Index: third_party/sqlite/sqlite-src-3080704/src/expr.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/src/expr.c b/third_party/sqlite/sqlite-src-3080704/src/expr.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..4012f6c297ecc3c74f47ab039cbe129968782c11 |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3080704/src/expr.c |
@@ -0,0 +1,4346 @@ |
+/* |
+** 2001 September 15 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** This file contains routines used for analyzing expressions and |
+** for generating VDBE code that evaluates expressions in SQLite. |
+*/ |
+#include "sqliteInt.h" |
+ |
+/* |
+** Return the 'affinity' of the expression pExpr if any. |
+** |
+** If pExpr is a column, a reference to a column via an 'AS' alias, |
+** or a sub-select with a column as the return value, then the |
+** affinity of that column is returned. Otherwise, 0x00 is returned, |
+** indicating no affinity for the expression. |
+** |
+** i.e. the WHERE clause expressions in the following statements all |
+** have an affinity: |
+** |
+** CREATE TABLE t1(a); |
+** SELECT * FROM t1 WHERE a; |
+** SELECT a AS b FROM t1 WHERE b; |
+** SELECT * FROM t1 WHERE (select a from t1); |
+*/ |
+char sqlite3ExprAffinity(Expr *pExpr){ |
+ int op; |
+ pExpr = sqlite3ExprSkipCollate(pExpr); |
+ if( pExpr->flags & EP_Generic ) return 0; |
+ op = pExpr->op; |
+ if( op==TK_SELECT ){ |
+ assert( pExpr->flags&EP_xIsSelect ); |
+ return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); |
+ } |
+#ifndef SQLITE_OMIT_CAST |
+ if( op==TK_CAST ){ |
+ assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
+ return sqlite3AffinityType(pExpr->u.zToken, 0); |
+ } |
+#endif |
+ if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) |
+ && pExpr->pTab!=0 |
+ ){ |
+ /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally |
+ ** a TK_COLUMN but was previously evaluated and cached in a register */ |
+ int j = pExpr->iColumn; |
+ if( j<0 ) return SQLITE_AFF_INTEGER; |
+ assert( pExpr->pTab && j<pExpr->pTab->nCol ); |
+ return pExpr->pTab->aCol[j].affinity; |
+ } |
+ return pExpr->affinity; |
+} |
+ |
+/* |
+** Set the collating sequence for expression pExpr to be the collating |
+** sequence named by pToken. Return a pointer to a new Expr node that |
+** implements the COLLATE operator. |
+** |
+** If a memory allocation error occurs, that fact is recorded in pParse->db |
+** and the pExpr parameter is returned unchanged. |
+*/ |
+Expr *sqlite3ExprAddCollateToken( |
+ Parse *pParse, /* Parsing context */ |
+ Expr *pExpr, /* Add the "COLLATE" clause to this expression */ |
+ const Token *pCollName /* Name of collating sequence */ |
+){ |
+ if( pCollName->n>0 ){ |
+ Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1); |
+ if( pNew ){ |
+ pNew->pLeft = pExpr; |
+ pNew->flags |= EP_Collate|EP_Skip; |
+ pExpr = pNew; |
+ } |
+ } |
+ return pExpr; |
+} |
+Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ |
+ Token s; |
+ assert( zC!=0 ); |
+ s.z = zC; |
+ s.n = sqlite3Strlen30(s.z); |
+ return sqlite3ExprAddCollateToken(pParse, pExpr, &s); |
+} |
+ |
+/* |
+** Skip over any TK_COLLATE or TK_AS operators and any unlikely() |
+** or likelihood() function at the root of an expression. |
+*/ |
+Expr *sqlite3ExprSkipCollate(Expr *pExpr){ |
+ while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ |
+ if( ExprHasProperty(pExpr, EP_Unlikely) ){ |
+ assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); |
+ assert( pExpr->x.pList->nExpr>0 ); |
+ assert( pExpr->op==TK_FUNCTION ); |
+ pExpr = pExpr->x.pList->a[0].pExpr; |
+ }else{ |
+ assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS ); |
+ pExpr = pExpr->pLeft; |
+ } |
+ } |
+ return pExpr; |
+} |
+ |
+/* |
+** Return the collation sequence for the expression pExpr. If |
+** there is no defined collating sequence, return NULL. |
+** |
+** The collating sequence might be determined by a COLLATE operator |
+** or by the presence of a column with a defined collating sequence. |
+** COLLATE operators take first precedence. Left operands take |
+** precedence over right operands. |
+*/ |
+CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ |
+ sqlite3 *db = pParse->db; |
+ CollSeq *pColl = 0; |
+ Expr *p = pExpr; |
+ while( p ){ |
+ int op = p->op; |
+ if( p->flags & EP_Generic ) break; |
+ if( op==TK_CAST || op==TK_UPLUS ){ |
+ p = p->pLeft; |
+ continue; |
+ } |
+ if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ |
+ pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); |
+ break; |
+ } |
+ if( p->pTab!=0 |
+ && (op==TK_AGG_COLUMN || op==TK_COLUMN |
+ || op==TK_REGISTER || op==TK_TRIGGER) |
+ ){ |
+ /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally |
+ ** a TK_COLUMN but was previously evaluated and cached in a register */ |
+ int j = p->iColumn; |
+ if( j>=0 ){ |
+ const char *zColl = p->pTab->aCol[j].zColl; |
+ pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); |
+ } |
+ break; |
+ } |
+ if( p->flags & EP_Collate ){ |
+ if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){ |
+ p = p->pLeft; |
+ }else{ |
+ p = p->pRight; |
+ } |
+ }else{ |
+ break; |
+ } |
+ } |
+ if( sqlite3CheckCollSeq(pParse, pColl) ){ |
+ pColl = 0; |
+ } |
+ return pColl; |
+} |
+ |
+/* |
+** pExpr is an operand of a comparison operator. aff2 is the |
+** type affinity of the other operand. This routine returns the |
+** type affinity that should be used for the comparison operator. |
+*/ |
+char sqlite3CompareAffinity(Expr *pExpr, char aff2){ |
+ char aff1 = sqlite3ExprAffinity(pExpr); |
+ if( aff1 && aff2 ){ |
+ /* Both sides of the comparison are columns. If one has numeric |
+ ** affinity, use that. Otherwise use no affinity. |
+ */ |
+ if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ |
+ return SQLITE_AFF_NUMERIC; |
+ }else{ |
+ return SQLITE_AFF_NONE; |
+ } |
+ }else if( !aff1 && !aff2 ){ |
+ /* Neither side of the comparison is a column. Compare the |
+ ** results directly. |
+ */ |
+ return SQLITE_AFF_NONE; |
+ }else{ |
+ /* One side is a column, the other is not. Use the columns affinity. */ |
+ assert( aff1==0 || aff2==0 ); |
+ return (aff1 + aff2); |
+ } |
+} |
+ |
+/* |
+** pExpr is a comparison operator. Return the type affinity that should |
+** be applied to both operands prior to doing the comparison. |
+*/ |
+static char comparisonAffinity(Expr *pExpr){ |
+ char aff; |
+ assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || |
+ pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || |
+ pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); |
+ assert( pExpr->pLeft ); |
+ aff = sqlite3ExprAffinity(pExpr->pLeft); |
+ if( pExpr->pRight ){ |
+ aff = sqlite3CompareAffinity(pExpr->pRight, aff); |
+ }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
+ aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); |
+ }else if( !aff ){ |
+ aff = SQLITE_AFF_NONE; |
+ } |
+ return aff; |
+} |
+ |
+/* |
+** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. |
+** idx_affinity is the affinity of an indexed column. Return true |
+** if the index with affinity idx_affinity may be used to implement |
+** the comparison in pExpr. |
+*/ |
+int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ |
+ char aff = comparisonAffinity(pExpr); |
+ switch( aff ){ |
+ case SQLITE_AFF_NONE: |
+ return 1; |
+ case SQLITE_AFF_TEXT: |
+ return idx_affinity==SQLITE_AFF_TEXT; |
+ default: |
+ return sqlite3IsNumericAffinity(idx_affinity); |
+ } |
+} |
+ |
+/* |
+** Return the P5 value that should be used for a binary comparison |
+** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. |
+*/ |
+static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ |
+ u8 aff = (char)sqlite3ExprAffinity(pExpr2); |
+ aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; |
+ return aff; |
+} |
+ |
+/* |
+** Return a pointer to the collation sequence that should be used by |
+** a binary comparison operator comparing pLeft and pRight. |
+** |
+** If the left hand expression has a collating sequence type, then it is |
+** used. Otherwise the collation sequence for the right hand expression |
+** is used, or the default (BINARY) if neither expression has a collating |
+** type. |
+** |
+** Argument pRight (but not pLeft) may be a null pointer. In this case, |
+** it is not considered. |
+*/ |
+CollSeq *sqlite3BinaryCompareCollSeq( |
+ Parse *pParse, |
+ Expr *pLeft, |
+ Expr *pRight |
+){ |
+ CollSeq *pColl; |
+ assert( pLeft ); |
+ if( pLeft->flags & EP_Collate ){ |
+ pColl = sqlite3ExprCollSeq(pParse, pLeft); |
+ }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ |
+ pColl = sqlite3ExprCollSeq(pParse, pRight); |
+ }else{ |
+ pColl = sqlite3ExprCollSeq(pParse, pLeft); |
+ if( !pColl ){ |
+ pColl = sqlite3ExprCollSeq(pParse, pRight); |
+ } |
+ } |
+ return pColl; |
+} |
+ |
+/* |
+** Generate code for a comparison operator. |
+*/ |
+static int codeCompare( |
+ Parse *pParse, /* The parsing (and code generating) context */ |
+ Expr *pLeft, /* The left operand */ |
+ Expr *pRight, /* The right operand */ |
+ int opcode, /* The comparison opcode */ |
+ int in1, int in2, /* Register holding operands */ |
+ int dest, /* Jump here if true. */ |
+ int jumpIfNull /* If true, jump if either operand is NULL */ |
+){ |
+ int p5; |
+ int addr; |
+ CollSeq *p4; |
+ |
+ p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); |
+ p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); |
+ addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, |
+ (void*)p4, P4_COLLSEQ); |
+ sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); |
+ return addr; |
+} |
+ |
+#if SQLITE_MAX_EXPR_DEPTH>0 |
+/* |
+** Check that argument nHeight is less than or equal to the maximum |
+** expression depth allowed. If it is not, leave an error message in |
+** pParse. |
+*/ |
+int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ |
+ int rc = SQLITE_OK; |
+ int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; |
+ if( nHeight>mxHeight ){ |
+ sqlite3ErrorMsg(pParse, |
+ "Expression tree is too large (maximum depth %d)", mxHeight |
+ ); |
+ rc = SQLITE_ERROR; |
+ } |
+ return rc; |
+} |
+ |
+/* The following three functions, heightOfExpr(), heightOfExprList() |
+** and heightOfSelect(), are used to determine the maximum height |
+** of any expression tree referenced by the structure passed as the |
+** first argument. |
+** |
+** If this maximum height is greater than the current value pointed |
+** to by pnHeight, the second parameter, then set *pnHeight to that |
+** value. |
+*/ |
+static void heightOfExpr(Expr *p, int *pnHeight){ |
+ if( p ){ |
+ if( p->nHeight>*pnHeight ){ |
+ *pnHeight = p->nHeight; |
+ } |
+ } |
+} |
+static void heightOfExprList(ExprList *p, int *pnHeight){ |
+ if( p ){ |
+ int i; |
+ for(i=0; i<p->nExpr; i++){ |
+ heightOfExpr(p->a[i].pExpr, pnHeight); |
+ } |
+ } |
+} |
+static void heightOfSelect(Select *p, int *pnHeight){ |
+ if( p ){ |
+ heightOfExpr(p->pWhere, pnHeight); |
+ heightOfExpr(p->pHaving, pnHeight); |
+ heightOfExpr(p->pLimit, pnHeight); |
+ heightOfExpr(p->pOffset, pnHeight); |
+ heightOfExprList(p->pEList, pnHeight); |
+ heightOfExprList(p->pGroupBy, pnHeight); |
+ heightOfExprList(p->pOrderBy, pnHeight); |
+ heightOfSelect(p->pPrior, pnHeight); |
+ } |
+} |
+ |
+/* |
+** Set the Expr.nHeight variable in the structure passed as an |
+** argument. An expression with no children, Expr.pList or |
+** Expr.pSelect member has a height of 1. Any other expression |
+** has a height equal to the maximum height of any other |
+** referenced Expr plus one. |
+*/ |
+static void exprSetHeight(Expr *p){ |
+ int nHeight = 0; |
+ heightOfExpr(p->pLeft, &nHeight); |
+ heightOfExpr(p->pRight, &nHeight); |
+ if( ExprHasProperty(p, EP_xIsSelect) ){ |
+ heightOfSelect(p->x.pSelect, &nHeight); |
+ }else{ |
+ heightOfExprList(p->x.pList, &nHeight); |
+ } |
+ p->nHeight = nHeight + 1; |
+} |
+ |
+/* |
+** Set the Expr.nHeight variable using the exprSetHeight() function. If |
+** the height is greater than the maximum allowed expression depth, |
+** leave an error in pParse. |
+*/ |
+void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ |
+ exprSetHeight(p); |
+ sqlite3ExprCheckHeight(pParse, p->nHeight); |
+} |
+ |
+/* |
+** Return the maximum height of any expression tree referenced |
+** by the select statement passed as an argument. |
+*/ |
+int sqlite3SelectExprHeight(Select *p){ |
+ int nHeight = 0; |
+ heightOfSelect(p, &nHeight); |
+ return nHeight; |
+} |
+#else |
+ #define exprSetHeight(y) |
+#endif /* SQLITE_MAX_EXPR_DEPTH>0 */ |
+ |
+/* |
+** This routine is the core allocator for Expr nodes. |
+** |
+** Construct a new expression node and return a pointer to it. Memory |
+** for this node and for the pToken argument is a single allocation |
+** obtained from sqlite3DbMalloc(). The calling function |
+** is responsible for making sure the node eventually gets freed. |
+** |
+** If dequote is true, then the token (if it exists) is dequoted. |
+** If dequote is false, no dequoting is performance. The deQuote |
+** parameter is ignored if pToken is NULL or if the token does not |
+** appear to be quoted. If the quotes were of the form "..." (double-quotes) |
+** then the EP_DblQuoted flag is set on the expression node. |
+** |
+** Special case: If op==TK_INTEGER and pToken points to a string that |
+** can be translated into a 32-bit integer, then the token is not |
+** stored in u.zToken. Instead, the integer values is written |
+** into u.iValue and the EP_IntValue flag is set. No extra storage |
+** is allocated to hold the integer text and the dequote flag is ignored. |
+*/ |
+Expr *sqlite3ExprAlloc( |
+ sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ |
+ int op, /* Expression opcode */ |
+ const Token *pToken, /* Token argument. Might be NULL */ |
+ int dequote /* True to dequote */ |
+){ |
+ Expr *pNew; |
+ int nExtra = 0; |
+ int iValue = 0; |
+ |
+ if( pToken ){ |
+ if( op!=TK_INTEGER || pToken->z==0 |
+ || sqlite3GetInt32(pToken->z, &iValue)==0 ){ |
+ nExtra = pToken->n+1; |
+ assert( iValue>=0 ); |
+ } |
+ } |
+ pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); |
+ if( pNew ){ |
+ pNew->op = (u8)op; |
+ pNew->iAgg = -1; |
+ if( pToken ){ |
+ if( nExtra==0 ){ |
+ pNew->flags |= EP_IntValue; |
+ pNew->u.iValue = iValue; |
+ }else{ |
+ int c; |
+ pNew->u.zToken = (char*)&pNew[1]; |
+ assert( pToken->z!=0 || pToken->n==0 ); |
+ if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); |
+ pNew->u.zToken[pToken->n] = 0; |
+ if( dequote && nExtra>=3 |
+ && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ |
+ sqlite3Dequote(pNew->u.zToken); |
+ if( c=='"' ) pNew->flags |= EP_DblQuoted; |
+ } |
+ } |
+ } |
+#if SQLITE_MAX_EXPR_DEPTH>0 |
+ pNew->nHeight = 1; |
+#endif |
+ } |
+ return pNew; |
+} |
+ |
+/* |
+** Allocate a new expression node from a zero-terminated token that has |
+** already been dequoted. |
+*/ |
+Expr *sqlite3Expr( |
+ sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ |
+ int op, /* Expression opcode */ |
+ const char *zToken /* Token argument. Might be NULL */ |
+){ |
+ Token x; |
+ x.z = zToken; |
+ x.n = zToken ? sqlite3Strlen30(zToken) : 0; |
+ return sqlite3ExprAlloc(db, op, &x, 0); |
+} |
+ |
+/* |
+** Attach subtrees pLeft and pRight to the Expr node pRoot. |
+** |
+** If pRoot==NULL that means that a memory allocation error has occurred. |
+** In that case, delete the subtrees pLeft and pRight. |
+*/ |
+void sqlite3ExprAttachSubtrees( |
+ sqlite3 *db, |
+ Expr *pRoot, |
+ Expr *pLeft, |
+ Expr *pRight |
+){ |
+ if( pRoot==0 ){ |
+ assert( db->mallocFailed ); |
+ sqlite3ExprDelete(db, pLeft); |
+ sqlite3ExprDelete(db, pRight); |
+ }else{ |
+ if( pRight ){ |
+ pRoot->pRight = pRight; |
+ pRoot->flags |= EP_Collate & pRight->flags; |
+ } |
+ if( pLeft ){ |
+ pRoot->pLeft = pLeft; |
+ pRoot->flags |= EP_Collate & pLeft->flags; |
+ } |
+ exprSetHeight(pRoot); |
+ } |
+} |
+ |
+/* |
+** Allocate an Expr node which joins as many as two subtrees. |
+** |
+** One or both of the subtrees can be NULL. Return a pointer to the new |
+** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, |
+** free the subtrees and return NULL. |
+*/ |
+Expr *sqlite3PExpr( |
+ Parse *pParse, /* Parsing context */ |
+ int op, /* Expression opcode */ |
+ Expr *pLeft, /* Left operand */ |
+ Expr *pRight, /* Right operand */ |
+ const Token *pToken /* Argument token */ |
+){ |
+ Expr *p; |
+ if( op==TK_AND && pLeft && pRight ){ |
+ /* Take advantage of short-circuit false optimization for AND */ |
+ p = sqlite3ExprAnd(pParse->db, pLeft, pRight); |
+ }else{ |
+ p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); |
+ sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); |
+ } |
+ if( p ) { |
+ sqlite3ExprCheckHeight(pParse, p->nHeight); |
+ } |
+ return p; |
+} |
+ |
+/* |
+** If the expression is always either TRUE or FALSE (respectively), |
+** then return 1. If one cannot determine the truth value of the |
+** expression at compile-time return 0. |
+** |
+** This is an optimization. If is OK to return 0 here even if |
+** the expression really is always false or false (a false negative). |
+** But it is a bug to return 1 if the expression might have different |
+** boolean values in different circumstances (a false positive.) |
+** |
+** Note that if the expression is part of conditional for a |
+** LEFT JOIN, then we cannot determine at compile-time whether or not |
+** is it true or false, so always return 0. |
+*/ |
+static int exprAlwaysTrue(Expr *p){ |
+ int v = 0; |
+ if( ExprHasProperty(p, EP_FromJoin) ) return 0; |
+ if( !sqlite3ExprIsInteger(p, &v) ) return 0; |
+ return v!=0; |
+} |
+static int exprAlwaysFalse(Expr *p){ |
+ int v = 0; |
+ if( ExprHasProperty(p, EP_FromJoin) ) return 0; |
+ if( !sqlite3ExprIsInteger(p, &v) ) return 0; |
+ return v==0; |
+} |
+ |
+/* |
+** Join two expressions using an AND operator. If either expression is |
+** NULL, then just return the other expression. |
+** |
+** If one side or the other of the AND is known to be false, then instead |
+** of returning an AND expression, just return a constant expression with |
+** a value of false. |
+*/ |
+Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ |
+ if( pLeft==0 ){ |
+ return pRight; |
+ }else if( pRight==0 ){ |
+ return pLeft; |
+ }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ |
+ sqlite3ExprDelete(db, pLeft); |
+ sqlite3ExprDelete(db, pRight); |
+ return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); |
+ }else{ |
+ Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); |
+ sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); |
+ return pNew; |
+ } |
+} |
+ |
+/* |
+** Construct a new expression node for a function with multiple |
+** arguments. |
+*/ |
+Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ |
+ Expr *pNew; |
+ sqlite3 *db = pParse->db; |
+ assert( pToken ); |
+ pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); |
+ if( pNew==0 ){ |
+ sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ |
+ return 0; |
+ } |
+ pNew->x.pList = pList; |
+ assert( !ExprHasProperty(pNew, EP_xIsSelect) ); |
+ sqlite3ExprSetHeight(pParse, pNew); |
+ return pNew; |
+} |
+ |
+/* |
+** Assign a variable number to an expression that encodes a wildcard |
+** in the original SQL statement. |
+** |
+** Wildcards consisting of a single "?" are assigned the next sequential |
+** variable number. |
+** |
+** Wildcards of the form "?nnn" are assigned the number "nnn". We make |
+** sure "nnn" is not too be to avoid a denial of service attack when |
+** the SQL statement comes from an external source. |
+** |
+** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number |
+** as the previous instance of the same wildcard. Or if this is the first |
+** instance of the wildcard, the next sequential variable number is |
+** assigned. |
+*/ |
+void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ |
+ sqlite3 *db = pParse->db; |
+ const char *z; |
+ |
+ if( pExpr==0 ) return; |
+ assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); |
+ z = pExpr->u.zToken; |
+ assert( z!=0 ); |
+ assert( z[0]!=0 ); |
+ if( z[1]==0 ){ |
+ /* Wildcard of the form "?". Assign the next variable number */ |
+ assert( z[0]=='?' ); |
+ pExpr->iColumn = (ynVar)(++pParse->nVar); |
+ }else{ |
+ ynVar x = 0; |
+ u32 n = sqlite3Strlen30(z); |
+ if( z[0]=='?' ){ |
+ /* Wildcard of the form "?nnn". Convert "nnn" to an integer and |
+ ** use it as the variable number */ |
+ i64 i; |
+ int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); |
+ pExpr->iColumn = x = (ynVar)i; |
+ testcase( i==0 ); |
+ testcase( i==1 ); |
+ testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); |
+ testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); |
+ if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ |
+ sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", |
+ db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); |
+ x = 0; |
+ } |
+ if( i>pParse->nVar ){ |
+ pParse->nVar = (int)i; |
+ } |
+ }else{ |
+ /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable |
+ ** number as the prior appearance of the same name, or if the name |
+ ** has never appeared before, reuse the same variable number |
+ */ |
+ ynVar i; |
+ for(i=0; i<pParse->nzVar; i++){ |
+ if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ |
+ pExpr->iColumn = x = (ynVar)i+1; |
+ break; |
+ } |
+ } |
+ if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); |
+ } |
+ if( x>0 ){ |
+ if( x>pParse->nzVar ){ |
+ char **a; |
+ a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); |
+ if( a==0 ) return; /* Error reported through db->mallocFailed */ |
+ pParse->azVar = a; |
+ memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); |
+ pParse->nzVar = x; |
+ } |
+ if( z[0]!='?' || pParse->azVar[x-1]==0 ){ |
+ sqlite3DbFree(db, pParse->azVar[x-1]); |
+ pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); |
+ } |
+ } |
+ } |
+ if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ |
+ sqlite3ErrorMsg(pParse, "too many SQL variables"); |
+ } |
+} |
+ |
+/* |
+** Recursively delete an expression tree. |
+*/ |
+void sqlite3ExprDelete(sqlite3 *db, Expr *p){ |
+ if( p==0 ) return; |
+ /* Sanity check: Assert that the IntValue is non-negative if it exists */ |
+ assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); |
+ if( !ExprHasProperty(p, EP_TokenOnly) ){ |
+ /* The Expr.x union is never used at the same time as Expr.pRight */ |
+ assert( p->x.pList==0 || p->pRight==0 ); |
+ sqlite3ExprDelete(db, p->pLeft); |
+ sqlite3ExprDelete(db, p->pRight); |
+ if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); |
+ if( ExprHasProperty(p, EP_xIsSelect) ){ |
+ sqlite3SelectDelete(db, p->x.pSelect); |
+ }else{ |
+ sqlite3ExprListDelete(db, p->x.pList); |
+ } |
+ } |
+ if( !ExprHasProperty(p, EP_Static) ){ |
+ sqlite3DbFree(db, p); |
+ } |
+} |
+ |
+/* |
+** Return the number of bytes allocated for the expression structure |
+** passed as the first argument. This is always one of EXPR_FULLSIZE, |
+** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. |
+*/ |
+static int exprStructSize(Expr *p){ |
+ if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; |
+ if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; |
+ return EXPR_FULLSIZE; |
+} |
+ |
+/* |
+** The dupedExpr*Size() routines each return the number of bytes required |
+** to store a copy of an expression or expression tree. They differ in |
+** how much of the tree is measured. |
+** |
+** dupedExprStructSize() Size of only the Expr structure |
+** dupedExprNodeSize() Size of Expr + space for token |
+** dupedExprSize() Expr + token + subtree components |
+** |
+*************************************************************************** |
+** |
+** The dupedExprStructSize() function returns two values OR-ed together: |
+** (1) the space required for a copy of the Expr structure only and |
+** (2) the EP_xxx flags that indicate what the structure size should be. |
+** The return values is always one of: |
+** |
+** EXPR_FULLSIZE |
+** EXPR_REDUCEDSIZE | EP_Reduced |
+** EXPR_TOKENONLYSIZE | EP_TokenOnly |
+** |
+** The size of the structure can be found by masking the return value |
+** of this routine with 0xfff. The flags can be found by masking the |
+** return value with EP_Reduced|EP_TokenOnly. |
+** |
+** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size |
+** (unreduced) Expr objects as they or originally constructed by the parser. |
+** During expression analysis, extra information is computed and moved into |
+** later parts of teh Expr object and that extra information might get chopped |
+** off if the expression is reduced. Note also that it does not work to |
+** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal |
+** to reduce a pristine expression tree from the parser. The implementation |
+** of dupedExprStructSize() contain multiple assert() statements that attempt |
+** to enforce this constraint. |
+*/ |
+static int dupedExprStructSize(Expr *p, int flags){ |
+ int nSize; |
+ assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ |
+ assert( EXPR_FULLSIZE<=0xfff ); |
+ assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); |
+ if( 0==(flags&EXPRDUP_REDUCE) ){ |
+ nSize = EXPR_FULLSIZE; |
+ }else{ |
+ assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); |
+ assert( !ExprHasProperty(p, EP_FromJoin) ); |
+ assert( !ExprHasProperty(p, EP_MemToken) ); |
+ assert( !ExprHasProperty(p, EP_NoReduce) ); |
+ if( p->pLeft || p->x.pList ){ |
+ nSize = EXPR_REDUCEDSIZE | EP_Reduced; |
+ }else{ |
+ assert( p->pRight==0 ); |
+ nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; |
+ } |
+ } |
+ return nSize; |
+} |
+ |
+/* |
+** This function returns the space in bytes required to store the copy |
+** of the Expr structure and a copy of the Expr.u.zToken string (if that |
+** string is defined.) |
+*/ |
+static int dupedExprNodeSize(Expr *p, int flags){ |
+ int nByte = dupedExprStructSize(p, flags) & 0xfff; |
+ if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ |
+ nByte += sqlite3Strlen30(p->u.zToken)+1; |
+ } |
+ return ROUND8(nByte); |
+} |
+ |
+/* |
+** Return the number of bytes required to create a duplicate of the |
+** expression passed as the first argument. The second argument is a |
+** mask containing EXPRDUP_XXX flags. |
+** |
+** The value returned includes space to create a copy of the Expr struct |
+** itself and the buffer referred to by Expr.u.zToken, if any. |
+** |
+** If the EXPRDUP_REDUCE flag is set, then the return value includes |
+** space to duplicate all Expr nodes in the tree formed by Expr.pLeft |
+** and Expr.pRight variables (but not for any structures pointed to or |
+** descended from the Expr.x.pList or Expr.x.pSelect variables). |
+*/ |
+static int dupedExprSize(Expr *p, int flags){ |
+ int nByte = 0; |
+ if( p ){ |
+ nByte = dupedExprNodeSize(p, flags); |
+ if( flags&EXPRDUP_REDUCE ){ |
+ nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); |
+ } |
+ } |
+ return nByte; |
+} |
+ |
+/* |
+** This function is similar to sqlite3ExprDup(), except that if pzBuffer |
+** is not NULL then *pzBuffer is assumed to point to a buffer large enough |
+** to store the copy of expression p, the copies of p->u.zToken |
+** (if applicable), and the copies of the p->pLeft and p->pRight expressions, |
+** if any. Before returning, *pzBuffer is set to the first byte past the |
+** portion of the buffer copied into by this function. |
+*/ |
+static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ |
+ Expr *pNew = 0; /* Value to return */ |
+ if( p ){ |
+ const int isReduced = (flags&EXPRDUP_REDUCE); |
+ u8 *zAlloc; |
+ u32 staticFlag = 0; |
+ |
+ assert( pzBuffer==0 || isReduced ); |
+ |
+ /* Figure out where to write the new Expr structure. */ |
+ if( pzBuffer ){ |
+ zAlloc = *pzBuffer; |
+ staticFlag = EP_Static; |
+ }else{ |
+ zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); |
+ } |
+ pNew = (Expr *)zAlloc; |
+ |
+ if( pNew ){ |
+ /* Set nNewSize to the size allocated for the structure pointed to |
+ ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or |
+ ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed |
+ ** by the copy of the p->u.zToken string (if any). |
+ */ |
+ const unsigned nStructSize = dupedExprStructSize(p, flags); |
+ const int nNewSize = nStructSize & 0xfff; |
+ int nToken; |
+ if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ |
+ nToken = sqlite3Strlen30(p->u.zToken) + 1; |
+ }else{ |
+ nToken = 0; |
+ } |
+ if( isReduced ){ |
+ assert( ExprHasProperty(p, EP_Reduced)==0 ); |
+ memcpy(zAlloc, p, nNewSize); |
+ }else{ |
+ int nSize = exprStructSize(p); |
+ memcpy(zAlloc, p, nSize); |
+ memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); |
+ } |
+ |
+ /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ |
+ pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); |
+ pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); |
+ pNew->flags |= staticFlag; |
+ |
+ /* Copy the p->u.zToken string, if any. */ |
+ if( nToken ){ |
+ char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; |
+ memcpy(zToken, p->u.zToken, nToken); |
+ } |
+ |
+ if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ |
+ /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ |
+ if( ExprHasProperty(p, EP_xIsSelect) ){ |
+ pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); |
+ }else{ |
+ pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); |
+ } |
+ } |
+ |
+ /* Fill in pNew->pLeft and pNew->pRight. */ |
+ if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ |
+ zAlloc += dupedExprNodeSize(p, flags); |
+ if( ExprHasProperty(pNew, EP_Reduced) ){ |
+ pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); |
+ pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); |
+ } |
+ if( pzBuffer ){ |
+ *pzBuffer = zAlloc; |
+ } |
+ }else{ |
+ if( !ExprHasProperty(p, EP_TokenOnly) ){ |
+ pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); |
+ pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); |
+ } |
+ } |
+ |
+ } |
+ } |
+ return pNew; |
+} |
+ |
+/* |
+** Create and return a deep copy of the object passed as the second |
+** argument. If an OOM condition is encountered, NULL is returned |
+** and the db->mallocFailed flag set. |
+*/ |
+#ifndef SQLITE_OMIT_CTE |
+static With *withDup(sqlite3 *db, With *p){ |
+ With *pRet = 0; |
+ if( p ){ |
+ int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); |
+ pRet = sqlite3DbMallocZero(db, nByte); |
+ if( pRet ){ |
+ int i; |
+ pRet->nCte = p->nCte; |
+ for(i=0; i<p->nCte; i++){ |
+ pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); |
+ pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); |
+ pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); |
+ } |
+ } |
+ } |
+ return pRet; |
+} |
+#else |
+# define withDup(x,y) 0 |
+#endif |
+ |
+/* |
+** The following group of routines make deep copies of expressions, |
+** expression lists, ID lists, and select statements. The copies can |
+** be deleted (by being passed to their respective ...Delete() routines) |
+** without effecting the originals. |
+** |
+** The expression list, ID, and source lists return by sqlite3ExprListDup(), |
+** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded |
+** by subsequent calls to sqlite*ListAppend() routines. |
+** |
+** Any tables that the SrcList might point to are not duplicated. |
+** |
+** The flags parameter contains a combination of the EXPRDUP_XXX flags. |
+** If the EXPRDUP_REDUCE flag is set, then the structure returned is a |
+** truncated version of the usual Expr structure that will be stored as |
+** part of the in-memory representation of the database schema. |
+*/ |
+Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ |
+ return exprDup(db, p, flags, 0); |
+} |
+ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ |
+ ExprList *pNew; |
+ struct ExprList_item *pItem, *pOldItem; |
+ int i; |
+ if( p==0 ) return 0; |
+ pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); |
+ if( pNew==0 ) return 0; |
+ pNew->nExpr = i = p->nExpr; |
+ if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} |
+ pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); |
+ if( pItem==0 ){ |
+ sqlite3DbFree(db, pNew); |
+ return 0; |
+ } |
+ pOldItem = p->a; |
+ for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ |
+ Expr *pOldExpr = pOldItem->pExpr; |
+ pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); |
+ pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); |
+ pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); |
+ pItem->sortOrder = pOldItem->sortOrder; |
+ pItem->done = 0; |
+ pItem->bSpanIsTab = pOldItem->bSpanIsTab; |
+ pItem->u = pOldItem->u; |
+ } |
+ return pNew; |
+} |
+ |
+/* |
+** If cursors, triggers, views and subqueries are all omitted from |
+** the build, then none of the following routines, except for |
+** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes |
+** called with a NULL argument. |
+*/ |
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ |
+ || !defined(SQLITE_OMIT_SUBQUERY) |
+SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ |
+ SrcList *pNew; |
+ int i; |
+ int nByte; |
+ if( p==0 ) return 0; |
+ nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); |
+ pNew = sqlite3DbMallocRaw(db, nByte ); |
+ if( pNew==0 ) return 0; |
+ pNew->nSrc = pNew->nAlloc = p->nSrc; |
+ for(i=0; i<p->nSrc; i++){ |
+ struct SrcList_item *pNewItem = &pNew->a[i]; |
+ struct SrcList_item *pOldItem = &p->a[i]; |
+ Table *pTab; |
+ pNewItem->pSchema = pOldItem->pSchema; |
+ pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); |
+ pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); |
+ pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); |
+ pNewItem->jointype = pOldItem->jointype; |
+ pNewItem->iCursor = pOldItem->iCursor; |
+ pNewItem->addrFillSub = pOldItem->addrFillSub; |
+ pNewItem->regReturn = pOldItem->regReturn; |
+ pNewItem->isCorrelated = pOldItem->isCorrelated; |
+ pNewItem->viaCoroutine = pOldItem->viaCoroutine; |
+ pNewItem->isRecursive = pOldItem->isRecursive; |
+ pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); |
+ pNewItem->notIndexed = pOldItem->notIndexed; |
+ pNewItem->pIndex = pOldItem->pIndex; |
+ pTab = pNewItem->pTab = pOldItem->pTab; |
+ if( pTab ){ |
+ pTab->nRef++; |
+ } |
+ pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); |
+ pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); |
+ pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); |
+ pNewItem->colUsed = pOldItem->colUsed; |
+ } |
+ return pNew; |
+} |
+IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ |
+ IdList *pNew; |
+ int i; |
+ if( p==0 ) return 0; |
+ pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); |
+ if( pNew==0 ) return 0; |
+ pNew->nId = p->nId; |
+ pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); |
+ if( pNew->a==0 ){ |
+ sqlite3DbFree(db, pNew); |
+ return 0; |
+ } |
+ /* Note that because the size of the allocation for p->a[] is not |
+ ** necessarily a power of two, sqlite3IdListAppend() may not be called |
+ ** on the duplicate created by this function. */ |
+ for(i=0; i<p->nId; i++){ |
+ struct IdList_item *pNewItem = &pNew->a[i]; |
+ struct IdList_item *pOldItem = &p->a[i]; |
+ pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); |
+ pNewItem->idx = pOldItem->idx; |
+ } |
+ return pNew; |
+} |
+Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ |
+ Select *pNew, *pPrior; |
+ if( p==0 ) return 0; |
+ pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); |
+ if( pNew==0 ) return 0; |
+ pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); |
+ pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); |
+ pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); |
+ pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); |
+ pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); |
+ pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); |
+ pNew->op = p->op; |
+ pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); |
+ if( pPrior ) pPrior->pNext = pNew; |
+ pNew->pNext = 0; |
+ pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); |
+ pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); |
+ pNew->iLimit = 0; |
+ pNew->iOffset = 0; |
+ pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; |
+ pNew->addrOpenEphm[0] = -1; |
+ pNew->addrOpenEphm[1] = -1; |
+ pNew->nSelectRow = p->nSelectRow; |
+ pNew->pWith = withDup(db, p->pWith); |
+ sqlite3SelectSetName(pNew, p->zSelName); |
+ return pNew; |
+} |
+#else |
+Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ |
+ assert( p==0 ); |
+ return 0; |
+} |
+#endif |
+ |
+ |
+/* |
+** Add a new element to the end of an expression list. If pList is |
+** initially NULL, then create a new expression list. |
+** |
+** If a memory allocation error occurs, the entire list is freed and |
+** NULL is returned. If non-NULL is returned, then it is guaranteed |
+** that the new entry was successfully appended. |
+*/ |
+ExprList *sqlite3ExprListAppend( |
+ Parse *pParse, /* Parsing context */ |
+ ExprList *pList, /* List to which to append. Might be NULL */ |
+ Expr *pExpr /* Expression to be appended. Might be NULL */ |
+){ |
+ sqlite3 *db = pParse->db; |
+ if( pList==0 ){ |
+ pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); |
+ if( pList==0 ){ |
+ goto no_mem; |
+ } |
+ pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); |
+ if( pList->a==0 ) goto no_mem; |
+ }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ |
+ struct ExprList_item *a; |
+ assert( pList->nExpr>0 ); |
+ a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); |
+ if( a==0 ){ |
+ goto no_mem; |
+ } |
+ pList->a = a; |
+ } |
+ assert( pList->a!=0 ); |
+ if( 1 ){ |
+ struct ExprList_item *pItem = &pList->a[pList->nExpr++]; |
+ memset(pItem, 0, sizeof(*pItem)); |
+ pItem->pExpr = pExpr; |
+ } |
+ return pList; |
+ |
+no_mem: |
+ /* Avoid leaking memory if malloc has failed. */ |
+ sqlite3ExprDelete(db, pExpr); |
+ sqlite3ExprListDelete(db, pList); |
+ return 0; |
+} |
+ |
+/* |
+** Set the ExprList.a[].zName element of the most recently added item |
+** on the expression list. |
+** |
+** pList might be NULL following an OOM error. But pName should never be |
+** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag |
+** is set. |
+*/ |
+void sqlite3ExprListSetName( |
+ Parse *pParse, /* Parsing context */ |
+ ExprList *pList, /* List to which to add the span. */ |
+ Token *pName, /* Name to be added */ |
+ int dequote /* True to cause the name to be dequoted */ |
+){ |
+ assert( pList!=0 || pParse->db->mallocFailed!=0 ); |
+ if( pList ){ |
+ struct ExprList_item *pItem; |
+ assert( pList->nExpr>0 ); |
+ pItem = &pList->a[pList->nExpr-1]; |
+ assert( pItem->zName==0 ); |
+ pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); |
+ if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); |
+ } |
+} |
+ |
+/* |
+** Set the ExprList.a[].zSpan element of the most recently added item |
+** on the expression list. |
+** |
+** pList might be NULL following an OOM error. But pSpan should never be |
+** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag |
+** is set. |
+*/ |
+void sqlite3ExprListSetSpan( |
+ Parse *pParse, /* Parsing context */ |
+ ExprList *pList, /* List to which to add the span. */ |
+ ExprSpan *pSpan /* The span to be added */ |
+){ |
+ sqlite3 *db = pParse->db; |
+ assert( pList!=0 || db->mallocFailed!=0 ); |
+ if( pList ){ |
+ struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; |
+ assert( pList->nExpr>0 ); |
+ assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); |
+ sqlite3DbFree(db, pItem->zSpan); |
+ pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, |
+ (int)(pSpan->zEnd - pSpan->zStart)); |
+ } |
+} |
+ |
+/* |
+** If the expression list pEList contains more than iLimit elements, |
+** leave an error message in pParse. |
+*/ |
+void sqlite3ExprListCheckLength( |
+ Parse *pParse, |
+ ExprList *pEList, |
+ const char *zObject |
+){ |
+ int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; |
+ testcase( pEList && pEList->nExpr==mx ); |
+ testcase( pEList && pEList->nExpr==mx+1 ); |
+ if( pEList && pEList->nExpr>mx ){ |
+ sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); |
+ } |
+} |
+ |
+/* |
+** Delete an entire expression list. |
+*/ |
+void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ |
+ int i; |
+ struct ExprList_item *pItem; |
+ if( pList==0 ) return; |
+ assert( pList->a!=0 || pList->nExpr==0 ); |
+ for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ |
+ sqlite3ExprDelete(db, pItem->pExpr); |
+ sqlite3DbFree(db, pItem->zName); |
+ sqlite3DbFree(db, pItem->zSpan); |
+ } |
+ sqlite3DbFree(db, pList->a); |
+ sqlite3DbFree(db, pList); |
+} |
+ |
+/* |
+** These routines are Walker callbacks. Walker.u.pi is a pointer |
+** to an integer. These routines are checking an expression to see |
+** if it is a constant. Set *Walker.u.i to 0 if the expression is |
+** not constant. |
+** |
+** These callback routines are used to implement the following: |
+** |
+** sqlite3ExprIsConstant() pWalker->u.i==1 |
+** sqlite3ExprIsConstantNotJoin() pWalker->u.i==2 |
+** sqlite3ExprIsConstantOrFunction() pWalker->u.i==3 or 4 |
+** |
+** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions |
+** in a CREATE TABLE statement. The Walker.u.i value is 4 when parsing |
+** an existing schema and 3 when processing a new statement. A bound |
+** parameter raises an error for new statements, but is silently converted |
+** to NULL for existing schemas. This allows sqlite_master tables that |
+** contain a bound parameter because they were generated by older versions |
+** of SQLite to be parsed by newer versions of SQLite without raising a |
+** malformed schema error. |
+*/ |
+static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ |
+ |
+ /* If pWalker->u.i is 2 then any term of the expression that comes from |
+ ** the ON or USING clauses of a join disqualifies the expression |
+ ** from being considered constant. */ |
+ if( pWalker->u.i==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ |
+ pWalker->u.i = 0; |
+ return WRC_Abort; |
+ } |
+ |
+ switch( pExpr->op ){ |
+ /* Consider functions to be constant if all their arguments are constant |
+ ** and either pWalker->u.i==3 or 4 or the function as the SQLITE_FUNC_CONST |
+ ** flag. */ |
+ case TK_FUNCTION: |
+ if( pWalker->u.i>=3 || ExprHasProperty(pExpr,EP_Constant) ){ |
+ return WRC_Continue; |
+ } |
+ /* Fall through */ |
+ case TK_ID: |
+ case TK_COLUMN: |
+ case TK_AGG_FUNCTION: |
+ case TK_AGG_COLUMN: |
+ testcase( pExpr->op==TK_ID ); |
+ testcase( pExpr->op==TK_COLUMN ); |
+ testcase( pExpr->op==TK_AGG_FUNCTION ); |
+ testcase( pExpr->op==TK_AGG_COLUMN ); |
+ pWalker->u.i = 0; |
+ return WRC_Abort; |
+ case TK_VARIABLE: |
+ if( pWalker->u.i==4 ){ |
+ /* Silently convert bound parameters that appear inside of CREATE |
+ ** statements into a NULL when parsing the CREATE statement text out |
+ ** of the sqlite_master table */ |
+ pExpr->op = TK_NULL; |
+ }else if( pWalker->u.i==3 ){ |
+ /* A bound parameter in a CREATE statement that originates from |
+ ** sqlite3_prepare() causes an error */ |
+ pWalker->u.i = 0; |
+ return WRC_Abort; |
+ } |
+ /* Fall through */ |
+ default: |
+ testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ |
+ testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ |
+ return WRC_Continue; |
+ } |
+} |
+static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ |
+ UNUSED_PARAMETER(NotUsed); |
+ pWalker->u.i = 0; |
+ return WRC_Abort; |
+} |
+static int exprIsConst(Expr *p, int initFlag){ |
+ Walker w; |
+ memset(&w, 0, sizeof(w)); |
+ w.u.i = initFlag; |
+ w.xExprCallback = exprNodeIsConstant; |
+ w.xSelectCallback = selectNodeIsConstant; |
+ sqlite3WalkExpr(&w, p); |
+ return w.u.i; |
+} |
+ |
+/* |
+** Walk an expression tree. Return 1 if the expression is constant |
+** and 0 if it involves variables or function calls. |
+** |
+** For the purposes of this function, a double-quoted string (ex: "abc") |
+** is considered a variable but a single-quoted string (ex: 'abc') is |
+** a constant. |
+*/ |
+int sqlite3ExprIsConstant(Expr *p){ |
+ return exprIsConst(p, 1); |
+} |
+ |
+/* |
+** Walk an expression tree. Return 1 if the expression is constant |
+** that does no originate from the ON or USING clauses of a join. |
+** Return 0 if it involves variables or function calls or terms from |
+** an ON or USING clause. |
+*/ |
+int sqlite3ExprIsConstantNotJoin(Expr *p){ |
+ return exprIsConst(p, 2); |
+} |
+ |
+/* |
+** Walk an expression tree. Return 1 if the expression is constant |
+** or a function call with constant arguments. Return and 0 if there |
+** are any variables. |
+** |
+** For the purposes of this function, a double-quoted string (ex: "abc") |
+** is considered a variable but a single-quoted string (ex: 'abc') is |
+** a constant. |
+*/ |
+int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ |
+ assert( isInit==0 || isInit==1 ); |
+ return exprIsConst(p, 3+isInit); |
+} |
+ |
+/* |
+** If the expression p codes a constant integer that is small enough |
+** to fit in a 32-bit integer, return 1 and put the value of the integer |
+** in *pValue. If the expression is not an integer or if it is too big |
+** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. |
+*/ |
+int sqlite3ExprIsInteger(Expr *p, int *pValue){ |
+ int rc = 0; |
+ |
+ /* If an expression is an integer literal that fits in a signed 32-bit |
+ ** integer, then the EP_IntValue flag will have already been set */ |
+ assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 |
+ || sqlite3GetInt32(p->u.zToken, &rc)==0 ); |
+ |
+ if( p->flags & EP_IntValue ){ |
+ *pValue = p->u.iValue; |
+ return 1; |
+ } |
+ switch( p->op ){ |
+ case TK_UPLUS: { |
+ rc = sqlite3ExprIsInteger(p->pLeft, pValue); |
+ break; |
+ } |
+ case TK_UMINUS: { |
+ int v; |
+ if( sqlite3ExprIsInteger(p->pLeft, &v) ){ |
+ assert( v!=(-2147483647-1) ); |
+ *pValue = -v; |
+ rc = 1; |
+ } |
+ break; |
+ } |
+ default: break; |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Return FALSE if there is no chance that the expression can be NULL. |
+** |
+** If the expression might be NULL or if the expression is too complex |
+** to tell return TRUE. |
+** |
+** This routine is used as an optimization, to skip OP_IsNull opcodes |
+** when we know that a value cannot be NULL. Hence, a false positive |
+** (returning TRUE when in fact the expression can never be NULL) might |
+** be a small performance hit but is otherwise harmless. On the other |
+** hand, a false negative (returning FALSE when the result could be NULL) |
+** will likely result in an incorrect answer. So when in doubt, return |
+** TRUE. |
+*/ |
+int sqlite3ExprCanBeNull(const Expr *p){ |
+ u8 op; |
+ while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } |
+ op = p->op; |
+ if( op==TK_REGISTER ) op = p->op2; |
+ switch( op ){ |
+ case TK_INTEGER: |
+ case TK_STRING: |
+ case TK_FLOAT: |
+ case TK_BLOB: |
+ return 0; |
+ case TK_COLUMN: |
+ assert( p->pTab!=0 ); |
+ return ExprHasProperty(p, EP_CanBeNull) || |
+ (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); |
+ default: |
+ return 1; |
+ } |
+} |
+ |
+/* |
+** Return TRUE if the given expression is a constant which would be |
+** unchanged by OP_Affinity with the affinity given in the second |
+** argument. |
+** |
+** This routine is used to determine if the OP_Affinity operation |
+** can be omitted. When in doubt return FALSE. A false negative |
+** is harmless. A false positive, however, can result in the wrong |
+** answer. |
+*/ |
+int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ |
+ u8 op; |
+ if( aff==SQLITE_AFF_NONE ) return 1; |
+ while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } |
+ op = p->op; |
+ if( op==TK_REGISTER ) op = p->op2; |
+ switch( op ){ |
+ case TK_INTEGER: { |
+ return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; |
+ } |
+ case TK_FLOAT: { |
+ return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; |
+ } |
+ case TK_STRING: { |
+ return aff==SQLITE_AFF_TEXT; |
+ } |
+ case TK_BLOB: { |
+ return 1; |
+ } |
+ case TK_COLUMN: { |
+ assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ |
+ return p->iColumn<0 |
+ && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); |
+ } |
+ default: { |
+ return 0; |
+ } |
+ } |
+} |
+ |
+/* |
+** Return TRUE if the given string is a row-id column name. |
+*/ |
+int sqlite3IsRowid(const char *z){ |
+ if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; |
+ if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; |
+ if( sqlite3StrICmp(z, "OID")==0 ) return 1; |
+ return 0; |
+} |
+ |
+/* |
+** Return true if we are able to the IN operator optimization on a |
+** query of the form |
+** |
+** x IN (SELECT ...) |
+** |
+** Where the SELECT... clause is as specified by the parameter to this |
+** routine. |
+** |
+** The Select object passed in has already been preprocessed and no |
+** errors have been found. |
+*/ |
+#ifndef SQLITE_OMIT_SUBQUERY |
+static int isCandidateForInOpt(Select *p){ |
+ SrcList *pSrc; |
+ ExprList *pEList; |
+ Table *pTab; |
+ if( p==0 ) return 0; /* right-hand side of IN is SELECT */ |
+ if( p->pPrior ) return 0; /* Not a compound SELECT */ |
+ if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ |
+ testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); |
+ testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); |
+ return 0; /* No DISTINCT keyword and no aggregate functions */ |
+ } |
+ assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ |
+ if( p->pLimit ) return 0; /* Has no LIMIT clause */ |
+ assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ |
+ if( p->pWhere ) return 0; /* Has no WHERE clause */ |
+ pSrc = p->pSrc; |
+ assert( pSrc!=0 ); |
+ if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ |
+ if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ |
+ pTab = pSrc->a[0].pTab; |
+ if( NEVER(pTab==0) ) return 0; |
+ assert( pTab->pSelect==0 ); /* FROM clause is not a view */ |
+ if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ |
+ pEList = p->pEList; |
+ if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ |
+ if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ |
+ return 1; |
+} |
+#endif /* SQLITE_OMIT_SUBQUERY */ |
+ |
+/* |
+** Code an OP_Once instruction and allocate space for its flag. Return the |
+** address of the new instruction. |
+*/ |
+int sqlite3CodeOnce(Parse *pParse){ |
+ Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ |
+ return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); |
+} |
+ |
+/* |
+** Generate code that checks the left-most column of index table iCur to see if |
+** it contains any NULL entries. Cause the register at regHasNull to be set |
+** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull |
+** to be set to NULL if iCur contains one or more NULL values. |
+*/ |
+static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ |
+ int j1; |
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); |
+ j1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); |
+ sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); |
+ sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); |
+ VdbeComment((v, "first_entry_in(%d)", iCur)); |
+ sqlite3VdbeJumpHere(v, j1); |
+} |
+ |
+ |
+#ifndef SQLITE_OMIT_SUBQUERY |
+/* |
+** The argument is an IN operator with a list (not a subquery) on the |
+** right-hand side. Return TRUE if that list is constant. |
+*/ |
+static int sqlite3InRhsIsConstant(Expr *pIn){ |
+ Expr *pLHS; |
+ int res; |
+ assert( !ExprHasProperty(pIn, EP_xIsSelect) ); |
+ pLHS = pIn->pLeft; |
+ pIn->pLeft = 0; |
+ res = sqlite3ExprIsConstant(pIn); |
+ pIn->pLeft = pLHS; |
+ return res; |
+} |
+#endif |
+ |
+/* |
+** This function is used by the implementation of the IN (...) operator. |
+** The pX parameter is the expression on the RHS of the IN operator, which |
+** might be either a list of expressions or a subquery. |
+** |
+** The job of this routine is to find or create a b-tree object that can |
+** be used either to test for membership in the RHS set or to iterate through |
+** all members of the RHS set, skipping duplicates. |
+** |
+** A cursor is opened on the b-tree object that is the RHS of the IN operator |
+** and pX->iTable is set to the index of that cursor. |
+** |
+** The returned value of this function indicates the b-tree type, as follows: |
+** |
+** IN_INDEX_ROWID - The cursor was opened on a database table. |
+** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. |
+** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. |
+** IN_INDEX_EPH - The cursor was opened on a specially created and |
+** populated epheremal table. |
+** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be |
+** implemented as a sequence of comparisons. |
+** |
+** An existing b-tree might be used if the RHS expression pX is a simple |
+** subquery such as: |
+** |
+** SELECT <column> FROM <table> |
+** |
+** If the RHS of the IN operator is a list or a more complex subquery, then |
+** an ephemeral table might need to be generated from the RHS and then |
+** pX->iTable made to point to the ephemeral table instead of an |
+** existing table. |
+** |
+** The inFlags parameter must contain exactly one of the bits |
+** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains |
+** IN_INDEX_MEMBERSHIP, then the generated table will be used for a |
+** fast membership test. When the IN_INDEX_LOOP bit is set, the |
+** IN index will be used to loop over all values of the RHS of the |
+** IN operator. |
+** |
+** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate |
+** through the set members) then the b-tree must not contain duplicates. |
+** An epheremal table must be used unless the selected <column> is guaranteed |
+** to be unique - either because it is an INTEGER PRIMARY KEY or it |
+** has a UNIQUE constraint or UNIQUE index. |
+** |
+** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used |
+** for fast set membership tests) then an epheremal table must |
+** be used unless <column> is an INTEGER PRIMARY KEY or an index can |
+** be found with <column> as its left-most column. |
+** |
+** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and |
+** if the RHS of the IN operator is a list (not a subquery) then this |
+** routine might decide that creating an ephemeral b-tree for membership |
+** testing is too expensive and return IN_INDEX_NOOP. In that case, the |
+** calling routine should implement the IN operator using a sequence |
+** of Eq or Ne comparison operations. |
+** |
+** When the b-tree is being used for membership tests, the calling function |
+** might need to know whether or not the RHS side of the IN operator |
+** contains a NULL. If prRhsHasNull is not a NULL pointer and |
+** if there is any chance that the (...) might contain a NULL value at |
+** runtime, then a register is allocated and the register number written |
+** to *prRhsHasNull. If there is no chance that the (...) contains a |
+** NULL value, then *prRhsHasNull is left unchanged. |
+** |
+** If a register is allocated and its location stored in *prRhsHasNull, then |
+** the value in that register will be NULL if the b-tree contains one or more |
+** NULL values, and it will be some non-NULL value if the b-tree contains no |
+** NULL values. |
+*/ |
+#ifndef SQLITE_OMIT_SUBQUERY |
+int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){ |
+ Select *p; /* SELECT to the right of IN operator */ |
+ int eType = 0; /* Type of RHS table. IN_INDEX_* */ |
+ int iTab = pParse->nTab++; /* Cursor of the RHS table */ |
+ int mustBeUnique; /* True if RHS must be unique */ |
+ Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ |
+ |
+ assert( pX->op==TK_IN ); |
+ mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; |
+ |
+ /* Check to see if an existing table or index can be used to |
+ ** satisfy the query. This is preferable to generating a new |
+ ** ephemeral table. |
+ */ |
+ p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); |
+ if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ |
+ sqlite3 *db = pParse->db; /* Database connection */ |
+ Table *pTab; /* Table <table>. */ |
+ Expr *pExpr; /* Expression <column> */ |
+ i16 iCol; /* Index of column <column> */ |
+ i16 iDb; /* Database idx for pTab */ |
+ |
+ assert( p ); /* Because of isCandidateForInOpt(p) */ |
+ assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ |
+ assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ |
+ assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ |
+ pTab = p->pSrc->a[0].pTab; |
+ pExpr = p->pEList->a[0].pExpr; |
+ iCol = (i16)pExpr->iColumn; |
+ |
+ /* Code an OP_Transaction and OP_TableLock for <table>. */ |
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
+ sqlite3CodeVerifySchema(pParse, iDb); |
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
+ |
+ /* This function is only called from two places. In both cases the vdbe |
+ ** has already been allocated. So assume sqlite3GetVdbe() is always |
+ ** successful here. |
+ */ |
+ assert(v); |
+ if( iCol<0 ){ |
+ int iAddr = sqlite3CodeOnce(pParse); |
+ VdbeCoverage(v); |
+ |
+ sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); |
+ eType = IN_INDEX_ROWID; |
+ |
+ sqlite3VdbeJumpHere(v, iAddr); |
+ }else{ |
+ Index *pIdx; /* Iterator variable */ |
+ |
+ /* The collation sequence used by the comparison. If an index is to |
+ ** be used in place of a temp-table, it must be ordered according |
+ ** to this collation sequence. */ |
+ CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); |
+ |
+ /* Check that the affinity that will be used to perform the |
+ ** comparison is the same as the affinity of the column. If |
+ ** it is not, it is not possible to use any index. |
+ */ |
+ int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); |
+ |
+ for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ |
+ if( (pIdx->aiColumn[0]==iCol) |
+ && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq |
+ && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx))) |
+ ){ |
+ int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); |
+ sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); |
+ sqlite3VdbeSetP4KeyInfo(pParse, pIdx); |
+ VdbeComment((v, "%s", pIdx->zName)); |
+ assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); |
+ eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; |
+ |
+ if( prRhsHasNull && !pTab->aCol[iCol].notNull ){ |
+ *prRhsHasNull = ++pParse->nMem; |
+ sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); |
+ } |
+ sqlite3VdbeJumpHere(v, iAddr); |
+ } |
+ } |
+ } |
+ } |
+ |
+ /* If no preexisting index is available for the IN clause |
+ ** and IN_INDEX_NOOP is an allowed reply |
+ ** and the RHS of the IN operator is a list, not a subquery |
+ ** and the RHS is not contant or has two or fewer terms, |
+ ** then it is not worth creating an ephemeral table to evaluate |
+ ** the IN operator so return IN_INDEX_NOOP. |
+ */ |
+ if( eType==0 |
+ && (inFlags & IN_INDEX_NOOP_OK) |
+ && !ExprHasProperty(pX, EP_xIsSelect) |
+ && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) |
+ ){ |
+ eType = IN_INDEX_NOOP; |
+ } |
+ |
+ |
+ if( eType==0 ){ |
+ /* Could not find an existing table or index to use as the RHS b-tree. |
+ ** We will have to generate an ephemeral table to do the job. |
+ */ |
+ u32 savedNQueryLoop = pParse->nQueryLoop; |
+ int rMayHaveNull = 0; |
+ eType = IN_INDEX_EPH; |
+ if( inFlags & IN_INDEX_LOOP ){ |
+ pParse->nQueryLoop = 0; |
+ if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ |
+ eType = IN_INDEX_ROWID; |
+ } |
+ }else if( prRhsHasNull ){ |
+ *prRhsHasNull = rMayHaveNull = ++pParse->nMem; |
+ } |
+ sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); |
+ pParse->nQueryLoop = savedNQueryLoop; |
+ }else{ |
+ pX->iTable = iTab; |
+ } |
+ return eType; |
+} |
+#endif |
+ |
+/* |
+** Generate code for scalar subqueries used as a subquery expression, EXISTS, |
+** or IN operators. Examples: |
+** |
+** (SELECT a FROM b) -- subquery |
+** EXISTS (SELECT a FROM b) -- EXISTS subquery |
+** x IN (4,5,11) -- IN operator with list on right-hand side |
+** x IN (SELECT a FROM b) -- IN operator with subquery on the right |
+** |
+** The pExpr parameter describes the expression that contains the IN |
+** operator or subquery. |
+** |
+** If parameter isRowid is non-zero, then expression pExpr is guaranteed |
+** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference |
+** to some integer key column of a table B-Tree. In this case, use an |
+** intkey B-Tree to store the set of IN(...) values instead of the usual |
+** (slower) variable length keys B-Tree. |
+** |
+** If rMayHaveNull is non-zero, that means that the operation is an IN |
+** (not a SELECT or EXISTS) and that the RHS might contains NULLs. |
+** All this routine does is initialize the register given by rMayHaveNull |
+** to NULL. Calling routines will take care of changing this register |
+** value to non-NULL if the RHS is NULL-free. |
+** |
+** For a SELECT or EXISTS operator, return the register that holds the |
+** result. For IN operators or if an error occurs, the return value is 0. |
+*/ |
+#ifndef SQLITE_OMIT_SUBQUERY |
+int sqlite3CodeSubselect( |
+ Parse *pParse, /* Parsing context */ |
+ Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ |
+ int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ |
+ int isRowid /* If true, LHS of IN operator is a rowid */ |
+){ |
+ int jmpIfDynamic = -1; /* One-time test address */ |
+ int rReg = 0; /* Register storing resulting */ |
+ Vdbe *v = sqlite3GetVdbe(pParse); |
+ if( NEVER(v==0) ) return 0; |
+ sqlite3ExprCachePush(pParse); |
+ |
+ /* This code must be run in its entirety every time it is encountered |
+ ** if any of the following is true: |
+ ** |
+ ** * The right-hand side is a correlated subquery |
+ ** * The right-hand side is an expression list containing variables |
+ ** * We are inside a trigger |
+ ** |
+ ** If all of the above are false, then we can run this code just once |
+ ** save the results, and reuse the same result on subsequent invocations. |
+ */ |
+ if( !ExprHasProperty(pExpr, EP_VarSelect) ){ |
+ jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v); |
+ } |
+ |
+#ifndef SQLITE_OMIT_EXPLAIN |
+ if( pParse->explain==2 ){ |
+ char *zMsg = sqlite3MPrintf( |
+ pParse->db, "EXECUTE %s%s SUBQUERY %d", jmpIfDynamic>=0?"":"CORRELATED ", |
+ pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId |
+ ); |
+ sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); |
+ } |
+#endif |
+ |
+ switch( pExpr->op ){ |
+ case TK_IN: { |
+ char affinity; /* Affinity of the LHS of the IN */ |
+ int addr; /* Address of OP_OpenEphemeral instruction */ |
+ Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ |
+ KeyInfo *pKeyInfo = 0; /* Key information */ |
+ |
+ affinity = sqlite3ExprAffinity(pLeft); |
+ |
+ /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' |
+ ** expression it is handled the same way. An ephemeral table is |
+ ** filled with single-field index keys representing the results |
+ ** from the SELECT or the <exprlist>. |
+ ** |
+ ** If the 'x' expression is a column value, or the SELECT... |
+ ** statement returns a column value, then the affinity of that |
+ ** column is used to build the index keys. If both 'x' and the |
+ ** SELECT... statement are columns, then numeric affinity is used |
+ ** if either column has NUMERIC or INTEGER affinity. If neither |
+ ** 'x' nor the SELECT... statement are columns, then numeric affinity |
+ ** is used. |
+ */ |
+ pExpr->iTable = pParse->nTab++; |
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); |
+ pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1); |
+ |
+ if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
+ /* Case 1: expr IN (SELECT ...) |
+ ** |
+ ** Generate code to write the results of the select into the temporary |
+ ** table allocated and opened above. |
+ */ |
+ Select *pSelect = pExpr->x.pSelect; |
+ SelectDest dest; |
+ ExprList *pEList; |
+ |
+ assert( !isRowid ); |
+ sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); |
+ dest.affSdst = (u8)affinity; |
+ assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); |
+ pSelect->iLimit = 0; |
+ testcase( pSelect->selFlags & SF_Distinct ); |
+ testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ |
+ if( sqlite3Select(pParse, pSelect, &dest) ){ |
+ sqlite3KeyInfoUnref(pKeyInfo); |
+ return 0; |
+ } |
+ pEList = pSelect->pEList; |
+ assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ |
+ assert( pEList!=0 ); |
+ assert( pEList->nExpr>0 ); |
+ assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); |
+ pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, |
+ pEList->a[0].pExpr); |
+ }else if( ALWAYS(pExpr->x.pList!=0) ){ |
+ /* Case 2: expr IN (exprlist) |
+ ** |
+ ** For each expression, build an index key from the evaluation and |
+ ** store it in the temporary table. If <expr> is a column, then use |
+ ** that columns affinity when building index keys. If <expr> is not |
+ ** a column, use numeric affinity. |
+ */ |
+ int i; |
+ ExprList *pList = pExpr->x.pList; |
+ struct ExprList_item *pItem; |
+ int r1, r2, r3; |
+ |
+ if( !affinity ){ |
+ affinity = SQLITE_AFF_NONE; |
+ } |
+ if( pKeyInfo ){ |
+ assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); |
+ pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); |
+ } |
+ |
+ /* Loop through each expression in <exprlist>. */ |
+ r1 = sqlite3GetTempReg(pParse); |
+ r2 = sqlite3GetTempReg(pParse); |
+ if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); |
+ for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ |
+ Expr *pE2 = pItem->pExpr; |
+ int iValToIns; |
+ |
+ /* If the expression is not constant then we will need to |
+ ** disable the test that was generated above that makes sure |
+ ** this code only executes once. Because for a non-constant |
+ ** expression we need to rerun this code each time. |
+ */ |
+ if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ |
+ sqlite3VdbeChangeToNoop(v, jmpIfDynamic); |
+ jmpIfDynamic = -1; |
+ } |
+ |
+ /* Evaluate the expression and insert it into the temp table */ |
+ if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ |
+ sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); |
+ }else{ |
+ r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); |
+ if( isRowid ){ |
+ sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, |
+ sqlite3VdbeCurrentAddr(v)+2); |
+ VdbeCoverage(v); |
+ sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); |
+ }else{ |
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); |
+ sqlite3ExprCacheAffinityChange(pParse, r3, 1); |
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); |
+ } |
+ } |
+ } |
+ sqlite3ReleaseTempReg(pParse, r1); |
+ sqlite3ReleaseTempReg(pParse, r2); |
+ } |
+ if( pKeyInfo ){ |
+ sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); |
+ } |
+ break; |
+ } |
+ |
+ case TK_EXISTS: |
+ case TK_SELECT: |
+ default: { |
+ /* If this has to be a scalar SELECT. Generate code to put the |
+ ** value of this select in a memory cell and record the number |
+ ** of the memory cell in iColumn. If this is an EXISTS, write |
+ ** an integer 0 (not exists) or 1 (exists) into a memory cell |
+ ** and record that memory cell in iColumn. |
+ */ |
+ Select *pSel; /* SELECT statement to encode */ |
+ SelectDest dest; /* How to deal with SELECt result */ |
+ |
+ testcase( pExpr->op==TK_EXISTS ); |
+ testcase( pExpr->op==TK_SELECT ); |
+ assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); |
+ |
+ assert( ExprHasProperty(pExpr, EP_xIsSelect) ); |
+ pSel = pExpr->x.pSelect; |
+ sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); |
+ if( pExpr->op==TK_SELECT ){ |
+ dest.eDest = SRT_Mem; |
+ dest.iSdst = dest.iSDParm; |
+ sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); |
+ VdbeComment((v, "Init subquery result")); |
+ }else{ |
+ dest.eDest = SRT_Exists; |
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); |
+ VdbeComment((v, "Init EXISTS result")); |
+ } |
+ sqlite3ExprDelete(pParse->db, pSel->pLimit); |
+ pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, |
+ &sqlite3IntTokens[1]); |
+ pSel->iLimit = 0; |
+ if( sqlite3Select(pParse, pSel, &dest) ){ |
+ return 0; |
+ } |
+ rReg = dest.iSDParm; |
+ ExprSetVVAProperty(pExpr, EP_NoReduce); |
+ break; |
+ } |
+ } |
+ |
+ if( rHasNullFlag ){ |
+ sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); |
+ } |
+ |
+ if( jmpIfDynamic>=0 ){ |
+ sqlite3VdbeJumpHere(v, jmpIfDynamic); |
+ } |
+ sqlite3ExprCachePop(pParse); |
+ |
+ return rReg; |
+} |
+#endif /* SQLITE_OMIT_SUBQUERY */ |
+ |
+#ifndef SQLITE_OMIT_SUBQUERY |
+/* |
+** Generate code for an IN expression. |
+** |
+** x IN (SELECT ...) |
+** x IN (value, value, ...) |
+** |
+** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) |
+** is an array of zero or more values. The expression is true if the LHS is |
+** contained within the RHS. The value of the expression is unknown (NULL) |
+** if the LHS is NULL or if the LHS is not contained within the RHS and the |
+** RHS contains one or more NULL values. |
+** |
+** This routine generates code that jumps to destIfFalse if the LHS is not |
+** contained within the RHS. If due to NULLs we cannot determine if the LHS |
+** is contained in the RHS then jump to destIfNull. If the LHS is contained |
+** within the RHS then fall through. |
+*/ |
+static void sqlite3ExprCodeIN( |
+ Parse *pParse, /* Parsing and code generating context */ |
+ Expr *pExpr, /* The IN expression */ |
+ int destIfFalse, /* Jump here if LHS is not contained in the RHS */ |
+ int destIfNull /* Jump here if the results are unknown due to NULLs */ |
+){ |
+ int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ |
+ char affinity; /* Comparison affinity to use */ |
+ int eType; /* Type of the RHS */ |
+ int r1; /* Temporary use register */ |
+ Vdbe *v; /* Statement under construction */ |
+ |
+ /* Compute the RHS. After this step, the table with cursor |
+ ** pExpr->iTable will contains the values that make up the RHS. |
+ */ |
+ v = pParse->pVdbe; |
+ assert( v!=0 ); /* OOM detected prior to this routine */ |
+ VdbeNoopComment((v, "begin IN expr")); |
+ eType = sqlite3FindInIndex(pParse, pExpr, |
+ IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, |
+ destIfFalse==destIfNull ? 0 : &rRhsHasNull); |
+ |
+ /* Figure out the affinity to use to create a key from the results |
+ ** of the expression. affinityStr stores a static string suitable for |
+ ** P4 of OP_MakeRecord. |
+ */ |
+ affinity = comparisonAffinity(pExpr); |
+ |
+ /* Code the LHS, the <expr> from "<expr> IN (...)". |
+ */ |
+ sqlite3ExprCachePush(pParse); |
+ r1 = sqlite3GetTempReg(pParse); |
+ sqlite3ExprCode(pParse, pExpr->pLeft, r1); |
+ |
+ /* If sqlite3FindInIndex() did not find or create an index that is |
+ ** suitable for evaluating the IN operator, then evaluate using a |
+ ** sequence of comparisons. |
+ */ |
+ if( eType==IN_INDEX_NOOP ){ |
+ ExprList *pList = pExpr->x.pList; |
+ CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); |
+ int labelOk = sqlite3VdbeMakeLabel(v); |
+ int r2, regToFree; |
+ int regCkNull = 0; |
+ int ii; |
+ assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); |
+ if( destIfNull!=destIfFalse ){ |
+ regCkNull = sqlite3GetTempReg(pParse); |
+ sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull); |
+ } |
+ for(ii=0; ii<pList->nExpr; ii++){ |
+ r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); |
+ if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ |
+ sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); |
+ } |
+ if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ |
+ sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2, |
+ (void*)pColl, P4_COLLSEQ); |
+ VdbeCoverageIf(v, ii<pList->nExpr-1); |
+ VdbeCoverageIf(v, ii==pList->nExpr-1); |
+ sqlite3VdbeChangeP5(v, affinity); |
+ }else{ |
+ assert( destIfNull==destIfFalse ); |
+ sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2, |
+ (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); |
+ sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL); |
+ } |
+ sqlite3ReleaseTempReg(pParse, regToFree); |
+ } |
+ if( regCkNull ){ |
+ sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); |
+ } |
+ sqlite3VdbeResolveLabel(v, labelOk); |
+ sqlite3ReleaseTempReg(pParse, regCkNull); |
+ }else{ |
+ |
+ /* If the LHS is NULL, then the result is either false or NULL depending |
+ ** on whether the RHS is empty or not, respectively. |
+ */ |
+ if( sqlite3ExprCanBeNull(pExpr->pLeft) ){ |
+ if( destIfNull==destIfFalse ){ |
+ /* Shortcut for the common case where the false and NULL outcomes are |
+ ** the same. */ |
+ sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v); |
+ }else{ |
+ int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v); |
+ sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); |
+ VdbeCoverage(v); |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); |
+ sqlite3VdbeJumpHere(v, addr1); |
+ } |
+ } |
+ |
+ if( eType==IN_INDEX_ROWID ){ |
+ /* In this case, the RHS is the ROWID of table b-tree |
+ */ |
+ sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v); |
+ sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); |
+ VdbeCoverage(v); |
+ }else{ |
+ /* In this case, the RHS is an index b-tree. |
+ */ |
+ sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); |
+ |
+ /* If the set membership test fails, then the result of the |
+ ** "x IN (...)" expression must be either 0 or NULL. If the set |
+ ** contains no NULL values, then the result is 0. If the set |
+ ** contains one or more NULL values, then the result of the |
+ ** expression is also NULL. |
+ */ |
+ assert( destIfFalse!=destIfNull || rRhsHasNull==0 ); |
+ if( rRhsHasNull==0 ){ |
+ /* This branch runs if it is known at compile time that the RHS |
+ ** cannot contain NULL values. This happens as the result |
+ ** of a "NOT NULL" constraint in the database schema. |
+ ** |
+ ** Also run this branch if NULL is equivalent to FALSE |
+ ** for this particular IN operator. |
+ */ |
+ sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); |
+ VdbeCoverage(v); |
+ }else{ |
+ /* In this branch, the RHS of the IN might contain a NULL and |
+ ** the presence of a NULL on the RHS makes a difference in the |
+ ** outcome. |
+ */ |
+ int j1; |
+ |
+ /* First check to see if the LHS is contained in the RHS. If so, |
+ ** then the answer is TRUE the presence of NULLs in the RHS does |
+ ** not matter. If the LHS is not contained in the RHS, then the |
+ ** answer is NULL if the RHS contains NULLs and the answer is |
+ ** FALSE if the RHS is NULL-free. |
+ */ |
+ j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); |
+ VdbeCoverage(v); |
+ sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull); |
+ VdbeCoverage(v); |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); |
+ sqlite3VdbeJumpHere(v, j1); |
+ } |
+ } |
+ } |
+ sqlite3ReleaseTempReg(pParse, r1); |
+ sqlite3ExprCachePop(pParse); |
+ VdbeComment((v, "end IN expr")); |
+} |
+#endif /* SQLITE_OMIT_SUBQUERY */ |
+ |
+/* |
+** Duplicate an 8-byte value |
+*/ |
+static char *dup8bytes(Vdbe *v, const char *in){ |
+ char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); |
+ if( out ){ |
+ memcpy(out, in, 8); |
+ } |
+ return out; |
+} |
+ |
+#ifndef SQLITE_OMIT_FLOATING_POINT |
+/* |
+** Generate an instruction that will put the floating point |
+** value described by z[0..n-1] into register iMem. |
+** |
+** The z[] string will probably not be zero-terminated. But the |
+** z[n] character is guaranteed to be something that does not look |
+** like the continuation of the number. |
+*/ |
+static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ |
+ if( ALWAYS(z!=0) ){ |
+ double value; |
+ char *zV; |
+ sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); |
+ assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ |
+ if( negateFlag ) value = -value; |
+ zV = dup8bytes(v, (char*)&value); |
+ sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); |
+ } |
+} |
+#endif |
+ |
+ |
+/* |
+** Generate an instruction that will put the integer describe by |
+** text z[0..n-1] into register iMem. |
+** |
+** Expr.u.zToken is always UTF8 and zero-terminated. |
+*/ |
+static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ |
+ Vdbe *v = pParse->pVdbe; |
+ if( pExpr->flags & EP_IntValue ){ |
+ int i = pExpr->u.iValue; |
+ assert( i>=0 ); |
+ if( negFlag ) i = -i; |
+ sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); |
+ }else{ |
+ int c; |
+ i64 value; |
+ const char *z = pExpr->u.zToken; |
+ assert( z!=0 ); |
+ c = sqlite3DecOrHexToI64(z, &value); |
+ if( c==0 || (c==2 && negFlag) ){ |
+ char *zV; |
+ if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } |
+ zV = dup8bytes(v, (char*)&value); |
+ sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); |
+ }else{ |
+#ifdef SQLITE_OMIT_FLOATING_POINT |
+ sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); |
+#else |
+#ifndef SQLITE_OMIT_HEX_INTEGER |
+ if( sqlite3_strnicmp(z,"0x",2)==0 ){ |
+ sqlite3ErrorMsg(pParse, "hex literal too big: %s", z); |
+ }else |
+#endif |
+ { |
+ codeReal(v, z, negFlag, iMem); |
+ } |
+#endif |
+ } |
+ } |
+} |
+ |
+/* |
+** Clear a cache entry. |
+*/ |
+static void cacheEntryClear(Parse *pParse, struct yColCache *p){ |
+ if( p->tempReg ){ |
+ if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ |
+ pParse->aTempReg[pParse->nTempReg++] = p->iReg; |
+ } |
+ p->tempReg = 0; |
+ } |
+} |
+ |
+ |
+/* |
+** Record in the column cache that a particular column from a |
+** particular table is stored in a particular register. |
+*/ |
+void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ |
+ int i; |
+ int minLru; |
+ int idxLru; |
+ struct yColCache *p; |
+ |
+ assert( iReg>0 ); /* Register numbers are always positive */ |
+ assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ |
+ |
+ /* The SQLITE_ColumnCache flag disables the column cache. This is used |
+ ** for testing only - to verify that SQLite always gets the same answer |
+ ** with and without the column cache. |
+ */ |
+ if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; |
+ |
+ /* First replace any existing entry. |
+ ** |
+ ** Actually, the way the column cache is currently used, we are guaranteed |
+ ** that the object will never already be in cache. Verify this guarantee. |
+ */ |
+#ifndef NDEBUG |
+ for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ |
+ assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); |
+ } |
+#endif |
+ |
+ /* Find an empty slot and replace it */ |
+ for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ |
+ if( p->iReg==0 ){ |
+ p->iLevel = pParse->iCacheLevel; |
+ p->iTable = iTab; |
+ p->iColumn = iCol; |
+ p->iReg = iReg; |
+ p->tempReg = 0; |
+ p->lru = pParse->iCacheCnt++; |
+ return; |
+ } |
+ } |
+ |
+ /* Replace the last recently used */ |
+ minLru = 0x7fffffff; |
+ idxLru = -1; |
+ for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ |
+ if( p->lru<minLru ){ |
+ idxLru = i; |
+ minLru = p->lru; |
+ } |
+ } |
+ if( ALWAYS(idxLru>=0) ){ |
+ p = &pParse->aColCache[idxLru]; |
+ p->iLevel = pParse->iCacheLevel; |
+ p->iTable = iTab; |
+ p->iColumn = iCol; |
+ p->iReg = iReg; |
+ p->tempReg = 0; |
+ p->lru = pParse->iCacheCnt++; |
+ return; |
+ } |
+} |
+ |
+/* |
+** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. |
+** Purge the range of registers from the column cache. |
+*/ |
+void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ |
+ int i; |
+ int iLast = iReg + nReg - 1; |
+ struct yColCache *p; |
+ for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ |
+ int r = p->iReg; |
+ if( r>=iReg && r<=iLast ){ |
+ cacheEntryClear(pParse, p); |
+ p->iReg = 0; |
+ } |
+ } |
+} |
+ |
+/* |
+** Remember the current column cache context. Any new entries added |
+** added to the column cache after this call are removed when the |
+** corresponding pop occurs. |
+*/ |
+void sqlite3ExprCachePush(Parse *pParse){ |
+ pParse->iCacheLevel++; |
+#ifdef SQLITE_DEBUG |
+ if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ |
+ printf("PUSH to %d\n", pParse->iCacheLevel); |
+ } |
+#endif |
+} |
+ |
+/* |
+** Remove from the column cache any entries that were added since the |
+** the previous sqlite3ExprCachePush operation. In other words, restore |
+** the cache to the state it was in prior the most recent Push. |
+*/ |
+void sqlite3ExprCachePop(Parse *pParse){ |
+ int i; |
+ struct yColCache *p; |
+ assert( pParse->iCacheLevel>=1 ); |
+ pParse->iCacheLevel--; |
+#ifdef SQLITE_DEBUG |
+ if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ |
+ printf("POP to %d\n", pParse->iCacheLevel); |
+ } |
+#endif |
+ for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ |
+ if( p->iReg && p->iLevel>pParse->iCacheLevel ){ |
+ cacheEntryClear(pParse, p); |
+ p->iReg = 0; |
+ } |
+ } |
+} |
+ |
+/* |
+** When a cached column is reused, make sure that its register is |
+** no longer available as a temp register. ticket #3879: that same |
+** register might be in the cache in multiple places, so be sure to |
+** get them all. |
+*/ |
+static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ |
+ int i; |
+ struct yColCache *p; |
+ for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ |
+ if( p->iReg==iReg ){ |
+ p->tempReg = 0; |
+ } |
+ } |
+} |
+ |
+/* |
+** Generate code to extract the value of the iCol-th column of a table. |
+*/ |
+void sqlite3ExprCodeGetColumnOfTable( |
+ Vdbe *v, /* The VDBE under construction */ |
+ Table *pTab, /* The table containing the value */ |
+ int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ |
+ int iCol, /* Index of the column to extract */ |
+ int regOut /* Extract the value into this register */ |
+){ |
+ if( iCol<0 || iCol==pTab->iPKey ){ |
+ sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); |
+ }else{ |
+ int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; |
+ int x = iCol; |
+ if( !HasRowid(pTab) ){ |
+ x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); |
+ } |
+ sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); |
+ } |
+ if( iCol>=0 ){ |
+ sqlite3ColumnDefault(v, pTab, iCol, regOut); |
+ } |
+} |
+ |
+/* |
+** Generate code that will extract the iColumn-th column from |
+** table pTab and store the column value in a register. An effort |
+** is made to store the column value in register iReg, but this is |
+** not guaranteed. The location of the column value is returned. |
+** |
+** There must be an open cursor to pTab in iTable when this routine |
+** is called. If iColumn<0 then code is generated that extracts the rowid. |
+*/ |
+int sqlite3ExprCodeGetColumn( |
+ Parse *pParse, /* Parsing and code generating context */ |
+ Table *pTab, /* Description of the table we are reading from */ |
+ int iColumn, /* Index of the table column */ |
+ int iTable, /* The cursor pointing to the table */ |
+ int iReg, /* Store results here */ |
+ u8 p5 /* P5 value for OP_Column */ |
+){ |
+ Vdbe *v = pParse->pVdbe; |
+ int i; |
+ struct yColCache *p; |
+ |
+ for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ |
+ if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ |
+ p->lru = pParse->iCacheCnt++; |
+ sqlite3ExprCachePinRegister(pParse, p->iReg); |
+ return p->iReg; |
+ } |
+ } |
+ assert( v!=0 ); |
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); |
+ if( p5 ){ |
+ sqlite3VdbeChangeP5(v, p5); |
+ }else{ |
+ sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); |
+ } |
+ return iReg; |
+} |
+ |
+/* |
+** Clear all column cache entries. |
+*/ |
+void sqlite3ExprCacheClear(Parse *pParse){ |
+ int i; |
+ struct yColCache *p; |
+ |
+#if SQLITE_DEBUG |
+ if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ |
+ printf("CLEAR\n"); |
+ } |
+#endif |
+ for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ |
+ if( p->iReg ){ |
+ cacheEntryClear(pParse, p); |
+ p->iReg = 0; |
+ } |
+ } |
+} |
+ |
+/* |
+** Record the fact that an affinity change has occurred on iCount |
+** registers starting with iStart. |
+*/ |
+void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ |
+ sqlite3ExprCacheRemove(pParse, iStart, iCount); |
+} |
+ |
+/* |
+** Generate code to move content from registers iFrom...iFrom+nReg-1 |
+** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. |
+*/ |
+void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ |
+ assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); |
+ sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); |
+ sqlite3ExprCacheRemove(pParse, iFrom, nReg); |
+} |
+ |
+#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) |
+/* |
+** Return true if any register in the range iFrom..iTo (inclusive) |
+** is used as part of the column cache. |
+** |
+** This routine is used within assert() and testcase() macros only |
+** and does not appear in a normal build. |
+*/ |
+static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ |
+ int i; |
+ struct yColCache *p; |
+ for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ |
+ int r = p->iReg; |
+ if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ |
+ } |
+ return 0; |
+} |
+#endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ |
+ |
+/* |
+** Convert an expression node to a TK_REGISTER |
+*/ |
+static void exprToRegister(Expr *p, int iReg){ |
+ p->op2 = p->op; |
+ p->op = TK_REGISTER; |
+ p->iTable = iReg; |
+ ExprClearProperty(p, EP_Skip); |
+} |
+ |
+/* |
+** Generate code into the current Vdbe to evaluate the given |
+** expression. Attempt to store the results in register "target". |
+** Return the register where results are stored. |
+** |
+** With this routine, there is no guarantee that results will |
+** be stored in target. The result might be stored in some other |
+** register if it is convenient to do so. The calling function |
+** must check the return code and move the results to the desired |
+** register. |
+*/ |
+int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ |
+ Vdbe *v = pParse->pVdbe; /* The VM under construction */ |
+ int op; /* The opcode being coded */ |
+ int inReg = target; /* Results stored in register inReg */ |
+ int regFree1 = 0; /* If non-zero free this temporary register */ |
+ int regFree2 = 0; /* If non-zero free this temporary register */ |
+ int r1, r2, r3, r4; /* Various register numbers */ |
+ sqlite3 *db = pParse->db; /* The database connection */ |
+ Expr tempX; /* Temporary expression node */ |
+ |
+ assert( target>0 && target<=pParse->nMem ); |
+ if( v==0 ){ |
+ assert( pParse->db->mallocFailed ); |
+ return 0; |
+ } |
+ |
+ if( pExpr==0 ){ |
+ op = TK_NULL; |
+ }else{ |
+ op = pExpr->op; |
+ } |
+ switch( op ){ |
+ case TK_AGG_COLUMN: { |
+ AggInfo *pAggInfo = pExpr->pAggInfo; |
+ struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; |
+ if( !pAggInfo->directMode ){ |
+ assert( pCol->iMem>0 ); |
+ inReg = pCol->iMem; |
+ break; |
+ }else if( pAggInfo->useSortingIdx ){ |
+ sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, |
+ pCol->iSorterColumn, target); |
+ break; |
+ } |
+ /* Otherwise, fall thru into the TK_COLUMN case */ |
+ } |
+ case TK_COLUMN: { |
+ int iTab = pExpr->iTable; |
+ if( iTab<0 ){ |
+ if( pParse->ckBase>0 ){ |
+ /* Generating CHECK constraints or inserting into partial index */ |
+ inReg = pExpr->iColumn + pParse->ckBase; |
+ break; |
+ }else{ |
+ /* Deleting from a partial index */ |
+ iTab = pParse->iPartIdxTab; |
+ } |
+ } |
+ inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, |
+ pExpr->iColumn, iTab, target, |
+ pExpr->op2); |
+ break; |
+ } |
+ case TK_INTEGER: { |
+ codeInteger(pParse, pExpr, 0, target); |
+ break; |
+ } |
+#ifndef SQLITE_OMIT_FLOATING_POINT |
+ case TK_FLOAT: { |
+ assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
+ codeReal(v, pExpr->u.zToken, 0, target); |
+ break; |
+ } |
+#endif |
+ case TK_STRING: { |
+ assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
+ sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); |
+ break; |
+ } |
+ case TK_NULL: { |
+ sqlite3VdbeAddOp2(v, OP_Null, 0, target); |
+ break; |
+ } |
+#ifndef SQLITE_OMIT_BLOB_LITERAL |
+ case TK_BLOB: { |
+ int n; |
+ const char *z; |
+ char *zBlob; |
+ assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
+ assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); |
+ assert( pExpr->u.zToken[1]=='\'' ); |
+ z = &pExpr->u.zToken[2]; |
+ n = sqlite3Strlen30(z) - 1; |
+ assert( z[n]=='\'' ); |
+ zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); |
+ sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); |
+ break; |
+ } |
+#endif |
+ case TK_VARIABLE: { |
+ assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
+ assert( pExpr->u.zToken!=0 ); |
+ assert( pExpr->u.zToken[0]!=0 ); |
+ sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); |
+ if( pExpr->u.zToken[1]!=0 ){ |
+ assert( pExpr->u.zToken[0]=='?' |
+ || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); |
+ sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); |
+ } |
+ break; |
+ } |
+ case TK_REGISTER: { |
+ inReg = pExpr->iTable; |
+ break; |
+ } |
+ case TK_AS: { |
+ inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); |
+ break; |
+ } |
+#ifndef SQLITE_OMIT_CAST |
+ case TK_CAST: { |
+ /* Expressions of the form: CAST(pLeft AS token) */ |
+ inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); |
+ if( inReg!=target ){ |
+ sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); |
+ inReg = target; |
+ } |
+ sqlite3VdbeAddOp2(v, OP_Cast, target, |
+ sqlite3AffinityType(pExpr->u.zToken, 0)); |
+ testcase( usedAsColumnCache(pParse, inReg, inReg) ); |
+ sqlite3ExprCacheAffinityChange(pParse, inReg, 1); |
+ break; |
+ } |
+#endif /* SQLITE_OMIT_CAST */ |
+ case TK_LT: |
+ case TK_LE: |
+ case TK_GT: |
+ case TK_GE: |
+ case TK_NE: |
+ case TK_EQ: { |
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
+ codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, |
+ r1, r2, inReg, SQLITE_STOREP2); |
+ assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); |
+ assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); |
+ assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); |
+ assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); |
+ assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); |
+ assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); |
+ testcase( regFree1==0 ); |
+ testcase( regFree2==0 ); |
+ break; |
+ } |
+ case TK_IS: |
+ case TK_ISNOT: { |
+ testcase( op==TK_IS ); |
+ testcase( op==TK_ISNOT ); |
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
+ op = (op==TK_IS) ? TK_EQ : TK_NE; |
+ codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, |
+ r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); |
+ VdbeCoverageIf(v, op==TK_EQ); |
+ VdbeCoverageIf(v, op==TK_NE); |
+ testcase( regFree1==0 ); |
+ testcase( regFree2==0 ); |
+ break; |
+ } |
+ case TK_AND: |
+ case TK_OR: |
+ case TK_PLUS: |
+ case TK_STAR: |
+ case TK_MINUS: |
+ case TK_REM: |
+ case TK_BITAND: |
+ case TK_BITOR: |
+ case TK_SLASH: |
+ case TK_LSHIFT: |
+ case TK_RSHIFT: |
+ case TK_CONCAT: { |
+ assert( TK_AND==OP_And ); testcase( op==TK_AND ); |
+ assert( TK_OR==OP_Or ); testcase( op==TK_OR ); |
+ assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); |
+ assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); |
+ assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); |
+ assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); |
+ assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); |
+ assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); |
+ assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); |
+ assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); |
+ assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); |
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
+ sqlite3VdbeAddOp3(v, op, r2, r1, target); |
+ testcase( regFree1==0 ); |
+ testcase( regFree2==0 ); |
+ break; |
+ } |
+ case TK_UMINUS: { |
+ Expr *pLeft = pExpr->pLeft; |
+ assert( pLeft ); |
+ if( pLeft->op==TK_INTEGER ){ |
+ codeInteger(pParse, pLeft, 1, target); |
+#ifndef SQLITE_OMIT_FLOATING_POINT |
+ }else if( pLeft->op==TK_FLOAT ){ |
+ assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
+ codeReal(v, pLeft->u.zToken, 1, target); |
+#endif |
+ }else{ |
+ tempX.op = TK_INTEGER; |
+ tempX.flags = EP_IntValue|EP_TokenOnly; |
+ tempX.u.iValue = 0; |
+ r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); |
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); |
+ sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); |
+ testcase( regFree2==0 ); |
+ } |
+ inReg = target; |
+ break; |
+ } |
+ case TK_BITNOT: |
+ case TK_NOT: { |
+ assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); |
+ assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); |
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
+ testcase( regFree1==0 ); |
+ inReg = target; |
+ sqlite3VdbeAddOp2(v, op, r1, inReg); |
+ break; |
+ } |
+ case TK_ISNULL: |
+ case TK_NOTNULL: { |
+ int addr; |
+ assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); |
+ assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); |
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, target); |
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
+ testcase( regFree1==0 ); |
+ addr = sqlite3VdbeAddOp1(v, op, r1); |
+ VdbeCoverageIf(v, op==TK_ISNULL); |
+ VdbeCoverageIf(v, op==TK_NOTNULL); |
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, target); |
+ sqlite3VdbeJumpHere(v, addr); |
+ break; |
+ } |
+ case TK_AGG_FUNCTION: { |
+ AggInfo *pInfo = pExpr->pAggInfo; |
+ if( pInfo==0 ){ |
+ assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
+ sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); |
+ }else{ |
+ inReg = pInfo->aFunc[pExpr->iAgg].iMem; |
+ } |
+ break; |
+ } |
+ case TK_FUNCTION: { |
+ ExprList *pFarg; /* List of function arguments */ |
+ int nFarg; /* Number of function arguments */ |
+ FuncDef *pDef; /* The function definition object */ |
+ int nId; /* Length of the function name in bytes */ |
+ const char *zId; /* The function name */ |
+ u32 constMask = 0; /* Mask of function arguments that are constant */ |
+ int i; /* Loop counter */ |
+ u8 enc = ENC(db); /* The text encoding used by this database */ |
+ CollSeq *pColl = 0; /* A collating sequence */ |
+ |
+ assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); |
+ if( ExprHasProperty(pExpr, EP_TokenOnly) ){ |
+ pFarg = 0; |
+ }else{ |
+ pFarg = pExpr->x.pList; |
+ } |
+ nFarg = pFarg ? pFarg->nExpr : 0; |
+ assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
+ zId = pExpr->u.zToken; |
+ nId = sqlite3Strlen30(zId); |
+ pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); |
+ if( pDef==0 || pDef->xFunc==0 ){ |
+ sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); |
+ break; |
+ } |
+ |
+ /* Attempt a direct implementation of the built-in COALESCE() and |
+ ** IFNULL() functions. This avoids unnecessary evaluation of |
+ ** arguments past the first non-NULL argument. |
+ */ |
+ if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ |
+ int endCoalesce = sqlite3VdbeMakeLabel(v); |
+ assert( nFarg>=2 ); |
+ sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); |
+ for(i=1; i<nFarg; i++){ |
+ sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); |
+ VdbeCoverage(v); |
+ sqlite3ExprCacheRemove(pParse, target, 1); |
+ sqlite3ExprCachePush(pParse); |
+ sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); |
+ sqlite3ExprCachePop(pParse); |
+ } |
+ sqlite3VdbeResolveLabel(v, endCoalesce); |
+ break; |
+ } |
+ |
+ /* The UNLIKELY() function is a no-op. The result is the value |
+ ** of the first argument. |
+ */ |
+ if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ |
+ assert( nFarg>=1 ); |
+ sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); |
+ break; |
+ } |
+ |
+ for(i=0; i<nFarg; i++){ |
+ if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ |
+ testcase( i==31 ); |
+ constMask |= MASKBIT32(i); |
+ } |
+ if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ |
+ pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); |
+ } |
+ } |
+ if( pFarg ){ |
+ if( constMask ){ |
+ r1 = pParse->nMem+1; |
+ pParse->nMem += nFarg; |
+ }else{ |
+ r1 = sqlite3GetTempRange(pParse, nFarg); |
+ } |
+ |
+ /* For length() and typeof() functions with a column argument, |
+ ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG |
+ ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data |
+ ** loading. |
+ */ |
+ if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ |
+ u8 exprOp; |
+ assert( nFarg==1 ); |
+ assert( pFarg->a[0].pExpr!=0 ); |
+ exprOp = pFarg->a[0].pExpr->op; |
+ if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ |
+ assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); |
+ assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); |
+ testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); |
+ pFarg->a[0].pExpr->op2 = |
+ pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); |
+ } |
+ } |
+ |
+ sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ |
+ sqlite3ExprCodeExprList(pParse, pFarg, r1, |
+ SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); |
+ sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ |
+ }else{ |
+ r1 = 0; |
+ } |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ /* Possibly overload the function if the first argument is |
+ ** a virtual table column. |
+ ** |
+ ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the |
+ ** second argument, not the first, as the argument to test to |
+ ** see if it is a column in a virtual table. This is done because |
+ ** the left operand of infix functions (the operand we want to |
+ ** control overloading) ends up as the second argument to the |
+ ** function. The expression "A glob B" is equivalent to |
+ ** "glob(B,A). We want to use the A in "A glob B" to test |
+ ** for function overloading. But we use the B term in "glob(B,A)". |
+ */ |
+ if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ |
+ pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); |
+ }else if( nFarg>0 ){ |
+ pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); |
+ } |
+#endif |
+ if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ |
+ if( !pColl ) pColl = db->pDfltColl; |
+ sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); |
+ } |
+ sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, |
+ (char*)pDef, P4_FUNCDEF); |
+ sqlite3VdbeChangeP5(v, (u8)nFarg); |
+ if( nFarg && constMask==0 ){ |
+ sqlite3ReleaseTempRange(pParse, r1, nFarg); |
+ } |
+ break; |
+ } |
+#ifndef SQLITE_OMIT_SUBQUERY |
+ case TK_EXISTS: |
+ case TK_SELECT: { |
+ testcase( op==TK_EXISTS ); |
+ testcase( op==TK_SELECT ); |
+ inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); |
+ break; |
+ } |
+ case TK_IN: { |
+ int destIfFalse = sqlite3VdbeMakeLabel(v); |
+ int destIfNull = sqlite3VdbeMakeLabel(v); |
+ sqlite3VdbeAddOp2(v, OP_Null, 0, target); |
+ sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); |
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, target); |
+ sqlite3VdbeResolveLabel(v, destIfFalse); |
+ sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); |
+ sqlite3VdbeResolveLabel(v, destIfNull); |
+ break; |
+ } |
+#endif /* SQLITE_OMIT_SUBQUERY */ |
+ |
+ |
+ /* |
+ ** x BETWEEN y AND z |
+ ** |
+ ** This is equivalent to |
+ ** |
+ ** x>=y AND x<=z |
+ ** |
+ ** X is stored in pExpr->pLeft. |
+ ** Y is stored in pExpr->pList->a[0].pExpr. |
+ ** Z is stored in pExpr->pList->a[1].pExpr. |
+ */ |
+ case TK_BETWEEN: { |
+ Expr *pLeft = pExpr->pLeft; |
+ struct ExprList_item *pLItem = pExpr->x.pList->a; |
+ Expr *pRight = pLItem->pExpr; |
+ |
+ r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); |
+ r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); |
+ testcase( regFree1==0 ); |
+ testcase( regFree2==0 ); |
+ r3 = sqlite3GetTempReg(pParse); |
+ r4 = sqlite3GetTempReg(pParse); |
+ codeCompare(pParse, pLeft, pRight, OP_Ge, |
+ r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v); |
+ pLItem++; |
+ pRight = pLItem->pExpr; |
+ sqlite3ReleaseTempReg(pParse, regFree2); |
+ r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); |
+ testcase( regFree2==0 ); |
+ codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); |
+ VdbeCoverage(v); |
+ sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); |
+ sqlite3ReleaseTempReg(pParse, r3); |
+ sqlite3ReleaseTempReg(pParse, r4); |
+ break; |
+ } |
+ case TK_COLLATE: |
+ case TK_UPLUS: { |
+ inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); |
+ break; |
+ } |
+ |
+ case TK_TRIGGER: { |
+ /* If the opcode is TK_TRIGGER, then the expression is a reference |
+ ** to a column in the new.* or old.* pseudo-tables available to |
+ ** trigger programs. In this case Expr.iTable is set to 1 for the |
+ ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn |
+ ** is set to the column of the pseudo-table to read, or to -1 to |
+ ** read the rowid field. |
+ ** |
+ ** The expression is implemented using an OP_Param opcode. The p1 |
+ ** parameter is set to 0 for an old.rowid reference, or to (i+1) |
+ ** to reference another column of the old.* pseudo-table, where |
+ ** i is the index of the column. For a new.rowid reference, p1 is |
+ ** set to (n+1), where n is the number of columns in each pseudo-table. |
+ ** For a reference to any other column in the new.* pseudo-table, p1 |
+ ** is set to (n+2+i), where n and i are as defined previously. For |
+ ** example, if the table on which triggers are being fired is |
+ ** declared as: |
+ ** |
+ ** CREATE TABLE t1(a, b); |
+ ** |
+ ** Then p1 is interpreted as follows: |
+ ** |
+ ** p1==0 -> old.rowid p1==3 -> new.rowid |
+ ** p1==1 -> old.a p1==4 -> new.a |
+ ** p1==2 -> old.b p1==5 -> new.b |
+ */ |
+ Table *pTab = pExpr->pTab; |
+ int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; |
+ |
+ assert( pExpr->iTable==0 || pExpr->iTable==1 ); |
+ assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); |
+ assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); |
+ assert( p1>=0 && p1<(pTab->nCol*2+2) ); |
+ |
+ sqlite3VdbeAddOp2(v, OP_Param, p1, target); |
+ VdbeComment((v, "%s.%s -> $%d", |
+ (pExpr->iTable ? "new" : "old"), |
+ (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), |
+ target |
+ )); |
+ |
+#ifndef SQLITE_OMIT_FLOATING_POINT |
+ /* If the column has REAL affinity, it may currently be stored as an |
+ ** integer. Use OP_RealAffinity to make sure it is really real. */ |
+ if( pExpr->iColumn>=0 |
+ && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL |
+ ){ |
+ sqlite3VdbeAddOp1(v, OP_RealAffinity, target); |
+ } |
+#endif |
+ break; |
+ } |
+ |
+ |
+ /* |
+ ** Form A: |
+ ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END |
+ ** |
+ ** Form B: |
+ ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END |
+ ** |
+ ** Form A is can be transformed into the equivalent form B as follows: |
+ ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... |
+ ** WHEN x=eN THEN rN ELSE y END |
+ ** |
+ ** X (if it exists) is in pExpr->pLeft. |
+ ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is |
+ ** odd. The Y is also optional. If the number of elements in x.pList |
+ ** is even, then Y is omitted and the "otherwise" result is NULL. |
+ ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. |
+ ** |
+ ** The result of the expression is the Ri for the first matching Ei, |
+ ** or if there is no matching Ei, the ELSE term Y, or if there is |
+ ** no ELSE term, NULL. |
+ */ |
+ default: assert( op==TK_CASE ); { |
+ int endLabel; /* GOTO label for end of CASE stmt */ |
+ int nextCase; /* GOTO label for next WHEN clause */ |
+ int nExpr; /* 2x number of WHEN terms */ |
+ int i; /* Loop counter */ |
+ ExprList *pEList; /* List of WHEN terms */ |
+ struct ExprList_item *aListelem; /* Array of WHEN terms */ |
+ Expr opCompare; /* The X==Ei expression */ |
+ Expr *pX; /* The X expression */ |
+ Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ |
+ VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) |
+ |
+ assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); |
+ assert(pExpr->x.pList->nExpr > 0); |
+ pEList = pExpr->x.pList; |
+ aListelem = pEList->a; |
+ nExpr = pEList->nExpr; |
+ endLabel = sqlite3VdbeMakeLabel(v); |
+ if( (pX = pExpr->pLeft)!=0 ){ |
+ tempX = *pX; |
+ testcase( pX->op==TK_COLUMN ); |
+ exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, ®Free1)); |
+ testcase( regFree1==0 ); |
+ opCompare.op = TK_EQ; |
+ opCompare.pLeft = &tempX; |
+ pTest = &opCompare; |
+ /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: |
+ ** The value in regFree1 might get SCopy-ed into the file result. |
+ ** So make sure that the regFree1 register is not reused for other |
+ ** purposes and possibly overwritten. */ |
+ regFree1 = 0; |
+ } |
+ for(i=0; i<nExpr-1; i=i+2){ |
+ sqlite3ExprCachePush(pParse); |
+ if( pX ){ |
+ assert( pTest!=0 ); |
+ opCompare.pRight = aListelem[i].pExpr; |
+ }else{ |
+ pTest = aListelem[i].pExpr; |
+ } |
+ nextCase = sqlite3VdbeMakeLabel(v); |
+ testcase( pTest->op==TK_COLUMN ); |
+ sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); |
+ testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); |
+ sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); |
+ sqlite3ExprCachePop(pParse); |
+ sqlite3VdbeResolveLabel(v, nextCase); |
+ } |
+ if( (nExpr&1)!=0 ){ |
+ sqlite3ExprCachePush(pParse); |
+ sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); |
+ sqlite3ExprCachePop(pParse); |
+ }else{ |
+ sqlite3VdbeAddOp2(v, OP_Null, 0, target); |
+ } |
+ assert( db->mallocFailed || pParse->nErr>0 |
+ || pParse->iCacheLevel==iCacheLevel ); |
+ sqlite3VdbeResolveLabel(v, endLabel); |
+ break; |
+ } |
+#ifndef SQLITE_OMIT_TRIGGER |
+ case TK_RAISE: { |
+ assert( pExpr->affinity==OE_Rollback |
+ || pExpr->affinity==OE_Abort |
+ || pExpr->affinity==OE_Fail |
+ || pExpr->affinity==OE_Ignore |
+ ); |
+ if( !pParse->pTriggerTab ){ |
+ sqlite3ErrorMsg(pParse, |
+ "RAISE() may only be used within a trigger-program"); |
+ return 0; |
+ } |
+ if( pExpr->affinity==OE_Abort ){ |
+ sqlite3MayAbort(pParse); |
+ } |
+ assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
+ if( pExpr->affinity==OE_Ignore ){ |
+ sqlite3VdbeAddOp4( |
+ v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); |
+ VdbeCoverage(v); |
+ }else{ |
+ sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, |
+ pExpr->affinity, pExpr->u.zToken, 0, 0); |
+ } |
+ |
+ break; |
+ } |
+#endif |
+ } |
+ sqlite3ReleaseTempReg(pParse, regFree1); |
+ sqlite3ReleaseTempReg(pParse, regFree2); |
+ return inReg; |
+} |
+ |
+/* |
+** Factor out the code of the given expression to initialization time. |
+*/ |
+void sqlite3ExprCodeAtInit( |
+ Parse *pParse, /* Parsing context */ |
+ Expr *pExpr, /* The expression to code when the VDBE initializes */ |
+ int regDest, /* Store the value in this register */ |
+ u8 reusable /* True if this expression is reusable */ |
+){ |
+ ExprList *p; |
+ assert( ConstFactorOk(pParse) ); |
+ p = pParse->pConstExpr; |
+ pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); |
+ p = sqlite3ExprListAppend(pParse, p, pExpr); |
+ if( p ){ |
+ struct ExprList_item *pItem = &p->a[p->nExpr-1]; |
+ pItem->u.iConstExprReg = regDest; |
+ pItem->reusable = reusable; |
+ } |
+ pParse->pConstExpr = p; |
+} |
+ |
+/* |
+** Generate code to evaluate an expression and store the results |
+** into a register. Return the register number where the results |
+** are stored. |
+** |
+** If the register is a temporary register that can be deallocated, |
+** then write its number into *pReg. If the result register is not |
+** a temporary, then set *pReg to zero. |
+** |
+** If pExpr is a constant, then this routine might generate this |
+** code to fill the register in the initialization section of the |
+** VDBE program, in order to factor it out of the evaluation loop. |
+*/ |
+int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ |
+ int r2; |
+ pExpr = sqlite3ExprSkipCollate(pExpr); |
+ if( ConstFactorOk(pParse) |
+ && pExpr->op!=TK_REGISTER |
+ && sqlite3ExprIsConstantNotJoin(pExpr) |
+ ){ |
+ ExprList *p = pParse->pConstExpr; |
+ int i; |
+ *pReg = 0; |
+ if( p ){ |
+ struct ExprList_item *pItem; |
+ for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ |
+ if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ |
+ return pItem->u.iConstExprReg; |
+ } |
+ } |
+ } |
+ r2 = ++pParse->nMem; |
+ sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1); |
+ }else{ |
+ int r1 = sqlite3GetTempReg(pParse); |
+ r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); |
+ if( r2==r1 ){ |
+ *pReg = r1; |
+ }else{ |
+ sqlite3ReleaseTempReg(pParse, r1); |
+ *pReg = 0; |
+ } |
+ } |
+ return r2; |
+} |
+ |
+/* |
+** Generate code that will evaluate expression pExpr and store the |
+** results in register target. The results are guaranteed to appear |
+** in register target. |
+*/ |
+void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ |
+ int inReg; |
+ |
+ assert( target>0 && target<=pParse->nMem ); |
+ if( pExpr && pExpr->op==TK_REGISTER ){ |
+ sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); |
+ }else{ |
+ inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); |
+ assert( pParse->pVdbe || pParse->db->mallocFailed ); |
+ if( inReg!=target && pParse->pVdbe ){ |
+ sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); |
+ } |
+ } |
+} |
+ |
+/* |
+** Generate code that will evaluate expression pExpr and store the |
+** results in register target. The results are guaranteed to appear |
+** in register target. If the expression is constant, then this routine |
+** might choose to code the expression at initialization time. |
+*/ |
+void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ |
+ if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ |
+ sqlite3ExprCodeAtInit(pParse, pExpr, target, 0); |
+ }else{ |
+ sqlite3ExprCode(pParse, pExpr, target); |
+ } |
+} |
+ |
+/* |
+** Generate code that evaluates the given expression and puts the result |
+** in register target. |
+** |
+** Also make a copy of the expression results into another "cache" register |
+** and modify the expression so that the next time it is evaluated, |
+** the result is a copy of the cache register. |
+** |
+** This routine is used for expressions that are used multiple |
+** times. They are evaluated once and the results of the expression |
+** are reused. |
+*/ |
+void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ |
+ Vdbe *v = pParse->pVdbe; |
+ int iMem; |
+ |
+ assert( target>0 ); |
+ assert( pExpr->op!=TK_REGISTER ); |
+ sqlite3ExprCode(pParse, pExpr, target); |
+ iMem = ++pParse->nMem; |
+ sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); |
+ exprToRegister(pExpr, iMem); |
+} |
+ |
+#ifdef SQLITE_DEBUG |
+/* |
+** Generate a human-readable explanation of an expression tree. |
+*/ |
+void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){ |
+ const char *zBinOp = 0; /* Binary operator */ |
+ const char *zUniOp = 0; /* Unary operator */ |
+ pView = sqlite3TreeViewPush(pView, moreToFollow); |
+ if( pExpr==0 ){ |
+ sqlite3TreeViewLine(pView, "nil"); |
+ sqlite3TreeViewPop(pView); |
+ return; |
+ } |
+ switch( pExpr->op ){ |
+ case TK_AGG_COLUMN: { |
+ sqlite3TreeViewLine(pView, "AGG{%d:%d}", |
+ pExpr->iTable, pExpr->iColumn); |
+ break; |
+ } |
+ case TK_COLUMN: { |
+ if( pExpr->iTable<0 ){ |
+ /* This only happens when coding check constraints */ |
+ sqlite3TreeViewLine(pView, "COLUMN(%d)", pExpr->iColumn); |
+ }else{ |
+ sqlite3TreeViewLine(pView, "{%d:%d}", |
+ pExpr->iTable, pExpr->iColumn); |
+ } |
+ break; |
+ } |
+ case TK_INTEGER: { |
+ if( pExpr->flags & EP_IntValue ){ |
+ sqlite3TreeViewLine(pView, "%d", pExpr->u.iValue); |
+ }else{ |
+ sqlite3TreeViewLine(pView, "%s", pExpr->u.zToken); |
+ } |
+ break; |
+ } |
+#ifndef SQLITE_OMIT_FLOATING_POINT |
+ case TK_FLOAT: { |
+ sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken); |
+ break; |
+ } |
+#endif |
+ case TK_STRING: { |
+ sqlite3TreeViewLine(pView,"%Q", pExpr->u.zToken); |
+ break; |
+ } |
+ case TK_NULL: { |
+ sqlite3TreeViewLine(pView,"NULL"); |
+ break; |
+ } |
+#ifndef SQLITE_OMIT_BLOB_LITERAL |
+ case TK_BLOB: { |
+ sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken); |
+ break; |
+ } |
+#endif |
+ case TK_VARIABLE: { |
+ sqlite3TreeViewLine(pView,"VARIABLE(%s,%d)", |
+ pExpr->u.zToken, pExpr->iColumn); |
+ break; |
+ } |
+ case TK_REGISTER: { |
+ sqlite3TreeViewLine(pView,"REGISTER(%d)", pExpr->iTable); |
+ break; |
+ } |
+ case TK_AS: { |
+ sqlite3TreeViewLine(pView,"AS %Q", pExpr->u.zToken); |
+ sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); |
+ break; |
+ } |
+ case TK_ID: { |
+ sqlite3TreeViewLine(pView,"ID %Q", pExpr->u.zToken); |
+ break; |
+ } |
+#ifndef SQLITE_OMIT_CAST |
+ case TK_CAST: { |
+ /* Expressions of the form: CAST(pLeft AS token) */ |
+ sqlite3TreeViewLine(pView,"CAST %Q", pExpr->u.zToken); |
+ sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); |
+ break; |
+ } |
+#endif /* SQLITE_OMIT_CAST */ |
+ case TK_LT: zBinOp = "LT"; break; |
+ case TK_LE: zBinOp = "LE"; break; |
+ case TK_GT: zBinOp = "GT"; break; |
+ case TK_GE: zBinOp = "GE"; break; |
+ case TK_NE: zBinOp = "NE"; break; |
+ case TK_EQ: zBinOp = "EQ"; break; |
+ case TK_IS: zBinOp = "IS"; break; |
+ case TK_ISNOT: zBinOp = "ISNOT"; break; |
+ case TK_AND: zBinOp = "AND"; break; |
+ case TK_OR: zBinOp = "OR"; break; |
+ case TK_PLUS: zBinOp = "ADD"; break; |
+ case TK_STAR: zBinOp = "MUL"; break; |
+ case TK_MINUS: zBinOp = "SUB"; break; |
+ case TK_REM: zBinOp = "REM"; break; |
+ case TK_BITAND: zBinOp = "BITAND"; break; |
+ case TK_BITOR: zBinOp = "BITOR"; break; |
+ case TK_SLASH: zBinOp = "DIV"; break; |
+ case TK_LSHIFT: zBinOp = "LSHIFT"; break; |
+ case TK_RSHIFT: zBinOp = "RSHIFT"; break; |
+ case TK_CONCAT: zBinOp = "CONCAT"; break; |
+ case TK_DOT: zBinOp = "DOT"; break; |
+ |
+ case TK_UMINUS: zUniOp = "UMINUS"; break; |
+ case TK_UPLUS: zUniOp = "UPLUS"; break; |
+ case TK_BITNOT: zUniOp = "BITNOT"; break; |
+ case TK_NOT: zUniOp = "NOT"; break; |
+ case TK_ISNULL: zUniOp = "ISNULL"; break; |
+ case TK_NOTNULL: zUniOp = "NOTNULL"; break; |
+ |
+ case TK_COLLATE: { |
+ sqlite3TreeViewLine(pView, "COLLATE %Q", pExpr->u.zToken); |
+ sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); |
+ break; |
+ } |
+ |
+ case TK_AGG_FUNCTION: |
+ case TK_FUNCTION: { |
+ ExprList *pFarg; /* List of function arguments */ |
+ if( ExprHasProperty(pExpr, EP_TokenOnly) ){ |
+ pFarg = 0; |
+ }else{ |
+ pFarg = pExpr->x.pList; |
+ } |
+ if( pExpr->op==TK_AGG_FUNCTION ){ |
+ sqlite3TreeViewLine(pView, "AGG_FUNCTION%d %Q", |
+ pExpr->op2, pExpr->u.zToken); |
+ }else{ |
+ sqlite3TreeViewLine(pView, "FUNCTION %Q", pExpr->u.zToken); |
+ } |
+ if( pFarg ){ |
+ sqlite3TreeViewExprList(pView, pFarg, 0, 0); |
+ } |
+ break; |
+ } |
+#ifndef SQLITE_OMIT_SUBQUERY |
+ case TK_EXISTS: { |
+ sqlite3TreeViewLine(pView, "EXISTS-expr"); |
+ sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); |
+ break; |
+ } |
+ case TK_SELECT: { |
+ sqlite3TreeViewLine(pView, "SELECT-expr"); |
+ sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); |
+ break; |
+ } |
+ case TK_IN: { |
+ sqlite3TreeViewLine(pView, "IN"); |
+ sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); |
+ if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
+ sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); |
+ }else{ |
+ sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0); |
+ } |
+ break; |
+ } |
+#endif /* SQLITE_OMIT_SUBQUERY */ |
+ |
+ /* |
+ ** x BETWEEN y AND z |
+ ** |
+ ** This is equivalent to |
+ ** |
+ ** x>=y AND x<=z |
+ ** |
+ ** X is stored in pExpr->pLeft. |
+ ** Y is stored in pExpr->pList->a[0].pExpr. |
+ ** Z is stored in pExpr->pList->a[1].pExpr. |
+ */ |
+ case TK_BETWEEN: { |
+ Expr *pX = pExpr->pLeft; |
+ Expr *pY = pExpr->x.pList->a[0].pExpr; |
+ Expr *pZ = pExpr->x.pList->a[1].pExpr; |
+ sqlite3TreeViewLine(pView, "BETWEEN"); |
+ sqlite3TreeViewExpr(pView, pX, 1); |
+ sqlite3TreeViewExpr(pView, pY, 1); |
+ sqlite3TreeViewExpr(pView, pZ, 0); |
+ break; |
+ } |
+ case TK_TRIGGER: { |
+ /* If the opcode is TK_TRIGGER, then the expression is a reference |
+ ** to a column in the new.* or old.* pseudo-tables available to |
+ ** trigger programs. In this case Expr.iTable is set to 1 for the |
+ ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn |
+ ** is set to the column of the pseudo-table to read, or to -1 to |
+ ** read the rowid field. |
+ */ |
+ sqlite3TreeViewLine(pView, "%s(%d)", |
+ pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn); |
+ break; |
+ } |
+ case TK_CASE: { |
+ sqlite3TreeViewLine(pView, "CASE"); |
+ sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); |
+ sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0); |
+ break; |
+ } |
+#ifndef SQLITE_OMIT_TRIGGER |
+ case TK_RAISE: { |
+ const char *zType = "unk"; |
+ switch( pExpr->affinity ){ |
+ case OE_Rollback: zType = "rollback"; break; |
+ case OE_Abort: zType = "abort"; break; |
+ case OE_Fail: zType = "fail"; break; |
+ case OE_Ignore: zType = "ignore"; break; |
+ } |
+ sqlite3TreeViewLine(pView, "RAISE %s(%Q)", zType, pExpr->u.zToken); |
+ break; |
+ } |
+#endif |
+ default: { |
+ sqlite3TreeViewLine(pView, "op=%d", pExpr->op); |
+ break; |
+ } |
+ } |
+ if( zBinOp ){ |
+ sqlite3TreeViewLine(pView, "%s", zBinOp); |
+ sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); |
+ sqlite3TreeViewExpr(pView, pExpr->pRight, 0); |
+ }else if( zUniOp ){ |
+ sqlite3TreeViewLine(pView, "%s", zUniOp); |
+ sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); |
+ } |
+ sqlite3TreeViewPop(pView); |
+} |
+#endif /* SQLITE_DEBUG */ |
+ |
+#ifdef SQLITE_DEBUG |
+/* |
+** Generate a human-readable explanation of an expression list. |
+*/ |
+void sqlite3TreeViewExprList( |
+ TreeView *pView, |
+ const ExprList *pList, |
+ u8 moreToFollow, |
+ const char *zLabel |
+){ |
+ int i; |
+ pView = sqlite3TreeViewPush(pView, moreToFollow); |
+ if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST"; |
+ if( pList==0 ){ |
+ sqlite3TreeViewLine(pView, "%s (empty)", zLabel); |
+ }else{ |
+ sqlite3TreeViewLine(pView, "%s", zLabel); |
+ for(i=0; i<pList->nExpr; i++){ |
+ sqlite3TreeViewExpr(pView, pList->a[i].pExpr, i<pList->nExpr-1); |
+#if 0 |
+ if( pList->a[i].zName ){ |
+ sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName); |
+ } |
+ if( pList->a[i].bSpanIsTab ){ |
+ sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan); |
+ } |
+#endif |
+ } |
+ } |
+ sqlite3TreeViewPop(pView); |
+} |
+#endif /* SQLITE_DEBUG */ |
+ |
+/* |
+** Generate code that pushes the value of every element of the given |
+** expression list into a sequence of registers beginning at target. |
+** |
+** Return the number of elements evaluated. |
+** |
+** The SQLITE_ECEL_DUP flag prevents the arguments from being |
+** filled using OP_SCopy. OP_Copy must be used instead. |
+** |
+** The SQLITE_ECEL_FACTOR argument allows constant arguments to be |
+** factored out into initialization code. |
+*/ |
+int sqlite3ExprCodeExprList( |
+ Parse *pParse, /* Parsing context */ |
+ ExprList *pList, /* The expression list to be coded */ |
+ int target, /* Where to write results */ |
+ u8 flags /* SQLITE_ECEL_* flags */ |
+){ |
+ struct ExprList_item *pItem; |
+ int i, n; |
+ u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; |
+ assert( pList!=0 ); |
+ assert( target>0 ); |
+ assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ |
+ n = pList->nExpr; |
+ if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; |
+ for(pItem=pList->a, i=0; i<n; i++, pItem++){ |
+ Expr *pExpr = pItem->pExpr; |
+ if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ |
+ sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0); |
+ }else{ |
+ int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); |
+ if( inReg!=target+i ){ |
+ VdbeOp *pOp; |
+ Vdbe *v = pParse->pVdbe; |
+ if( copyOp==OP_Copy |
+ && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy |
+ && pOp->p1+pOp->p3+1==inReg |
+ && pOp->p2+pOp->p3+1==target+i |
+ ){ |
+ pOp->p3++; |
+ }else{ |
+ sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); |
+ } |
+ } |
+ } |
+ } |
+ return n; |
+} |
+ |
+/* |
+** Generate code for a BETWEEN operator. |
+** |
+** x BETWEEN y AND z |
+** |
+** The above is equivalent to |
+** |
+** x>=y AND x<=z |
+** |
+** Code it as such, taking care to do the common subexpression |
+** elimination of x. |
+*/ |
+static void exprCodeBetween( |
+ Parse *pParse, /* Parsing and code generating context */ |
+ Expr *pExpr, /* The BETWEEN expression */ |
+ int dest, /* Jump here if the jump is taken */ |
+ int jumpIfTrue, /* Take the jump if the BETWEEN is true */ |
+ int jumpIfNull /* Take the jump if the BETWEEN is NULL */ |
+){ |
+ Expr exprAnd; /* The AND operator in x>=y AND x<=z */ |
+ Expr compLeft; /* The x>=y term */ |
+ Expr compRight; /* The x<=z term */ |
+ Expr exprX; /* The x subexpression */ |
+ int regFree1 = 0; /* Temporary use register */ |
+ |
+ assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); |
+ exprX = *pExpr->pLeft; |
+ exprAnd.op = TK_AND; |
+ exprAnd.pLeft = &compLeft; |
+ exprAnd.pRight = &compRight; |
+ compLeft.op = TK_GE; |
+ compLeft.pLeft = &exprX; |
+ compLeft.pRight = pExpr->x.pList->a[0].pExpr; |
+ compRight.op = TK_LE; |
+ compRight.pLeft = &exprX; |
+ compRight.pRight = pExpr->x.pList->a[1].pExpr; |
+ exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, ®Free1)); |
+ if( jumpIfTrue ){ |
+ sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); |
+ }else{ |
+ sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); |
+ } |
+ sqlite3ReleaseTempReg(pParse, regFree1); |
+ |
+ /* Ensure adequate test coverage */ |
+ testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); |
+ testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); |
+ testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); |
+ testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); |
+ testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); |
+ testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); |
+ testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); |
+ testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); |
+} |
+ |
+/* |
+** Generate code for a boolean expression such that a jump is made |
+** to the label "dest" if the expression is true but execution |
+** continues straight thru if the expression is false. |
+** |
+** If the expression evaluates to NULL (neither true nor false), then |
+** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. |
+** |
+** This code depends on the fact that certain token values (ex: TK_EQ) |
+** are the same as opcode values (ex: OP_Eq) that implement the corresponding |
+** operation. Special comments in vdbe.c and the mkopcodeh.awk script in |
+** the make process cause these values to align. Assert()s in the code |
+** below verify that the numbers are aligned correctly. |
+*/ |
+void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ |
+ Vdbe *v = pParse->pVdbe; |
+ int op = 0; |
+ int regFree1 = 0; |
+ int regFree2 = 0; |
+ int r1, r2; |
+ |
+ assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); |
+ if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ |
+ if( NEVER(pExpr==0) ) return; /* No way this can happen */ |
+ op = pExpr->op; |
+ switch( op ){ |
+ case TK_AND: { |
+ int d2 = sqlite3VdbeMakeLabel(v); |
+ testcase( jumpIfNull==0 ); |
+ sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); |
+ sqlite3ExprCachePush(pParse); |
+ sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); |
+ sqlite3VdbeResolveLabel(v, d2); |
+ sqlite3ExprCachePop(pParse); |
+ break; |
+ } |
+ case TK_OR: { |
+ testcase( jumpIfNull==0 ); |
+ sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); |
+ sqlite3ExprCachePush(pParse); |
+ sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); |
+ sqlite3ExprCachePop(pParse); |
+ break; |
+ } |
+ case TK_NOT: { |
+ testcase( jumpIfNull==0 ); |
+ sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); |
+ break; |
+ } |
+ case TK_LT: |
+ case TK_LE: |
+ case TK_GT: |
+ case TK_GE: |
+ case TK_NE: |
+ case TK_EQ: { |
+ testcase( jumpIfNull==0 ); |
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
+ codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, |
+ r1, r2, dest, jumpIfNull); |
+ assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); |
+ assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); |
+ assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); |
+ assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); |
+ assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); |
+ assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); |
+ testcase( regFree1==0 ); |
+ testcase( regFree2==0 ); |
+ break; |
+ } |
+ case TK_IS: |
+ case TK_ISNOT: { |
+ testcase( op==TK_IS ); |
+ testcase( op==TK_ISNOT ); |
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
+ op = (op==TK_IS) ? TK_EQ : TK_NE; |
+ codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, |
+ r1, r2, dest, SQLITE_NULLEQ); |
+ VdbeCoverageIf(v, op==TK_EQ); |
+ VdbeCoverageIf(v, op==TK_NE); |
+ testcase( regFree1==0 ); |
+ testcase( regFree2==0 ); |
+ break; |
+ } |
+ case TK_ISNULL: |
+ case TK_NOTNULL: { |
+ assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); |
+ assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); |
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
+ sqlite3VdbeAddOp2(v, op, r1, dest); |
+ VdbeCoverageIf(v, op==TK_ISNULL); |
+ VdbeCoverageIf(v, op==TK_NOTNULL); |
+ testcase( regFree1==0 ); |
+ break; |
+ } |
+ case TK_BETWEEN: { |
+ testcase( jumpIfNull==0 ); |
+ exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); |
+ break; |
+ } |
+#ifndef SQLITE_OMIT_SUBQUERY |
+ case TK_IN: { |
+ int destIfFalse = sqlite3VdbeMakeLabel(v); |
+ int destIfNull = jumpIfNull ? dest : destIfFalse; |
+ sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); |
+ sqlite3VdbeResolveLabel(v, destIfFalse); |
+ break; |
+ } |
+#endif |
+ default: { |
+ if( exprAlwaysTrue(pExpr) ){ |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); |
+ }else if( exprAlwaysFalse(pExpr) ){ |
+ /* No-op */ |
+ }else{ |
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); |
+ sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); |
+ VdbeCoverage(v); |
+ testcase( regFree1==0 ); |
+ testcase( jumpIfNull==0 ); |
+ } |
+ break; |
+ } |
+ } |
+ sqlite3ReleaseTempReg(pParse, regFree1); |
+ sqlite3ReleaseTempReg(pParse, regFree2); |
+} |
+ |
+/* |
+** Generate code for a boolean expression such that a jump is made |
+** to the label "dest" if the expression is false but execution |
+** continues straight thru if the expression is true. |
+** |
+** If the expression evaluates to NULL (neither true nor false) then |
+** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull |
+** is 0. |
+*/ |
+void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ |
+ Vdbe *v = pParse->pVdbe; |
+ int op = 0; |
+ int regFree1 = 0; |
+ int regFree2 = 0; |
+ int r1, r2; |
+ |
+ assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); |
+ if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ |
+ if( pExpr==0 ) return; |
+ |
+ /* The value of pExpr->op and op are related as follows: |
+ ** |
+ ** pExpr->op op |
+ ** --------- ---------- |
+ ** TK_ISNULL OP_NotNull |
+ ** TK_NOTNULL OP_IsNull |
+ ** TK_NE OP_Eq |
+ ** TK_EQ OP_Ne |
+ ** TK_GT OP_Le |
+ ** TK_LE OP_Gt |
+ ** TK_GE OP_Lt |
+ ** TK_LT OP_Ge |
+ ** |
+ ** For other values of pExpr->op, op is undefined and unused. |
+ ** The value of TK_ and OP_ constants are arranged such that we |
+ ** can compute the mapping above using the following expression. |
+ ** Assert()s verify that the computation is correct. |
+ */ |
+ op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); |
+ |
+ /* Verify correct alignment of TK_ and OP_ constants |
+ */ |
+ assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); |
+ assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); |
+ assert( pExpr->op!=TK_NE || op==OP_Eq ); |
+ assert( pExpr->op!=TK_EQ || op==OP_Ne ); |
+ assert( pExpr->op!=TK_LT || op==OP_Ge ); |
+ assert( pExpr->op!=TK_LE || op==OP_Gt ); |
+ assert( pExpr->op!=TK_GT || op==OP_Le ); |
+ assert( pExpr->op!=TK_GE || op==OP_Lt ); |
+ |
+ switch( pExpr->op ){ |
+ case TK_AND: { |
+ testcase( jumpIfNull==0 ); |
+ sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); |
+ sqlite3ExprCachePush(pParse); |
+ sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); |
+ sqlite3ExprCachePop(pParse); |
+ break; |
+ } |
+ case TK_OR: { |
+ int d2 = sqlite3VdbeMakeLabel(v); |
+ testcase( jumpIfNull==0 ); |
+ sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); |
+ sqlite3ExprCachePush(pParse); |
+ sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); |
+ sqlite3VdbeResolveLabel(v, d2); |
+ sqlite3ExprCachePop(pParse); |
+ break; |
+ } |
+ case TK_NOT: { |
+ testcase( jumpIfNull==0 ); |
+ sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); |
+ break; |
+ } |
+ case TK_LT: |
+ case TK_LE: |
+ case TK_GT: |
+ case TK_GE: |
+ case TK_NE: |
+ case TK_EQ: { |
+ testcase( jumpIfNull==0 ); |
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
+ codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, |
+ r1, r2, dest, jumpIfNull); |
+ assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); |
+ assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); |
+ assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); |
+ assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); |
+ assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); |
+ assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); |
+ testcase( regFree1==0 ); |
+ testcase( regFree2==0 ); |
+ break; |
+ } |
+ case TK_IS: |
+ case TK_ISNOT: { |
+ testcase( pExpr->op==TK_IS ); |
+ testcase( pExpr->op==TK_ISNOT ); |
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
+ op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; |
+ codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, |
+ r1, r2, dest, SQLITE_NULLEQ); |
+ VdbeCoverageIf(v, op==TK_EQ); |
+ VdbeCoverageIf(v, op==TK_NE); |
+ testcase( regFree1==0 ); |
+ testcase( regFree2==0 ); |
+ break; |
+ } |
+ case TK_ISNULL: |
+ case TK_NOTNULL: { |
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
+ sqlite3VdbeAddOp2(v, op, r1, dest); |
+ testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); |
+ testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); |
+ testcase( regFree1==0 ); |
+ break; |
+ } |
+ case TK_BETWEEN: { |
+ testcase( jumpIfNull==0 ); |
+ exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); |
+ break; |
+ } |
+#ifndef SQLITE_OMIT_SUBQUERY |
+ case TK_IN: { |
+ if( jumpIfNull ){ |
+ sqlite3ExprCodeIN(pParse, pExpr, dest, dest); |
+ }else{ |
+ int destIfNull = sqlite3VdbeMakeLabel(v); |
+ sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); |
+ sqlite3VdbeResolveLabel(v, destIfNull); |
+ } |
+ break; |
+ } |
+#endif |
+ default: { |
+ if( exprAlwaysFalse(pExpr) ){ |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); |
+ }else if( exprAlwaysTrue(pExpr) ){ |
+ /* no-op */ |
+ }else{ |
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); |
+ sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); |
+ VdbeCoverage(v); |
+ testcase( regFree1==0 ); |
+ testcase( jumpIfNull==0 ); |
+ } |
+ break; |
+ } |
+ } |
+ sqlite3ReleaseTempReg(pParse, regFree1); |
+ sqlite3ReleaseTempReg(pParse, regFree2); |
+} |
+ |
+/* |
+** Do a deep comparison of two expression trees. Return 0 if the two |
+** expressions are completely identical. Return 1 if they differ only |
+** by a COLLATE operator at the top level. Return 2 if there are differences |
+** other than the top-level COLLATE operator. |
+** |
+** If any subelement of pB has Expr.iTable==(-1) then it is allowed |
+** to compare equal to an equivalent element in pA with Expr.iTable==iTab. |
+** |
+** The pA side might be using TK_REGISTER. If that is the case and pB is |
+** not using TK_REGISTER but is otherwise equivalent, then still return 0. |
+** |
+** Sometimes this routine will return 2 even if the two expressions |
+** really are equivalent. If we cannot prove that the expressions are |
+** identical, we return 2 just to be safe. So if this routine |
+** returns 2, then you do not really know for certain if the two |
+** expressions are the same. But if you get a 0 or 1 return, then you |
+** can be sure the expressions are the same. In the places where |
+** this routine is used, it does not hurt to get an extra 2 - that |
+** just might result in some slightly slower code. But returning |
+** an incorrect 0 or 1 could lead to a malfunction. |
+*/ |
+int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ |
+ u32 combinedFlags; |
+ if( pA==0 || pB==0 ){ |
+ return pB==pA ? 0 : 2; |
+ } |
+ combinedFlags = pA->flags | pB->flags; |
+ if( combinedFlags & EP_IntValue ){ |
+ if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ |
+ return 0; |
+ } |
+ return 2; |
+ } |
+ if( pA->op!=pB->op ){ |
+ if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ |
+ return 1; |
+ } |
+ if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ |
+ return 1; |
+ } |
+ return 2; |
+ } |
+ if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){ |
+ if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ |
+ return pA->op==TK_COLLATE ? 1 : 2; |
+ } |
+ } |
+ if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; |
+ if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ |
+ if( combinedFlags & EP_xIsSelect ) return 2; |
+ if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; |
+ if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; |
+ if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; |
+ if( ALWAYS((combinedFlags & EP_Reduced)==0) ){ |
+ if( pA->iColumn!=pB->iColumn ) return 2; |
+ if( pA->iTable!=pB->iTable |
+ && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; |
+ } |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** Compare two ExprList objects. Return 0 if they are identical and |
+** non-zero if they differ in any way. |
+** |
+** If any subelement of pB has Expr.iTable==(-1) then it is allowed |
+** to compare equal to an equivalent element in pA with Expr.iTable==iTab. |
+** |
+** This routine might return non-zero for equivalent ExprLists. The |
+** only consequence will be disabled optimizations. But this routine |
+** must never return 0 if the two ExprList objects are different, or |
+** a malfunction will result. |
+** |
+** Two NULL pointers are considered to be the same. But a NULL pointer |
+** always differs from a non-NULL pointer. |
+*/ |
+int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ |
+ int i; |
+ if( pA==0 && pB==0 ) return 0; |
+ if( pA==0 || pB==0 ) return 1; |
+ if( pA->nExpr!=pB->nExpr ) return 1; |
+ for(i=0; i<pA->nExpr; i++){ |
+ Expr *pExprA = pA->a[i].pExpr; |
+ Expr *pExprB = pB->a[i].pExpr; |
+ if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; |
+ if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** Return true if we can prove the pE2 will always be true if pE1 is |
+** true. Return false if we cannot complete the proof or if pE2 might |
+** be false. Examples: |
+** |
+** pE1: x==5 pE2: x==5 Result: true |
+** pE1: x>0 pE2: x==5 Result: false |
+** pE1: x=21 pE2: x=21 OR y=43 Result: true |
+** pE1: x!=123 pE2: x IS NOT NULL Result: true |
+** pE1: x!=?1 pE2: x IS NOT NULL Result: true |
+** pE1: x IS NULL pE2: x IS NOT NULL Result: false |
+** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false |
+** |
+** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has |
+** Expr.iTable<0 then assume a table number given by iTab. |
+** |
+** When in doubt, return false. Returning true might give a performance |
+** improvement. Returning false might cause a performance reduction, but |
+** it will always give the correct answer and is hence always safe. |
+*/ |
+int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ |
+ if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ |
+ return 1; |
+ } |
+ if( pE2->op==TK_OR |
+ && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) |
+ || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) |
+ ){ |
+ return 1; |
+ } |
+ if( pE2->op==TK_NOTNULL |
+ && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0 |
+ && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS) |
+ ){ |
+ return 1; |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** An instance of the following structure is used by the tree walker |
+** to count references to table columns in the arguments of an |
+** aggregate function, in order to implement the |
+** sqlite3FunctionThisSrc() routine. |
+*/ |
+struct SrcCount { |
+ SrcList *pSrc; /* One particular FROM clause in a nested query */ |
+ int nThis; /* Number of references to columns in pSrcList */ |
+ int nOther; /* Number of references to columns in other FROM clauses */ |
+}; |
+ |
+/* |
+** Count the number of references to columns. |
+*/ |
+static int exprSrcCount(Walker *pWalker, Expr *pExpr){ |
+ /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() |
+ ** is always called before sqlite3ExprAnalyzeAggregates() and so the |
+ ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If |
+ ** sqlite3FunctionUsesThisSrc() is used differently in the future, the |
+ ** NEVER() will need to be removed. */ |
+ if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ |
+ int i; |
+ struct SrcCount *p = pWalker->u.pSrcCount; |
+ SrcList *pSrc = p->pSrc; |
+ for(i=0; i<pSrc->nSrc; i++){ |
+ if( pExpr->iTable==pSrc->a[i].iCursor ) break; |
+ } |
+ if( i<pSrc->nSrc ){ |
+ p->nThis++; |
+ }else{ |
+ p->nOther++; |
+ } |
+ } |
+ return WRC_Continue; |
+} |
+ |
+/* |
+** Determine if any of the arguments to the pExpr Function reference |
+** pSrcList. Return true if they do. Also return true if the function |
+** has no arguments or has only constant arguments. Return false if pExpr |
+** references columns but not columns of tables found in pSrcList. |
+*/ |
+int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ |
+ Walker w; |
+ struct SrcCount cnt; |
+ assert( pExpr->op==TK_AGG_FUNCTION ); |
+ memset(&w, 0, sizeof(w)); |
+ w.xExprCallback = exprSrcCount; |
+ w.u.pSrcCount = &cnt; |
+ cnt.pSrc = pSrcList; |
+ cnt.nThis = 0; |
+ cnt.nOther = 0; |
+ sqlite3WalkExprList(&w, pExpr->x.pList); |
+ return cnt.nThis>0 || cnt.nOther==0; |
+} |
+ |
+/* |
+** Add a new element to the pAggInfo->aCol[] array. Return the index of |
+** the new element. Return a negative number if malloc fails. |
+*/ |
+static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ |
+ int i; |
+ pInfo->aCol = sqlite3ArrayAllocate( |
+ db, |
+ pInfo->aCol, |
+ sizeof(pInfo->aCol[0]), |
+ &pInfo->nColumn, |
+ &i |
+ ); |
+ return i; |
+} |
+ |
+/* |
+** Add a new element to the pAggInfo->aFunc[] array. Return the index of |
+** the new element. Return a negative number if malloc fails. |
+*/ |
+static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ |
+ int i; |
+ pInfo->aFunc = sqlite3ArrayAllocate( |
+ db, |
+ pInfo->aFunc, |
+ sizeof(pInfo->aFunc[0]), |
+ &pInfo->nFunc, |
+ &i |
+ ); |
+ return i; |
+} |
+ |
+/* |
+** This is the xExprCallback for a tree walker. It is used to |
+** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates |
+** for additional information. |
+*/ |
+static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ |
+ int i; |
+ NameContext *pNC = pWalker->u.pNC; |
+ Parse *pParse = pNC->pParse; |
+ SrcList *pSrcList = pNC->pSrcList; |
+ AggInfo *pAggInfo = pNC->pAggInfo; |
+ |
+ switch( pExpr->op ){ |
+ case TK_AGG_COLUMN: |
+ case TK_COLUMN: { |
+ testcase( pExpr->op==TK_AGG_COLUMN ); |
+ testcase( pExpr->op==TK_COLUMN ); |
+ /* Check to see if the column is in one of the tables in the FROM |
+ ** clause of the aggregate query */ |
+ if( ALWAYS(pSrcList!=0) ){ |
+ struct SrcList_item *pItem = pSrcList->a; |
+ for(i=0; i<pSrcList->nSrc; i++, pItem++){ |
+ struct AggInfo_col *pCol; |
+ assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); |
+ if( pExpr->iTable==pItem->iCursor ){ |
+ /* If we reach this point, it means that pExpr refers to a table |
+ ** that is in the FROM clause of the aggregate query. |
+ ** |
+ ** Make an entry for the column in pAggInfo->aCol[] if there |
+ ** is not an entry there already. |
+ */ |
+ int k; |
+ pCol = pAggInfo->aCol; |
+ for(k=0; k<pAggInfo->nColumn; k++, pCol++){ |
+ if( pCol->iTable==pExpr->iTable && |
+ pCol->iColumn==pExpr->iColumn ){ |
+ break; |
+ } |
+ } |
+ if( (k>=pAggInfo->nColumn) |
+ && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 |
+ ){ |
+ pCol = &pAggInfo->aCol[k]; |
+ pCol->pTab = pExpr->pTab; |
+ pCol->iTable = pExpr->iTable; |
+ pCol->iColumn = pExpr->iColumn; |
+ pCol->iMem = ++pParse->nMem; |
+ pCol->iSorterColumn = -1; |
+ pCol->pExpr = pExpr; |
+ if( pAggInfo->pGroupBy ){ |
+ int j, n; |
+ ExprList *pGB = pAggInfo->pGroupBy; |
+ struct ExprList_item *pTerm = pGB->a; |
+ n = pGB->nExpr; |
+ for(j=0; j<n; j++, pTerm++){ |
+ Expr *pE = pTerm->pExpr; |
+ if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && |
+ pE->iColumn==pExpr->iColumn ){ |
+ pCol->iSorterColumn = j; |
+ break; |
+ } |
+ } |
+ } |
+ if( pCol->iSorterColumn<0 ){ |
+ pCol->iSorterColumn = pAggInfo->nSortingColumn++; |
+ } |
+ } |
+ /* There is now an entry for pExpr in pAggInfo->aCol[] (either |
+ ** because it was there before or because we just created it). |
+ ** Convert the pExpr to be a TK_AGG_COLUMN referring to that |
+ ** pAggInfo->aCol[] entry. |
+ */ |
+ ExprSetVVAProperty(pExpr, EP_NoReduce); |
+ pExpr->pAggInfo = pAggInfo; |
+ pExpr->op = TK_AGG_COLUMN; |
+ pExpr->iAgg = (i16)k; |
+ break; |
+ } /* endif pExpr->iTable==pItem->iCursor */ |
+ } /* end loop over pSrcList */ |
+ } |
+ return WRC_Prune; |
+ } |
+ case TK_AGG_FUNCTION: { |
+ if( (pNC->ncFlags & NC_InAggFunc)==0 |
+ && pWalker->walkerDepth==pExpr->op2 |
+ ){ |
+ /* Check to see if pExpr is a duplicate of another aggregate |
+ ** function that is already in the pAggInfo structure |
+ */ |
+ struct AggInfo_func *pItem = pAggInfo->aFunc; |
+ for(i=0; i<pAggInfo->nFunc; i++, pItem++){ |
+ if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ |
+ break; |
+ } |
+ } |
+ if( i>=pAggInfo->nFunc ){ |
+ /* pExpr is original. Make a new entry in pAggInfo->aFunc[] |
+ */ |
+ u8 enc = ENC(pParse->db); |
+ i = addAggInfoFunc(pParse->db, pAggInfo); |
+ if( i>=0 ){ |
+ assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); |
+ pItem = &pAggInfo->aFunc[i]; |
+ pItem->pExpr = pExpr; |
+ pItem->iMem = ++pParse->nMem; |
+ assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
+ pItem->pFunc = sqlite3FindFunction(pParse->db, |
+ pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), |
+ pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); |
+ if( pExpr->flags & EP_Distinct ){ |
+ pItem->iDistinct = pParse->nTab++; |
+ }else{ |
+ pItem->iDistinct = -1; |
+ } |
+ } |
+ } |
+ /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry |
+ */ |
+ assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); |
+ ExprSetVVAProperty(pExpr, EP_NoReduce); |
+ pExpr->iAgg = (i16)i; |
+ pExpr->pAggInfo = pAggInfo; |
+ return WRC_Prune; |
+ }else{ |
+ return WRC_Continue; |
+ } |
+ } |
+ } |
+ return WRC_Continue; |
+} |
+static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ |
+ UNUSED_PARAMETER(pWalker); |
+ UNUSED_PARAMETER(pSelect); |
+ return WRC_Continue; |
+} |
+ |
+/* |
+** Analyze the pExpr expression looking for aggregate functions and |
+** for variables that need to be added to AggInfo object that pNC->pAggInfo |
+** points to. Additional entries are made on the AggInfo object as |
+** necessary. |
+** |
+** This routine should only be called after the expression has been |
+** analyzed by sqlite3ResolveExprNames(). |
+*/ |
+void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ |
+ Walker w; |
+ memset(&w, 0, sizeof(w)); |
+ w.xExprCallback = analyzeAggregate; |
+ w.xSelectCallback = analyzeAggregatesInSelect; |
+ w.u.pNC = pNC; |
+ assert( pNC->pSrcList!=0 ); |
+ sqlite3WalkExpr(&w, pExpr); |
+} |
+ |
+/* |
+** Call sqlite3ExprAnalyzeAggregates() for every expression in an |
+** expression list. Return the number of errors. |
+** |
+** If an error is found, the analysis is cut short. |
+*/ |
+void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ |
+ struct ExprList_item *pItem; |
+ int i; |
+ if( pList ){ |
+ for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ |
+ sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); |
+ } |
+ } |
+} |
+ |
+/* |
+** Allocate a single new register for use to hold some intermediate result. |
+*/ |
+int sqlite3GetTempReg(Parse *pParse){ |
+ if( pParse->nTempReg==0 ){ |
+ return ++pParse->nMem; |
+ } |
+ return pParse->aTempReg[--pParse->nTempReg]; |
+} |
+ |
+/* |
+** Deallocate a register, making available for reuse for some other |
+** purpose. |
+** |
+** If a register is currently being used by the column cache, then |
+** the deallocation is deferred until the column cache line that uses |
+** the register becomes stale. |
+*/ |
+void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ |
+ if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ |
+ int i; |
+ struct yColCache *p; |
+ for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ |
+ if( p->iReg==iReg ){ |
+ p->tempReg = 1; |
+ return; |
+ } |
+ } |
+ pParse->aTempReg[pParse->nTempReg++] = iReg; |
+ } |
+} |
+ |
+/* |
+** Allocate or deallocate a block of nReg consecutive registers |
+*/ |
+int sqlite3GetTempRange(Parse *pParse, int nReg){ |
+ int i, n; |
+ i = pParse->iRangeReg; |
+ n = pParse->nRangeReg; |
+ if( nReg<=n ){ |
+ assert( !usedAsColumnCache(pParse, i, i+n-1) ); |
+ pParse->iRangeReg += nReg; |
+ pParse->nRangeReg -= nReg; |
+ }else{ |
+ i = pParse->nMem+1; |
+ pParse->nMem += nReg; |
+ } |
+ return i; |
+} |
+void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ |
+ sqlite3ExprCacheRemove(pParse, iReg, nReg); |
+ if( nReg>pParse->nRangeReg ){ |
+ pParse->nRangeReg = nReg; |
+ pParse->iRangeReg = iReg; |
+ } |
+} |
+ |
+/* |
+** Mark all temporary registers as being unavailable for reuse. |
+*/ |
+void sqlite3ClearTempRegCache(Parse *pParse){ |
+ pParse->nTempReg = 0; |
+ pParse->nRangeReg = 0; |
+} |