutine(pParse, |
+ p, &destB, pDest, regOutB, |
+ regPrev, pKeyDup, labelEnd); |
+ } |
+ sqlite3KeyInfoUnref(pKeyDup); |
+ |
+ /* Generate a subroutine to run when the results from select A |
+ ** are exhausted and only data in select B remains. |
+ */ |
+ if( op==TK_EXCEPT || op==TK_INTERSECT ){ |
+ addrEofA_noB = addrEofA = labelEnd; |
+ }else{ |
+ VdbeNoopComment((v, "eof-A subroutine")); |
+ addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); |
+ addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); |
+ VdbeCoverage(v); |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); |
+ p->nSelectRow += pPrior->nSelectRow; |
+ } |
+ |
+ /* Generate a subroutine to run when the results from select B |
+ ** are exhausted and only data in select A remains. |
+ */ |
+ if( op==TK_INTERSECT ){ |
+ addrEofB = addrEofA; |
+ if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; |
+ }else{ |
+ VdbeNoopComment((v, "eof-B subroutine")); |
+ addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); |
+ sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); |
+ } |
+ |
+ /* Generate code to handle the case of A<B |
+ */ |
+ VdbeNoopComment((v, "A-lt-B subroutine")); |
+ addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); |
+ sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); |
+ |
+ /* Generate code to handle the case of A==B |
+ */ |
+ if( op==TK_ALL ){ |
+ addrAeqB = addrAltB; |
+ }else if( op==TK_INTERSECT ){ |
+ addrAeqB = addrAltB; |
+ addrAltB++; |
+ }else{ |
+ VdbeNoopComment((v, "A-eq-B subroutine")); |
+ addrAeqB = |
+ sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); |
+ } |
+ |
+ /* Generate code to handle the case of A>B |
+ */ |
+ VdbeNoopComment((v, "A-gt-B subroutine")); |
+ addrAgtB = sqlite3VdbeCurrentAddr(v); |
+ if( op==TK_ALL || op==TK_UNION ){ |
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); |
+ } |
+ sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); |
+ |
+ /* This code runs once to initialize everything. |
+ */ |
+ sqlite3VdbeJumpHere(v, j1); |
+ sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); |
+ sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); |
+ |
+ /* Implement the main merge loop |
+ */ |
+ sqlite3VdbeResolveLabel(v, labelCmpr); |
+ sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); |
+ sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, |
+ (char*)pKeyMerge, P4_KEYINFO); |
+ sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); |
+ sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); |
+ |
+ /* Jump to the this point in order to terminate the query. |
+ */ |
+ sqlite3VdbeResolveLabel(v, labelEnd); |
+ |
+ /* Set the number of output columns |
+ */ |
+ if( pDest->eDest==SRT_Output ){ |
+ Select *pFirst = pPrior; |
+ while( pFirst->pPrior ) pFirst = pFirst->pPrior; |
+ generateColumnNames(pParse, 0, pFirst->pEList); |
+ } |
+ |
+ /* Reassembly the compound query so that it will be freed correctly |
+ ** by the calling function */ |
+ if( p->pPrior ){ |
+ sqlite3SelectDelete(db, p->pPrior); |
+ } |
+ p->pPrior = pPrior; |
+ pPrior->pNext = p; |
+ |
+ /*** TBD: Insert subroutine calls to close cursors on incomplete |
+ **** subqueries ****/ |
+ explainComposite(pParse, p->op, iSub1, iSub2, 0); |
+ return SQLITE_OK; |
+} |
+#endif |
+ |
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) |
+/* Forward Declarations */ |
+static void substExprList(sqlite3*, ExprList*, int, ExprList*); |
+static void substSelect(sqlite3*, Select *, int, ExprList *); |
+ |
+/* |
+** Scan through the expression pExpr. Replace every reference to |
+** a column in table number iTable with a copy of the iColumn-th |
+** entry in pEList. (But leave references to the ROWID column |
+** unchanged.) |
+** |
+** This routine is part of the flattening procedure. A subquery |
+** whose result set is defined by pEList appears as entry in the |
+** FROM clause of a SELECT such that the VDBE cursor assigned to that |
+** FORM clause entry is iTable. This routine make the necessary |
+** changes to pExpr so that it refers directly to the source table |
+** of the subquery rather the result set of the subquery. |
+*/ |
+static Expr *substExpr( |
+ sqlite3 *db, /* Report malloc errors to this connection */ |
+ Expr *pExpr, /* Expr in which substitution occurs */ |
+ int iTable, /* Table to be substituted */ |
+ ExprList *pEList /* Substitute expressions */ |
+){ |
+ if( pExpr==0 ) return 0; |
+ if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ |
+ if( pExpr->iColumn<0 ){ |
+ pExpr->op = TK_NULL; |
+ }else{ |
+ Expr *pNew; |
+ assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); |
+ assert( pExpr->pLeft==0 && pExpr->pRight==0 ); |
+ pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); |
+ sqlite3ExprDelete(db, pExpr); |
+ pExpr = pNew; |
+ } |
+ }else{ |
+ pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); |
+ pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); |
+ if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
+ substSelect(db, pExpr->x.pSelect, iTable, pEList); |
+ }else{ |
+ substExprList(db, pExpr->x.pList, iTable, pEList); |
+ } |
+ } |
+ return pExpr; |
+} |
+static void substExprList( |
+ sqlite3 *db, /* Report malloc errors here */ |
+ ExprList *pList, /* List to scan and in which to make substitutes */ |
+ int iTable, /* Table to be substituted */ |
+ ExprList *pEList /* Substitute values */ |
+){ |
+ int i; |
+ if( pList==0 ) return; |
+ for(i=0; i<pList->nExpr; i++){ |
+ pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); |
+ } |
+} |
+static void substSelect( |
+ sqlite3 *db, /* Report malloc errors here */ |
+ Select *p, /* SELECT statement in which to make substitutions */ |
+ int iTable, /* Table to be replaced */ |
+ ExprList *pEList /* Substitute values */ |
+){ |
+ SrcList *pSrc; |
+ struct SrcList_item *pItem; |
+ int i; |
+ if( !p ) return; |
+ substExprList(db, p->pEList, iTable, pEList); |
+ substExprList(db, p->pGroupBy, iTable, pEList); |
+ substExprList(db, p->pOrderBy, iTable, pEList); |
+ p->pHaving = substExpr(db, p->pHaving, iTable, pEList); |
+ p->pWhere = substExpr(db, p->pWhere, iTable, pEList); |
+ substSelect(db, p->pPrior, iTable, pEList); |
+ pSrc = p->pSrc; |
+ assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ |
+ if( ALWAYS(pSrc) ){ |
+ for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ |
+ substSelect(db, pItem->pSelect, iTable, pEList); |
+ } |
+ } |
+} |
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ |
+ |
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) |
+/* |
+** This routine attempts to flatten subqueries as a performance optimization. |
+** This routine returns 1 if it makes changes and 0 if no flattening occurs. |
+** |
+** To understand the concept of flattening, consider the following |
+** query: |
+** |
+** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 |
+** |
+** The default way of implementing this query is to execute the |
+** subquery first and store the results in a temporary table, then |
+** run the outer query on that temporary table. This requires two |
+** passes over the data. Furthermore, because the temporary table |
+** has no indices, the WHERE clause on the outer query cannot be |
+** optimized. |
+** |
+** This routine attempts to rewrite queries such as the above into |
+** a single flat select, like this: |
+** |
+** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 |
+** |
+** The code generated for this simplification gives the same result |
+** but only has to scan the data once. And because indices might |
+** exist on the table t1, a complete scan of the data might be |
+** avoided. |
+** |
+** Flattening is only attempted if all of the following are true: |
+** |
+** (1) The subquery and the outer query do not both use aggregates. |
+** |
+** (2) The subquery is not an aggregate or the outer query is not a join. |
+** |
+** (3) The subquery is not the right operand of a left outer join |
+** (Originally ticket #306. Strengthened by ticket #3300) |
+** |
+** (4) The subquery is not DISTINCT. |
+** |
+** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT |
+** sub-queries that were excluded from this optimization. Restriction |
+** (4) has since been expanded to exclude all DISTINCT subqueries. |
+** |
+** (6) The subquery does not use aggregates or the outer query is not |
+** DISTINCT. |
+** |
+** (7) The subquery has a FROM clause. TODO: For subqueries without |
+** A FROM clause, consider adding a FROM close with the special |
+** table sqlite_once that consists of a single row containing a |
+** single NULL. |
+** |
+** (8) The subquery does not use LIMIT or the outer query is not a join. |
+** |
+** (9) The subquery does not use LIMIT or the outer query does not use |
+** aggregates. |
+** |
+** (**) Restriction (10) was removed from the code on 2005-02-05 but we |
+** accidently carried the comment forward until 2014-09-15. Original |
+** text: "The subquery does not use aggregates or the outer query does not |
+** use LIMIT." |
+** |
+** (11) The subquery and the outer query do not both have ORDER BY clauses. |
+** |
+** (**) Not implemented. Subsumed into restriction (3). Was previously |
+** a separate restriction deriving from ticket #350. |
+** |
+** (13) The subquery and outer query do not both use LIMIT. |
+** |
+** (14) The subquery does not use OFFSET. |
+** |
+** (15) The outer query is not part of a compound select or the |
+** subquery does not have a LIMIT clause. |
+** (See ticket #2339 and ticket [02a8e81d44]). |
+** |
+** (16) The outer query is not an aggregate or the subquery does |
+** not contain ORDER BY. (Ticket #2942) This used to not matter |
+** until we introduced the group_concat() function. |
+** |
+** (17) The sub-query is not a compound select, or it is a UNION ALL |
+** compound clause made up entirely of non-aggregate queries, and |
+** the parent query: |
+** |
+** * is not itself part of a compound select, |
+** * is not an aggregate or DISTINCT query, and |
+** * is not a join |
+** |
+** The parent and sub-query may contain WHERE clauses. Subject to |
+** rules (11), (13) and (14), they may also contain ORDER BY, |
+** LIMIT and OFFSET clauses. The subquery cannot use any compound |
+** operator other than UNION ALL because all the other compound |
+** operators have an implied DISTINCT which is disallowed by |
+** restriction (4). |
+** |
+** Also, each component of the sub-query must return the same number |
+** of result columns. This is actually a requirement for any compound |
+** SELECT statement, but all the code here does is make sure that no |
+** such (illegal) sub-query is flattened. The caller will detect the |
+** syntax error and return a detailed message. |
+** |
+** (18) If the sub-query is a compound select, then all terms of the |
+** ORDER by clause of the parent must be simple references to |
+** columns of the sub-query. |
+** |
+** (19) The subquery does not use LIMIT or the outer query does not |
+** have a WHERE clause. |
+** |
+** (20) If the sub-query is a compound select, then it must not use |
+** an ORDER BY clause. Ticket #3773. We could relax this constraint |
+** somewhat by saying that the terms of the ORDER BY clause must |
+** appear as unmodified result columns in the outer query. But we |
+** have other optimizations in mind to deal with that case. |
+** |
+** (21) The subquery does not use LIMIT or the outer query is not |
+** DISTINCT. (See ticket [752e1646fc]). |
+** |
+** (22) The subquery is not a recursive CTE. |
+** |
+** (23) The parent is not a recursive CTE, or the sub-query is not a |
+** compound query. This restriction is because transforming the |
+** parent to a compound query confuses the code that handles |
+** recursive queries in multiSelect(). |
+** |
+** (24) The subquery is not an aggregate that uses the built-in min() or |
+** or max() functions. (Without this restriction, a query like: |
+** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily |
+** return the value X for which Y was maximal.) |
+** |
+** |
+** In this routine, the "p" parameter is a pointer to the outer query. |
+** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query |
+** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. |
+** |
+** If flattening is not attempted, this routine is a no-op and returns 0. |
+** If flattening is attempted this routine returns 1. |
+** |
+** All of the expression analysis must occur on both the outer query and |
+** the subquery before this routine runs. |
+*/ |
+static int flattenSubquery( |
+ Parse *pParse, /* Parsing context */ |
+ Select *p, /* The parent or outer SELECT statement */ |
+ int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ |
+ int isAgg, /* True if outer SELECT uses aggregate functions */ |
+ int subqueryIsAgg /* True if the subquery uses aggregate functions */ |
+){ |
+ const char *zSavedAuthContext = pParse->zAuthContext; |
+ Select *pParent; |
+ Select *pSub; /* The inner query or "subquery" */ |
+ Select *pSub1; /* Pointer to the rightmost select in sub-query */ |
+ SrcList *pSrc; /* The FROM clause of the outer query */ |
+ SrcList *pSubSrc; /* The FROM clause of the subquery */ |
+ ExprList *pList; /* The result set of the outer query */ |
+ int iParent; /* VDBE cursor number of the pSub result set temp table */ |
+ int i; /* Loop counter */ |
+ Expr *pWhere; /* The WHERE clause */ |
+ struct SrcList_item *pSubitem; /* The subquery */ |
+ sqlite3 *db = pParse->db; |
+ |
+ /* Check to see if flattening is permitted. Return 0 if not. |
+ */ |
+ assert( p!=0 ); |
+ assert( p->pPrior==0 ); /* Unable to flatten compound queries */ |
+ if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; |
+ pSrc = p->pSrc; |
+ assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); |
+ pSubitem = &pSrc->a[iFrom]; |
+ iParent = pSubitem->iCursor; |
+ pSub = pSubitem->pSelect; |
+ assert( pSub!=0 ); |
+ if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ |
+ if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ |
+ pSubSrc = pSub->pSrc; |
+ assert( pSubSrc ); |
+ /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, |
+ ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET |
+ ** because they could be computed at compile-time. But when LIMIT and OFFSET |
+ ** became arbitrary expressions, we were forced to add restrictions (13) |
+ ** and (14). */ |
+ if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ |
+ if( pSub->pOffset ) return 0; /* Restriction (14) */ |
+ if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ |
+ return 0; /* Restriction (15) */ |
+ } |
+ if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ |
+ if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ |
+ if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ |
+ return 0; /* Restrictions (8)(9) */ |
+ } |
+ if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ |
+ return 0; /* Restriction (6) */ |
+ } |
+ if( p->pOrderBy && pSub->pOrderBy ){ |
+ return 0; /* Restriction (11) */ |
+ } |
+ if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ |
+ if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ |
+ if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ |
+ return 0; /* Restriction (21) */ |
+ } |
+ testcase( pSub->selFlags & SF_Recursive ); |
+ testcase( pSub->selFlags & SF_MinMaxAgg ); |
+ if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ |
+ return 0; /* Restrictions (22) and (24) */ |
+ } |
+ if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ |
+ return 0; /* Restriction (23) */ |
+ } |
+ |
+ /* OBSOLETE COMMENT 1: |
+ ** Restriction 3: If the subquery is a join, make sure the subquery is |
+ ** not used as the right operand of an outer join. Examples of why this |
+ ** is not allowed: |
+ ** |
+ ** t1 LEFT OUTER JOIN (t2 JOIN t3) |
+ ** |
+ ** If we flatten the above, we would get |
+ ** |
+ ** (t1 LEFT OUTER JOIN t2) JOIN t3 |
+ ** |
+ ** which is not at all the same thing. |
+ ** |
+ ** OBSOLETE COMMENT 2: |
+ ** Restriction 12: If the subquery is the right operand of a left outer |
+ ** join, make sure the subquery has no WHERE clause. |
+ ** An examples of why this is not allowed: |
+ ** |
+ ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) |
+ ** |
+ ** If we flatten the above, we would get |
+ ** |
+ ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 |
+ ** |
+ ** But the t2.x>0 test will always fail on a NULL row of t2, which |
+ ** effectively converts the OUTER JOIN into an INNER JOIN. |
+ ** |
+ ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: |
+ ** Ticket #3300 shows that flattening the right term of a LEFT JOIN |
+ ** is fraught with danger. Best to avoid the whole thing. If the |
+ ** subquery is the right term of a LEFT JOIN, then do not flatten. |
+ */ |
+ if( (pSubitem->jointype & JT_OUTER)!=0 ){ |
+ return 0; |
+ } |
+ |
+ /* Restriction 17: If the sub-query is a compound SELECT, then it must |
+ ** use only the UNION ALL operator. And none of the simple select queries |
+ ** that make up the compound SELECT are allowed to be aggregate or distinct |
+ ** queries. |
+ */ |
+ if( pSub->pPrior ){ |
+ if( pSub->pOrderBy ){ |
+ return 0; /* Restriction 20 */ |
+ } |
+ if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ |
+ return 0; |
+ } |
+ for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ |
+ testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); |
+ testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); |
+ assert( pSub->pSrc!=0 ); |
+ if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 |
+ || (pSub1->pPrior && pSub1->op!=TK_ALL) |
+ || pSub1->pSrc->nSrc<1 |
+ || pSub->pEList->nExpr!=pSub1->pEList->nExpr |
+ ){ |
+ return 0; |
+ } |
+ testcase( pSub1->pSrc->nSrc>1 ); |
+ } |
+ |
+ /* Restriction 18. */ |
+ if( p->pOrderBy ){ |
+ int ii; |
+ for(ii=0; ii<p->pOrderBy->nExpr; ii++){ |
+ if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; |
+ } |
+ } |
+ } |
+ |
+ /***** If we reach this point, flattening is permitted. *****/ |
+ SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", |
+ pSub->zSelName, pSub, iFrom)); |
+ |
+ /* Authorize the subquery */ |
+ pParse->zAuthContext = pSubitem->zName; |
+ TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); |
+ testcase( i==SQLITE_DENY ); |
+ pParse->zAuthContext = zSavedAuthContext; |
+ |
+ /* If the sub-query is a compound SELECT statement, then (by restrictions |
+ ** 17 and 18 above) it must be a UNION ALL and the parent query must |
+ ** be of the form: |
+ ** |
+ ** SELECT <expr-list> FROM (<sub-query>) <where-clause> |
+ ** |
+ ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block |
+ ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or |
+ ** OFFSET clauses and joins them to the left-hand-side of the original |
+ ** using UNION ALL operators. In this case N is the number of simple |
+ ** select statements in the compound sub-query. |
+ ** |
+ ** Example: |
+ ** |
+ ** SELECT a+1 FROM ( |
+ ** SELECT x FROM tab |
+ ** UNION ALL |
+ ** SELECT y FROM tab |
+ ** UNION ALL |
+ ** SELECT abs(z*2) FROM tab2 |
+ ** ) WHERE a!=5 ORDER BY 1 |
+ ** |
+ ** Transformed into: |
+ ** |
+ ** SELECT x+1 FROM tab WHERE x+1!=5 |
+ ** UNION ALL |
+ ** SELECT y+1 FROM tab WHERE y+1!=5 |
+ ** UNION ALL |
+ ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 |
+ ** ORDER BY 1 |
+ ** |
+ ** We call this the "compound-subquery flattening". |
+ */ |
+ for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ |
+ Select *pNew; |
+ ExprList *pOrderBy = p->pOrderBy; |
+ Expr *pLimit = p->pLimit; |
+ Expr *pOffset = p->pOffset; |
+ Select *pPrior = p->pPrior; |
+ p->pOrderBy = 0; |
+ p->pSrc = 0; |
+ p->pPrior = 0; |
+ p->pLimit = 0; |
+ p->pOffset = 0; |
+ pNew = sqlite3SelectDup(db, p, 0); |
+ sqlite3SelectSetName(pNew, pSub->zSelName); |
+ p->pOffset = pOffset; |
+ p->pLimit = pLimit; |
+ p->pOrderBy = pOrderBy; |
+ p->pSrc = pSrc; |
+ p->op = TK_ALL; |
+ if( pNew==0 ){ |
+ p->pPrior = pPrior; |
+ }else{ |
+ pNew->pPrior = pPrior; |
+ if( pPrior ) pPrior->pNext = pNew; |
+ pNew->pNext = p; |
+ p->pPrior = pNew; |
+ SELECTTRACE(2,pParse,p, |
+ ("compound-subquery flattener creates %s.%p as peer\n", |
+ pNew->zSelName, pNew)); |
+ } |
+ if( db->mallocFailed ) return 1; |
+ } |
+ |
+ /* Begin flattening the iFrom-th entry of the FROM clause |
+ ** in the outer query. |
+ */ |
+ pSub = pSub1 = pSubitem->pSelect; |
+ |
+ /* Delete the transient table structure associated with the |
+ ** subquery |
+ */ |
+ sqlite3DbFree(db, pSubitem->zDatabase); |
+ sqlite3DbFree(db, pSubitem->zName); |
+ sqlite3DbFree(db, pSubitem->zAlias); |
+ pSubitem->zDatabase = 0; |
+ pSubitem->zName = 0; |
+ pSubitem->zAlias = 0; |
+ pSubitem->pSelect = 0; |
+ |
+ /* Defer deleting the Table object associated with the |
+ ** subquery until code generation is |
+ ** complete, since there may still exist Expr.pTab entries that |
+ ** refer to the subquery even after flattening. Ticket #3346. |
+ ** |
+ ** pSubitem->pTab is always non-NULL by test restrictions and tests above. |
+ */ |
+ if( ALWAYS(pSubitem->pTab!=0) ){ |
+ Table *pTabToDel = pSubitem->pTab; |
+ if( pTabToDel->nRef==1 ){ |
+ Parse *pToplevel = sqlite3ParseToplevel(pParse); |
+ pTabToDel->pNextZombie = pToplevel->pZombieTab; |
+ pToplevel->pZombieTab = pTabToDel; |
+ }else{ |
+ pTabToDel->nRef--; |
+ } |
+ pSubitem->pTab = 0; |
+ } |
+ |
+ /* The following loop runs once for each term in a compound-subquery |
+ ** flattening (as described above). If we are doing a different kind |
+ ** of flattening - a flattening other than a compound-subquery flattening - |
+ ** then this loop only runs once. |
+ ** |
+ ** This loop moves all of the FROM elements of the subquery into the |
+ ** the FROM clause of the outer query. Before doing this, remember |
+ ** the cursor number for the original outer query FROM element in |
+ ** iParent. The iParent cursor will never be used. Subsequent code |
+ ** will scan expressions looking for iParent references and replace |
+ ** those references with expressions that resolve to the subquery FROM |
+ ** elements we are now copying in. |
+ */ |
+ for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ |
+ int nSubSrc; |
+ u8 jointype = 0; |
+ pSubSrc = pSub->pSrc; /* FROM clause of subquery */ |
+ nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ |
+ pSrc = pParent->pSrc; /* FROM clause of the outer query */ |
+ |
+ if( pSrc ){ |
+ assert( pParent==p ); /* First time through the loop */ |
+ jointype = pSubitem->jointype; |
+ }else{ |
+ assert( pParent!=p ); /* 2nd and subsequent times through the loop */ |
+ pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); |
+ if( pSrc==0 ){ |
+ assert( db->mallocFailed ); |
+ break; |
+ } |
+ } |
+ |
+ /* The subquery uses a single slot of the FROM clause of the outer |
+ ** query. If the subquery has more than one element in its FROM clause, |
+ ** then expand the outer query to make space for it to hold all elements |
+ ** of the subquery. |
+ ** |
+ ** Example: |
+ ** |
+ ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; |
+ ** |
+ ** The outer query has 3 slots in its FROM clause. One slot of the |
+ ** outer query (the middle slot) is used by the subquery. The next |
+ ** block of code will expand the out query to 4 slots. The middle |
+ ** slot is expanded to two slots in order to make space for the |
+ ** two elements in the FROM clause of the subquery. |
+ */ |
+ if( nSubSrc>1 ){ |
+ pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); |
+ if( db->mallocFailed ){ |
+ break; |
+ } |
+ } |
+ |
+ /* Transfer the FROM clause terms from the subquery into the |
+ ** outer query. |
+ */ |
+ for(i=0; i<nSubSrc; i++){ |
+ sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); |
+ pSrc->a[i+iFrom] = pSubSrc->a[i]; |
+ memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); |
+ } |
+ pSrc->a[iFrom].jointype = jointype; |
+ |
+ /* Now begin substituting subquery result set expressions for |
+ ** references to the iParent in the outer query. |
+ ** |
+ ** Example: |
+ ** |
+ ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; |
+ ** \ \_____________ subquery __________/ / |
+ ** \_____________________ outer query ______________________________/ |
+ ** |
+ ** We look at every expression in the outer query and every place we see |
+ ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". |
+ */ |
+ pList = pParent->pEList; |
+ for(i=0; i<pList->nExpr; i++){ |
+ if( pList->a[i].zName==0 ){ |
+ char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); |
+ sqlite3Dequote(zName); |
+ pList->a[i].zName = zName; |
+ } |
+ } |
+ substExprList(db, pParent->pEList, iParent, pSub->pEList); |
+ if( isAgg ){ |
+ substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); |
+ pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); |
+ } |
+ if( pSub->pOrderBy ){ |
+ /* At this point, any non-zero iOrderByCol values indicate that the |
+ ** ORDER BY column expression is identical to the iOrderByCol'th |
+ ** expression returned by SELECT statement pSub. Since these values |
+ ** do not necessarily correspond to columns in SELECT statement pParent, |
+ ** zero them before transfering the ORDER BY clause. |
+ ** |
+ ** Not doing this may cause an error if a subsequent call to this |
+ ** function attempts to flatten a compound sub-query into pParent |
+ ** (the only way this can happen is if the compound sub-query is |
+ ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ |
+ ExprList *pOrderBy = pSub->pOrderBy; |
+ for(i=0; i<pOrderBy->nExpr; i++){ |
+ pOrderBy->a[i].u.x.iOrderByCol = 0; |
+ } |
+ assert( pParent->pOrderBy==0 ); |
+ assert( pSub->pPrior==0 ); |
+ pParent->pOrderBy = pOrderBy; |
+ pSub->pOrderBy = 0; |
+ }else if( pParent->pOrderBy ){ |
+ substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); |
+ } |
+ if( pSub->pWhere ){ |
+ pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); |
+ }else{ |
+ pWhere = 0; |
+ } |
+ if( subqueryIsAgg ){ |
+ assert( pParent->pHaving==0 ); |
+ pParent->pHaving = pParent->pWhere; |
+ pParent->pWhere = pWhere; |
+ pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); |
+ pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, |
+ sqlite3ExprDup(db, pSub->pHaving, 0)); |
+ assert( pParent->pGroupBy==0 ); |
+ pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); |
+ }else{ |
+ pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); |
+ pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); |
+ } |
+ |
+ /* The flattened query is distinct if either the inner or the |
+ ** outer query is distinct. |
+ */ |
+ pParent->selFlags |= pSub->selFlags & SF_Distinct; |
+ |
+ /* |
+ ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; |
+ ** |
+ ** One is tempted to try to add a and b to combine the limits. But this |
+ ** does not work if either limit is negative. |
+ */ |
+ if( pSub->pLimit ){ |
+ pParent->pLimit = pSub->pLimit; |
+ pSub->pLimit = 0; |
+ } |
+ } |
+ |
+ /* Finially, delete what is left of the subquery and return |
+ ** success. |
+ */ |
+ sqlite3SelectDelete(db, pSub1); |
+ |
+#if SELECTTRACE_ENABLED |
+ if( sqlite3SelectTrace & 0x100 ){ |
+ sqlite3DebugPrintf("After flattening:\n"); |
+ sqlite3TreeViewSelect(0, p, 0); |
+ } |
+#endif |
+ |
+ return 1; |
+} |
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ |
+ |
+/* |
+** Based on the contents of the AggInfo structure indicated by the first |
+** argument, this function checks if the following are true: |
+** |
+** * the query contains just a single aggregate function, |
+** * the aggregate function is either min() or max(), and |
+** * the argument to the aggregate function is a column value. |
+** |
+** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX |
+** is returned as appropriate. Also, *ppMinMax is set to point to the |
+** list of arguments passed to the aggregate before returning. |
+** |
+** Or, if the conditions above are not met, *ppMinMax is set to 0 and |
+** WHERE_ORDERBY_NORMAL is returned. |
+*/ |
+static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ |
+ int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ |
+ |
+ *ppMinMax = 0; |
+ if( pAggInfo->nFunc==1 ){ |
+ Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ |
+ ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ |
+ |
+ assert( pExpr->op==TK_AGG_FUNCTION ); |
+ if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ |
+ const char *zFunc = pExpr->u.zToken; |
+ if( sqlite3StrICmp(zFunc, "min")==0 ){ |
+ eRet = WHERE_ORDERBY_MIN; |
+ *ppMinMax = pEList; |
+ }else if( sqlite3StrICmp(zFunc, "max")==0 ){ |
+ eRet = WHERE_ORDERBY_MAX; |
+ *ppMinMax = pEList; |
+ } |
+ } |
+ } |
+ |
+ assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); |
+ return eRet; |
+} |
+ |
+/* |
+** The select statement passed as the first argument is an aggregate query. |
+** The second argument is the associated aggregate-info object. This |
+** function tests if the SELECT is of the form: |
+** |
+** SELECT count(*) FROM <tbl> |
+** |
+** where table is a database table, not a sub-select or view. If the query |
+** does match this pattern, then a pointer to the Table object representing |
+** <tbl> is returned. Otherwise, 0 is returned. |
+*/ |
+static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ |
+ Table *pTab; |
+ Expr *pExpr; |
+ |
+ assert( !p->pGroupBy ); |
+ |
+ if( p->pWhere || p->pEList->nExpr!=1 |
+ || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect |
+ ){ |
+ return 0; |
+ } |
+ pTab = p->pSrc->a[0].pTab; |
+ pExpr = p->pEList->a[0].pExpr; |
+ assert( pTab && !pTab->pSelect && pExpr ); |
+ |
+ if( IsVirtual(pTab) ) return 0; |
+ if( pExpr->op!=TK_AGG_FUNCTION ) return 0; |
+ if( NEVER(pAggInfo->nFunc==0) ) return 0; |
+ if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; |
+ if( pExpr->flags&EP_Distinct ) return 0; |
+ |
+ return pTab; |
+} |
+ |
+/* |
+** If the source-list item passed as an argument was augmented with an |
+** INDEXED BY clause, then try to locate the specified index. If there |
+** was such a clause and the named index cannot be found, return |
+** SQLITE_ERROR and leave an error in pParse. Otherwise, populate |
+** pFrom->pIndex and return SQLITE_OK. |
+*/ |
+int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ |
+ if( pFrom->pTab && pFrom->zIndex ){ |
+ Table *pTab = pFrom->pTab; |
+ char *zIndex = pFrom->zIndex; |
+ Index *pIdx; |
+ for(pIdx=pTab->pIndex; |
+ pIdx && sqlite3StrICmp(pIdx->zName, zIndex); |
+ pIdx=pIdx->pNext |
+ ); |
+ if( !pIdx ){ |
+ sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); |
+ pParse->checkSchema = 1; |
+ return SQLITE_ERROR; |
+ } |
+ pFrom->pIndex = pIdx; |
+ } |
+ return SQLITE_OK; |
+} |
+/* |
+** Detect compound SELECT statements that use an ORDER BY clause with |
+** an alternative collating sequence. |
+** |
+** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... |
+** |
+** These are rewritten as a subquery: |
+** |
+** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) |
+** ORDER BY ... COLLATE ... |
+** |
+** This transformation is necessary because the multiSelectOrderBy() routine |
+** above that generates the code for a compound SELECT with an ORDER BY clause |
+** uses a merge algorithm that requires the same collating sequence on the |
+** result columns as on the ORDER BY clause. See ticket |
+** http://www.sqlite.org/src/info/6709574d2a |
+** |
+** This transformation is only needed for EXCEPT, INTERSECT, and UNION. |
+** The UNION ALL operator works fine with multiSelectOrderBy() even when |
+** there are COLLATE terms in the ORDER BY. |
+*/ |
+static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ |
+ int i; |
+ Select *pNew; |
+ Select *pX; |
+ sqlite3 *db; |
+ struct ExprList_item *a; |
+ SrcList *pNewSrc; |
+ Parse *pParse; |
+ Token dummy; |
+ |
+ if( p->pPrior==0 ) return WRC_Continue; |
+ if( p->pOrderBy==0 ) return WRC_Continue; |
+ for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} |
+ if( pX==0 ) return WRC_Continue; |
+ a = p->pOrderBy->a; |
+ for(i=p->pOrderBy->nExpr-1; i>=0; i--){ |
+ if( a[i].pExpr->flags & EP_Collate ) break; |
+ } |
+ if( i<0 ) return WRC_Continue; |
+ |
+ /* If we reach this point, that means the transformation is required. */ |
+ |
+ pParse = pWalker->pParse; |
+ db = pParse->db; |
+ pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); |
+ if( pNew==0 ) return WRC_Abort; |
+ memset(&dummy, 0, sizeof(dummy)); |
+ pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); |
+ if( pNewSrc==0 ) return WRC_Abort; |
+ *pNew = *p; |
+ p->pSrc = pNewSrc; |
+ p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0)); |
+ p->op = TK_SELECT; |
+ p->pWhere = 0; |
+ pNew->pGroupBy = 0; |
+ pNew->pHaving = 0; |
+ pNew->pOrderBy = 0; |
+ p->pPrior = 0; |
+ p->pNext = 0; |
+ p->selFlags &= ~SF_Compound; |
+ assert( pNew->pPrior!=0 ); |
+ pNew->pPrior->pNext = pNew; |
+ pNew->pLimit = 0; |
+ pNew->pOffset = 0; |
+ return WRC_Continue; |
+} |
+ |
+#ifndef SQLITE_OMIT_CTE |
+/* |
+** Argument pWith (which may be NULL) points to a linked list of nested |
+** WITH contexts, from inner to outermost. If the table identified by |
+** FROM clause element pItem is really a common-table-expression (CTE) |
+** then return a pointer to the CTE definition for that table. Otherwise |
+** return NULL. |
+** |
+** If a non-NULL value is returned, set *ppContext to point to the With |
+** object that the returned CTE belongs to. |
+*/ |
+static struct Cte *searchWith( |
+ With *pWith, /* Current outermost WITH clause */ |
+ struct SrcList_item *pItem, /* FROM clause element to resolve */ |
+ With **ppContext /* OUT: WITH clause return value belongs to */ |
+){ |
+ const char *zName; |
+ if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ |
+ With *p; |
+ for(p=pWith; p; p=p->pOuter){ |
+ int i; |
+ for(i=0; i<p->nCte; i++){ |
+ if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ |
+ *ppContext = p; |
+ return &p->a[i]; |
+ } |
+ } |
+ } |
+ } |
+ return 0; |
+} |
+ |
+/* The code generator maintains a stack of active WITH clauses |
+** with the inner-most WITH clause being at the top of the stack. |
+** |
+** This routine pushes the WITH clause passed as the second argument |
+** onto the top of the stack. If argument bFree is true, then this |
+** WITH clause will never be popped from the stack. In this case it |
+** should be freed along with the Parse object. In other cases, when |
+** bFree==0, the With object will be freed along with the SELECT |
+** statement with which it is associated. |
+*/ |
+void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ |
+ assert( bFree==0 || pParse->pWith==0 ); |
+ if( pWith ){ |
+ pWith->pOuter = pParse->pWith; |
+ pParse->pWith = pWith; |
+ pParse->bFreeWith = bFree; |
+ } |
+} |
+ |
+/* |
+** This function checks if argument pFrom refers to a CTE declared by |
+** a WITH clause on the stack currently maintained by the parser. And, |
+** if currently processing a CTE expression, if it is a recursive |
+** reference to the current CTE. |
+** |
+** If pFrom falls into either of the two categories above, pFrom->pTab |
+** and other fields are populated accordingly. The caller should check |
+** (pFrom->pTab!=0) to determine whether or not a successful match |
+** was found. |
+** |
+** Whether or not a match is found, SQLITE_OK is returned if no error |
+** occurs. If an error does occur, an error message is stored in the |
+** parser and some error code other than SQLITE_OK returned. |
+*/ |
+static int withExpand( |
+ Walker *pWalker, |
+ struct SrcList_item *pFrom |
+){ |
+ Parse *pParse = pWalker->pParse; |
+ sqlite3 *db = pParse->db; |
+ struct Cte *pCte; /* Matched CTE (or NULL if no match) */ |
+ With *pWith; /* WITH clause that pCte belongs to */ |
+ |
+ assert( pFrom->pTab==0 ); |
+ |
+ pCte = searchWith(pParse->pWith, pFrom, &pWith); |
+ if( pCte ){ |
+ Table *pTab; |
+ ExprList *pEList; |
+ Select *pSel; |
+ Select *pLeft; /* Left-most SELECT statement */ |
+ int bMayRecursive; /* True if compound joined by UNION [ALL] */ |
+ With *pSavedWith; /* Initial value of pParse->pWith */ |
+ |
+ /* If pCte->zErr is non-NULL at this point, then this is an illegal |
+ ** recursive reference to CTE pCte. Leave an error in pParse and return |
+ ** early. If pCte->zErr is NULL, then this is not a recursive reference. |
+ ** In this case, proceed. */ |
+ if( pCte->zErr ){ |
+ sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName); |
+ return SQLITE_ERROR; |
+ } |
+ |
+ assert( pFrom->pTab==0 ); |
+ pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); |
+ if( pTab==0 ) return WRC_Abort; |
+ pTab->nRef = 1; |
+ pTab->zName = sqlite3DbStrDup(db, pCte->zName); |
+ pTab->iPKey = -1; |
+ pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); |
+ pTab->tabFlags |= TF_Ephemeral; |
+ pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); |
+ if( db->mallocFailed ) return SQLITE_NOMEM; |
+ assert( pFrom->pSelect ); |
+ |
+ /* Check if this is a recursive CTE. */ |
+ pSel = pFrom->pSelect; |
+ bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); |
+ if( bMayRecursive ){ |
+ int i; |
+ SrcList *pSrc = pFrom->pSelect->pSrc; |
+ for(i=0; i<pSrc->nSrc; i++){ |
+ struct SrcList_item *pItem = &pSrc->a[i]; |
+ if( pItem->zDatabase==0 |
+ && pItem->zName!=0 |
+ && 0==sqlite3StrICmp(pItem->zName, pCte->zName) |
+ ){ |
+ pItem->pTab = pTab; |
+ pItem->isRecursive = 1; |
+ pTab->nRef++; |
+ pSel->selFlags |= SF_Recursive; |
+ } |
+ } |
+ } |
+ |
+ /* Only one recursive reference is permitted. */ |
+ if( pTab->nRef>2 ){ |
+ sqlite3ErrorMsg( |
+ pParse, "multiple references to recursive table: %s", pCte->zName |
+ ); |
+ return SQLITE_ERROR; |
+ } |
+ assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); |
+ |
+ pCte->zErr = "circular reference: %s"; |
+ pSavedWith = pParse->pWith; |
+ pParse->pWith = pWith; |
+ sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); |
+ |
+ for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); |
+ pEList = pLeft->pEList; |
+ if( pCte->pCols ){ |
+ if( pEList->nExpr!=pCte->pCols->nExpr ){ |
+ sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", |
+ pCte->zName, pEList->nExpr, pCte->pCols->nExpr |
+ ); |
+ pParse->pWith = pSavedWith; |
+ return SQLITE_ERROR; |
+ } |
+ pEList = pCte->pCols; |
+ } |
+ |
+ selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); |
+ if( bMayRecursive ){ |
+ if( pSel->selFlags & SF_Recursive ){ |
+ pCte->zErr = "multiple recursive references: %s"; |
+ }else{ |
+ pCte->zErr = "recursive reference in a subquery: %s"; |
+ } |
+ sqlite3WalkSelect(pWalker, pSel); |
+ } |
+ pCte->zErr = 0; |
+ pParse->pWith = pSavedWith; |
+ } |
+ |
+ return SQLITE_OK; |
+} |
+#endif |
+ |
+#ifndef SQLITE_OMIT_CTE |
+/* |
+** If the SELECT passed as the second argument has an associated WITH |
+** clause, pop it from the stack stored as part of the Parse object. |
+** |
+** This function is used as the xSelectCallback2() callback by |
+** sqlite3SelectExpand() when walking a SELECT tree to resolve table |
+** names and other FROM clause elements. |
+*/ |
+static void selectPopWith(Walker *pWalker, Select *p){ |
+ Parse *pParse = pWalker->pParse; |
+ With *pWith = findRightmost(p)->pWith; |
+ if( pWith!=0 ){ |
+ assert( pParse->pWith==pWith ); |
+ pParse->pWith = pWith->pOuter; |
+ } |
+} |
+#else |
+#define selectPopWith 0 |
+#endif |
+ |
+/* |
+** This routine is a Walker callback for "expanding" a SELECT statement. |
+** "Expanding" means to do the following: |
+** |
+** (1) Make sure VDBE cursor numbers have been assigned to every |
+** element of the FROM clause. |
+** |
+** (2) Fill in the pTabList->a[].pTab fields in the SrcList that |
+** defines FROM clause. When views appear in the FROM clause, |
+** fill pTabList->a[].pSelect with a copy of the SELECT statement |
+** that implements the view. A copy is made of the view's SELECT |
+** statement so that we can freely modify or delete that statement |
+** without worrying about messing up the persistent representation |
+** of the view. |
+** |
+** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword |
+** on joins and the ON and USING clause of joins. |
+** |
+** (4) Scan the list of columns in the result set (pEList) looking |
+** for instances of the "*" operator or the TABLE.* operator. |
+** If found, expand each "*" to be every column in every table |
+** and TABLE.* to be every column in TABLE. |
+** |
+*/ |
+static int selectExpander(Walker *pWalker, Select *p){ |
+ Parse *pParse = pWalker->pParse; |
+ int i, j, k; |
+ SrcList *pTabList; |
+ ExprList *pEList; |
+ struct SrcList_item *pFrom; |
+ sqlite3 *db = pParse->db; |
+ Expr *pE, *pRight, *pExpr; |
+ u16 selFlags = p->selFlags; |
+ |
+ p->selFlags |= SF_Expanded; |
+ if( db->mallocFailed ){ |
+ return WRC_Abort; |
+ } |
+ if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ |
+ return WRC_Prune; |
+ } |
+ pTabList = p->pSrc; |
+ pEList = p->pEList; |
+ sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); |
+ |
+ /* Make sure cursor numbers have been assigned to all entries in |
+ ** the FROM clause of the SELECT statement. |
+ */ |
+ sqlite3SrcListAssignCursors(pParse, pTabList); |
+ |
+ /* Look up every table named in the FROM clause of the select. If |
+ ** an entry of the FROM clause is a subquery instead of a table or view, |
+ ** then create a transient table structure to describe the subquery. |
+ */ |
+ for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ |
+ Table *pTab; |
+ assert( pFrom->isRecursive==0 || pFrom->pTab ); |
+ if( pFrom->isRecursive ) continue; |
+ if( pFrom->pTab!=0 ){ |
+ /* This statement has already been prepared. There is no need |
+ ** to go further. */ |
+ assert( i==0 ); |
+#ifndef SQLITE_OMIT_CTE |
+ selectPopWith(pWalker, p); |
+#endif |
+ return WRC_Prune; |
+ } |
+#ifndef SQLITE_OMIT_CTE |
+ if( withExpand(pWalker, pFrom) ) return WRC_Abort; |
+ if( pFrom->pTab ) {} else |
+#endif |
+ if( pFrom->zName==0 ){ |
+#ifndef SQLITE_OMIT_SUBQUERY |
+ Select *pSel = pFrom->pSelect; |
+ /* A sub-query in the FROM clause of a SELECT */ |
+ assert( pSel!=0 ); |
+ assert( pFrom->pTab==0 ); |
+ sqlite3WalkSelect(pWalker, pSel); |
+ pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); |
+ if( pTab==0 ) return WRC_Abort; |
+ pTab->nRef = 1; |
+ pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); |
+ while( pSel->pPrior ){ pSel = pSel->pPrior; } |
+ selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); |
+ pTab->iPKey = -1; |
+ pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); |
+ pTab->tabFlags |= TF_Ephemeral; |
+#endif |
+ }else{ |
+ /* An ordinary table or view name in the FROM clause */ |
+ assert( pFrom->pTab==0 ); |
+ pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); |
+ if( pTab==0 ) return WRC_Abort; |
+ if( pTab->nRef==0xffff ){ |
+ sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", |
+ pTab->zName); |
+ pFrom->pTab = 0; |
+ return WRC_Abort; |
+ } |
+ pTab->nRef++; |
+#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) |
+ if( pTab->pSelect || IsVirtual(pTab) ){ |
+ /* We reach here if the named table is a really a view */ |
+ if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; |
+ assert( pFrom->pSelect==0 ); |
+ pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); |
+ sqlite3SelectSetName(pFrom->pSelect, pTab->zName); |
+ sqlite3WalkSelect(pWalker, pFrom->pSelect); |
+ } |
+#endif |
+ } |
+ |
+ /* Locate the index named by the INDEXED BY clause, if any. */ |
+ if( sqlite3IndexedByLookup(pParse, pFrom) ){ |
+ return WRC_Abort; |
+ } |
+ } |
+ |
+ /* Process NATURAL keywords, and ON and USING clauses of joins. |
+ */ |
+ if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ |
+ return WRC_Abort; |
+ } |
+ |
+ /* For every "*" that occurs in the column list, insert the names of |
+ ** all columns in all tables. And for every TABLE.* insert the names |
+ ** of all columns in TABLE. The parser inserted a special expression |
+ ** with the TK_ALL operator for each "*" that it found in the column list. |
+ ** The following code just has to locate the TK_ALL expressions and expand |
+ ** each one to the list of all columns in all tables. |
+ ** |
+ ** The first loop just checks to see if there are any "*" operators |
+ ** that need expanding. |
+ */ |
+ for(k=0; k<pEList->nExpr; k++){ |
+ pE = pEList->a[k].pExpr; |
+ if( pE->op==TK_ALL ) break; |
+ assert( pE->op!=TK_DOT || pE->pRight!=0 ); |
+ assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); |
+ if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; |
+ } |
+ if( k<pEList->nExpr ){ |
+ /* |
+ ** If we get here it means the result set contains one or more "*" |
+ ** operators that need to be expanded. Loop through each expression |
+ ** in the result set and expand them one by one. |
+ */ |
+ struct ExprList_item *a = pEList->a; |
+ ExprList *pNew = 0; |
+ int flags = pParse->db->flags; |
+ int longNames = (flags & SQLITE_FullColNames)!=0 |
+ && (flags & SQLITE_ShortColNames)==0; |
+ |
+ /* When processing FROM-clause subqueries, it is always the case |
+ ** that full_column_names=OFF and short_column_names=ON. The |
+ ** sqlite3ResultSetOfSelect() routine makes it so. */ |
+ assert( (p->selFlags & SF_NestedFrom)==0 |
+ || ((flags & SQLITE_FullColNames)==0 && |
+ (flags & SQLITE_ShortColNames)!=0) ); |
+ |
+ for(k=0; k<pEList->nExpr; k++){ |
+ pE = a[k].pExpr; |
+ pRight = pE->pRight; |
+ assert( pE->op!=TK_DOT || pRight!=0 ); |
+ if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){ |
+ /* This particular expression does not need to be expanded. |
+ */ |
+ pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); |
+ if( pNew ){ |
+ pNew->a[pNew->nExpr-1].zName = a[k].zName; |
+ pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; |
+ a[k].zName = 0; |
+ a[k].zSpan = 0; |
+ } |
+ a[k].pExpr = 0; |
+ }else{ |
+ /* This expression is a "*" or a "TABLE.*" and needs to be |
+ ** expanded. */ |
+ int tableSeen = 0; /* Set to 1 when TABLE matches */ |
+ char *zTName = 0; /* text of name of TABLE */ |
+ if( pE->op==TK_DOT ){ |
+ assert( pE->pLeft!=0 ); |
+ assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); |
+ zTName = pE->pLeft->u.zToken; |
+ } |
+ for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ |
+ Table *pTab = pFrom->pTab; |
+ Select *pSub = pFrom->pSelect; |
+ char *zTabName = pFrom->zAlias; |
+ const char *zSchemaName = 0; |
+ int iDb; |
+ if( zTabName==0 ){ |
+ zTabName = pTab->zName; |
+ } |
+ if( db->mallocFailed ) break; |
+ if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ |
+ pSub = 0; |
+ if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ |
+ continue; |
+ } |
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
+ zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; |
+ } |
+ for(j=0; j<pTab->nCol; j++){ |
+ char *zName = pTab->aCol[j].zName; |
+ char *zColname; /* The computed column name */ |
+ char *zToFree; /* Malloced string that needs to be freed */ |
+ Token sColname; /* Computed column name as a token */ |
+ |
+ assert( zName ); |
+ if( zTName && pSub |
+ && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 |
+ ){ |
+ continue; |
+ } |
+ |
+ /* If a column is marked as 'hidden' (currently only possible |
+ ** for virtual tables), do not include it in the expanded |
+ ** result-set list. |
+ */ |
+ if( IsHiddenColumn(&pTab->aCol[j]) ){ |
+ assert(IsVirtual(pTab)); |
+ continue; |
+ } |
+ tableSeen = 1; |
+ |
+ if( i>0 && zTName==0 ){ |
+ if( (pFrom->jointype & JT_NATURAL)!=0 |
+ && tableAndColumnIndex(pTabList, i, zName, 0, 0) |
+ ){ |
+ /* In a NATURAL join, omit the join columns from the |
+ ** table to the right of the join */ |
+ continue; |
+ } |
+ if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ |
+ /* In a join with a USING clause, omit columns in the |
+ ** using clause from the table on the right. */ |
+ continue; |
+ } |
+ } |
+ pRight = sqlite3Expr(db, TK_ID, zName); |
+ zColname = zName; |
+ zToFree = 0; |
+ if( longNames || pTabList->nSrc>1 ){ |
+ Expr *pLeft; |
+ pLeft = sqlite3Expr(db, TK_ID, zTabName); |
+ pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); |
+ if( zSchemaName ){ |
+ pLeft = sqlite3Expr(db, TK_ID, zSchemaName); |
+ pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); |
+ } |
+ if( longNames ){ |
+ zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); |
+ zToFree = zColname; |
+ } |
+ }else{ |
+ pExpr = pRight; |
+ } |
+ pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); |
+ sColname.z = zColname; |
+ sColname.n = sqlite3Strlen30(zColname); |
+ sqlite3ExprListSetName(pParse, pNew, &sColname, 0); |
+ if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ |
+ struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; |
+ if( pSub ){ |
+ pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); |
+ testcase( pX->zSpan==0 ); |
+ }else{ |
+ pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", |
+ zSchemaName, zTabName, zColname); |
+ testcase( pX->zSpan==0 ); |
+ } |
+ pX->bSpanIsTab = 1; |
+ } |
+ sqlite3DbFree(db, zToFree); |
+ } |
+ } |
+ if( !tableSeen ){ |
+ if( zTName ){ |
+ sqlite3ErrorMsg(pParse, "no such table: %s", zTName); |
+ }else{ |
+ sqlite3ErrorMsg(pParse, "no tables specified"); |
+ } |
+ } |
+ } |
+ } |
+ sqlite3ExprListDelete(db, pEList); |
+ p->pEList = pNew; |
+ } |
+#if SQLITE_MAX_COLUMN |
+ if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ |
+ sqlite3ErrorMsg(pParse, "too many columns in result set"); |
+ } |
+#endif |
+ return WRC_Continue; |
+} |
+ |
+/* |
+** No-op routine for the parse-tree walker. |
+** |
+** When this routine is the Walker.xExprCallback then expression trees |
+** are walked without any actions being taken at each node. Presumably, |
+** when this routine is used for Walker.xExprCallback then |
+** Walker.xSelectCallback is set to do something useful for every |
+** subquery in the parser tree. |
+*/ |
+static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ |
+ UNUSED_PARAMETER2(NotUsed, NotUsed2); |
+ return WRC_Continue; |
+} |
+ |
+/* |
+** This routine "expands" a SELECT statement and all of its subqueries. |
+** For additional information on what it means to "expand" a SELECT |
+** statement, see the comment on the selectExpand worker callback above. |
+** |
+** Expanding a SELECT statement is the first step in processing a |
+** SELECT statement. The SELECT statement must be expanded before |
+** name resolution is performed. |
+** |
+** If anything goes wrong, an error message is written into pParse. |
+** The calling function can detect the problem by looking at pParse->nErr |
+** and/or pParse->db->mallocFailed. |
+*/ |
+static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ |
+ Walker w; |
+ memset(&w, 0, sizeof(w)); |
+ w.xExprCallback = exprWalkNoop; |
+ w.pParse = pParse; |
+ if( pParse->hasCompound ){ |
+ w.xSelectCallback = convertCompoundSelectToSubquery; |
+ sqlite3WalkSelect(&w, pSelect); |
+ } |
+ w.xSelectCallback = selectExpander; |
+ w.xSelectCallback2 = selectPopWith; |
+ sqlite3WalkSelect(&w, pSelect); |
+} |
+ |
+ |
+#ifndef SQLITE_OMIT_SUBQUERY |
+/* |
+** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() |
+** interface. |
+** |
+** For each FROM-clause subquery, add Column.zType and Column.zColl |
+** information to the Table structure that represents the result set |
+** of that subquery. |
+** |
+** The Table structure that represents the result set was constructed |
+** by selectExpander() but the type and collation information was omitted |
+** at that point because identifiers had not yet been resolved. This |
+** routine is called after identifier resolution. |
+*/ |
+static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ |
+ Parse *pParse; |
+ int i; |
+ SrcList *pTabList; |
+ struct SrcList_item *pFrom; |
+ |
+ assert( p->selFlags & SF_Resolved ); |
+ if( (p->selFlags & SF_HasTypeInfo)==0 ){ |
+ p->selFlags |= SF_HasTypeInfo; |
+ pParse = pWalker->pParse; |
+ pTabList = p->pSrc; |
+ for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ |
+ Table *pTab = pFrom->pTab; |
+ if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ |
+ /* A sub-query in the FROM clause of a SELECT */ |
+ Select *pSel = pFrom->pSelect; |
+ if( pSel ){ |
+ while( pSel->pPrior ) pSel = pSel->pPrior; |
+ selectAddColumnTypeAndCollation(pParse, pTab, pSel); |
+ } |
+ } |
+ } |
+ } |
+} |
+#endif |
+ |
+ |
+/* |
+** This routine adds datatype and collating sequence information to |
+** the Table structures of all FROM-clause subqueries in a |
+** SELECT statement. |
+** |
+** Use this routine after name resolution. |
+*/ |
+static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ |
+#ifndef SQLITE_OMIT_SUBQUERY |
+ Walker w; |
+ memset(&w, 0, sizeof(w)); |
+ w.xSelectCallback2 = selectAddSubqueryTypeInfo; |
+ w.xExprCallback = exprWalkNoop; |
+ w.pParse = pParse; |
+ sqlite3WalkSelect(&w, pSelect); |
+#endif |
+} |
+ |
+ |
+/* |
+** This routine sets up a SELECT statement for processing. The |
+** following is accomplished: |
+** |
+** * VDBE Cursor numbers are assigned to all FROM-clause terms. |
+** * Ephemeral Table objects are created for all FROM-clause subqueries. |
+** * ON and USING clauses are shifted into WHERE statements |
+** * Wildcards "*" and "TABLE.*" in result sets are expanded. |
+** * Identifiers in expression are matched to tables. |
+** |
+** This routine acts recursively on all subqueries within the SELECT. |
+*/ |
+void sqlite3SelectPrep( |
+ Parse *pParse, /* The parser context */ |
+ Select *p, /* The SELECT statement being coded. */ |
+ NameContext *pOuterNC /* Name context for container */ |
+){ |
+ sqlite3 *db; |
+ if( NEVER(p==0) ) return; |
+ db = pParse->db; |
+ if( db->mallocFailed ) return; |
+ if( p->selFlags & SF_HasTypeInfo ) return; |
+ sqlite3SelectExpand(pParse, p); |
+ if( pParse->nErr || db->mallocFailed ) return; |
+ sqlite3ResolveSelectNames(pParse, p, pOuterNC); |
+ if( pParse->nErr || db->mallocFailed ) return; |
+ sqlite3SelectAddTypeInfo(pParse, p); |
+} |
+ |
+/* |
+** Reset the aggregate accumulator. |
+** |
+** The aggregate accumulator is a set of memory cells that hold |
+** intermediate results while calculating an aggregate. This |
+** routine generates code that stores NULLs in all of those memory |
+** cells. |
+*/ |
+static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ |
+ Vdbe *v = pParse->pVdbe; |
+ int i; |
+ struct AggInfo_func *pFunc; |
+ int nReg = pAggInfo->nFunc + pAggInfo->nColumn; |
+ if( nReg==0 ) return; |
+#ifdef SQLITE_DEBUG |
+ /* Verify that all AggInfo registers are within the range specified by |
+ ** AggInfo.mnReg..AggInfo.mxReg */ |
+ assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); |
+ for(i=0; i<pAggInfo->nColumn; i++){ |
+ assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg |
+ && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); |
+ } |
+ for(i=0; i<pAggInfo->nFunc; i++){ |
+ assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg |
+ && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); |
+ } |
+#endif |
+ sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); |
+ for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ |
+ if( pFunc->iDistinct>=0 ){ |
+ Expr *pE = pFunc->pExpr; |
+ assert( !ExprHasProperty(pE, EP_xIsSelect) ); |
+ if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ |
+ sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " |
+ "argument"); |
+ pFunc->iDistinct = -1; |
+ }else{ |
+ KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); |
+ sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, |
+ (char*)pKeyInfo, P4_KEYINFO); |
+ } |
+ } |
+ } |
+} |
+ |
+/* |
+** Invoke the OP_AggFinalize opcode for every aggregate function |
+** in the AggInfo structure. |
+*/ |
+static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ |
+ Vdbe *v = pParse->pVdbe; |
+ int i; |
+ struct AggInfo_func *pF; |
+ for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ |
+ ExprList *pList = pF->pExpr->x.pList; |
+ assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); |
+ sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, |
+ (void*)pF->pFunc, P4_FUNCDEF); |
+ } |
+} |
+ |
+/* |
+** Update the accumulator memory cells for an aggregate based on |
+** the current cursor position. |
+*/ |
+static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ |
+ Vdbe *v = pParse->pVdbe; |
+ int i; |
+ int regHit = 0; |
+ int addrHitTest = 0; |
+ struct AggInfo_func *pF; |
+ struct AggInfo_col *pC; |
+ |
+ pAggInfo->directMode = 1; |
+ for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ |
+ int nArg; |
+ int addrNext = 0; |
+ int regAgg; |
+ ExprList *pList = pF->pExpr->x.pList; |
+ assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); |
+ if( pList ){ |
+ nArg = pList->nExpr; |
+ regAgg = sqlite3GetTempRange(pParse, nArg); |
+ sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP); |
+ }else{ |
+ nArg = 0; |
+ regAgg = 0; |
+ } |
+ if( pF->iDistinct>=0 ){ |
+ addrNext = sqlite3VdbeMakeLabel(v); |
+ assert( nArg==1 ); |
+ codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); |
+ } |
+ if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ |
+ CollSeq *pColl = 0; |
+ struct ExprList_item *pItem; |
+ int j; |
+ assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ |
+ for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ |
+ pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); |
+ } |
+ if( !pColl ){ |
+ pColl = pParse->db->pDfltColl; |
+ } |
+ if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; |
+ sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); |
+ } |
+ sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, |
+ (void*)pF->pFunc, P4_FUNCDEF); |
+ sqlite3VdbeChangeP5(v, (u8)nArg); |
+ sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); |
+ sqlite3ReleaseTempRange(pParse, regAgg, nArg); |
+ if( addrNext ){ |
+ sqlite3VdbeResolveLabel(v, addrNext); |
+ sqlite3ExprCacheClear(pParse); |
+ } |
+ } |
+ |
+ /* Before populating the accumulator registers, clear the column cache. |
+ ** Otherwise, if any of the required column values are already present |
+ ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value |
+ ** to pC->iMem. But by the time the value is used, the original register |
+ ** may have been used, invalidating the underlying buffer holding the |
+ ** text or blob value. See ticket [883034dcb5]. |
+ ** |
+ ** Another solution would be to change the OP_SCopy used to copy cached |
+ ** values to an OP_Copy. |
+ */ |
+ if( regHit ){ |
+ addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); |
+ } |
+ sqlite3ExprCacheClear(pParse); |
+ for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ |
+ sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); |
+ } |
+ pAggInfo->directMode = 0; |
+ sqlite3ExprCacheClear(pParse); |
+ if( addrHitTest ){ |
+ sqlite3VdbeJumpHere(v, addrHitTest); |
+ } |
+} |
+ |
+/* |
+** Add a single OP_Explain instruction to the VDBE to explain a simple |
+** count(*) query ("SELECT count(*) FROM pTab"). |
+*/ |
+#ifndef SQLITE_OMIT_EXPLAIN |
+static void explainSimpleCount( |
+ Parse *pParse, /* Parse context */ |
+ Table *pTab, /* Table being queried */ |
+ Index *pIdx /* Index used to optimize scan, or NULL */ |
+){ |
+ if( pParse->explain==2 ){ |
+ int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); |
+ char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", |
+ pTab->zName, |
+ bCover ? " USING COVERING INDEX " : "", |
+ bCover ? pIdx->zName : "" |
+ ); |
+ sqlite3VdbeAddOp4( |
+ pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC |
+ ); |
+ } |
+} |
+#else |
+# define explainSimpleCount(a,b,c) |
+#endif |
+ |
+/* |
+** Generate code for the SELECT statement given in the p argument. |
+** |
+** The results are returned according to the SelectDest structure. |
+** See comments in sqliteInt.h for further information. |
+** |
+** This routine returns the number of errors. If any errors are |
+** encountered, then an appropriate error message is left in |
+** pParse->zErrMsg. |
+** |
+** This routine does NOT free the Select structure passed in. The |
+** calling function needs to do that. |
+*/ |
+int sqlite3Select( |
+ Parse *pParse, /* The parser context */ |
+ Select *p, /* The SELECT statement being coded. */ |
+ SelectDest *pDest /* What to do with the query results */ |
+){ |
+ int i, j; /* Loop counters */ |
+ WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ |
+ Vdbe *v; /* The virtual machine under construction */ |
+ int isAgg; /* True for select lists like "count(*)" */ |
+ ExprList *pEList; /* List of columns to extract. */ |
+ SrcList *pTabList; /* List of tables to select from */ |
+ Expr *pWhere; /* The WHERE clause. May be NULL */ |
+ ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ |
+ Expr *pHaving; /* The HAVING clause. May be NULL */ |
+ int rc = 1; /* Value to return from this function */ |
+ DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ |
+ SortCtx sSort; /* Info on how to code the ORDER BY clause */ |
+ AggInfo sAggInfo; /* Information used by aggregate queries */ |
+ int iEnd; /* Address of the end of the query */ |
+ sqlite3 *db; /* The database connection */ |
+ |
+#ifndef SQLITE_OMIT_EXPLAIN |
+ int iRestoreSelectId = pParse->iSelectId; |
+ pParse->iSelectId = pParse->iNextSelectId++; |
+#endif |
+ |
+ db = pParse->db; |
+ if( p==0 || db->mallocFailed || pParse->nErr ){ |
+ return 1; |
+ } |
+ if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; |
+ memset(&sAggInfo, 0, sizeof(sAggInfo)); |
+#if SELECTTRACE_ENABLED |
+ pParse->nSelectIndent++; |
+ SELECTTRACE(1,pParse,p, ("begin processing:\n")); |
+ if( sqlite3SelectTrace & 0x100 ){ |
+ sqlite3TreeViewSelect(0, p, 0); |
+ } |
+#endif |
+ |
+ assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); |
+ assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); |
+ assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); |
+ assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); |
+ if( IgnorableOrderby(pDest) ){ |
+ assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || |
+ pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || |
+ pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || |
+ pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); |
+ /* If ORDER BY makes no difference in the output then neither does |
+ ** DISTINCT so it can be removed too. */ |
+ sqlite3ExprListDelete(db, p->pOrderBy); |
+ p->pOrderBy = 0; |
+ p->selFlags &= ~SF_Distinct; |
+ } |
+ sqlite3SelectPrep(pParse, p, 0); |
+ memset(&sSort, 0, sizeof(sSort)); |
+ sSort.pOrderBy = p->pOrderBy; |
+ pTabList = p->pSrc; |
+ pEList = p->pEList; |
+ if( pParse->nErr || db->mallocFailed ){ |
+ goto select_end; |
+ } |
+ isAgg = (p->selFlags & SF_Aggregate)!=0; |
+ assert( pEList!=0 ); |
+ |
+ /* Begin generating code. |
+ */ |
+ v = sqlite3GetVdbe(pParse); |
+ if( v==0 ) goto select_end; |
+ |
+ /* If writing to memory or generating a set |
+ ** only a single column may be output. |
+ */ |
+#ifndef SQLITE_OMIT_SUBQUERY |
+ if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ |
+ goto select_end; |
+ } |
+#endif |
+ |
+ /* Generate code for all sub-queries in the FROM clause |
+ */ |
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) |
+ for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ |
+ struct SrcList_item *pItem = &pTabList->a[i]; |
+ SelectDest dest; |
+ Select *pSub = pItem->pSelect; |
+ int isAggSub; |
+ |
+ if( pSub==0 ) continue; |
+ |
+ /* Sometimes the code for a subquery will be generated more than |
+ ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, |
+ ** for example. In that case, do not regenerate the code to manifest |
+ ** a view or the co-routine to implement a view. The first instance |
+ ** is sufficient, though the subroutine to manifest the view does need |
+ ** to be invoked again. */ |
+ if( pItem->addrFillSub ){ |
+ if( pItem->viaCoroutine==0 ){ |
+ sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); |
+ } |
+ continue; |
+ } |
+ |
+ /* Increment Parse.nHeight by the height of the largest expression |
+ ** tree referred to by this, the parent select. The child select |
+ ** may contain expression trees of at most |
+ ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit |
+ ** more conservative than necessary, but much easier than enforcing |
+ ** an exact limit. |
+ */ |
+ pParse->nHeight += sqlite3SelectExprHeight(p); |
+ |
+ isAggSub = (pSub->selFlags & SF_Aggregate)!=0; |
+ if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ |
+ /* This subquery can be absorbed into its parent. */ |
+ if( isAggSub ){ |
+ isAgg = 1; |
+ p->selFlags |= SF_Aggregate; |
+ } |
+ i = -1; |
+ }else if( pTabList->nSrc==1 |
+ && OptimizationEnabled(db, SQLITE_SubqCoroutine) |
+ ){ |
+ /* Implement a co-routine that will return a single row of the result |
+ ** set on each invocation. |
+ */ |
+ int addrTop = sqlite3VdbeCurrentAddr(v)+1; |
+ pItem->regReturn = ++pParse->nMem; |
+ sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); |
+ VdbeComment((v, "%s", pItem->pTab->zName)); |
+ pItem->addrFillSub = addrTop; |
+ sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); |
+ explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); |
+ sqlite3Select(pParse, pSub, &dest); |
+ pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); |
+ pItem->viaCoroutine = 1; |
+ pItem->regResult = dest.iSdst; |
+ sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn); |
+ sqlite3VdbeJumpHere(v, addrTop-1); |
+ sqlite3ClearTempRegCache(pParse); |
+ }else{ |
+ /* Generate a subroutine that will fill an ephemeral table with |
+ ** the content of this subquery. pItem->addrFillSub will point |
+ ** to the address of the generated subroutine. pItem->regReturn |
+ ** is a register allocated to hold the subroutine return address |
+ */ |
+ int topAddr; |
+ int onceAddr = 0; |
+ int retAddr; |
+ assert( pItem->addrFillSub==0 ); |
+ pItem->regReturn = ++pParse->nMem; |
+ topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); |
+ pItem->addrFillSub = topAddr+1; |
+ if( pItem->isCorrelated==0 ){ |
+ /* If the subquery is not correlated and if we are not inside of |
+ ** a trigger, then we only need to compute the value of the subquery |
+ ** once. */ |
+ onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); |
+ VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); |
+ }else{ |
+ VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); |
+ } |
+ sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); |
+ explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); |
+ sqlite3Select(pParse, pSub, &dest); |
+ pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); |
+ if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); |
+ retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); |
+ VdbeComment((v, "end %s", pItem->pTab->zName)); |
+ sqlite3VdbeChangeP1(v, topAddr, retAddr); |
+ sqlite3ClearTempRegCache(pParse); |
+ } |
+ if( /*pParse->nErr ||*/ db->mallocFailed ){ |
+ goto select_end; |
+ } |
+ pParse->nHeight -= sqlite3SelectExprHeight(p); |
+ pTabList = p->pSrc; |
+ if( !IgnorableOrderby(pDest) ){ |
+ sSort.pOrderBy = p->pOrderBy; |
+ } |
+ } |
+ pEList = p->pEList; |
+#endif |
+ pWhere = p->pWhere; |
+ pGroupBy = p->pGroupBy; |
+ pHaving = p->pHaving; |
+ sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; |
+ |
+#ifndef SQLITE_OMIT_COMPOUND_SELECT |
+ /* If there is are a sequence of queries, do the earlier ones first. |
+ */ |
+ if( p->pPrior ){ |
+ rc = multiSelect(pParse, p, pDest); |
+ explainSetInteger(pParse->iSelectId, iRestoreSelectId); |
+#if SELECTTRACE_ENABLED |
+ SELECTTRACE(1,pParse,p,("end compound-select processing\n")); |
+ pParse->nSelectIndent--; |
+#endif |
+ return rc; |
+ } |
+#endif |
+ |
+ /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and |
+ ** if the select-list is the same as the ORDER BY list, then this query |
+ ** can be rewritten as a GROUP BY. In other words, this: |
+ ** |
+ ** SELECT DISTINCT xyz FROM ... ORDER BY xyz |
+ ** |
+ ** is transformed to: |
+ ** |
+ ** SELECT xyz FROM ... GROUP BY xyz |
+ ** |
+ ** The second form is preferred as a single index (or temp-table) may be |
+ ** used for both the ORDER BY and DISTINCT processing. As originally |
+ ** written the query must use a temp-table for at least one of the ORDER |
+ ** BY and DISTINCT, and an index or separate temp-table for the other. |
+ */ |
+ if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct |
+ && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0 |
+ ){ |
+ p->selFlags &= ~SF_Distinct; |
+ p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); |
+ pGroupBy = p->pGroupBy; |
+ sSort.pOrderBy = 0; |
+ /* Notice that even thought SF_Distinct has been cleared from p->selFlags, |
+ ** the sDistinct.isTnct is still set. Hence, isTnct represents the |
+ ** original setting of the SF_Distinct flag, not the current setting */ |
+ assert( sDistinct.isTnct ); |
+ } |
+ |
+ /* If there is an ORDER BY clause, then this sorting |
+ ** index might end up being unused if the data can be |
+ ** extracted in pre-sorted order. If that is the case, then the |
+ ** OP_OpenEphemeral instruction will be changed to an OP_Noop once |
+ ** we figure out that the sorting index is not needed. The addrSortIndex |
+ ** variable is used to facilitate that change. |
+ */ |
+ if( sSort.pOrderBy ){ |
+ KeyInfo *pKeyInfo; |
+ pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, 0); |
+ sSort.iECursor = pParse->nTab++; |
+ sSort.addrSortIndex = |
+ sqlite3VdbeAddOp4(v, OP_OpenEphemeral, |
+ sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, |
+ (char*)pKeyInfo, P4_KEYINFO |
+ ); |
+ }else{ |
+ sSort.addrSortIndex = -1; |
+ } |
+ |
+ /* If the output is destined for a temporary table, open that table. |
+ */ |
+ if( pDest->eDest==SRT_EphemTab ){ |
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); |
+ } |
+ |
+ /* Set the limiter. |
+ */ |
+ iEnd = sqlite3VdbeMakeLabel(v); |
+ p->nSelectRow = LARGEST_INT64; |
+ computeLimitRegisters(pParse, p, iEnd); |
+ if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ |
+ sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen; |
+ sSort.sortFlags |= SORTFLAG_UseSorter; |
+ } |
+ |
+ /* Open a virtual index to use for the distinct set. |
+ */ |
+ if( p->selFlags & SF_Distinct ){ |
+ sDistinct.tabTnct = pParse->nTab++; |
+ sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, |
+ sDistinct.tabTnct, 0, 0, |
+ (char*)keyInfoFromExprList(pParse, p->pEList,0,0), |
+ P4_KEYINFO); |
+ sqlite3VdbeChangeP5(v, BTREE_UNORDERED); |
+ sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; |
+ }else{ |
+ sDistinct.eTnctType = WHERE_DISTINCT_NOOP; |
+ } |
+ |
+ if( !isAgg && pGroupBy==0 ){ |
+ /* No aggregate functions and no GROUP BY clause */ |
+ u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); |
+ |
+ /* Begin the database scan. */ |
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, |
+ p->pEList, wctrlFlags, 0); |
+ if( pWInfo==0 ) goto select_end; |
+ if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ |
+ p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); |
+ } |
+ if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ |
+ sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); |
+ } |
+ if( sSort.pOrderBy ){ |
+ sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); |
+ if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ |
+ sSort.pOrderBy = 0; |
+ } |
+ } |
+ |
+ /* If sorting index that was created by a prior OP_OpenEphemeral |
+ ** instruction ended up not being needed, then change the OP_OpenEphemeral |
+ ** into an OP_Noop. |
+ */ |
+ if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ |
+ sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); |
+ } |
+ |
+ /* Use the standard inner loop. */ |
+ selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, |
+ sqlite3WhereContinueLabel(pWInfo), |
+ sqlite3WhereBreakLabel(pWInfo)); |
+ |
+ /* End the database scan loop. |
+ */ |
+ sqlite3WhereEnd(pWInfo); |
+ }else{ |
+ /* This case when there exist aggregate functions or a GROUP BY clause |
+ ** or both */ |
+ NameContext sNC; /* Name context for processing aggregate information */ |
+ int iAMem; /* First Mem address for storing current GROUP BY */ |
+ int iBMem; /* First Mem address for previous GROUP BY */ |
+ int iUseFlag; /* Mem address holding flag indicating that at least |
+ ** one row of the input to the aggregator has been |
+ ** processed */ |
+ int iAbortFlag; /* Mem address which causes query abort if positive */ |
+ int groupBySort; /* Rows come from source in GROUP BY order */ |
+ int addrEnd; /* End of processing for this SELECT */ |
+ int sortPTab = 0; /* Pseudotable used to decode sorting results */ |
+ int sortOut = 0; /* Output register from the sorter */ |
+ int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ |
+ |
+ /* Remove any and all aliases between the result set and the |
+ ** GROUP BY clause. |
+ */ |
+ if( pGroupBy ){ |
+ int k; /* Loop counter */ |
+ struct ExprList_item *pItem; /* For looping over expression in a list */ |
+ |
+ for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ |
+ pItem->u.x.iAlias = 0; |
+ } |
+ for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ |
+ pItem->u.x.iAlias = 0; |
+ } |
+ if( p->nSelectRow>100 ) p->nSelectRow = 100; |
+ }else{ |
+ p->nSelectRow = 1; |
+ } |
+ |
+ |
+ /* If there is both a GROUP BY and an ORDER BY clause and they are |
+ ** identical, then it may be possible to disable the ORDER BY clause |
+ ** on the grounds that the GROUP BY will cause elements to come out |
+ ** in the correct order. It also may not - the GROUP BY may use a |
+ ** database index that causes rows to be grouped together as required |
+ ** but not actually sorted. Either way, record the fact that the |
+ ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp |
+ ** variable. */ |
+ if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ |
+ orderByGrp = 1; |
+ } |
+ |
+ /* Create a label to jump to when we want to abort the query */ |
+ addrEnd = sqlite3VdbeMakeLabel(v); |
+ |
+ /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in |
+ ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the |
+ ** SELECT statement. |
+ */ |
+ memset(&sNC, 0, sizeof(sNC)); |
+ sNC.pParse = pParse; |
+ sNC.pSrcList = pTabList; |
+ sNC.pAggInfo = &sAggInfo; |
+ sAggInfo.mnReg = pParse->nMem+1; |
+ sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; |
+ sAggInfo.pGroupBy = pGroupBy; |
+ sqlite3ExprAnalyzeAggList(&sNC, pEList); |
+ sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); |
+ if( pHaving ){ |
+ sqlite3ExprAnalyzeAggregates(&sNC, pHaving); |
+ } |
+ sAggInfo.nAccumulator = sAggInfo.nColumn; |
+ for(i=0; i<sAggInfo.nFunc; i++){ |
+ assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); |
+ sNC.ncFlags |= NC_InAggFunc; |
+ sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); |
+ sNC.ncFlags &= ~NC_InAggFunc; |
+ } |
+ sAggInfo.mxReg = pParse->nMem; |
+ if( db->mallocFailed ) goto select_end; |
+ |
+ /* Processing for aggregates with GROUP BY is very different and |
+ ** much more complex than aggregates without a GROUP BY. |
+ */ |
+ if( pGroupBy ){ |
+ KeyInfo *pKeyInfo; /* Keying information for the group by clause */ |
+ int j1; /* A-vs-B comparision jump */ |
+ int addrOutputRow; /* Start of subroutine that outputs a result row */ |
+ int regOutputRow; /* Return address register for output subroutine */ |
+ int addrSetAbort; /* Set the abort flag and return */ |
+ int addrTopOfLoop; /* Top of the input loop */ |
+ int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ |
+ int addrReset; /* Subroutine for resetting the accumulator */ |
+ int regReset; /* Return address register for reset subroutine */ |
+ |
+ /* If there is a GROUP BY clause we might need a sorting index to |
+ ** implement it. Allocate that sorting index now. If it turns out |
+ ** that we do not need it after all, the OP_SorterOpen instruction |
+ ** will be converted into a Noop. |
+ */ |
+ sAggInfo.sortingIdx = pParse->nTab++; |
+ pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, 0); |
+ addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, |
+ sAggInfo.sortingIdx, sAggInfo.nSortingColumn, |
+ 0, (char*)pKeyInfo, P4_KEYINFO); |
+ |
+ /* Initialize memory locations used by GROUP BY aggregate processing |
+ */ |
+ iUseFlag = ++pParse->nMem; |
+ iAbortFlag = ++pParse->nMem; |
+ regOutputRow = ++pParse->nMem; |
+ addrOutputRow = sqlite3VdbeMakeLabel(v); |
+ regReset = ++pParse->nMem; |
+ addrReset = sqlite3VdbeMakeLabel(v); |
+ iAMem = pParse->nMem + 1; |
+ pParse->nMem += pGroupBy->nExpr; |
+ iBMem = pParse->nMem + 1; |
+ pParse->nMem += pGroupBy->nExpr; |
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); |
+ VdbeComment((v, "clear abort flag")); |
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); |
+ VdbeComment((v, "indicate accumulator empty")); |
+ sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); |
+ |
+ /* Begin a loop that will extract all source rows in GROUP BY order. |
+ ** This might involve two separate loops with an OP_Sort in between, or |
+ ** it might be a single loop that uses an index to extract information |
+ ** in the right order to begin with. |
+ */ |
+ sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); |
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, |
+ WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 |
+ ); |
+ if( pWInfo==0 ) goto select_end; |
+ if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ |
+ /* The optimizer is able to deliver rows in group by order so |
+ ** we do not have to sort. The OP_OpenEphemeral table will be |
+ ** cancelled later because we still need to use the pKeyInfo |
+ */ |
+ groupBySort = 0; |
+ }else{ |
+ /* Rows are coming out in undetermined order. We have to push |
+ ** each row into a sorting index, terminate the first loop, |
+ ** then loop over the sorting index in order to get the output |
+ ** in sorted order |
+ */ |
+ int regBase; |
+ int regRecord; |
+ int nCol; |
+ int nGroupBy; |
+ |
+ explainTempTable(pParse, |
+ (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? |
+ "DISTINCT" : "GROUP BY"); |
+ |
+ groupBySort = 1; |
+ nGroupBy = pGroupBy->nExpr; |
+ nCol = nGroupBy; |
+ j = nGroupBy; |
+ for(i=0; i<sAggInfo.nColumn; i++){ |
+ if( sAggInfo.aCol[i].iSorterColumn>=j ){ |
+ nCol++; |
+ j++; |
+ } |
+ } |
+ regBase = sqlite3GetTempRange(pParse, nCol); |
+ sqlite3ExprCacheClear(pParse); |
+ sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); |
+ j = nGroupBy; |
+ for(i=0; i<sAggInfo.nColumn; i++){ |
+ struct AggInfo_col *pCol = &sAggInfo.aCol[i]; |
+ if( pCol->iSorterColumn>=j ){ |
+ int r1 = j + regBase; |
+ int r2; |
+ |
+ r2 = sqlite3ExprCodeGetColumn(pParse, |
+ pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); |
+ if( r1!=r2 ){ |
+ sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); |
+ } |
+ j++; |
+ } |
+ } |
+ regRecord = sqlite3GetTempReg(pParse); |
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); |
+ sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); |
+ sqlite3ReleaseTempReg(pParse, regRecord); |
+ sqlite3ReleaseTempRange(pParse, regBase, nCol); |
+ sqlite3WhereEnd(pWInfo); |
+ sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; |
+ sortOut = sqlite3GetTempReg(pParse); |
+ sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); |
+ sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); |
+ VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); |
+ sAggInfo.useSortingIdx = 1; |
+ sqlite3ExprCacheClear(pParse); |
+ |
+ } |
+ |
+ /* If the index or temporary table used by the GROUP BY sort |
+ ** will naturally deliver rows in the order required by the ORDER BY |
+ ** clause, cancel the ephemeral table open coded earlier. |
+ ** |
+ ** This is an optimization - the correct answer should result regardless. |
+ ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to |
+ ** disable this optimization for testing purposes. */ |
+ if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) |
+ && (groupBySort || sqlite3WhereIsSorted(pWInfo)) |
+ ){ |
+ sSort.pOrderBy = 0; |
+ sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); |
+ } |
+ |
+ /* Evaluate the current GROUP BY terms and store in b0, b1, b2... |
+ ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) |
+ ** Then compare the current GROUP BY terms against the GROUP BY terms |
+ ** from the previous row currently stored in a0, a1, a2... |
+ */ |
+ addrTopOfLoop = sqlite3VdbeCurrentAddr(v); |
+ sqlite3ExprCacheClear(pParse); |
+ if( groupBySort ){ |
+ sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, sortOut,sortPTab); |
+ } |
+ for(j=0; j<pGroupBy->nExpr; j++){ |
+ if( groupBySort ){ |
+ sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); |
+ }else{ |
+ sAggInfo.directMode = 1; |
+ sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); |
+ } |
+ } |
+ sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, |
+ (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); |
+ j1 = sqlite3VdbeCurrentAddr(v); |
+ sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v); |
+ |
+ /* Generate code that runs whenever the GROUP BY changes. |
+ ** Changes in the GROUP BY are detected by the previous code |
+ ** block. If there were no changes, this block is skipped. |
+ ** |
+ ** This code copies current group by terms in b0,b1,b2,... |
+ ** over to a0,a1,a2. It then calls the output subroutine |
+ ** and resets the aggregate accumulator registers in preparation |
+ ** for the next GROUP BY batch. |
+ */ |
+ sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); |
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); |
+ VdbeComment((v, "output one row")); |
+ sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); |
+ VdbeComment((v, "check abort flag")); |
+ sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); |
+ VdbeComment((v, "reset accumulator")); |
+ |
+ /* Update the aggregate accumulators based on the content of |
+ ** the current row |
+ */ |
+ sqlite3VdbeJumpHere(v, j1); |
+ updateAccumulator(pParse, &sAggInfo); |
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); |
+ VdbeComment((v, "indicate data in accumulator")); |
+ |
+ /* End of the loop |
+ */ |
+ if( groupBySort ){ |
+ sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); |
+ VdbeCoverage(v); |
+ }else{ |
+ sqlite3WhereEnd(pWInfo); |
+ sqlite3VdbeChangeToNoop(v, addrSortingIdx); |
+ } |
+ |
+ /* Output the final row of result |
+ */ |
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); |
+ VdbeComment((v, "output final row")); |
+ |
+ /* Jump over the subroutines |
+ */ |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); |
+ |
+ /* Generate a subroutine that outputs a single row of the result |
+ ** set. This subroutine first looks at the iUseFlag. If iUseFlag |
+ ** is less than or equal to zero, the subroutine is a no-op. If |
+ ** the processing calls for the query to abort, this subroutine |
+ ** increments the iAbortFlag memory location before returning in |
+ ** order to signal the caller to abort. |
+ */ |
+ addrSetAbort = sqlite3VdbeCurrentAddr(v); |
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); |
+ VdbeComment((v, "set abort flag")); |
+ sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); |
+ sqlite3VdbeResolveLabel(v, addrOutputRow); |
+ addrOutputRow = sqlite3VdbeCurrentAddr(v); |
+ sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v); |
+ VdbeComment((v, "Groupby result generator entry point")); |
+ sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); |
+ finalizeAggFunctions(pParse, &sAggInfo); |
+ sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); |
+ selectInnerLoop(pParse, p, p->pEList, -1, &sSort, |
+ &sDistinct, pDest, |
+ addrOutputRow+1, addrSetAbort); |
+ sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); |
+ VdbeComment((v, "end groupby result generator")); |
+ |
+ /* Generate a subroutine that will reset the group-by accumulator |
+ */ |
+ sqlite3VdbeResolveLabel(v, addrReset); |
+ resetAccumulator(pParse, &sAggInfo); |
+ sqlite3VdbeAddOp1(v, OP_Return, regReset); |
+ |
+ } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ |
+ else { |
+ ExprList *pDel = 0; |
+#ifndef SQLITE_OMIT_BTREECOUNT |
+ Table *pTab; |
+ if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ |
+ /* If isSimpleCount() returns a pointer to a Table structure, then |
+ ** the SQL statement is of the form: |
+ ** |
+ ** SELECT count(*) FROM <tbl> |
+ ** |
+ ** where the Table structure returned represents table <tbl>. |
+ ** |
+ ** This statement is so common that it is optimized specially. The |
+ ** OP_Count instruction is executed either on the intkey table that |
+ ** contains the data for table <tbl> or on one of its indexes. It |
+ ** is better to execute the op on an index, as indexes are almost |
+ ** always spread across less pages than their corresponding tables. |
+ */ |
+ const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
+ const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ |
+ Index *pIdx; /* Iterator variable */ |
+ KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ |
+ Index *pBest = 0; /* Best index found so far */ |
+ int iRoot = pTab->tnum; /* Root page of scanned b-tree */ |
+ |
+ sqlite3CodeVerifySchema(pParse, iDb); |
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
+ |
+ /* Search for the index that has the lowest scan cost. |
+ ** |
+ ** (2011-04-15) Do not do a full scan of an unordered index. |
+ ** |
+ ** (2013-10-03) Do not count the entries in a partial index. |
+ ** |
+ ** In practice the KeyInfo structure will not be used. It is only |
+ ** passed to keep OP_OpenRead happy. |
+ */ |
+ if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); |
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
+ if( pIdx->bUnordered==0 |
+ && pIdx->szIdxRow<pTab->szTabRow |
+ && pIdx->pPartIdxWhere==0 |
+ && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) |
+ ){ |
+ pBest = pIdx; |
+ } |
+ } |
+ if( pBest ){ |
+ iRoot = pBest->tnum; |
+ pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); |
+ } |
+ |
+ /* Open a read-only cursor, execute the OP_Count, close the cursor. */ |
+ sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); |
+ if( pKeyInfo ){ |
+ sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); |
+ } |
+ sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); |
+ sqlite3VdbeAddOp1(v, OP_Close, iCsr); |
+ explainSimpleCount(pParse, pTab, pBest); |
+ }else |
+#endif /* SQLITE_OMIT_BTREECOUNT */ |
+ { |
+ /* Check if the query is of one of the following forms: |
+ ** |
+ ** SELECT min(x) FROM ... |
+ ** SELECT max(x) FROM ... |
+ ** |
+ ** If it is, then ask the code in where.c to attempt to sort results |
+ ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. |
+ ** If where.c is able to produce results sorted in this order, then |
+ ** add vdbe code to break out of the processing loop after the |
+ ** first iteration (since the first iteration of the loop is |
+ ** guaranteed to operate on the row with the minimum or maximum |
+ ** value of x, the only row required). |
+ ** |
+ ** A special flag must be passed to sqlite3WhereBegin() to slightly |
+ ** modify behavior as follows: |
+ ** |
+ ** + If the query is a "SELECT min(x)", then the loop coded by |
+ ** where.c should not iterate over any values with a NULL value |
+ ** for x. |
+ ** |
+ ** + The optimizer code in where.c (the thing that decides which |
+ ** index or indices to use) should place a different priority on |
+ ** satisfying the 'ORDER BY' clause than it does in other cases. |
+ ** Refer to code and comments in where.c for details. |
+ */ |
+ ExprList *pMinMax = 0; |
+ u8 flag = WHERE_ORDERBY_NORMAL; |
+ |
+ assert( p->pGroupBy==0 ); |
+ assert( flag==0 ); |
+ if( p->pHaving==0 ){ |
+ flag = minMaxQuery(&sAggInfo, &pMinMax); |
+ } |
+ assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); |
+ |
+ if( flag ){ |
+ pMinMax = sqlite3ExprListDup(db, pMinMax, 0); |
+ pDel = pMinMax; |
+ if( pMinMax && !db->mallocFailed ){ |
+ pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; |
+ pMinMax->a[0].pExpr->op = TK_COLUMN; |
+ } |
+ } |
+ |
+ /* This case runs if the aggregate has no GROUP BY clause. The |
+ ** processing is much simpler since there is only a single row |
+ ** of output. |
+ */ |
+ resetAccumulator(pParse, &sAggInfo); |
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); |
+ if( pWInfo==0 ){ |
+ sqlite3ExprListDelete(db, pDel); |
+ goto select_end; |
+ } |
+ updateAccumulator(pParse, &sAggInfo); |
+ assert( pMinMax==0 || pMinMax->nExpr==1 ); |
+ if( sqlite3WhereIsOrdered(pWInfo)>0 ){ |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo)); |
+ VdbeComment((v, "%s() by index", |
+ (flag==WHERE_ORDERBY_MIN?"min":"max"))); |
+ } |
+ sqlite3WhereEnd(pWInfo); |
+ finalizeAggFunctions(pParse, &sAggInfo); |
+ } |
+ |
+ sSort.pOrderBy = 0; |
+ sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); |
+ selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, |
+ pDest, addrEnd, addrEnd); |
+ sqlite3ExprListDelete(db, pDel); |
+ } |
+ sqlite3VdbeResolveLabel(v, addrEnd); |
+ |
+ } /* endif aggregate query */ |
+ |
+ if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ |
+ explainTempTable(pParse, "DISTINCT"); |
+ } |
+ |
+ /* If there is an ORDER BY clause, then we need to sort the results |
+ ** and send them to the callback one by one. |
+ */ |
+ if( sSort.pOrderBy ){ |
+ explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); |
+ generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); |
+ } |
+ |
+ /* Jump here to skip this query |
+ */ |
+ sqlite3VdbeResolveLabel(v, iEnd); |
+ |
+ /* The SELECT was successfully coded. Set the return code to 0 |
+ ** to indicate no errors. |
+ */ |
+ rc = 0; |
+ |
+ /* Control jumps to here if an error is encountered above, or upon |
+ ** successful coding of the SELECT. |
+ */ |
+select_end: |
+ explainSetInteger(pParse->iSelectId, iRestoreSelectId); |
+ |
+ /* Identify column names if results of the SELECT are to be output. |
+ */ |
+ if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ |
+ generateColumnNames(pParse, pTabList, pEList); |
+ } |
+ |
+ sqlite3DbFree(db, sAggInfo.aCol); |
+ sqlite3DbFree(db, sAggInfo.aFunc); |
+#if SELECTTRACE_ENABLED |
+ SELECTTRACE(1,pParse,p,("end processing\n")); |
+ pParse->nSelectIndent--; |
+#endif |
+ return rc; |
+} |
+ |
+#ifdef SQLITE_DEBUG |
+/* |
+** Generate a human-readable description of a the Select object. |
+*/ |
+void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){ |
+ int n = 0; |
+ pView = sqlite3TreeViewPush(pView, moreToFollow); |
+ sqlite3TreeViewLine(pView, "SELECT%s%s", |
+ ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""), |
+ ((p->selFlags & SF_Aggregate) ? " agg_flag" : "") |
+ ); |
+ if( p->pSrc && p->pSrc->nSrc ) n++; |
+ if( p->pWhere ) n++; |
+ if( p->pGroupBy ) n++; |
+ if( p->pHaving ) n++; |
+ if( p->pOrderBy ) n++; |
+ if( p->pLimit ) n++; |
+ if( p->pOffset ) n++; |
+ if( p->pPrior ) n++; |
+ sqlite3TreeViewExprList(pView, p->pEList, (n--)>0, "result-set"); |
+ if( p->pSrc && p->pSrc->nSrc ){ |
+ int i; |
+ pView = sqlite3TreeViewPush(pView, (n--)>0); |
+ sqlite3TreeViewLine(pView, "FROM"); |
+ for(i=0; i<p->pSrc->nSrc; i++){ |
+ struct SrcList_item *pItem = &p->pSrc->a[i]; |
+ StrAccum x; |
+ char zLine[100]; |
+ sqlite3StrAccumInit(&x, zLine, sizeof(zLine), 0); |
+ sqlite3XPrintf(&x, 0, "{%d,*}", pItem->iCursor); |
+ if( pItem->zDatabase ){ |
+ sqlite3XPrintf(&x, 0, " %s.%s", pItem->zDatabase, pItem->zName); |
+ }else if( pItem->zName ){ |
+ sqlite3XPrintf(&x, 0, " %s", pItem->zName); |
+ } |
+ if( pItem->pTab ){ |
+ sqlite3XPrintf(&x, 0, " tabname=%Q", pItem->pTab->zName); |
+ } |
+ if( pItem->zAlias ){ |
+ sqlite3XPrintf(&x, 0, " (AS %s)", pItem->zAlias); |
+ } |
+ if( pItem->jointype & JT_LEFT ){ |
+ sqlite3XPrintf(&x, 0, " LEFT-JOIN"); |
+ } |
+ sqlite3StrAccumFinish(&x); |
+ sqlite3TreeViewItem(pView, zLine, i<p->pSrc->nSrc-1); |
+ if( pItem->pSelect ){ |
+ sqlite3TreeViewSelect(pView, pItem->pSelect, 0); |
+ } |
+ sqlite3TreeViewPop(pView); |
+ } |
+ sqlite3TreeViewPop(pView); |
+ } |
+ if( p->pWhere ){ |
+ sqlite3TreeViewItem(pView, "WHERE", (n--)>0); |
+ sqlite3TreeViewExpr(pView, p->pWhere, 0); |
+ sqlite3TreeViewPop(pView); |
+ } |
+ if( p->pGroupBy ){ |
+ sqlite3TreeViewExprList(pView, p->pGroupBy, (n--)>0, "GROUPBY"); |
+ } |
+ if( p->pHaving ){ |
+ sqlite3TreeViewItem(pView, "HAVING", (n--)>0); |
+ sqlite3TreeViewExpr(pView, p->pHaving, 0); |
+ sqlite3TreeViewPop(pView); |
+ } |
+ if( p->pOrderBy ){ |
+ sqlite3TreeViewExprList(pView, p->pOrderBy, (n--)>0, "ORDERBY"); |
+ } |
+ if( p->pLimit ){ |
+ sqlite3TreeViewItem(pView, "LIMIT", (n--)>0); |
+ sqlite3TreeViewExpr(pView, p->pLimit, 0); |
+ sqlite3TreeViewPop(pView); |
+ } |
+ if( p->pOffset ){ |
+ sqlite3TreeViewItem(pView, "OFFSET", (n--)>0); |
+ sqlite3TreeViewExpr(pView, p->pOffset, 0); |
+ sqlite3TreeViewPop(pView); |
+ } |
+ if( p->pPrior ){ |
+ const char *zOp = "UNION"; |
+ switch( p->op ){ |
+ case TK_ALL: zOp = "UNION ALL"; break; |
+ case TK_INTERSECT: zOp = "INTERSECT"; break; |
+ case TK_EXCEPT: zOp = "EXCEPT"; break; |
+ } |
+ sqlite3TreeViewItem(pView, zOp, (n--)>0); |
+ sqlite3TreeViewSelect(pView, p->pPrior, 0); |
+ sqlite3TreeViewPop(pView); |
+ } |
+ sqlite3TreeViewPop(pView); |
+} |
+#endif /* SQLITE_DEBUG */ |