| Index: third_party/sqlite/sqlite-src-3080704/src/expr.c
|
| diff --git a/third_party/sqlite/sqlite-src-3080704/src/expr.c b/third_party/sqlite/sqlite-src-3080704/src/expr.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..4012f6c297ecc3c74f47ab039cbe129968782c11
|
| --- /dev/null
|
| +++ b/third_party/sqlite/sqlite-src-3080704/src/expr.c
|
| @@ -0,0 +1,4346 @@
|
| +/*
|
| +** 2001 September 15
|
| +**
|
| +** The author disclaims copyright to this source code. In place of
|
| +** a legal notice, here is a blessing:
|
| +**
|
| +** May you do good and not evil.
|
| +** May you find forgiveness for yourself and forgive others.
|
| +** May you share freely, never taking more than you give.
|
| +**
|
| +*************************************************************************
|
| +** This file contains routines used for analyzing expressions and
|
| +** for generating VDBE code that evaluates expressions in SQLite.
|
| +*/
|
| +#include "sqliteInt.h"
|
| +
|
| +/*
|
| +** Return the 'affinity' of the expression pExpr if any.
|
| +**
|
| +** If pExpr is a column, a reference to a column via an 'AS' alias,
|
| +** or a sub-select with a column as the return value, then the
|
| +** affinity of that column is returned. Otherwise, 0x00 is returned,
|
| +** indicating no affinity for the expression.
|
| +**
|
| +** i.e. the WHERE clause expressions in the following statements all
|
| +** have an affinity:
|
| +**
|
| +** CREATE TABLE t1(a);
|
| +** SELECT * FROM t1 WHERE a;
|
| +** SELECT a AS b FROM t1 WHERE b;
|
| +** SELECT * FROM t1 WHERE (select a from t1);
|
| +*/
|
| +char sqlite3ExprAffinity(Expr *pExpr){
|
| + int op;
|
| + pExpr = sqlite3ExprSkipCollate(pExpr);
|
| + if( pExpr->flags & EP_Generic ) return 0;
|
| + op = pExpr->op;
|
| + if( op==TK_SELECT ){
|
| + assert( pExpr->flags&EP_xIsSelect );
|
| + return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
|
| + }
|
| +#ifndef SQLITE_OMIT_CAST
|
| + if( op==TK_CAST ){
|
| + assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| + return sqlite3AffinityType(pExpr->u.zToken, 0);
|
| + }
|
| +#endif
|
| + if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
|
| + && pExpr->pTab!=0
|
| + ){
|
| + /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
|
| + ** a TK_COLUMN but was previously evaluated and cached in a register */
|
| + int j = pExpr->iColumn;
|
| + if( j<0 ) return SQLITE_AFF_INTEGER;
|
| + assert( pExpr->pTab && j<pExpr->pTab->nCol );
|
| + return pExpr->pTab->aCol[j].affinity;
|
| + }
|
| + return pExpr->affinity;
|
| +}
|
| +
|
| +/*
|
| +** Set the collating sequence for expression pExpr to be the collating
|
| +** sequence named by pToken. Return a pointer to a new Expr node that
|
| +** implements the COLLATE operator.
|
| +**
|
| +** If a memory allocation error occurs, that fact is recorded in pParse->db
|
| +** and the pExpr parameter is returned unchanged.
|
| +*/
|
| +Expr *sqlite3ExprAddCollateToken(
|
| + Parse *pParse, /* Parsing context */
|
| + Expr *pExpr, /* Add the "COLLATE" clause to this expression */
|
| + const Token *pCollName /* Name of collating sequence */
|
| +){
|
| + if( pCollName->n>0 ){
|
| + Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1);
|
| + if( pNew ){
|
| + pNew->pLeft = pExpr;
|
| + pNew->flags |= EP_Collate|EP_Skip;
|
| + pExpr = pNew;
|
| + }
|
| + }
|
| + return pExpr;
|
| +}
|
| +Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
|
| + Token s;
|
| + assert( zC!=0 );
|
| + s.z = zC;
|
| + s.n = sqlite3Strlen30(s.z);
|
| + return sqlite3ExprAddCollateToken(pParse, pExpr, &s);
|
| +}
|
| +
|
| +/*
|
| +** Skip over any TK_COLLATE or TK_AS operators and any unlikely()
|
| +** or likelihood() function at the root of an expression.
|
| +*/
|
| +Expr *sqlite3ExprSkipCollate(Expr *pExpr){
|
| + while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
|
| + if( ExprHasProperty(pExpr, EP_Unlikely) ){
|
| + assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
| + assert( pExpr->x.pList->nExpr>0 );
|
| + assert( pExpr->op==TK_FUNCTION );
|
| + pExpr = pExpr->x.pList->a[0].pExpr;
|
| + }else{
|
| + assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS );
|
| + pExpr = pExpr->pLeft;
|
| + }
|
| + }
|
| + return pExpr;
|
| +}
|
| +
|
| +/*
|
| +** Return the collation sequence for the expression pExpr. If
|
| +** there is no defined collating sequence, return NULL.
|
| +**
|
| +** The collating sequence might be determined by a COLLATE operator
|
| +** or by the presence of a column with a defined collating sequence.
|
| +** COLLATE operators take first precedence. Left operands take
|
| +** precedence over right operands.
|
| +*/
|
| +CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
|
| + sqlite3 *db = pParse->db;
|
| + CollSeq *pColl = 0;
|
| + Expr *p = pExpr;
|
| + while( p ){
|
| + int op = p->op;
|
| + if( p->flags & EP_Generic ) break;
|
| + if( op==TK_CAST || op==TK_UPLUS ){
|
| + p = p->pLeft;
|
| + continue;
|
| + }
|
| + if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
|
| + pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
|
| + break;
|
| + }
|
| + if( p->pTab!=0
|
| + && (op==TK_AGG_COLUMN || op==TK_COLUMN
|
| + || op==TK_REGISTER || op==TK_TRIGGER)
|
| + ){
|
| + /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
|
| + ** a TK_COLUMN but was previously evaluated and cached in a register */
|
| + int j = p->iColumn;
|
| + if( j>=0 ){
|
| + const char *zColl = p->pTab->aCol[j].zColl;
|
| + pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
|
| + }
|
| + break;
|
| + }
|
| + if( p->flags & EP_Collate ){
|
| + if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){
|
| + p = p->pLeft;
|
| + }else{
|
| + p = p->pRight;
|
| + }
|
| + }else{
|
| + break;
|
| + }
|
| + }
|
| + if( sqlite3CheckCollSeq(pParse, pColl) ){
|
| + pColl = 0;
|
| + }
|
| + return pColl;
|
| +}
|
| +
|
| +/*
|
| +** pExpr is an operand of a comparison operator. aff2 is the
|
| +** type affinity of the other operand. This routine returns the
|
| +** type affinity that should be used for the comparison operator.
|
| +*/
|
| +char sqlite3CompareAffinity(Expr *pExpr, char aff2){
|
| + char aff1 = sqlite3ExprAffinity(pExpr);
|
| + if( aff1 && aff2 ){
|
| + /* Both sides of the comparison are columns. If one has numeric
|
| + ** affinity, use that. Otherwise use no affinity.
|
| + */
|
| + if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
|
| + return SQLITE_AFF_NUMERIC;
|
| + }else{
|
| + return SQLITE_AFF_NONE;
|
| + }
|
| + }else if( !aff1 && !aff2 ){
|
| + /* Neither side of the comparison is a column. Compare the
|
| + ** results directly.
|
| + */
|
| + return SQLITE_AFF_NONE;
|
| + }else{
|
| + /* One side is a column, the other is not. Use the columns affinity. */
|
| + assert( aff1==0 || aff2==0 );
|
| + return (aff1 + aff2);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** pExpr is a comparison operator. Return the type affinity that should
|
| +** be applied to both operands prior to doing the comparison.
|
| +*/
|
| +static char comparisonAffinity(Expr *pExpr){
|
| + char aff;
|
| + assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
|
| + pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
|
| + pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
|
| + assert( pExpr->pLeft );
|
| + aff = sqlite3ExprAffinity(pExpr->pLeft);
|
| + if( pExpr->pRight ){
|
| + aff = sqlite3CompareAffinity(pExpr->pRight, aff);
|
| + }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
|
| + aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
|
| + }else if( !aff ){
|
| + aff = SQLITE_AFF_NONE;
|
| + }
|
| + return aff;
|
| +}
|
| +
|
| +/*
|
| +** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
|
| +** idx_affinity is the affinity of an indexed column. Return true
|
| +** if the index with affinity idx_affinity may be used to implement
|
| +** the comparison in pExpr.
|
| +*/
|
| +int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
|
| + char aff = comparisonAffinity(pExpr);
|
| + switch( aff ){
|
| + case SQLITE_AFF_NONE:
|
| + return 1;
|
| + case SQLITE_AFF_TEXT:
|
| + return idx_affinity==SQLITE_AFF_TEXT;
|
| + default:
|
| + return sqlite3IsNumericAffinity(idx_affinity);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Return the P5 value that should be used for a binary comparison
|
| +** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
|
| +*/
|
| +static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
|
| + u8 aff = (char)sqlite3ExprAffinity(pExpr2);
|
| + aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
|
| + return aff;
|
| +}
|
| +
|
| +/*
|
| +** Return a pointer to the collation sequence that should be used by
|
| +** a binary comparison operator comparing pLeft and pRight.
|
| +**
|
| +** If the left hand expression has a collating sequence type, then it is
|
| +** used. Otherwise the collation sequence for the right hand expression
|
| +** is used, or the default (BINARY) if neither expression has a collating
|
| +** type.
|
| +**
|
| +** Argument pRight (but not pLeft) may be a null pointer. In this case,
|
| +** it is not considered.
|
| +*/
|
| +CollSeq *sqlite3BinaryCompareCollSeq(
|
| + Parse *pParse,
|
| + Expr *pLeft,
|
| + Expr *pRight
|
| +){
|
| + CollSeq *pColl;
|
| + assert( pLeft );
|
| + if( pLeft->flags & EP_Collate ){
|
| + pColl = sqlite3ExprCollSeq(pParse, pLeft);
|
| + }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
|
| + pColl = sqlite3ExprCollSeq(pParse, pRight);
|
| + }else{
|
| + pColl = sqlite3ExprCollSeq(pParse, pLeft);
|
| + if( !pColl ){
|
| + pColl = sqlite3ExprCollSeq(pParse, pRight);
|
| + }
|
| + }
|
| + return pColl;
|
| +}
|
| +
|
| +/*
|
| +** Generate code for a comparison operator.
|
| +*/
|
| +static int codeCompare(
|
| + Parse *pParse, /* The parsing (and code generating) context */
|
| + Expr *pLeft, /* The left operand */
|
| + Expr *pRight, /* The right operand */
|
| + int opcode, /* The comparison opcode */
|
| + int in1, int in2, /* Register holding operands */
|
| + int dest, /* Jump here if true. */
|
| + int jumpIfNull /* If true, jump if either operand is NULL */
|
| +){
|
| + int p5;
|
| + int addr;
|
| + CollSeq *p4;
|
| +
|
| + p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
|
| + p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
|
| + addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
|
| + (void*)p4, P4_COLLSEQ);
|
| + sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
|
| + return addr;
|
| +}
|
| +
|
| +#if SQLITE_MAX_EXPR_DEPTH>0
|
| +/*
|
| +** Check that argument nHeight is less than or equal to the maximum
|
| +** expression depth allowed. If it is not, leave an error message in
|
| +** pParse.
|
| +*/
|
| +int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
|
| + int rc = SQLITE_OK;
|
| + int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
|
| + if( nHeight>mxHeight ){
|
| + sqlite3ErrorMsg(pParse,
|
| + "Expression tree is too large (maximum depth %d)", mxHeight
|
| + );
|
| + rc = SQLITE_ERROR;
|
| + }
|
| + return rc;
|
| +}
|
| +
|
| +/* The following three functions, heightOfExpr(), heightOfExprList()
|
| +** and heightOfSelect(), are used to determine the maximum height
|
| +** of any expression tree referenced by the structure passed as the
|
| +** first argument.
|
| +**
|
| +** If this maximum height is greater than the current value pointed
|
| +** to by pnHeight, the second parameter, then set *pnHeight to that
|
| +** value.
|
| +*/
|
| +static void heightOfExpr(Expr *p, int *pnHeight){
|
| + if( p ){
|
| + if( p->nHeight>*pnHeight ){
|
| + *pnHeight = p->nHeight;
|
| + }
|
| + }
|
| +}
|
| +static void heightOfExprList(ExprList *p, int *pnHeight){
|
| + if( p ){
|
| + int i;
|
| + for(i=0; i<p->nExpr; i++){
|
| + heightOfExpr(p->a[i].pExpr, pnHeight);
|
| + }
|
| + }
|
| +}
|
| +static void heightOfSelect(Select *p, int *pnHeight){
|
| + if( p ){
|
| + heightOfExpr(p->pWhere, pnHeight);
|
| + heightOfExpr(p->pHaving, pnHeight);
|
| + heightOfExpr(p->pLimit, pnHeight);
|
| + heightOfExpr(p->pOffset, pnHeight);
|
| + heightOfExprList(p->pEList, pnHeight);
|
| + heightOfExprList(p->pGroupBy, pnHeight);
|
| + heightOfExprList(p->pOrderBy, pnHeight);
|
| + heightOfSelect(p->pPrior, pnHeight);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Set the Expr.nHeight variable in the structure passed as an
|
| +** argument. An expression with no children, Expr.pList or
|
| +** Expr.pSelect member has a height of 1. Any other expression
|
| +** has a height equal to the maximum height of any other
|
| +** referenced Expr plus one.
|
| +*/
|
| +static void exprSetHeight(Expr *p){
|
| + int nHeight = 0;
|
| + heightOfExpr(p->pLeft, &nHeight);
|
| + heightOfExpr(p->pRight, &nHeight);
|
| + if( ExprHasProperty(p, EP_xIsSelect) ){
|
| + heightOfSelect(p->x.pSelect, &nHeight);
|
| + }else{
|
| + heightOfExprList(p->x.pList, &nHeight);
|
| + }
|
| + p->nHeight = nHeight + 1;
|
| +}
|
| +
|
| +/*
|
| +** Set the Expr.nHeight variable using the exprSetHeight() function. If
|
| +** the height is greater than the maximum allowed expression depth,
|
| +** leave an error in pParse.
|
| +*/
|
| +void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
|
| + exprSetHeight(p);
|
| + sqlite3ExprCheckHeight(pParse, p->nHeight);
|
| +}
|
| +
|
| +/*
|
| +** Return the maximum height of any expression tree referenced
|
| +** by the select statement passed as an argument.
|
| +*/
|
| +int sqlite3SelectExprHeight(Select *p){
|
| + int nHeight = 0;
|
| + heightOfSelect(p, &nHeight);
|
| + return nHeight;
|
| +}
|
| +#else
|
| + #define exprSetHeight(y)
|
| +#endif /* SQLITE_MAX_EXPR_DEPTH>0 */
|
| +
|
| +/*
|
| +** This routine is the core allocator for Expr nodes.
|
| +**
|
| +** Construct a new expression node and return a pointer to it. Memory
|
| +** for this node and for the pToken argument is a single allocation
|
| +** obtained from sqlite3DbMalloc(). The calling function
|
| +** is responsible for making sure the node eventually gets freed.
|
| +**
|
| +** If dequote is true, then the token (if it exists) is dequoted.
|
| +** If dequote is false, no dequoting is performance. The deQuote
|
| +** parameter is ignored if pToken is NULL or if the token does not
|
| +** appear to be quoted. If the quotes were of the form "..." (double-quotes)
|
| +** then the EP_DblQuoted flag is set on the expression node.
|
| +**
|
| +** Special case: If op==TK_INTEGER and pToken points to a string that
|
| +** can be translated into a 32-bit integer, then the token is not
|
| +** stored in u.zToken. Instead, the integer values is written
|
| +** into u.iValue and the EP_IntValue flag is set. No extra storage
|
| +** is allocated to hold the integer text and the dequote flag is ignored.
|
| +*/
|
| +Expr *sqlite3ExprAlloc(
|
| + sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
|
| + int op, /* Expression opcode */
|
| + const Token *pToken, /* Token argument. Might be NULL */
|
| + int dequote /* True to dequote */
|
| +){
|
| + Expr *pNew;
|
| + int nExtra = 0;
|
| + int iValue = 0;
|
| +
|
| + if( pToken ){
|
| + if( op!=TK_INTEGER || pToken->z==0
|
| + || sqlite3GetInt32(pToken->z, &iValue)==0 ){
|
| + nExtra = pToken->n+1;
|
| + assert( iValue>=0 );
|
| + }
|
| + }
|
| + pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
|
| + if( pNew ){
|
| + pNew->op = (u8)op;
|
| + pNew->iAgg = -1;
|
| + if( pToken ){
|
| + if( nExtra==0 ){
|
| + pNew->flags |= EP_IntValue;
|
| + pNew->u.iValue = iValue;
|
| + }else{
|
| + int c;
|
| + pNew->u.zToken = (char*)&pNew[1];
|
| + assert( pToken->z!=0 || pToken->n==0 );
|
| + if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
|
| + pNew->u.zToken[pToken->n] = 0;
|
| + if( dequote && nExtra>=3
|
| + && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
|
| + sqlite3Dequote(pNew->u.zToken);
|
| + if( c=='"' ) pNew->flags |= EP_DblQuoted;
|
| + }
|
| + }
|
| + }
|
| +#if SQLITE_MAX_EXPR_DEPTH>0
|
| + pNew->nHeight = 1;
|
| +#endif
|
| + }
|
| + return pNew;
|
| +}
|
| +
|
| +/*
|
| +** Allocate a new expression node from a zero-terminated token that has
|
| +** already been dequoted.
|
| +*/
|
| +Expr *sqlite3Expr(
|
| + sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
|
| + int op, /* Expression opcode */
|
| + const char *zToken /* Token argument. Might be NULL */
|
| +){
|
| + Token x;
|
| + x.z = zToken;
|
| + x.n = zToken ? sqlite3Strlen30(zToken) : 0;
|
| + return sqlite3ExprAlloc(db, op, &x, 0);
|
| +}
|
| +
|
| +/*
|
| +** Attach subtrees pLeft and pRight to the Expr node pRoot.
|
| +**
|
| +** If pRoot==NULL that means that a memory allocation error has occurred.
|
| +** In that case, delete the subtrees pLeft and pRight.
|
| +*/
|
| +void sqlite3ExprAttachSubtrees(
|
| + sqlite3 *db,
|
| + Expr *pRoot,
|
| + Expr *pLeft,
|
| + Expr *pRight
|
| +){
|
| + if( pRoot==0 ){
|
| + assert( db->mallocFailed );
|
| + sqlite3ExprDelete(db, pLeft);
|
| + sqlite3ExprDelete(db, pRight);
|
| + }else{
|
| + if( pRight ){
|
| + pRoot->pRight = pRight;
|
| + pRoot->flags |= EP_Collate & pRight->flags;
|
| + }
|
| + if( pLeft ){
|
| + pRoot->pLeft = pLeft;
|
| + pRoot->flags |= EP_Collate & pLeft->flags;
|
| + }
|
| + exprSetHeight(pRoot);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Allocate an Expr node which joins as many as two subtrees.
|
| +**
|
| +** One or both of the subtrees can be NULL. Return a pointer to the new
|
| +** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
|
| +** free the subtrees and return NULL.
|
| +*/
|
| +Expr *sqlite3PExpr(
|
| + Parse *pParse, /* Parsing context */
|
| + int op, /* Expression opcode */
|
| + Expr *pLeft, /* Left operand */
|
| + Expr *pRight, /* Right operand */
|
| + const Token *pToken /* Argument token */
|
| +){
|
| + Expr *p;
|
| + if( op==TK_AND && pLeft && pRight ){
|
| + /* Take advantage of short-circuit false optimization for AND */
|
| + p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
|
| + }else{
|
| + p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
|
| + sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
|
| + }
|
| + if( p ) {
|
| + sqlite3ExprCheckHeight(pParse, p->nHeight);
|
| + }
|
| + return p;
|
| +}
|
| +
|
| +/*
|
| +** If the expression is always either TRUE or FALSE (respectively),
|
| +** then return 1. If one cannot determine the truth value of the
|
| +** expression at compile-time return 0.
|
| +**
|
| +** This is an optimization. If is OK to return 0 here even if
|
| +** the expression really is always false or false (a false negative).
|
| +** But it is a bug to return 1 if the expression might have different
|
| +** boolean values in different circumstances (a false positive.)
|
| +**
|
| +** Note that if the expression is part of conditional for a
|
| +** LEFT JOIN, then we cannot determine at compile-time whether or not
|
| +** is it true or false, so always return 0.
|
| +*/
|
| +static int exprAlwaysTrue(Expr *p){
|
| + int v = 0;
|
| + if( ExprHasProperty(p, EP_FromJoin) ) return 0;
|
| + if( !sqlite3ExprIsInteger(p, &v) ) return 0;
|
| + return v!=0;
|
| +}
|
| +static int exprAlwaysFalse(Expr *p){
|
| + int v = 0;
|
| + if( ExprHasProperty(p, EP_FromJoin) ) return 0;
|
| + if( !sqlite3ExprIsInteger(p, &v) ) return 0;
|
| + return v==0;
|
| +}
|
| +
|
| +/*
|
| +** Join two expressions using an AND operator. If either expression is
|
| +** NULL, then just return the other expression.
|
| +**
|
| +** If one side or the other of the AND is known to be false, then instead
|
| +** of returning an AND expression, just return a constant expression with
|
| +** a value of false.
|
| +*/
|
| +Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
|
| + if( pLeft==0 ){
|
| + return pRight;
|
| + }else if( pRight==0 ){
|
| + return pLeft;
|
| + }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
|
| + sqlite3ExprDelete(db, pLeft);
|
| + sqlite3ExprDelete(db, pRight);
|
| + return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
|
| + }else{
|
| + Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
|
| + sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
|
| + return pNew;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Construct a new expression node for a function with multiple
|
| +** arguments.
|
| +*/
|
| +Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
|
| + Expr *pNew;
|
| + sqlite3 *db = pParse->db;
|
| + assert( pToken );
|
| + pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
|
| + if( pNew==0 ){
|
| + sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
|
| + return 0;
|
| + }
|
| + pNew->x.pList = pList;
|
| + assert( !ExprHasProperty(pNew, EP_xIsSelect) );
|
| + sqlite3ExprSetHeight(pParse, pNew);
|
| + return pNew;
|
| +}
|
| +
|
| +/*
|
| +** Assign a variable number to an expression that encodes a wildcard
|
| +** in the original SQL statement.
|
| +**
|
| +** Wildcards consisting of a single "?" are assigned the next sequential
|
| +** variable number.
|
| +**
|
| +** Wildcards of the form "?nnn" are assigned the number "nnn". We make
|
| +** sure "nnn" is not too be to avoid a denial of service attack when
|
| +** the SQL statement comes from an external source.
|
| +**
|
| +** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
|
| +** as the previous instance of the same wildcard. Or if this is the first
|
| +** instance of the wildcard, the next sequential variable number is
|
| +** assigned.
|
| +*/
|
| +void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
|
| + sqlite3 *db = pParse->db;
|
| + const char *z;
|
| +
|
| + if( pExpr==0 ) return;
|
| + assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
|
| + z = pExpr->u.zToken;
|
| + assert( z!=0 );
|
| + assert( z[0]!=0 );
|
| + if( z[1]==0 ){
|
| + /* Wildcard of the form "?". Assign the next variable number */
|
| + assert( z[0]=='?' );
|
| + pExpr->iColumn = (ynVar)(++pParse->nVar);
|
| + }else{
|
| + ynVar x = 0;
|
| + u32 n = sqlite3Strlen30(z);
|
| + if( z[0]=='?' ){
|
| + /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
|
| + ** use it as the variable number */
|
| + i64 i;
|
| + int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
|
| + pExpr->iColumn = x = (ynVar)i;
|
| + testcase( i==0 );
|
| + testcase( i==1 );
|
| + testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
|
| + testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
|
| + if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
|
| + sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
|
| + db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
|
| + x = 0;
|
| + }
|
| + if( i>pParse->nVar ){
|
| + pParse->nVar = (int)i;
|
| + }
|
| + }else{
|
| + /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
|
| + ** number as the prior appearance of the same name, or if the name
|
| + ** has never appeared before, reuse the same variable number
|
| + */
|
| + ynVar i;
|
| + for(i=0; i<pParse->nzVar; i++){
|
| + if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
|
| + pExpr->iColumn = x = (ynVar)i+1;
|
| + break;
|
| + }
|
| + }
|
| + if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
|
| + }
|
| + if( x>0 ){
|
| + if( x>pParse->nzVar ){
|
| + char **a;
|
| + a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
|
| + if( a==0 ) return; /* Error reported through db->mallocFailed */
|
| + pParse->azVar = a;
|
| + memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
|
| + pParse->nzVar = x;
|
| + }
|
| + if( z[0]!='?' || pParse->azVar[x-1]==0 ){
|
| + sqlite3DbFree(db, pParse->azVar[x-1]);
|
| + pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
|
| + }
|
| + }
|
| + }
|
| + if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
|
| + sqlite3ErrorMsg(pParse, "too many SQL variables");
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Recursively delete an expression tree.
|
| +*/
|
| +void sqlite3ExprDelete(sqlite3 *db, Expr *p){
|
| + if( p==0 ) return;
|
| + /* Sanity check: Assert that the IntValue is non-negative if it exists */
|
| + assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
|
| + if( !ExprHasProperty(p, EP_TokenOnly) ){
|
| + /* The Expr.x union is never used at the same time as Expr.pRight */
|
| + assert( p->x.pList==0 || p->pRight==0 );
|
| + sqlite3ExprDelete(db, p->pLeft);
|
| + sqlite3ExprDelete(db, p->pRight);
|
| + if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
|
| + if( ExprHasProperty(p, EP_xIsSelect) ){
|
| + sqlite3SelectDelete(db, p->x.pSelect);
|
| + }else{
|
| + sqlite3ExprListDelete(db, p->x.pList);
|
| + }
|
| + }
|
| + if( !ExprHasProperty(p, EP_Static) ){
|
| + sqlite3DbFree(db, p);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Return the number of bytes allocated for the expression structure
|
| +** passed as the first argument. This is always one of EXPR_FULLSIZE,
|
| +** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
|
| +*/
|
| +static int exprStructSize(Expr *p){
|
| + if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
|
| + if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
|
| + return EXPR_FULLSIZE;
|
| +}
|
| +
|
| +/*
|
| +** The dupedExpr*Size() routines each return the number of bytes required
|
| +** to store a copy of an expression or expression tree. They differ in
|
| +** how much of the tree is measured.
|
| +**
|
| +** dupedExprStructSize() Size of only the Expr structure
|
| +** dupedExprNodeSize() Size of Expr + space for token
|
| +** dupedExprSize() Expr + token + subtree components
|
| +**
|
| +***************************************************************************
|
| +**
|
| +** The dupedExprStructSize() function returns two values OR-ed together:
|
| +** (1) the space required for a copy of the Expr structure only and
|
| +** (2) the EP_xxx flags that indicate what the structure size should be.
|
| +** The return values is always one of:
|
| +**
|
| +** EXPR_FULLSIZE
|
| +** EXPR_REDUCEDSIZE | EP_Reduced
|
| +** EXPR_TOKENONLYSIZE | EP_TokenOnly
|
| +**
|
| +** The size of the structure can be found by masking the return value
|
| +** of this routine with 0xfff. The flags can be found by masking the
|
| +** return value with EP_Reduced|EP_TokenOnly.
|
| +**
|
| +** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
|
| +** (unreduced) Expr objects as they or originally constructed by the parser.
|
| +** During expression analysis, extra information is computed and moved into
|
| +** later parts of teh Expr object and that extra information might get chopped
|
| +** off if the expression is reduced. Note also that it does not work to
|
| +** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal
|
| +** to reduce a pristine expression tree from the parser. The implementation
|
| +** of dupedExprStructSize() contain multiple assert() statements that attempt
|
| +** to enforce this constraint.
|
| +*/
|
| +static int dupedExprStructSize(Expr *p, int flags){
|
| + int nSize;
|
| + assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
|
| + assert( EXPR_FULLSIZE<=0xfff );
|
| + assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
|
| + if( 0==(flags&EXPRDUP_REDUCE) ){
|
| + nSize = EXPR_FULLSIZE;
|
| + }else{
|
| + assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
|
| + assert( !ExprHasProperty(p, EP_FromJoin) );
|
| + assert( !ExprHasProperty(p, EP_MemToken) );
|
| + assert( !ExprHasProperty(p, EP_NoReduce) );
|
| + if( p->pLeft || p->x.pList ){
|
| + nSize = EXPR_REDUCEDSIZE | EP_Reduced;
|
| + }else{
|
| + assert( p->pRight==0 );
|
| + nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
|
| + }
|
| + }
|
| + return nSize;
|
| +}
|
| +
|
| +/*
|
| +** This function returns the space in bytes required to store the copy
|
| +** of the Expr structure and a copy of the Expr.u.zToken string (if that
|
| +** string is defined.)
|
| +*/
|
| +static int dupedExprNodeSize(Expr *p, int flags){
|
| + int nByte = dupedExprStructSize(p, flags) & 0xfff;
|
| + if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
|
| + nByte += sqlite3Strlen30(p->u.zToken)+1;
|
| + }
|
| + return ROUND8(nByte);
|
| +}
|
| +
|
| +/*
|
| +** Return the number of bytes required to create a duplicate of the
|
| +** expression passed as the first argument. The second argument is a
|
| +** mask containing EXPRDUP_XXX flags.
|
| +**
|
| +** The value returned includes space to create a copy of the Expr struct
|
| +** itself and the buffer referred to by Expr.u.zToken, if any.
|
| +**
|
| +** If the EXPRDUP_REDUCE flag is set, then the return value includes
|
| +** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
|
| +** and Expr.pRight variables (but not for any structures pointed to or
|
| +** descended from the Expr.x.pList or Expr.x.pSelect variables).
|
| +*/
|
| +static int dupedExprSize(Expr *p, int flags){
|
| + int nByte = 0;
|
| + if( p ){
|
| + nByte = dupedExprNodeSize(p, flags);
|
| + if( flags&EXPRDUP_REDUCE ){
|
| + nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
|
| + }
|
| + }
|
| + return nByte;
|
| +}
|
| +
|
| +/*
|
| +** This function is similar to sqlite3ExprDup(), except that if pzBuffer
|
| +** is not NULL then *pzBuffer is assumed to point to a buffer large enough
|
| +** to store the copy of expression p, the copies of p->u.zToken
|
| +** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
|
| +** if any. Before returning, *pzBuffer is set to the first byte past the
|
| +** portion of the buffer copied into by this function.
|
| +*/
|
| +static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
|
| + Expr *pNew = 0; /* Value to return */
|
| + if( p ){
|
| + const int isReduced = (flags&EXPRDUP_REDUCE);
|
| + u8 *zAlloc;
|
| + u32 staticFlag = 0;
|
| +
|
| + assert( pzBuffer==0 || isReduced );
|
| +
|
| + /* Figure out where to write the new Expr structure. */
|
| + if( pzBuffer ){
|
| + zAlloc = *pzBuffer;
|
| + staticFlag = EP_Static;
|
| + }else{
|
| + zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
|
| + }
|
| + pNew = (Expr *)zAlloc;
|
| +
|
| + if( pNew ){
|
| + /* Set nNewSize to the size allocated for the structure pointed to
|
| + ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
|
| + ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
|
| + ** by the copy of the p->u.zToken string (if any).
|
| + */
|
| + const unsigned nStructSize = dupedExprStructSize(p, flags);
|
| + const int nNewSize = nStructSize & 0xfff;
|
| + int nToken;
|
| + if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
|
| + nToken = sqlite3Strlen30(p->u.zToken) + 1;
|
| + }else{
|
| + nToken = 0;
|
| + }
|
| + if( isReduced ){
|
| + assert( ExprHasProperty(p, EP_Reduced)==0 );
|
| + memcpy(zAlloc, p, nNewSize);
|
| + }else{
|
| + int nSize = exprStructSize(p);
|
| + memcpy(zAlloc, p, nSize);
|
| + memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
|
| + }
|
| +
|
| + /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
|
| + pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
|
| + pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
|
| + pNew->flags |= staticFlag;
|
| +
|
| + /* Copy the p->u.zToken string, if any. */
|
| + if( nToken ){
|
| + char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
|
| + memcpy(zToken, p->u.zToken, nToken);
|
| + }
|
| +
|
| + if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
|
| + /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
|
| + if( ExprHasProperty(p, EP_xIsSelect) ){
|
| + pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
|
| + }else{
|
| + pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
|
| + }
|
| + }
|
| +
|
| + /* Fill in pNew->pLeft and pNew->pRight. */
|
| + if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
|
| + zAlloc += dupedExprNodeSize(p, flags);
|
| + if( ExprHasProperty(pNew, EP_Reduced) ){
|
| + pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
|
| + pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
|
| + }
|
| + if( pzBuffer ){
|
| + *pzBuffer = zAlloc;
|
| + }
|
| + }else{
|
| + if( !ExprHasProperty(p, EP_TokenOnly) ){
|
| + pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
|
| + pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
|
| + }
|
| + }
|
| +
|
| + }
|
| + }
|
| + return pNew;
|
| +}
|
| +
|
| +/*
|
| +** Create and return a deep copy of the object passed as the second
|
| +** argument. If an OOM condition is encountered, NULL is returned
|
| +** and the db->mallocFailed flag set.
|
| +*/
|
| +#ifndef SQLITE_OMIT_CTE
|
| +static With *withDup(sqlite3 *db, With *p){
|
| + With *pRet = 0;
|
| + if( p ){
|
| + int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
|
| + pRet = sqlite3DbMallocZero(db, nByte);
|
| + if( pRet ){
|
| + int i;
|
| + pRet->nCte = p->nCte;
|
| + for(i=0; i<p->nCte; i++){
|
| + pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
|
| + pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
|
| + pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
|
| + }
|
| + }
|
| + }
|
| + return pRet;
|
| +}
|
| +#else
|
| +# define withDup(x,y) 0
|
| +#endif
|
| +
|
| +/*
|
| +** The following group of routines make deep copies of expressions,
|
| +** expression lists, ID lists, and select statements. The copies can
|
| +** be deleted (by being passed to their respective ...Delete() routines)
|
| +** without effecting the originals.
|
| +**
|
| +** The expression list, ID, and source lists return by sqlite3ExprListDup(),
|
| +** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
|
| +** by subsequent calls to sqlite*ListAppend() routines.
|
| +**
|
| +** Any tables that the SrcList might point to are not duplicated.
|
| +**
|
| +** The flags parameter contains a combination of the EXPRDUP_XXX flags.
|
| +** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
|
| +** truncated version of the usual Expr structure that will be stored as
|
| +** part of the in-memory representation of the database schema.
|
| +*/
|
| +Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
|
| + return exprDup(db, p, flags, 0);
|
| +}
|
| +ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
|
| + ExprList *pNew;
|
| + struct ExprList_item *pItem, *pOldItem;
|
| + int i;
|
| + if( p==0 ) return 0;
|
| + pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
|
| + if( pNew==0 ) return 0;
|
| + pNew->nExpr = i = p->nExpr;
|
| + if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
|
| + pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) );
|
| + if( pItem==0 ){
|
| + sqlite3DbFree(db, pNew);
|
| + return 0;
|
| + }
|
| + pOldItem = p->a;
|
| + for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
|
| + Expr *pOldExpr = pOldItem->pExpr;
|
| + pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
|
| + pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
|
| + pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
|
| + pItem->sortOrder = pOldItem->sortOrder;
|
| + pItem->done = 0;
|
| + pItem->bSpanIsTab = pOldItem->bSpanIsTab;
|
| + pItem->u = pOldItem->u;
|
| + }
|
| + return pNew;
|
| +}
|
| +
|
| +/*
|
| +** If cursors, triggers, views and subqueries are all omitted from
|
| +** the build, then none of the following routines, except for
|
| +** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
|
| +** called with a NULL argument.
|
| +*/
|
| +#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
|
| + || !defined(SQLITE_OMIT_SUBQUERY)
|
| +SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
|
| + SrcList *pNew;
|
| + int i;
|
| + int nByte;
|
| + if( p==0 ) return 0;
|
| + nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
|
| + pNew = sqlite3DbMallocRaw(db, nByte );
|
| + if( pNew==0 ) return 0;
|
| + pNew->nSrc = pNew->nAlloc = p->nSrc;
|
| + for(i=0; i<p->nSrc; i++){
|
| + struct SrcList_item *pNewItem = &pNew->a[i];
|
| + struct SrcList_item *pOldItem = &p->a[i];
|
| + Table *pTab;
|
| + pNewItem->pSchema = pOldItem->pSchema;
|
| + pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
|
| + pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
|
| + pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
|
| + pNewItem->jointype = pOldItem->jointype;
|
| + pNewItem->iCursor = pOldItem->iCursor;
|
| + pNewItem->addrFillSub = pOldItem->addrFillSub;
|
| + pNewItem->regReturn = pOldItem->regReturn;
|
| + pNewItem->isCorrelated = pOldItem->isCorrelated;
|
| + pNewItem->viaCoroutine = pOldItem->viaCoroutine;
|
| + pNewItem->isRecursive = pOldItem->isRecursive;
|
| + pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
|
| + pNewItem->notIndexed = pOldItem->notIndexed;
|
| + pNewItem->pIndex = pOldItem->pIndex;
|
| + pTab = pNewItem->pTab = pOldItem->pTab;
|
| + if( pTab ){
|
| + pTab->nRef++;
|
| + }
|
| + pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
|
| + pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
|
| + pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
|
| + pNewItem->colUsed = pOldItem->colUsed;
|
| + }
|
| + return pNew;
|
| +}
|
| +IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
|
| + IdList *pNew;
|
| + int i;
|
| + if( p==0 ) return 0;
|
| + pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
|
| + if( pNew==0 ) return 0;
|
| + pNew->nId = p->nId;
|
| + pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
|
| + if( pNew->a==0 ){
|
| + sqlite3DbFree(db, pNew);
|
| + return 0;
|
| + }
|
| + /* Note that because the size of the allocation for p->a[] is not
|
| + ** necessarily a power of two, sqlite3IdListAppend() may not be called
|
| + ** on the duplicate created by this function. */
|
| + for(i=0; i<p->nId; i++){
|
| + struct IdList_item *pNewItem = &pNew->a[i];
|
| + struct IdList_item *pOldItem = &p->a[i];
|
| + pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
|
| + pNewItem->idx = pOldItem->idx;
|
| + }
|
| + return pNew;
|
| +}
|
| +Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
|
| + Select *pNew, *pPrior;
|
| + if( p==0 ) return 0;
|
| + pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
|
| + if( pNew==0 ) return 0;
|
| + pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
|
| + pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
|
| + pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
|
| + pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
|
| + pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
|
| + pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
|
| + pNew->op = p->op;
|
| + pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
|
| + if( pPrior ) pPrior->pNext = pNew;
|
| + pNew->pNext = 0;
|
| + pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
|
| + pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
|
| + pNew->iLimit = 0;
|
| + pNew->iOffset = 0;
|
| + pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
|
| + pNew->addrOpenEphm[0] = -1;
|
| + pNew->addrOpenEphm[1] = -1;
|
| + pNew->nSelectRow = p->nSelectRow;
|
| + pNew->pWith = withDup(db, p->pWith);
|
| + sqlite3SelectSetName(pNew, p->zSelName);
|
| + return pNew;
|
| +}
|
| +#else
|
| +Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
|
| + assert( p==0 );
|
| + return 0;
|
| +}
|
| +#endif
|
| +
|
| +
|
| +/*
|
| +** Add a new element to the end of an expression list. If pList is
|
| +** initially NULL, then create a new expression list.
|
| +**
|
| +** If a memory allocation error occurs, the entire list is freed and
|
| +** NULL is returned. If non-NULL is returned, then it is guaranteed
|
| +** that the new entry was successfully appended.
|
| +*/
|
| +ExprList *sqlite3ExprListAppend(
|
| + Parse *pParse, /* Parsing context */
|
| + ExprList *pList, /* List to which to append. Might be NULL */
|
| + Expr *pExpr /* Expression to be appended. Might be NULL */
|
| +){
|
| + sqlite3 *db = pParse->db;
|
| + if( pList==0 ){
|
| + pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
|
| + if( pList==0 ){
|
| + goto no_mem;
|
| + }
|
| + pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0]));
|
| + if( pList->a==0 ) goto no_mem;
|
| + }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
|
| + struct ExprList_item *a;
|
| + assert( pList->nExpr>0 );
|
| + a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
|
| + if( a==0 ){
|
| + goto no_mem;
|
| + }
|
| + pList->a = a;
|
| + }
|
| + assert( pList->a!=0 );
|
| + if( 1 ){
|
| + struct ExprList_item *pItem = &pList->a[pList->nExpr++];
|
| + memset(pItem, 0, sizeof(*pItem));
|
| + pItem->pExpr = pExpr;
|
| + }
|
| + return pList;
|
| +
|
| +no_mem:
|
| + /* Avoid leaking memory if malloc has failed. */
|
| + sqlite3ExprDelete(db, pExpr);
|
| + sqlite3ExprListDelete(db, pList);
|
| + return 0;
|
| +}
|
| +
|
| +/*
|
| +** Set the ExprList.a[].zName element of the most recently added item
|
| +** on the expression list.
|
| +**
|
| +** pList might be NULL following an OOM error. But pName should never be
|
| +** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
|
| +** is set.
|
| +*/
|
| +void sqlite3ExprListSetName(
|
| + Parse *pParse, /* Parsing context */
|
| + ExprList *pList, /* List to which to add the span. */
|
| + Token *pName, /* Name to be added */
|
| + int dequote /* True to cause the name to be dequoted */
|
| +){
|
| + assert( pList!=0 || pParse->db->mallocFailed!=0 );
|
| + if( pList ){
|
| + struct ExprList_item *pItem;
|
| + assert( pList->nExpr>0 );
|
| + pItem = &pList->a[pList->nExpr-1];
|
| + assert( pItem->zName==0 );
|
| + pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
|
| + if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Set the ExprList.a[].zSpan element of the most recently added item
|
| +** on the expression list.
|
| +**
|
| +** pList might be NULL following an OOM error. But pSpan should never be
|
| +** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
|
| +** is set.
|
| +*/
|
| +void sqlite3ExprListSetSpan(
|
| + Parse *pParse, /* Parsing context */
|
| + ExprList *pList, /* List to which to add the span. */
|
| + ExprSpan *pSpan /* The span to be added */
|
| +){
|
| + sqlite3 *db = pParse->db;
|
| + assert( pList!=0 || db->mallocFailed!=0 );
|
| + if( pList ){
|
| + struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
|
| + assert( pList->nExpr>0 );
|
| + assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
|
| + sqlite3DbFree(db, pItem->zSpan);
|
| + pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
|
| + (int)(pSpan->zEnd - pSpan->zStart));
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** If the expression list pEList contains more than iLimit elements,
|
| +** leave an error message in pParse.
|
| +*/
|
| +void sqlite3ExprListCheckLength(
|
| + Parse *pParse,
|
| + ExprList *pEList,
|
| + const char *zObject
|
| +){
|
| + int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
|
| + testcase( pEList && pEList->nExpr==mx );
|
| + testcase( pEList && pEList->nExpr==mx+1 );
|
| + if( pEList && pEList->nExpr>mx ){
|
| + sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Delete an entire expression list.
|
| +*/
|
| +void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
|
| + int i;
|
| + struct ExprList_item *pItem;
|
| + if( pList==0 ) return;
|
| + assert( pList->a!=0 || pList->nExpr==0 );
|
| + for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
|
| + sqlite3ExprDelete(db, pItem->pExpr);
|
| + sqlite3DbFree(db, pItem->zName);
|
| + sqlite3DbFree(db, pItem->zSpan);
|
| + }
|
| + sqlite3DbFree(db, pList->a);
|
| + sqlite3DbFree(db, pList);
|
| +}
|
| +
|
| +/*
|
| +** These routines are Walker callbacks. Walker.u.pi is a pointer
|
| +** to an integer. These routines are checking an expression to see
|
| +** if it is a constant. Set *Walker.u.i to 0 if the expression is
|
| +** not constant.
|
| +**
|
| +** These callback routines are used to implement the following:
|
| +**
|
| +** sqlite3ExprIsConstant() pWalker->u.i==1
|
| +** sqlite3ExprIsConstantNotJoin() pWalker->u.i==2
|
| +** sqlite3ExprIsConstantOrFunction() pWalker->u.i==3 or 4
|
| +**
|
| +** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
|
| +** in a CREATE TABLE statement. The Walker.u.i value is 4 when parsing
|
| +** an existing schema and 3 when processing a new statement. A bound
|
| +** parameter raises an error for new statements, but is silently converted
|
| +** to NULL for existing schemas. This allows sqlite_master tables that
|
| +** contain a bound parameter because they were generated by older versions
|
| +** of SQLite to be parsed by newer versions of SQLite without raising a
|
| +** malformed schema error.
|
| +*/
|
| +static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
|
| +
|
| + /* If pWalker->u.i is 2 then any term of the expression that comes from
|
| + ** the ON or USING clauses of a join disqualifies the expression
|
| + ** from being considered constant. */
|
| + if( pWalker->u.i==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
|
| + pWalker->u.i = 0;
|
| + return WRC_Abort;
|
| + }
|
| +
|
| + switch( pExpr->op ){
|
| + /* Consider functions to be constant if all their arguments are constant
|
| + ** and either pWalker->u.i==3 or 4 or the function as the SQLITE_FUNC_CONST
|
| + ** flag. */
|
| + case TK_FUNCTION:
|
| + if( pWalker->u.i>=3 || ExprHasProperty(pExpr,EP_Constant) ){
|
| + return WRC_Continue;
|
| + }
|
| + /* Fall through */
|
| + case TK_ID:
|
| + case TK_COLUMN:
|
| + case TK_AGG_FUNCTION:
|
| + case TK_AGG_COLUMN:
|
| + testcase( pExpr->op==TK_ID );
|
| + testcase( pExpr->op==TK_COLUMN );
|
| + testcase( pExpr->op==TK_AGG_FUNCTION );
|
| + testcase( pExpr->op==TK_AGG_COLUMN );
|
| + pWalker->u.i = 0;
|
| + return WRC_Abort;
|
| + case TK_VARIABLE:
|
| + if( pWalker->u.i==4 ){
|
| + /* Silently convert bound parameters that appear inside of CREATE
|
| + ** statements into a NULL when parsing the CREATE statement text out
|
| + ** of the sqlite_master table */
|
| + pExpr->op = TK_NULL;
|
| + }else if( pWalker->u.i==3 ){
|
| + /* A bound parameter in a CREATE statement that originates from
|
| + ** sqlite3_prepare() causes an error */
|
| + pWalker->u.i = 0;
|
| + return WRC_Abort;
|
| + }
|
| + /* Fall through */
|
| + default:
|
| + testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
|
| + testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
|
| + return WRC_Continue;
|
| + }
|
| +}
|
| +static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
|
| + UNUSED_PARAMETER(NotUsed);
|
| + pWalker->u.i = 0;
|
| + return WRC_Abort;
|
| +}
|
| +static int exprIsConst(Expr *p, int initFlag){
|
| + Walker w;
|
| + memset(&w, 0, sizeof(w));
|
| + w.u.i = initFlag;
|
| + w.xExprCallback = exprNodeIsConstant;
|
| + w.xSelectCallback = selectNodeIsConstant;
|
| + sqlite3WalkExpr(&w, p);
|
| + return w.u.i;
|
| +}
|
| +
|
| +/*
|
| +** Walk an expression tree. Return 1 if the expression is constant
|
| +** and 0 if it involves variables or function calls.
|
| +**
|
| +** For the purposes of this function, a double-quoted string (ex: "abc")
|
| +** is considered a variable but a single-quoted string (ex: 'abc') is
|
| +** a constant.
|
| +*/
|
| +int sqlite3ExprIsConstant(Expr *p){
|
| + return exprIsConst(p, 1);
|
| +}
|
| +
|
| +/*
|
| +** Walk an expression tree. Return 1 if the expression is constant
|
| +** that does no originate from the ON or USING clauses of a join.
|
| +** Return 0 if it involves variables or function calls or terms from
|
| +** an ON or USING clause.
|
| +*/
|
| +int sqlite3ExprIsConstantNotJoin(Expr *p){
|
| + return exprIsConst(p, 2);
|
| +}
|
| +
|
| +/*
|
| +** Walk an expression tree. Return 1 if the expression is constant
|
| +** or a function call with constant arguments. Return and 0 if there
|
| +** are any variables.
|
| +**
|
| +** For the purposes of this function, a double-quoted string (ex: "abc")
|
| +** is considered a variable but a single-quoted string (ex: 'abc') is
|
| +** a constant.
|
| +*/
|
| +int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
|
| + assert( isInit==0 || isInit==1 );
|
| + return exprIsConst(p, 3+isInit);
|
| +}
|
| +
|
| +/*
|
| +** If the expression p codes a constant integer that is small enough
|
| +** to fit in a 32-bit integer, return 1 and put the value of the integer
|
| +** in *pValue. If the expression is not an integer or if it is too big
|
| +** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
|
| +*/
|
| +int sqlite3ExprIsInteger(Expr *p, int *pValue){
|
| + int rc = 0;
|
| +
|
| + /* If an expression is an integer literal that fits in a signed 32-bit
|
| + ** integer, then the EP_IntValue flag will have already been set */
|
| + assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
|
| + || sqlite3GetInt32(p->u.zToken, &rc)==0 );
|
| +
|
| + if( p->flags & EP_IntValue ){
|
| + *pValue = p->u.iValue;
|
| + return 1;
|
| + }
|
| + switch( p->op ){
|
| + case TK_UPLUS: {
|
| + rc = sqlite3ExprIsInteger(p->pLeft, pValue);
|
| + break;
|
| + }
|
| + case TK_UMINUS: {
|
| + int v;
|
| + if( sqlite3ExprIsInteger(p->pLeft, &v) ){
|
| + assert( v!=(-2147483647-1) );
|
| + *pValue = -v;
|
| + rc = 1;
|
| + }
|
| + break;
|
| + }
|
| + default: break;
|
| + }
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** Return FALSE if there is no chance that the expression can be NULL.
|
| +**
|
| +** If the expression might be NULL or if the expression is too complex
|
| +** to tell return TRUE.
|
| +**
|
| +** This routine is used as an optimization, to skip OP_IsNull opcodes
|
| +** when we know that a value cannot be NULL. Hence, a false positive
|
| +** (returning TRUE when in fact the expression can never be NULL) might
|
| +** be a small performance hit but is otherwise harmless. On the other
|
| +** hand, a false negative (returning FALSE when the result could be NULL)
|
| +** will likely result in an incorrect answer. So when in doubt, return
|
| +** TRUE.
|
| +*/
|
| +int sqlite3ExprCanBeNull(const Expr *p){
|
| + u8 op;
|
| + while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
|
| + op = p->op;
|
| + if( op==TK_REGISTER ) op = p->op2;
|
| + switch( op ){
|
| + case TK_INTEGER:
|
| + case TK_STRING:
|
| + case TK_FLOAT:
|
| + case TK_BLOB:
|
| + return 0;
|
| + case TK_COLUMN:
|
| + assert( p->pTab!=0 );
|
| + return ExprHasProperty(p, EP_CanBeNull) ||
|
| + (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
|
| + default:
|
| + return 1;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Return TRUE if the given expression is a constant which would be
|
| +** unchanged by OP_Affinity with the affinity given in the second
|
| +** argument.
|
| +**
|
| +** This routine is used to determine if the OP_Affinity operation
|
| +** can be omitted. When in doubt return FALSE. A false negative
|
| +** is harmless. A false positive, however, can result in the wrong
|
| +** answer.
|
| +*/
|
| +int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
|
| + u8 op;
|
| + if( aff==SQLITE_AFF_NONE ) return 1;
|
| + while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
|
| + op = p->op;
|
| + if( op==TK_REGISTER ) op = p->op2;
|
| + switch( op ){
|
| + case TK_INTEGER: {
|
| + return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
|
| + }
|
| + case TK_FLOAT: {
|
| + return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
|
| + }
|
| + case TK_STRING: {
|
| + return aff==SQLITE_AFF_TEXT;
|
| + }
|
| + case TK_BLOB: {
|
| + return 1;
|
| + }
|
| + case TK_COLUMN: {
|
| + assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */
|
| + return p->iColumn<0
|
| + && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
|
| + }
|
| + default: {
|
| + return 0;
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Return TRUE if the given string is a row-id column name.
|
| +*/
|
| +int sqlite3IsRowid(const char *z){
|
| + if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
|
| + if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
|
| + if( sqlite3StrICmp(z, "OID")==0 ) return 1;
|
| + return 0;
|
| +}
|
| +
|
| +/*
|
| +** Return true if we are able to the IN operator optimization on a
|
| +** query of the form
|
| +**
|
| +** x IN (SELECT ...)
|
| +**
|
| +** Where the SELECT... clause is as specified by the parameter to this
|
| +** routine.
|
| +**
|
| +** The Select object passed in has already been preprocessed and no
|
| +** errors have been found.
|
| +*/
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| +static int isCandidateForInOpt(Select *p){
|
| + SrcList *pSrc;
|
| + ExprList *pEList;
|
| + Table *pTab;
|
| + if( p==0 ) return 0; /* right-hand side of IN is SELECT */
|
| + if( p->pPrior ) return 0; /* Not a compound SELECT */
|
| + if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
|
| + testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
|
| + testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
|
| + return 0; /* No DISTINCT keyword and no aggregate functions */
|
| + }
|
| + assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */
|
| + if( p->pLimit ) return 0; /* Has no LIMIT clause */
|
| + assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */
|
| + if( p->pWhere ) return 0; /* Has no WHERE clause */
|
| + pSrc = p->pSrc;
|
| + assert( pSrc!=0 );
|
| + if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */
|
| + if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */
|
| + pTab = pSrc->a[0].pTab;
|
| + if( NEVER(pTab==0) ) return 0;
|
| + assert( pTab->pSelect==0 ); /* FROM clause is not a view */
|
| + if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
|
| + pEList = p->pEList;
|
| + if( pEList->nExpr!=1 ) return 0; /* One column in the result set */
|
| + if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
|
| + return 1;
|
| +}
|
| +#endif /* SQLITE_OMIT_SUBQUERY */
|
| +
|
| +/*
|
| +** Code an OP_Once instruction and allocate space for its flag. Return the
|
| +** address of the new instruction.
|
| +*/
|
| +int sqlite3CodeOnce(Parse *pParse){
|
| + Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
|
| + return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
|
| +}
|
| +
|
| +/*
|
| +** Generate code that checks the left-most column of index table iCur to see if
|
| +** it contains any NULL entries. Cause the register at regHasNull to be set
|
| +** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull
|
| +** to be set to NULL if iCur contains one or more NULL values.
|
| +*/
|
| +static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
|
| + int j1;
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
|
| + j1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
|
| + sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
|
| + sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
|
| + VdbeComment((v, "first_entry_in(%d)", iCur));
|
| + sqlite3VdbeJumpHere(v, j1);
|
| +}
|
| +
|
| +
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| +/*
|
| +** The argument is an IN operator with a list (not a subquery) on the
|
| +** right-hand side. Return TRUE if that list is constant.
|
| +*/
|
| +static int sqlite3InRhsIsConstant(Expr *pIn){
|
| + Expr *pLHS;
|
| + int res;
|
| + assert( !ExprHasProperty(pIn, EP_xIsSelect) );
|
| + pLHS = pIn->pLeft;
|
| + pIn->pLeft = 0;
|
| + res = sqlite3ExprIsConstant(pIn);
|
| + pIn->pLeft = pLHS;
|
| + return res;
|
| +}
|
| +#endif
|
| +
|
| +/*
|
| +** This function is used by the implementation of the IN (...) operator.
|
| +** The pX parameter is the expression on the RHS of the IN operator, which
|
| +** might be either a list of expressions or a subquery.
|
| +**
|
| +** The job of this routine is to find or create a b-tree object that can
|
| +** be used either to test for membership in the RHS set or to iterate through
|
| +** all members of the RHS set, skipping duplicates.
|
| +**
|
| +** A cursor is opened on the b-tree object that is the RHS of the IN operator
|
| +** and pX->iTable is set to the index of that cursor.
|
| +**
|
| +** The returned value of this function indicates the b-tree type, as follows:
|
| +**
|
| +** IN_INDEX_ROWID - The cursor was opened on a database table.
|
| +** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index.
|
| +** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
|
| +** IN_INDEX_EPH - The cursor was opened on a specially created and
|
| +** populated epheremal table.
|
| +** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be
|
| +** implemented as a sequence of comparisons.
|
| +**
|
| +** An existing b-tree might be used if the RHS expression pX is a simple
|
| +** subquery such as:
|
| +**
|
| +** SELECT <column> FROM <table>
|
| +**
|
| +** If the RHS of the IN operator is a list or a more complex subquery, then
|
| +** an ephemeral table might need to be generated from the RHS and then
|
| +** pX->iTable made to point to the ephemeral table instead of an
|
| +** existing table.
|
| +**
|
| +** The inFlags parameter must contain exactly one of the bits
|
| +** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains
|
| +** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
|
| +** fast membership test. When the IN_INDEX_LOOP bit is set, the
|
| +** IN index will be used to loop over all values of the RHS of the
|
| +** IN operator.
|
| +**
|
| +** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
|
| +** through the set members) then the b-tree must not contain duplicates.
|
| +** An epheremal table must be used unless the selected <column> is guaranteed
|
| +** to be unique - either because it is an INTEGER PRIMARY KEY or it
|
| +** has a UNIQUE constraint or UNIQUE index.
|
| +**
|
| +** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
|
| +** for fast set membership tests) then an epheremal table must
|
| +** be used unless <column> is an INTEGER PRIMARY KEY or an index can
|
| +** be found with <column> as its left-most column.
|
| +**
|
| +** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
|
| +** if the RHS of the IN operator is a list (not a subquery) then this
|
| +** routine might decide that creating an ephemeral b-tree for membership
|
| +** testing is too expensive and return IN_INDEX_NOOP. In that case, the
|
| +** calling routine should implement the IN operator using a sequence
|
| +** of Eq or Ne comparison operations.
|
| +**
|
| +** When the b-tree is being used for membership tests, the calling function
|
| +** might need to know whether or not the RHS side of the IN operator
|
| +** contains a NULL. If prRhsHasNull is not a NULL pointer and
|
| +** if there is any chance that the (...) might contain a NULL value at
|
| +** runtime, then a register is allocated and the register number written
|
| +** to *prRhsHasNull. If there is no chance that the (...) contains a
|
| +** NULL value, then *prRhsHasNull is left unchanged.
|
| +**
|
| +** If a register is allocated and its location stored in *prRhsHasNull, then
|
| +** the value in that register will be NULL if the b-tree contains one or more
|
| +** NULL values, and it will be some non-NULL value if the b-tree contains no
|
| +** NULL values.
|
| +*/
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| +int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){
|
| + Select *p; /* SELECT to the right of IN operator */
|
| + int eType = 0; /* Type of RHS table. IN_INDEX_* */
|
| + int iTab = pParse->nTab++; /* Cursor of the RHS table */
|
| + int mustBeUnique; /* True if RHS must be unique */
|
| + Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
|
| +
|
| + assert( pX->op==TK_IN );
|
| + mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
|
| +
|
| + /* Check to see if an existing table or index can be used to
|
| + ** satisfy the query. This is preferable to generating a new
|
| + ** ephemeral table.
|
| + */
|
| + p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
|
| + if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
|
| + sqlite3 *db = pParse->db; /* Database connection */
|
| + Table *pTab; /* Table <table>. */
|
| + Expr *pExpr; /* Expression <column> */
|
| + i16 iCol; /* Index of column <column> */
|
| + i16 iDb; /* Database idx for pTab */
|
| +
|
| + assert( p ); /* Because of isCandidateForInOpt(p) */
|
| + assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */
|
| + assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
|
| + assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */
|
| + pTab = p->pSrc->a[0].pTab;
|
| + pExpr = p->pEList->a[0].pExpr;
|
| + iCol = (i16)pExpr->iColumn;
|
| +
|
| + /* Code an OP_Transaction and OP_TableLock for <table>. */
|
| + iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
| + sqlite3CodeVerifySchema(pParse, iDb);
|
| + sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
|
| +
|
| + /* This function is only called from two places. In both cases the vdbe
|
| + ** has already been allocated. So assume sqlite3GetVdbe() is always
|
| + ** successful here.
|
| + */
|
| + assert(v);
|
| + if( iCol<0 ){
|
| + int iAddr = sqlite3CodeOnce(pParse);
|
| + VdbeCoverage(v);
|
| +
|
| + sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
|
| + eType = IN_INDEX_ROWID;
|
| +
|
| + sqlite3VdbeJumpHere(v, iAddr);
|
| + }else{
|
| + Index *pIdx; /* Iterator variable */
|
| +
|
| + /* The collation sequence used by the comparison. If an index is to
|
| + ** be used in place of a temp-table, it must be ordered according
|
| + ** to this collation sequence. */
|
| + CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
|
| +
|
| + /* Check that the affinity that will be used to perform the
|
| + ** comparison is the same as the affinity of the column. If
|
| + ** it is not, it is not possible to use any index.
|
| + */
|
| + int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
|
| +
|
| + for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
|
| + if( (pIdx->aiColumn[0]==iCol)
|
| + && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
|
| + && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx)))
|
| + ){
|
| + int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
|
| + sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
|
| + sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
|
| + VdbeComment((v, "%s", pIdx->zName));
|
| + assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
|
| + eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
|
| +
|
| + if( prRhsHasNull && !pTab->aCol[iCol].notNull ){
|
| + *prRhsHasNull = ++pParse->nMem;
|
| + sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
|
| + }
|
| + sqlite3VdbeJumpHere(v, iAddr);
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + /* If no preexisting index is available for the IN clause
|
| + ** and IN_INDEX_NOOP is an allowed reply
|
| + ** and the RHS of the IN operator is a list, not a subquery
|
| + ** and the RHS is not contant or has two or fewer terms,
|
| + ** then it is not worth creating an ephemeral table to evaluate
|
| + ** the IN operator so return IN_INDEX_NOOP.
|
| + */
|
| + if( eType==0
|
| + && (inFlags & IN_INDEX_NOOP_OK)
|
| + && !ExprHasProperty(pX, EP_xIsSelect)
|
| + && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
|
| + ){
|
| + eType = IN_INDEX_NOOP;
|
| + }
|
| +
|
| +
|
| + if( eType==0 ){
|
| + /* Could not find an existing table or index to use as the RHS b-tree.
|
| + ** We will have to generate an ephemeral table to do the job.
|
| + */
|
| + u32 savedNQueryLoop = pParse->nQueryLoop;
|
| + int rMayHaveNull = 0;
|
| + eType = IN_INDEX_EPH;
|
| + if( inFlags & IN_INDEX_LOOP ){
|
| + pParse->nQueryLoop = 0;
|
| + if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
|
| + eType = IN_INDEX_ROWID;
|
| + }
|
| + }else if( prRhsHasNull ){
|
| + *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
|
| + }
|
| + sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
|
| + pParse->nQueryLoop = savedNQueryLoop;
|
| + }else{
|
| + pX->iTable = iTab;
|
| + }
|
| + return eType;
|
| +}
|
| +#endif
|
| +
|
| +/*
|
| +** Generate code for scalar subqueries used as a subquery expression, EXISTS,
|
| +** or IN operators. Examples:
|
| +**
|
| +** (SELECT a FROM b) -- subquery
|
| +** EXISTS (SELECT a FROM b) -- EXISTS subquery
|
| +** x IN (4,5,11) -- IN operator with list on right-hand side
|
| +** x IN (SELECT a FROM b) -- IN operator with subquery on the right
|
| +**
|
| +** The pExpr parameter describes the expression that contains the IN
|
| +** operator or subquery.
|
| +**
|
| +** If parameter isRowid is non-zero, then expression pExpr is guaranteed
|
| +** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
|
| +** to some integer key column of a table B-Tree. In this case, use an
|
| +** intkey B-Tree to store the set of IN(...) values instead of the usual
|
| +** (slower) variable length keys B-Tree.
|
| +**
|
| +** If rMayHaveNull is non-zero, that means that the operation is an IN
|
| +** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
|
| +** All this routine does is initialize the register given by rMayHaveNull
|
| +** to NULL. Calling routines will take care of changing this register
|
| +** value to non-NULL if the RHS is NULL-free.
|
| +**
|
| +** For a SELECT or EXISTS operator, return the register that holds the
|
| +** result. For IN operators or if an error occurs, the return value is 0.
|
| +*/
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| +int sqlite3CodeSubselect(
|
| + Parse *pParse, /* Parsing context */
|
| + Expr *pExpr, /* The IN, SELECT, or EXISTS operator */
|
| + int rHasNullFlag, /* Register that records whether NULLs exist in RHS */
|
| + int isRowid /* If true, LHS of IN operator is a rowid */
|
| +){
|
| + int jmpIfDynamic = -1; /* One-time test address */
|
| + int rReg = 0; /* Register storing resulting */
|
| + Vdbe *v = sqlite3GetVdbe(pParse);
|
| + if( NEVER(v==0) ) return 0;
|
| + sqlite3ExprCachePush(pParse);
|
| +
|
| + /* This code must be run in its entirety every time it is encountered
|
| + ** if any of the following is true:
|
| + **
|
| + ** * The right-hand side is a correlated subquery
|
| + ** * The right-hand side is an expression list containing variables
|
| + ** * We are inside a trigger
|
| + **
|
| + ** If all of the above are false, then we can run this code just once
|
| + ** save the results, and reuse the same result on subsequent invocations.
|
| + */
|
| + if( !ExprHasProperty(pExpr, EP_VarSelect) ){
|
| + jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v);
|
| + }
|
| +
|
| +#ifndef SQLITE_OMIT_EXPLAIN
|
| + if( pParse->explain==2 ){
|
| + char *zMsg = sqlite3MPrintf(
|
| + pParse->db, "EXECUTE %s%s SUBQUERY %d", jmpIfDynamic>=0?"":"CORRELATED ",
|
| + pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
|
| + );
|
| + sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
|
| + }
|
| +#endif
|
| +
|
| + switch( pExpr->op ){
|
| + case TK_IN: {
|
| + char affinity; /* Affinity of the LHS of the IN */
|
| + int addr; /* Address of OP_OpenEphemeral instruction */
|
| + Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
|
| + KeyInfo *pKeyInfo = 0; /* Key information */
|
| +
|
| + affinity = sqlite3ExprAffinity(pLeft);
|
| +
|
| + /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
|
| + ** expression it is handled the same way. An ephemeral table is
|
| + ** filled with single-field index keys representing the results
|
| + ** from the SELECT or the <exprlist>.
|
| + **
|
| + ** If the 'x' expression is a column value, or the SELECT...
|
| + ** statement returns a column value, then the affinity of that
|
| + ** column is used to build the index keys. If both 'x' and the
|
| + ** SELECT... statement are columns, then numeric affinity is used
|
| + ** if either column has NUMERIC or INTEGER affinity. If neither
|
| + ** 'x' nor the SELECT... statement are columns, then numeric affinity
|
| + ** is used.
|
| + */
|
| + pExpr->iTable = pParse->nTab++;
|
| + addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
|
| + pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);
|
| +
|
| + if( ExprHasProperty(pExpr, EP_xIsSelect) ){
|
| + /* Case 1: expr IN (SELECT ...)
|
| + **
|
| + ** Generate code to write the results of the select into the temporary
|
| + ** table allocated and opened above.
|
| + */
|
| + Select *pSelect = pExpr->x.pSelect;
|
| + SelectDest dest;
|
| + ExprList *pEList;
|
| +
|
| + assert( !isRowid );
|
| + sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
|
| + dest.affSdst = (u8)affinity;
|
| + assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
|
| + pSelect->iLimit = 0;
|
| + testcase( pSelect->selFlags & SF_Distinct );
|
| + testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
|
| + if( sqlite3Select(pParse, pSelect, &dest) ){
|
| + sqlite3KeyInfoUnref(pKeyInfo);
|
| + return 0;
|
| + }
|
| + pEList = pSelect->pEList;
|
| + assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
|
| + assert( pEList!=0 );
|
| + assert( pEList->nExpr>0 );
|
| + assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
|
| + pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
|
| + pEList->a[0].pExpr);
|
| + }else if( ALWAYS(pExpr->x.pList!=0) ){
|
| + /* Case 2: expr IN (exprlist)
|
| + **
|
| + ** For each expression, build an index key from the evaluation and
|
| + ** store it in the temporary table. If <expr> is a column, then use
|
| + ** that columns affinity when building index keys. If <expr> is not
|
| + ** a column, use numeric affinity.
|
| + */
|
| + int i;
|
| + ExprList *pList = pExpr->x.pList;
|
| + struct ExprList_item *pItem;
|
| + int r1, r2, r3;
|
| +
|
| + if( !affinity ){
|
| + affinity = SQLITE_AFF_NONE;
|
| + }
|
| + if( pKeyInfo ){
|
| + assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
|
| + pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
|
| + }
|
| +
|
| + /* Loop through each expression in <exprlist>. */
|
| + r1 = sqlite3GetTempReg(pParse);
|
| + r2 = sqlite3GetTempReg(pParse);
|
| + if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
|
| + for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
|
| + Expr *pE2 = pItem->pExpr;
|
| + int iValToIns;
|
| +
|
| + /* If the expression is not constant then we will need to
|
| + ** disable the test that was generated above that makes sure
|
| + ** this code only executes once. Because for a non-constant
|
| + ** expression we need to rerun this code each time.
|
| + */
|
| + if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
|
| + sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
|
| + jmpIfDynamic = -1;
|
| + }
|
| +
|
| + /* Evaluate the expression and insert it into the temp table */
|
| + if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
|
| + sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
|
| + }else{
|
| + r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
|
| + if( isRowid ){
|
| + sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
|
| + sqlite3VdbeCurrentAddr(v)+2);
|
| + VdbeCoverage(v);
|
| + sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
|
| + }else{
|
| + sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
|
| + sqlite3ExprCacheAffinityChange(pParse, r3, 1);
|
| + sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
|
| + }
|
| + }
|
| + }
|
| + sqlite3ReleaseTempReg(pParse, r1);
|
| + sqlite3ReleaseTempReg(pParse, r2);
|
| + }
|
| + if( pKeyInfo ){
|
| + sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case TK_EXISTS:
|
| + case TK_SELECT:
|
| + default: {
|
| + /* If this has to be a scalar SELECT. Generate code to put the
|
| + ** value of this select in a memory cell and record the number
|
| + ** of the memory cell in iColumn. If this is an EXISTS, write
|
| + ** an integer 0 (not exists) or 1 (exists) into a memory cell
|
| + ** and record that memory cell in iColumn.
|
| + */
|
| + Select *pSel; /* SELECT statement to encode */
|
| + SelectDest dest; /* How to deal with SELECt result */
|
| +
|
| + testcase( pExpr->op==TK_EXISTS );
|
| + testcase( pExpr->op==TK_SELECT );
|
| + assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
|
| +
|
| + assert( ExprHasProperty(pExpr, EP_xIsSelect) );
|
| + pSel = pExpr->x.pSelect;
|
| + sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
|
| + if( pExpr->op==TK_SELECT ){
|
| + dest.eDest = SRT_Mem;
|
| + dest.iSdst = dest.iSDParm;
|
| + sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
|
| + VdbeComment((v, "Init subquery result"));
|
| + }else{
|
| + dest.eDest = SRT_Exists;
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
|
| + VdbeComment((v, "Init EXISTS result"));
|
| + }
|
| + sqlite3ExprDelete(pParse->db, pSel->pLimit);
|
| + pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
|
| + &sqlite3IntTokens[1]);
|
| + pSel->iLimit = 0;
|
| + if( sqlite3Select(pParse, pSel, &dest) ){
|
| + return 0;
|
| + }
|
| + rReg = dest.iSDParm;
|
| + ExprSetVVAProperty(pExpr, EP_NoReduce);
|
| + break;
|
| + }
|
| + }
|
| +
|
| + if( rHasNullFlag ){
|
| + sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
|
| + }
|
| +
|
| + if( jmpIfDynamic>=0 ){
|
| + sqlite3VdbeJumpHere(v, jmpIfDynamic);
|
| + }
|
| + sqlite3ExprCachePop(pParse);
|
| +
|
| + return rReg;
|
| +}
|
| +#endif /* SQLITE_OMIT_SUBQUERY */
|
| +
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| +/*
|
| +** Generate code for an IN expression.
|
| +**
|
| +** x IN (SELECT ...)
|
| +** x IN (value, value, ...)
|
| +**
|
| +** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS)
|
| +** is an array of zero or more values. The expression is true if the LHS is
|
| +** contained within the RHS. The value of the expression is unknown (NULL)
|
| +** if the LHS is NULL or if the LHS is not contained within the RHS and the
|
| +** RHS contains one or more NULL values.
|
| +**
|
| +** This routine generates code that jumps to destIfFalse if the LHS is not
|
| +** contained within the RHS. If due to NULLs we cannot determine if the LHS
|
| +** is contained in the RHS then jump to destIfNull. If the LHS is contained
|
| +** within the RHS then fall through.
|
| +*/
|
| +static void sqlite3ExprCodeIN(
|
| + Parse *pParse, /* Parsing and code generating context */
|
| + Expr *pExpr, /* The IN expression */
|
| + int destIfFalse, /* Jump here if LHS is not contained in the RHS */
|
| + int destIfNull /* Jump here if the results are unknown due to NULLs */
|
| +){
|
| + int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */
|
| + char affinity; /* Comparison affinity to use */
|
| + int eType; /* Type of the RHS */
|
| + int r1; /* Temporary use register */
|
| + Vdbe *v; /* Statement under construction */
|
| +
|
| + /* Compute the RHS. After this step, the table with cursor
|
| + ** pExpr->iTable will contains the values that make up the RHS.
|
| + */
|
| + v = pParse->pVdbe;
|
| + assert( v!=0 ); /* OOM detected prior to this routine */
|
| + VdbeNoopComment((v, "begin IN expr"));
|
| + eType = sqlite3FindInIndex(pParse, pExpr,
|
| + IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
|
| + destIfFalse==destIfNull ? 0 : &rRhsHasNull);
|
| +
|
| + /* Figure out the affinity to use to create a key from the results
|
| + ** of the expression. affinityStr stores a static string suitable for
|
| + ** P4 of OP_MakeRecord.
|
| + */
|
| + affinity = comparisonAffinity(pExpr);
|
| +
|
| + /* Code the LHS, the <expr> from "<expr> IN (...)".
|
| + */
|
| + sqlite3ExprCachePush(pParse);
|
| + r1 = sqlite3GetTempReg(pParse);
|
| + sqlite3ExprCode(pParse, pExpr->pLeft, r1);
|
| +
|
| + /* If sqlite3FindInIndex() did not find or create an index that is
|
| + ** suitable for evaluating the IN operator, then evaluate using a
|
| + ** sequence of comparisons.
|
| + */
|
| + if( eType==IN_INDEX_NOOP ){
|
| + ExprList *pList = pExpr->x.pList;
|
| + CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
|
| + int labelOk = sqlite3VdbeMakeLabel(v);
|
| + int r2, regToFree;
|
| + int regCkNull = 0;
|
| + int ii;
|
| + assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
| + if( destIfNull!=destIfFalse ){
|
| + regCkNull = sqlite3GetTempReg(pParse);
|
| + sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull);
|
| + }
|
| + for(ii=0; ii<pList->nExpr; ii++){
|
| + r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree);
|
| + if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
|
| + sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
|
| + }
|
| + if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
|
| + sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2,
|
| + (void*)pColl, P4_COLLSEQ);
|
| + VdbeCoverageIf(v, ii<pList->nExpr-1);
|
| + VdbeCoverageIf(v, ii==pList->nExpr-1);
|
| + sqlite3VdbeChangeP5(v, affinity);
|
| + }else{
|
| + assert( destIfNull==destIfFalse );
|
| + sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2,
|
| + (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
|
| + sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL);
|
| + }
|
| + sqlite3ReleaseTempReg(pParse, regToFree);
|
| + }
|
| + if( regCkNull ){
|
| + sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
|
| + }
|
| + sqlite3VdbeResolveLabel(v, labelOk);
|
| + sqlite3ReleaseTempReg(pParse, regCkNull);
|
| + }else{
|
| +
|
| + /* If the LHS is NULL, then the result is either false or NULL depending
|
| + ** on whether the RHS is empty or not, respectively.
|
| + */
|
| + if( sqlite3ExprCanBeNull(pExpr->pLeft) ){
|
| + if( destIfNull==destIfFalse ){
|
| + /* Shortcut for the common case where the false and NULL outcomes are
|
| + ** the same. */
|
| + sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
|
| + }else{
|
| + int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);
|
| + sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
|
| + VdbeCoverage(v);
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
|
| + sqlite3VdbeJumpHere(v, addr1);
|
| + }
|
| + }
|
| +
|
| + if( eType==IN_INDEX_ROWID ){
|
| + /* In this case, the RHS is the ROWID of table b-tree
|
| + */
|
| + sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v);
|
| + sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
|
| + VdbeCoverage(v);
|
| + }else{
|
| + /* In this case, the RHS is an index b-tree.
|
| + */
|
| + sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
|
| +
|
| + /* If the set membership test fails, then the result of the
|
| + ** "x IN (...)" expression must be either 0 or NULL. If the set
|
| + ** contains no NULL values, then the result is 0. If the set
|
| + ** contains one or more NULL values, then the result of the
|
| + ** expression is also NULL.
|
| + */
|
| + assert( destIfFalse!=destIfNull || rRhsHasNull==0 );
|
| + if( rRhsHasNull==0 ){
|
| + /* This branch runs if it is known at compile time that the RHS
|
| + ** cannot contain NULL values. This happens as the result
|
| + ** of a "NOT NULL" constraint in the database schema.
|
| + **
|
| + ** Also run this branch if NULL is equivalent to FALSE
|
| + ** for this particular IN operator.
|
| + */
|
| + sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
|
| + VdbeCoverage(v);
|
| + }else{
|
| + /* In this branch, the RHS of the IN might contain a NULL and
|
| + ** the presence of a NULL on the RHS makes a difference in the
|
| + ** outcome.
|
| + */
|
| + int j1;
|
| +
|
| + /* First check to see if the LHS is contained in the RHS. If so,
|
| + ** then the answer is TRUE the presence of NULLs in the RHS does
|
| + ** not matter. If the LHS is not contained in the RHS, then the
|
| + ** answer is NULL if the RHS contains NULLs and the answer is
|
| + ** FALSE if the RHS is NULL-free.
|
| + */
|
| + j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
|
| + VdbeCoverage(v);
|
| + sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull);
|
| + VdbeCoverage(v);
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
|
| + sqlite3VdbeJumpHere(v, j1);
|
| + }
|
| + }
|
| + }
|
| + sqlite3ReleaseTempReg(pParse, r1);
|
| + sqlite3ExprCachePop(pParse);
|
| + VdbeComment((v, "end IN expr"));
|
| +}
|
| +#endif /* SQLITE_OMIT_SUBQUERY */
|
| +
|
| +/*
|
| +** Duplicate an 8-byte value
|
| +*/
|
| +static char *dup8bytes(Vdbe *v, const char *in){
|
| + char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
|
| + if( out ){
|
| + memcpy(out, in, 8);
|
| + }
|
| + return out;
|
| +}
|
| +
|
| +#ifndef SQLITE_OMIT_FLOATING_POINT
|
| +/*
|
| +** Generate an instruction that will put the floating point
|
| +** value described by z[0..n-1] into register iMem.
|
| +**
|
| +** The z[] string will probably not be zero-terminated. But the
|
| +** z[n] character is guaranteed to be something that does not look
|
| +** like the continuation of the number.
|
| +*/
|
| +static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
|
| + if( ALWAYS(z!=0) ){
|
| + double value;
|
| + char *zV;
|
| + sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
|
| + assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
|
| + if( negateFlag ) value = -value;
|
| + zV = dup8bytes(v, (char*)&value);
|
| + sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
|
| + }
|
| +}
|
| +#endif
|
| +
|
| +
|
| +/*
|
| +** Generate an instruction that will put the integer describe by
|
| +** text z[0..n-1] into register iMem.
|
| +**
|
| +** Expr.u.zToken is always UTF8 and zero-terminated.
|
| +*/
|
| +static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
|
| + Vdbe *v = pParse->pVdbe;
|
| + if( pExpr->flags & EP_IntValue ){
|
| + int i = pExpr->u.iValue;
|
| + assert( i>=0 );
|
| + if( negFlag ) i = -i;
|
| + sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
|
| + }else{
|
| + int c;
|
| + i64 value;
|
| + const char *z = pExpr->u.zToken;
|
| + assert( z!=0 );
|
| + c = sqlite3DecOrHexToI64(z, &value);
|
| + if( c==0 || (c==2 && negFlag) ){
|
| + char *zV;
|
| + if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
|
| + zV = dup8bytes(v, (char*)&value);
|
| + sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
|
| + }else{
|
| +#ifdef SQLITE_OMIT_FLOATING_POINT
|
| + sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
|
| +#else
|
| +#ifndef SQLITE_OMIT_HEX_INTEGER
|
| + if( sqlite3_strnicmp(z,"0x",2)==0 ){
|
| + sqlite3ErrorMsg(pParse, "hex literal too big: %s", z);
|
| + }else
|
| +#endif
|
| + {
|
| + codeReal(v, z, negFlag, iMem);
|
| + }
|
| +#endif
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Clear a cache entry.
|
| +*/
|
| +static void cacheEntryClear(Parse *pParse, struct yColCache *p){
|
| + if( p->tempReg ){
|
| + if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
|
| + pParse->aTempReg[pParse->nTempReg++] = p->iReg;
|
| + }
|
| + p->tempReg = 0;
|
| + }
|
| +}
|
| +
|
| +
|
| +/*
|
| +** Record in the column cache that a particular column from a
|
| +** particular table is stored in a particular register.
|
| +*/
|
| +void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
|
| + int i;
|
| + int minLru;
|
| + int idxLru;
|
| + struct yColCache *p;
|
| +
|
| + assert( iReg>0 ); /* Register numbers are always positive */
|
| + assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */
|
| +
|
| + /* The SQLITE_ColumnCache flag disables the column cache. This is used
|
| + ** for testing only - to verify that SQLite always gets the same answer
|
| + ** with and without the column cache.
|
| + */
|
| + if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
|
| +
|
| + /* First replace any existing entry.
|
| + **
|
| + ** Actually, the way the column cache is currently used, we are guaranteed
|
| + ** that the object will never already be in cache. Verify this guarantee.
|
| + */
|
| +#ifndef NDEBUG
|
| + for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| + assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
|
| + }
|
| +#endif
|
| +
|
| + /* Find an empty slot and replace it */
|
| + for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| + if( p->iReg==0 ){
|
| + p->iLevel = pParse->iCacheLevel;
|
| + p->iTable = iTab;
|
| + p->iColumn = iCol;
|
| + p->iReg = iReg;
|
| + p->tempReg = 0;
|
| + p->lru = pParse->iCacheCnt++;
|
| + return;
|
| + }
|
| + }
|
| +
|
| + /* Replace the last recently used */
|
| + minLru = 0x7fffffff;
|
| + idxLru = -1;
|
| + for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| + if( p->lru<minLru ){
|
| + idxLru = i;
|
| + minLru = p->lru;
|
| + }
|
| + }
|
| + if( ALWAYS(idxLru>=0) ){
|
| + p = &pParse->aColCache[idxLru];
|
| + p->iLevel = pParse->iCacheLevel;
|
| + p->iTable = iTab;
|
| + p->iColumn = iCol;
|
| + p->iReg = iReg;
|
| + p->tempReg = 0;
|
| + p->lru = pParse->iCacheCnt++;
|
| + return;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
|
| +** Purge the range of registers from the column cache.
|
| +*/
|
| +void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
|
| + int i;
|
| + int iLast = iReg + nReg - 1;
|
| + struct yColCache *p;
|
| + for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| + int r = p->iReg;
|
| + if( r>=iReg && r<=iLast ){
|
| + cacheEntryClear(pParse, p);
|
| + p->iReg = 0;
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Remember the current column cache context. Any new entries added
|
| +** added to the column cache after this call are removed when the
|
| +** corresponding pop occurs.
|
| +*/
|
| +void sqlite3ExprCachePush(Parse *pParse){
|
| + pParse->iCacheLevel++;
|
| +#ifdef SQLITE_DEBUG
|
| + if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
|
| + printf("PUSH to %d\n", pParse->iCacheLevel);
|
| + }
|
| +#endif
|
| +}
|
| +
|
| +/*
|
| +** Remove from the column cache any entries that were added since the
|
| +** the previous sqlite3ExprCachePush operation. In other words, restore
|
| +** the cache to the state it was in prior the most recent Push.
|
| +*/
|
| +void sqlite3ExprCachePop(Parse *pParse){
|
| + int i;
|
| + struct yColCache *p;
|
| + assert( pParse->iCacheLevel>=1 );
|
| + pParse->iCacheLevel--;
|
| +#ifdef SQLITE_DEBUG
|
| + if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
|
| + printf("POP to %d\n", pParse->iCacheLevel);
|
| + }
|
| +#endif
|
| + for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| + if( p->iReg && p->iLevel>pParse->iCacheLevel ){
|
| + cacheEntryClear(pParse, p);
|
| + p->iReg = 0;
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** When a cached column is reused, make sure that its register is
|
| +** no longer available as a temp register. ticket #3879: that same
|
| +** register might be in the cache in multiple places, so be sure to
|
| +** get them all.
|
| +*/
|
| +static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
|
| + int i;
|
| + struct yColCache *p;
|
| + for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| + if( p->iReg==iReg ){
|
| + p->tempReg = 0;
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Generate code to extract the value of the iCol-th column of a table.
|
| +*/
|
| +void sqlite3ExprCodeGetColumnOfTable(
|
| + Vdbe *v, /* The VDBE under construction */
|
| + Table *pTab, /* The table containing the value */
|
| + int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */
|
| + int iCol, /* Index of the column to extract */
|
| + int regOut /* Extract the value into this register */
|
| +){
|
| + if( iCol<0 || iCol==pTab->iPKey ){
|
| + sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
|
| + }else{
|
| + int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
|
| + int x = iCol;
|
| + if( !HasRowid(pTab) ){
|
| + x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
|
| + }
|
| + sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
|
| + }
|
| + if( iCol>=0 ){
|
| + sqlite3ColumnDefault(v, pTab, iCol, regOut);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Generate code that will extract the iColumn-th column from
|
| +** table pTab and store the column value in a register. An effort
|
| +** is made to store the column value in register iReg, but this is
|
| +** not guaranteed. The location of the column value is returned.
|
| +**
|
| +** There must be an open cursor to pTab in iTable when this routine
|
| +** is called. If iColumn<0 then code is generated that extracts the rowid.
|
| +*/
|
| +int sqlite3ExprCodeGetColumn(
|
| + Parse *pParse, /* Parsing and code generating context */
|
| + Table *pTab, /* Description of the table we are reading from */
|
| + int iColumn, /* Index of the table column */
|
| + int iTable, /* The cursor pointing to the table */
|
| + int iReg, /* Store results here */
|
| + u8 p5 /* P5 value for OP_Column */
|
| +){
|
| + Vdbe *v = pParse->pVdbe;
|
| + int i;
|
| + struct yColCache *p;
|
| +
|
| + for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| + if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
|
| + p->lru = pParse->iCacheCnt++;
|
| + sqlite3ExprCachePinRegister(pParse, p->iReg);
|
| + return p->iReg;
|
| + }
|
| + }
|
| + assert( v!=0 );
|
| + sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
|
| + if( p5 ){
|
| + sqlite3VdbeChangeP5(v, p5);
|
| + }else{
|
| + sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
|
| + }
|
| + return iReg;
|
| +}
|
| +
|
| +/*
|
| +** Clear all column cache entries.
|
| +*/
|
| +void sqlite3ExprCacheClear(Parse *pParse){
|
| + int i;
|
| + struct yColCache *p;
|
| +
|
| +#if SQLITE_DEBUG
|
| + if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
|
| + printf("CLEAR\n");
|
| + }
|
| +#endif
|
| + for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| + if( p->iReg ){
|
| + cacheEntryClear(pParse, p);
|
| + p->iReg = 0;
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Record the fact that an affinity change has occurred on iCount
|
| +** registers starting with iStart.
|
| +*/
|
| +void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
|
| + sqlite3ExprCacheRemove(pParse, iStart, iCount);
|
| +}
|
| +
|
| +/*
|
| +** Generate code to move content from registers iFrom...iFrom+nReg-1
|
| +** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
|
| +*/
|
| +void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
|
| + assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
|
| + sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
|
| + sqlite3ExprCacheRemove(pParse, iFrom, nReg);
|
| +}
|
| +
|
| +#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
|
| +/*
|
| +** Return true if any register in the range iFrom..iTo (inclusive)
|
| +** is used as part of the column cache.
|
| +**
|
| +** This routine is used within assert() and testcase() macros only
|
| +** and does not appear in a normal build.
|
| +*/
|
| +static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
|
| + int i;
|
| + struct yColCache *p;
|
| + for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| + int r = p->iReg;
|
| + if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/
|
| + }
|
| + return 0;
|
| +}
|
| +#endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
|
| +
|
| +/*
|
| +** Convert an expression node to a TK_REGISTER
|
| +*/
|
| +static void exprToRegister(Expr *p, int iReg){
|
| + p->op2 = p->op;
|
| + p->op = TK_REGISTER;
|
| + p->iTable = iReg;
|
| + ExprClearProperty(p, EP_Skip);
|
| +}
|
| +
|
| +/*
|
| +** Generate code into the current Vdbe to evaluate the given
|
| +** expression. Attempt to store the results in register "target".
|
| +** Return the register where results are stored.
|
| +**
|
| +** With this routine, there is no guarantee that results will
|
| +** be stored in target. The result might be stored in some other
|
| +** register if it is convenient to do so. The calling function
|
| +** must check the return code and move the results to the desired
|
| +** register.
|
| +*/
|
| +int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| + Vdbe *v = pParse->pVdbe; /* The VM under construction */
|
| + int op; /* The opcode being coded */
|
| + int inReg = target; /* Results stored in register inReg */
|
| + int regFree1 = 0; /* If non-zero free this temporary register */
|
| + int regFree2 = 0; /* If non-zero free this temporary register */
|
| + int r1, r2, r3, r4; /* Various register numbers */
|
| + sqlite3 *db = pParse->db; /* The database connection */
|
| + Expr tempX; /* Temporary expression node */
|
| +
|
| + assert( target>0 && target<=pParse->nMem );
|
| + if( v==0 ){
|
| + assert( pParse->db->mallocFailed );
|
| + return 0;
|
| + }
|
| +
|
| + if( pExpr==0 ){
|
| + op = TK_NULL;
|
| + }else{
|
| + op = pExpr->op;
|
| + }
|
| + switch( op ){
|
| + case TK_AGG_COLUMN: {
|
| + AggInfo *pAggInfo = pExpr->pAggInfo;
|
| + struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
|
| + if( !pAggInfo->directMode ){
|
| + assert( pCol->iMem>0 );
|
| + inReg = pCol->iMem;
|
| + break;
|
| + }else if( pAggInfo->useSortingIdx ){
|
| + sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
|
| + pCol->iSorterColumn, target);
|
| + break;
|
| + }
|
| + /* Otherwise, fall thru into the TK_COLUMN case */
|
| + }
|
| + case TK_COLUMN: {
|
| + int iTab = pExpr->iTable;
|
| + if( iTab<0 ){
|
| + if( pParse->ckBase>0 ){
|
| + /* Generating CHECK constraints or inserting into partial index */
|
| + inReg = pExpr->iColumn + pParse->ckBase;
|
| + break;
|
| + }else{
|
| + /* Deleting from a partial index */
|
| + iTab = pParse->iPartIdxTab;
|
| + }
|
| + }
|
| + inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
|
| + pExpr->iColumn, iTab, target,
|
| + pExpr->op2);
|
| + break;
|
| + }
|
| + case TK_INTEGER: {
|
| + codeInteger(pParse, pExpr, 0, target);
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_FLOATING_POINT
|
| + case TK_FLOAT: {
|
| + assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| + codeReal(v, pExpr->u.zToken, 0, target);
|
| + break;
|
| + }
|
| +#endif
|
| + case TK_STRING: {
|
| + assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| + sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
|
| + break;
|
| + }
|
| + case TK_NULL: {
|
| + sqlite3VdbeAddOp2(v, OP_Null, 0, target);
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_BLOB_LITERAL
|
| + case TK_BLOB: {
|
| + int n;
|
| + const char *z;
|
| + char *zBlob;
|
| + assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| + assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
|
| + assert( pExpr->u.zToken[1]=='\'' );
|
| + z = &pExpr->u.zToken[2];
|
| + n = sqlite3Strlen30(z) - 1;
|
| + assert( z[n]=='\'' );
|
| + zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
|
| + sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
|
| + break;
|
| + }
|
| +#endif
|
| + case TK_VARIABLE: {
|
| + assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| + assert( pExpr->u.zToken!=0 );
|
| + assert( pExpr->u.zToken[0]!=0 );
|
| + sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
|
| + if( pExpr->u.zToken[1]!=0 ){
|
| + assert( pExpr->u.zToken[0]=='?'
|
| + || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
|
| + sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
|
| + }
|
| + break;
|
| + }
|
| + case TK_REGISTER: {
|
| + inReg = pExpr->iTable;
|
| + break;
|
| + }
|
| + case TK_AS: {
|
| + inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_CAST
|
| + case TK_CAST: {
|
| + /* Expressions of the form: CAST(pLeft AS token) */
|
| + inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
|
| + if( inReg!=target ){
|
| + sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
|
| + inReg = target;
|
| + }
|
| + sqlite3VdbeAddOp2(v, OP_Cast, target,
|
| + sqlite3AffinityType(pExpr->u.zToken, 0));
|
| + testcase( usedAsColumnCache(pParse, inReg, inReg) );
|
| + sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
|
| + break;
|
| + }
|
| +#endif /* SQLITE_OMIT_CAST */
|
| + case TK_LT:
|
| + case TK_LE:
|
| + case TK_GT:
|
| + case TK_GE:
|
| + case TK_NE:
|
| + case TK_EQ: {
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
| + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| + r1, r2, inReg, SQLITE_STOREP2);
|
| + assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
|
| + assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
|
| + assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
|
| + assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
|
| + assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
|
| + assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
|
| + testcase( regFree1==0 );
|
| + testcase( regFree2==0 );
|
| + break;
|
| + }
|
| + case TK_IS:
|
| + case TK_ISNOT: {
|
| + testcase( op==TK_IS );
|
| + testcase( op==TK_ISNOT );
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
| + op = (op==TK_IS) ? TK_EQ : TK_NE;
|
| + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| + r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
|
| + VdbeCoverageIf(v, op==TK_EQ);
|
| + VdbeCoverageIf(v, op==TK_NE);
|
| + testcase( regFree1==0 );
|
| + testcase( regFree2==0 );
|
| + break;
|
| + }
|
| + case TK_AND:
|
| + case TK_OR:
|
| + case TK_PLUS:
|
| + case TK_STAR:
|
| + case TK_MINUS:
|
| + case TK_REM:
|
| + case TK_BITAND:
|
| + case TK_BITOR:
|
| + case TK_SLASH:
|
| + case TK_LSHIFT:
|
| + case TK_RSHIFT:
|
| + case TK_CONCAT: {
|
| + assert( TK_AND==OP_And ); testcase( op==TK_AND );
|
| + assert( TK_OR==OP_Or ); testcase( op==TK_OR );
|
| + assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS );
|
| + assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS );
|
| + assert( TK_REM==OP_Remainder ); testcase( op==TK_REM );
|
| + assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND );
|
| + assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR );
|
| + assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH );
|
| + assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT );
|
| + assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT );
|
| + assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT );
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
| + sqlite3VdbeAddOp3(v, op, r2, r1, target);
|
| + testcase( regFree1==0 );
|
| + testcase( regFree2==0 );
|
| + break;
|
| + }
|
| + case TK_UMINUS: {
|
| + Expr *pLeft = pExpr->pLeft;
|
| + assert( pLeft );
|
| + if( pLeft->op==TK_INTEGER ){
|
| + codeInteger(pParse, pLeft, 1, target);
|
| +#ifndef SQLITE_OMIT_FLOATING_POINT
|
| + }else if( pLeft->op==TK_FLOAT ){
|
| + assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| + codeReal(v, pLeft->u.zToken, 1, target);
|
| +#endif
|
| + }else{
|
| + tempX.op = TK_INTEGER;
|
| + tempX.flags = EP_IntValue|EP_TokenOnly;
|
| + tempX.u.iValue = 0;
|
| + r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2);
|
| + sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
|
| + testcase( regFree2==0 );
|
| + }
|
| + inReg = target;
|
| + break;
|
| + }
|
| + case TK_BITNOT:
|
| + case TK_NOT: {
|
| + assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT );
|
| + assert( TK_NOT==OP_Not ); testcase( op==TK_NOT );
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + testcase( regFree1==0 );
|
| + inReg = target;
|
| + sqlite3VdbeAddOp2(v, op, r1, inReg);
|
| + break;
|
| + }
|
| + case TK_ISNULL:
|
| + case TK_NOTNULL: {
|
| + int addr;
|
| + assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
|
| + assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + testcase( regFree1==0 );
|
| + addr = sqlite3VdbeAddOp1(v, op, r1);
|
| + VdbeCoverageIf(v, op==TK_ISNULL);
|
| + VdbeCoverageIf(v, op==TK_NOTNULL);
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
|
| + sqlite3VdbeJumpHere(v, addr);
|
| + break;
|
| + }
|
| + case TK_AGG_FUNCTION: {
|
| + AggInfo *pInfo = pExpr->pAggInfo;
|
| + if( pInfo==0 ){
|
| + assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| + sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
|
| + }else{
|
| + inReg = pInfo->aFunc[pExpr->iAgg].iMem;
|
| + }
|
| + break;
|
| + }
|
| + case TK_FUNCTION: {
|
| + ExprList *pFarg; /* List of function arguments */
|
| + int nFarg; /* Number of function arguments */
|
| + FuncDef *pDef; /* The function definition object */
|
| + int nId; /* Length of the function name in bytes */
|
| + const char *zId; /* The function name */
|
| + u32 constMask = 0; /* Mask of function arguments that are constant */
|
| + int i; /* Loop counter */
|
| + u8 enc = ENC(db); /* The text encoding used by this database */
|
| + CollSeq *pColl = 0; /* A collating sequence */
|
| +
|
| + assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
| + if( ExprHasProperty(pExpr, EP_TokenOnly) ){
|
| + pFarg = 0;
|
| + }else{
|
| + pFarg = pExpr->x.pList;
|
| + }
|
| + nFarg = pFarg ? pFarg->nExpr : 0;
|
| + assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| + zId = pExpr->u.zToken;
|
| + nId = sqlite3Strlen30(zId);
|
| + pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
|
| + if( pDef==0 || pDef->xFunc==0 ){
|
| + sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
|
| + break;
|
| + }
|
| +
|
| + /* Attempt a direct implementation of the built-in COALESCE() and
|
| + ** IFNULL() functions. This avoids unnecessary evaluation of
|
| + ** arguments past the first non-NULL argument.
|
| + */
|
| + if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
|
| + int endCoalesce = sqlite3VdbeMakeLabel(v);
|
| + assert( nFarg>=2 );
|
| + sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
|
| + for(i=1; i<nFarg; i++){
|
| + sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
|
| + VdbeCoverage(v);
|
| + sqlite3ExprCacheRemove(pParse, target, 1);
|
| + sqlite3ExprCachePush(pParse);
|
| + sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
|
| + sqlite3ExprCachePop(pParse);
|
| + }
|
| + sqlite3VdbeResolveLabel(v, endCoalesce);
|
| + break;
|
| + }
|
| +
|
| + /* The UNLIKELY() function is a no-op. The result is the value
|
| + ** of the first argument.
|
| + */
|
| + if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
|
| + assert( nFarg>=1 );
|
| + sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
|
| + break;
|
| + }
|
| +
|
| + for(i=0; i<nFarg; i++){
|
| + if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
|
| + testcase( i==31 );
|
| + constMask |= MASKBIT32(i);
|
| + }
|
| + if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
|
| + pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
|
| + }
|
| + }
|
| + if( pFarg ){
|
| + if( constMask ){
|
| + r1 = pParse->nMem+1;
|
| + pParse->nMem += nFarg;
|
| + }else{
|
| + r1 = sqlite3GetTempRange(pParse, nFarg);
|
| + }
|
| +
|
| + /* For length() and typeof() functions with a column argument,
|
| + ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
|
| + ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
|
| + ** loading.
|
| + */
|
| + if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
|
| + u8 exprOp;
|
| + assert( nFarg==1 );
|
| + assert( pFarg->a[0].pExpr!=0 );
|
| + exprOp = pFarg->a[0].pExpr->op;
|
| + if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
|
| + assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
|
| + assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
|
| + testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
|
| + pFarg->a[0].pExpr->op2 =
|
| + pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
|
| + }
|
| + }
|
| +
|
| + sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */
|
| + sqlite3ExprCodeExprList(pParse, pFarg, r1,
|
| + SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
|
| + sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */
|
| + }else{
|
| + r1 = 0;
|
| + }
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| + /* Possibly overload the function if the first argument is
|
| + ** a virtual table column.
|
| + **
|
| + ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
|
| + ** second argument, not the first, as the argument to test to
|
| + ** see if it is a column in a virtual table. This is done because
|
| + ** the left operand of infix functions (the operand we want to
|
| + ** control overloading) ends up as the second argument to the
|
| + ** function. The expression "A glob B" is equivalent to
|
| + ** "glob(B,A). We want to use the A in "A glob B" to test
|
| + ** for function overloading. But we use the B term in "glob(B,A)".
|
| + */
|
| + if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
|
| + pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
|
| + }else if( nFarg>0 ){
|
| + pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
|
| + }
|
| +#endif
|
| + if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
|
| + if( !pColl ) pColl = db->pDfltColl;
|
| + sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
|
| + }
|
| + sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
|
| + (char*)pDef, P4_FUNCDEF);
|
| + sqlite3VdbeChangeP5(v, (u8)nFarg);
|
| + if( nFarg && constMask==0 ){
|
| + sqlite3ReleaseTempRange(pParse, r1, nFarg);
|
| + }
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| + case TK_EXISTS:
|
| + case TK_SELECT: {
|
| + testcase( op==TK_EXISTS );
|
| + testcase( op==TK_SELECT );
|
| + inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
|
| + break;
|
| + }
|
| + case TK_IN: {
|
| + int destIfFalse = sqlite3VdbeMakeLabel(v);
|
| + int destIfNull = sqlite3VdbeMakeLabel(v);
|
| + sqlite3VdbeAddOp2(v, OP_Null, 0, target);
|
| + sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
|
| + sqlite3VdbeResolveLabel(v, destIfFalse);
|
| + sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
|
| + sqlite3VdbeResolveLabel(v, destIfNull);
|
| + break;
|
| + }
|
| +#endif /* SQLITE_OMIT_SUBQUERY */
|
| +
|
| +
|
| + /*
|
| + ** x BETWEEN y AND z
|
| + **
|
| + ** This is equivalent to
|
| + **
|
| + ** x>=y AND x<=z
|
| + **
|
| + ** X is stored in pExpr->pLeft.
|
| + ** Y is stored in pExpr->pList->a[0].pExpr.
|
| + ** Z is stored in pExpr->pList->a[1].pExpr.
|
| + */
|
| + case TK_BETWEEN: {
|
| + Expr *pLeft = pExpr->pLeft;
|
| + struct ExprList_item *pLItem = pExpr->x.pList->a;
|
| + Expr *pRight = pLItem->pExpr;
|
| +
|
| + r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2);
|
| + testcase( regFree1==0 );
|
| + testcase( regFree2==0 );
|
| + r3 = sqlite3GetTempReg(pParse);
|
| + r4 = sqlite3GetTempReg(pParse);
|
| + codeCompare(pParse, pLeft, pRight, OP_Ge,
|
| + r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v);
|
| + pLItem++;
|
| + pRight = pLItem->pExpr;
|
| + sqlite3ReleaseTempReg(pParse, regFree2);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2);
|
| + testcase( regFree2==0 );
|
| + codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
|
| + VdbeCoverage(v);
|
| + sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
|
| + sqlite3ReleaseTempReg(pParse, r3);
|
| + sqlite3ReleaseTempReg(pParse, r4);
|
| + break;
|
| + }
|
| + case TK_COLLATE:
|
| + case TK_UPLUS: {
|
| + inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
|
| + break;
|
| + }
|
| +
|
| + case TK_TRIGGER: {
|
| + /* If the opcode is TK_TRIGGER, then the expression is a reference
|
| + ** to a column in the new.* or old.* pseudo-tables available to
|
| + ** trigger programs. In this case Expr.iTable is set to 1 for the
|
| + ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
|
| + ** is set to the column of the pseudo-table to read, or to -1 to
|
| + ** read the rowid field.
|
| + **
|
| + ** The expression is implemented using an OP_Param opcode. The p1
|
| + ** parameter is set to 0 for an old.rowid reference, or to (i+1)
|
| + ** to reference another column of the old.* pseudo-table, where
|
| + ** i is the index of the column. For a new.rowid reference, p1 is
|
| + ** set to (n+1), where n is the number of columns in each pseudo-table.
|
| + ** For a reference to any other column in the new.* pseudo-table, p1
|
| + ** is set to (n+2+i), where n and i are as defined previously. For
|
| + ** example, if the table on which triggers are being fired is
|
| + ** declared as:
|
| + **
|
| + ** CREATE TABLE t1(a, b);
|
| + **
|
| + ** Then p1 is interpreted as follows:
|
| + **
|
| + ** p1==0 -> old.rowid p1==3 -> new.rowid
|
| + ** p1==1 -> old.a p1==4 -> new.a
|
| + ** p1==2 -> old.b p1==5 -> new.b
|
| + */
|
| + Table *pTab = pExpr->pTab;
|
| + int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
|
| +
|
| + assert( pExpr->iTable==0 || pExpr->iTable==1 );
|
| + assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
|
| + assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
|
| + assert( p1>=0 && p1<(pTab->nCol*2+2) );
|
| +
|
| + sqlite3VdbeAddOp2(v, OP_Param, p1, target);
|
| + VdbeComment((v, "%s.%s -> $%d",
|
| + (pExpr->iTable ? "new" : "old"),
|
| + (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
|
| + target
|
| + ));
|
| +
|
| +#ifndef SQLITE_OMIT_FLOATING_POINT
|
| + /* If the column has REAL affinity, it may currently be stored as an
|
| + ** integer. Use OP_RealAffinity to make sure it is really real. */
|
| + if( pExpr->iColumn>=0
|
| + && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
|
| + ){
|
| + sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
|
| + }
|
| +#endif
|
| + break;
|
| + }
|
| +
|
| +
|
| + /*
|
| + ** Form A:
|
| + ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
|
| + **
|
| + ** Form B:
|
| + ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
|
| + **
|
| + ** Form A is can be transformed into the equivalent form B as follows:
|
| + ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
|
| + ** WHEN x=eN THEN rN ELSE y END
|
| + **
|
| + ** X (if it exists) is in pExpr->pLeft.
|
| + ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
|
| + ** odd. The Y is also optional. If the number of elements in x.pList
|
| + ** is even, then Y is omitted and the "otherwise" result is NULL.
|
| + ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
|
| + **
|
| + ** The result of the expression is the Ri for the first matching Ei,
|
| + ** or if there is no matching Ei, the ELSE term Y, or if there is
|
| + ** no ELSE term, NULL.
|
| + */
|
| + default: assert( op==TK_CASE ); {
|
| + int endLabel; /* GOTO label for end of CASE stmt */
|
| + int nextCase; /* GOTO label for next WHEN clause */
|
| + int nExpr; /* 2x number of WHEN terms */
|
| + int i; /* Loop counter */
|
| + ExprList *pEList; /* List of WHEN terms */
|
| + struct ExprList_item *aListelem; /* Array of WHEN terms */
|
| + Expr opCompare; /* The X==Ei expression */
|
| + Expr *pX; /* The X expression */
|
| + Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */
|
| + VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
|
| +
|
| + assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
|
| + assert(pExpr->x.pList->nExpr > 0);
|
| + pEList = pExpr->x.pList;
|
| + aListelem = pEList->a;
|
| + nExpr = pEList->nExpr;
|
| + endLabel = sqlite3VdbeMakeLabel(v);
|
| + if( (pX = pExpr->pLeft)!=0 ){
|
| + tempX = *pX;
|
| + testcase( pX->op==TK_COLUMN );
|
| + exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, ®Free1));
|
| + testcase( regFree1==0 );
|
| + opCompare.op = TK_EQ;
|
| + opCompare.pLeft = &tempX;
|
| + pTest = &opCompare;
|
| + /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
|
| + ** The value in regFree1 might get SCopy-ed into the file result.
|
| + ** So make sure that the regFree1 register is not reused for other
|
| + ** purposes and possibly overwritten. */
|
| + regFree1 = 0;
|
| + }
|
| + for(i=0; i<nExpr-1; i=i+2){
|
| + sqlite3ExprCachePush(pParse);
|
| + if( pX ){
|
| + assert( pTest!=0 );
|
| + opCompare.pRight = aListelem[i].pExpr;
|
| + }else{
|
| + pTest = aListelem[i].pExpr;
|
| + }
|
| + nextCase = sqlite3VdbeMakeLabel(v);
|
| + testcase( pTest->op==TK_COLUMN );
|
| + sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
|
| + testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
|
| + sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
|
| + sqlite3ExprCachePop(pParse);
|
| + sqlite3VdbeResolveLabel(v, nextCase);
|
| + }
|
| + if( (nExpr&1)!=0 ){
|
| + sqlite3ExprCachePush(pParse);
|
| + sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
|
| + sqlite3ExprCachePop(pParse);
|
| + }else{
|
| + sqlite3VdbeAddOp2(v, OP_Null, 0, target);
|
| + }
|
| + assert( db->mallocFailed || pParse->nErr>0
|
| + || pParse->iCacheLevel==iCacheLevel );
|
| + sqlite3VdbeResolveLabel(v, endLabel);
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_TRIGGER
|
| + case TK_RAISE: {
|
| + assert( pExpr->affinity==OE_Rollback
|
| + || pExpr->affinity==OE_Abort
|
| + || pExpr->affinity==OE_Fail
|
| + || pExpr->affinity==OE_Ignore
|
| + );
|
| + if( !pParse->pTriggerTab ){
|
| + sqlite3ErrorMsg(pParse,
|
| + "RAISE() may only be used within a trigger-program");
|
| + return 0;
|
| + }
|
| + if( pExpr->affinity==OE_Abort ){
|
| + sqlite3MayAbort(pParse);
|
| + }
|
| + assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| + if( pExpr->affinity==OE_Ignore ){
|
| + sqlite3VdbeAddOp4(
|
| + v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
|
| + VdbeCoverage(v);
|
| + }else{
|
| + sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
|
| + pExpr->affinity, pExpr->u.zToken, 0, 0);
|
| + }
|
| +
|
| + break;
|
| + }
|
| +#endif
|
| + }
|
| + sqlite3ReleaseTempReg(pParse, regFree1);
|
| + sqlite3ReleaseTempReg(pParse, regFree2);
|
| + return inReg;
|
| +}
|
| +
|
| +/*
|
| +** Factor out the code of the given expression to initialization time.
|
| +*/
|
| +void sqlite3ExprCodeAtInit(
|
| + Parse *pParse, /* Parsing context */
|
| + Expr *pExpr, /* The expression to code when the VDBE initializes */
|
| + int regDest, /* Store the value in this register */
|
| + u8 reusable /* True if this expression is reusable */
|
| +){
|
| + ExprList *p;
|
| + assert( ConstFactorOk(pParse) );
|
| + p = pParse->pConstExpr;
|
| + pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
|
| + p = sqlite3ExprListAppend(pParse, p, pExpr);
|
| + if( p ){
|
| + struct ExprList_item *pItem = &p->a[p->nExpr-1];
|
| + pItem->u.iConstExprReg = regDest;
|
| + pItem->reusable = reusable;
|
| + }
|
| + pParse->pConstExpr = p;
|
| +}
|
| +
|
| +/*
|
| +** Generate code to evaluate an expression and store the results
|
| +** into a register. Return the register number where the results
|
| +** are stored.
|
| +**
|
| +** If the register is a temporary register that can be deallocated,
|
| +** then write its number into *pReg. If the result register is not
|
| +** a temporary, then set *pReg to zero.
|
| +**
|
| +** If pExpr is a constant, then this routine might generate this
|
| +** code to fill the register in the initialization section of the
|
| +** VDBE program, in order to factor it out of the evaluation loop.
|
| +*/
|
| +int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
|
| + int r2;
|
| + pExpr = sqlite3ExprSkipCollate(pExpr);
|
| + if( ConstFactorOk(pParse)
|
| + && pExpr->op!=TK_REGISTER
|
| + && sqlite3ExprIsConstantNotJoin(pExpr)
|
| + ){
|
| + ExprList *p = pParse->pConstExpr;
|
| + int i;
|
| + *pReg = 0;
|
| + if( p ){
|
| + struct ExprList_item *pItem;
|
| + for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
|
| + if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
|
| + return pItem->u.iConstExprReg;
|
| + }
|
| + }
|
| + }
|
| + r2 = ++pParse->nMem;
|
| + sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
|
| + }else{
|
| + int r1 = sqlite3GetTempReg(pParse);
|
| + r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
|
| + if( r2==r1 ){
|
| + *pReg = r1;
|
| + }else{
|
| + sqlite3ReleaseTempReg(pParse, r1);
|
| + *pReg = 0;
|
| + }
|
| + }
|
| + return r2;
|
| +}
|
| +
|
| +/*
|
| +** Generate code that will evaluate expression pExpr and store the
|
| +** results in register target. The results are guaranteed to appear
|
| +** in register target.
|
| +*/
|
| +void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
|
| + int inReg;
|
| +
|
| + assert( target>0 && target<=pParse->nMem );
|
| + if( pExpr && pExpr->op==TK_REGISTER ){
|
| + sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
|
| + }else{
|
| + inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
|
| + assert( pParse->pVdbe || pParse->db->mallocFailed );
|
| + if( inReg!=target && pParse->pVdbe ){
|
| + sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Generate code that will evaluate expression pExpr and store the
|
| +** results in register target. The results are guaranteed to appear
|
| +** in register target. If the expression is constant, then this routine
|
| +** might choose to code the expression at initialization time.
|
| +*/
|
| +void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
|
| + if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
|
| + sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
|
| + }else{
|
| + sqlite3ExprCode(pParse, pExpr, target);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Generate code that evaluates the given expression and puts the result
|
| +** in register target.
|
| +**
|
| +** Also make a copy of the expression results into another "cache" register
|
| +** and modify the expression so that the next time it is evaluated,
|
| +** the result is a copy of the cache register.
|
| +**
|
| +** This routine is used for expressions that are used multiple
|
| +** times. They are evaluated once and the results of the expression
|
| +** are reused.
|
| +*/
|
| +void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
|
| + Vdbe *v = pParse->pVdbe;
|
| + int iMem;
|
| +
|
| + assert( target>0 );
|
| + assert( pExpr->op!=TK_REGISTER );
|
| + sqlite3ExprCode(pParse, pExpr, target);
|
| + iMem = ++pParse->nMem;
|
| + sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
|
| + exprToRegister(pExpr, iMem);
|
| +}
|
| +
|
| +#ifdef SQLITE_DEBUG
|
| +/*
|
| +** Generate a human-readable explanation of an expression tree.
|
| +*/
|
| +void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){
|
| + const char *zBinOp = 0; /* Binary operator */
|
| + const char *zUniOp = 0; /* Unary operator */
|
| + pView = sqlite3TreeViewPush(pView, moreToFollow);
|
| + if( pExpr==0 ){
|
| + sqlite3TreeViewLine(pView, "nil");
|
| + sqlite3TreeViewPop(pView);
|
| + return;
|
| + }
|
| + switch( pExpr->op ){
|
| + case TK_AGG_COLUMN: {
|
| + sqlite3TreeViewLine(pView, "AGG{%d:%d}",
|
| + pExpr->iTable, pExpr->iColumn);
|
| + break;
|
| + }
|
| + case TK_COLUMN: {
|
| + if( pExpr->iTable<0 ){
|
| + /* This only happens when coding check constraints */
|
| + sqlite3TreeViewLine(pView, "COLUMN(%d)", pExpr->iColumn);
|
| + }else{
|
| + sqlite3TreeViewLine(pView, "{%d:%d}",
|
| + pExpr->iTable, pExpr->iColumn);
|
| + }
|
| + break;
|
| + }
|
| + case TK_INTEGER: {
|
| + if( pExpr->flags & EP_IntValue ){
|
| + sqlite3TreeViewLine(pView, "%d", pExpr->u.iValue);
|
| + }else{
|
| + sqlite3TreeViewLine(pView, "%s", pExpr->u.zToken);
|
| + }
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_FLOATING_POINT
|
| + case TK_FLOAT: {
|
| + sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken);
|
| + break;
|
| + }
|
| +#endif
|
| + case TK_STRING: {
|
| + sqlite3TreeViewLine(pView,"%Q", pExpr->u.zToken);
|
| + break;
|
| + }
|
| + case TK_NULL: {
|
| + sqlite3TreeViewLine(pView,"NULL");
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_BLOB_LITERAL
|
| + case TK_BLOB: {
|
| + sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken);
|
| + break;
|
| + }
|
| +#endif
|
| + case TK_VARIABLE: {
|
| + sqlite3TreeViewLine(pView,"VARIABLE(%s,%d)",
|
| + pExpr->u.zToken, pExpr->iColumn);
|
| + break;
|
| + }
|
| + case TK_REGISTER: {
|
| + sqlite3TreeViewLine(pView,"REGISTER(%d)", pExpr->iTable);
|
| + break;
|
| + }
|
| + case TK_AS: {
|
| + sqlite3TreeViewLine(pView,"AS %Q", pExpr->u.zToken);
|
| + sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
|
| + break;
|
| + }
|
| + case TK_ID: {
|
| + sqlite3TreeViewLine(pView,"ID %Q", pExpr->u.zToken);
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_CAST
|
| + case TK_CAST: {
|
| + /* Expressions of the form: CAST(pLeft AS token) */
|
| + sqlite3TreeViewLine(pView,"CAST %Q", pExpr->u.zToken);
|
| + sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
|
| + break;
|
| + }
|
| +#endif /* SQLITE_OMIT_CAST */
|
| + case TK_LT: zBinOp = "LT"; break;
|
| + case TK_LE: zBinOp = "LE"; break;
|
| + case TK_GT: zBinOp = "GT"; break;
|
| + case TK_GE: zBinOp = "GE"; break;
|
| + case TK_NE: zBinOp = "NE"; break;
|
| + case TK_EQ: zBinOp = "EQ"; break;
|
| + case TK_IS: zBinOp = "IS"; break;
|
| + case TK_ISNOT: zBinOp = "ISNOT"; break;
|
| + case TK_AND: zBinOp = "AND"; break;
|
| + case TK_OR: zBinOp = "OR"; break;
|
| + case TK_PLUS: zBinOp = "ADD"; break;
|
| + case TK_STAR: zBinOp = "MUL"; break;
|
| + case TK_MINUS: zBinOp = "SUB"; break;
|
| + case TK_REM: zBinOp = "REM"; break;
|
| + case TK_BITAND: zBinOp = "BITAND"; break;
|
| + case TK_BITOR: zBinOp = "BITOR"; break;
|
| + case TK_SLASH: zBinOp = "DIV"; break;
|
| + case TK_LSHIFT: zBinOp = "LSHIFT"; break;
|
| + case TK_RSHIFT: zBinOp = "RSHIFT"; break;
|
| + case TK_CONCAT: zBinOp = "CONCAT"; break;
|
| + case TK_DOT: zBinOp = "DOT"; break;
|
| +
|
| + case TK_UMINUS: zUniOp = "UMINUS"; break;
|
| + case TK_UPLUS: zUniOp = "UPLUS"; break;
|
| + case TK_BITNOT: zUniOp = "BITNOT"; break;
|
| + case TK_NOT: zUniOp = "NOT"; break;
|
| + case TK_ISNULL: zUniOp = "ISNULL"; break;
|
| + case TK_NOTNULL: zUniOp = "NOTNULL"; break;
|
| +
|
| + case TK_COLLATE: {
|
| + sqlite3TreeViewLine(pView, "COLLATE %Q", pExpr->u.zToken);
|
| + sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
|
| + break;
|
| + }
|
| +
|
| + case TK_AGG_FUNCTION:
|
| + case TK_FUNCTION: {
|
| + ExprList *pFarg; /* List of function arguments */
|
| + if( ExprHasProperty(pExpr, EP_TokenOnly) ){
|
| + pFarg = 0;
|
| + }else{
|
| + pFarg = pExpr->x.pList;
|
| + }
|
| + if( pExpr->op==TK_AGG_FUNCTION ){
|
| + sqlite3TreeViewLine(pView, "AGG_FUNCTION%d %Q",
|
| + pExpr->op2, pExpr->u.zToken);
|
| + }else{
|
| + sqlite3TreeViewLine(pView, "FUNCTION %Q", pExpr->u.zToken);
|
| + }
|
| + if( pFarg ){
|
| + sqlite3TreeViewExprList(pView, pFarg, 0, 0);
|
| + }
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| + case TK_EXISTS: {
|
| + sqlite3TreeViewLine(pView, "EXISTS-expr");
|
| + sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
|
| + break;
|
| + }
|
| + case TK_SELECT: {
|
| + sqlite3TreeViewLine(pView, "SELECT-expr");
|
| + sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
|
| + break;
|
| + }
|
| + case TK_IN: {
|
| + sqlite3TreeViewLine(pView, "IN");
|
| + sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
|
| + if( ExprHasProperty(pExpr, EP_xIsSelect) ){
|
| + sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
|
| + }else{
|
| + sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0);
|
| + }
|
| + break;
|
| + }
|
| +#endif /* SQLITE_OMIT_SUBQUERY */
|
| +
|
| + /*
|
| + ** x BETWEEN y AND z
|
| + **
|
| + ** This is equivalent to
|
| + **
|
| + ** x>=y AND x<=z
|
| + **
|
| + ** X is stored in pExpr->pLeft.
|
| + ** Y is stored in pExpr->pList->a[0].pExpr.
|
| + ** Z is stored in pExpr->pList->a[1].pExpr.
|
| + */
|
| + case TK_BETWEEN: {
|
| + Expr *pX = pExpr->pLeft;
|
| + Expr *pY = pExpr->x.pList->a[0].pExpr;
|
| + Expr *pZ = pExpr->x.pList->a[1].pExpr;
|
| + sqlite3TreeViewLine(pView, "BETWEEN");
|
| + sqlite3TreeViewExpr(pView, pX, 1);
|
| + sqlite3TreeViewExpr(pView, pY, 1);
|
| + sqlite3TreeViewExpr(pView, pZ, 0);
|
| + break;
|
| + }
|
| + case TK_TRIGGER: {
|
| + /* If the opcode is TK_TRIGGER, then the expression is a reference
|
| + ** to a column in the new.* or old.* pseudo-tables available to
|
| + ** trigger programs. In this case Expr.iTable is set to 1 for the
|
| + ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
|
| + ** is set to the column of the pseudo-table to read, or to -1 to
|
| + ** read the rowid field.
|
| + */
|
| + sqlite3TreeViewLine(pView, "%s(%d)",
|
| + pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
|
| + break;
|
| + }
|
| + case TK_CASE: {
|
| + sqlite3TreeViewLine(pView, "CASE");
|
| + sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
|
| + sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0);
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_TRIGGER
|
| + case TK_RAISE: {
|
| + const char *zType = "unk";
|
| + switch( pExpr->affinity ){
|
| + case OE_Rollback: zType = "rollback"; break;
|
| + case OE_Abort: zType = "abort"; break;
|
| + case OE_Fail: zType = "fail"; break;
|
| + case OE_Ignore: zType = "ignore"; break;
|
| + }
|
| + sqlite3TreeViewLine(pView, "RAISE %s(%Q)", zType, pExpr->u.zToken);
|
| + break;
|
| + }
|
| +#endif
|
| + default: {
|
| + sqlite3TreeViewLine(pView, "op=%d", pExpr->op);
|
| + break;
|
| + }
|
| + }
|
| + if( zBinOp ){
|
| + sqlite3TreeViewLine(pView, "%s", zBinOp);
|
| + sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
|
| + sqlite3TreeViewExpr(pView, pExpr->pRight, 0);
|
| + }else if( zUniOp ){
|
| + sqlite3TreeViewLine(pView, "%s", zUniOp);
|
| + sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
|
| + }
|
| + sqlite3TreeViewPop(pView);
|
| +}
|
| +#endif /* SQLITE_DEBUG */
|
| +
|
| +#ifdef SQLITE_DEBUG
|
| +/*
|
| +** Generate a human-readable explanation of an expression list.
|
| +*/
|
| +void sqlite3TreeViewExprList(
|
| + TreeView *pView,
|
| + const ExprList *pList,
|
| + u8 moreToFollow,
|
| + const char *zLabel
|
| +){
|
| + int i;
|
| + pView = sqlite3TreeViewPush(pView, moreToFollow);
|
| + if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST";
|
| + if( pList==0 ){
|
| + sqlite3TreeViewLine(pView, "%s (empty)", zLabel);
|
| + }else{
|
| + sqlite3TreeViewLine(pView, "%s", zLabel);
|
| + for(i=0; i<pList->nExpr; i++){
|
| + sqlite3TreeViewExpr(pView, pList->a[i].pExpr, i<pList->nExpr-1);
|
| +#if 0
|
| + if( pList->a[i].zName ){
|
| + sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName);
|
| + }
|
| + if( pList->a[i].bSpanIsTab ){
|
| + sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan);
|
| + }
|
| +#endif
|
| + }
|
| + }
|
| + sqlite3TreeViewPop(pView);
|
| +}
|
| +#endif /* SQLITE_DEBUG */
|
| +
|
| +/*
|
| +** Generate code that pushes the value of every element of the given
|
| +** expression list into a sequence of registers beginning at target.
|
| +**
|
| +** Return the number of elements evaluated.
|
| +**
|
| +** The SQLITE_ECEL_DUP flag prevents the arguments from being
|
| +** filled using OP_SCopy. OP_Copy must be used instead.
|
| +**
|
| +** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
|
| +** factored out into initialization code.
|
| +*/
|
| +int sqlite3ExprCodeExprList(
|
| + Parse *pParse, /* Parsing context */
|
| + ExprList *pList, /* The expression list to be coded */
|
| + int target, /* Where to write results */
|
| + u8 flags /* SQLITE_ECEL_* flags */
|
| +){
|
| + struct ExprList_item *pItem;
|
| + int i, n;
|
| + u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
|
| + assert( pList!=0 );
|
| + assert( target>0 );
|
| + assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */
|
| + n = pList->nExpr;
|
| + if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
|
| + for(pItem=pList->a, i=0; i<n; i++, pItem++){
|
| + Expr *pExpr = pItem->pExpr;
|
| + if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
|
| + sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
|
| + }else{
|
| + int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
|
| + if( inReg!=target+i ){
|
| + VdbeOp *pOp;
|
| + Vdbe *v = pParse->pVdbe;
|
| + if( copyOp==OP_Copy
|
| + && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
|
| + && pOp->p1+pOp->p3+1==inReg
|
| + && pOp->p2+pOp->p3+1==target+i
|
| + ){
|
| + pOp->p3++;
|
| + }else{
|
| + sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
|
| + }
|
| + }
|
| + }
|
| + }
|
| + return n;
|
| +}
|
| +
|
| +/*
|
| +** Generate code for a BETWEEN operator.
|
| +**
|
| +** x BETWEEN y AND z
|
| +**
|
| +** The above is equivalent to
|
| +**
|
| +** x>=y AND x<=z
|
| +**
|
| +** Code it as such, taking care to do the common subexpression
|
| +** elimination of x.
|
| +*/
|
| +static void exprCodeBetween(
|
| + Parse *pParse, /* Parsing and code generating context */
|
| + Expr *pExpr, /* The BETWEEN expression */
|
| + int dest, /* Jump here if the jump is taken */
|
| + int jumpIfTrue, /* Take the jump if the BETWEEN is true */
|
| + int jumpIfNull /* Take the jump if the BETWEEN is NULL */
|
| +){
|
| + Expr exprAnd; /* The AND operator in x>=y AND x<=z */
|
| + Expr compLeft; /* The x>=y term */
|
| + Expr compRight; /* The x<=z term */
|
| + Expr exprX; /* The x subexpression */
|
| + int regFree1 = 0; /* Temporary use register */
|
| +
|
| + assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
| + exprX = *pExpr->pLeft;
|
| + exprAnd.op = TK_AND;
|
| + exprAnd.pLeft = &compLeft;
|
| + exprAnd.pRight = &compRight;
|
| + compLeft.op = TK_GE;
|
| + compLeft.pLeft = &exprX;
|
| + compLeft.pRight = pExpr->x.pList->a[0].pExpr;
|
| + compRight.op = TK_LE;
|
| + compRight.pLeft = &exprX;
|
| + compRight.pRight = pExpr->x.pList->a[1].pExpr;
|
| + exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, ®Free1));
|
| + if( jumpIfTrue ){
|
| + sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
|
| + }else{
|
| + sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
|
| + }
|
| + sqlite3ReleaseTempReg(pParse, regFree1);
|
| +
|
| + /* Ensure adequate test coverage */
|
| + testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
|
| + testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
|
| + testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
|
| + testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
|
| + testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
|
| + testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
|
| + testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
|
| + testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
|
| +}
|
| +
|
| +/*
|
| +** Generate code for a boolean expression such that a jump is made
|
| +** to the label "dest" if the expression is true but execution
|
| +** continues straight thru if the expression is false.
|
| +**
|
| +** If the expression evaluates to NULL (neither true nor false), then
|
| +** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
|
| +**
|
| +** This code depends on the fact that certain token values (ex: TK_EQ)
|
| +** are the same as opcode values (ex: OP_Eq) that implement the corresponding
|
| +** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
|
| +** the make process cause these values to align. Assert()s in the code
|
| +** below verify that the numbers are aligned correctly.
|
| +*/
|
| +void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
| + Vdbe *v = pParse->pVdbe;
|
| + int op = 0;
|
| + int regFree1 = 0;
|
| + int regFree2 = 0;
|
| + int r1, r2;
|
| +
|
| + assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
|
| + if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
|
| + if( NEVER(pExpr==0) ) return; /* No way this can happen */
|
| + op = pExpr->op;
|
| + switch( op ){
|
| + case TK_AND: {
|
| + int d2 = sqlite3VdbeMakeLabel(v);
|
| + testcase( jumpIfNull==0 );
|
| + sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
|
| + sqlite3ExprCachePush(pParse);
|
| + sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
|
| + sqlite3VdbeResolveLabel(v, d2);
|
| + sqlite3ExprCachePop(pParse);
|
| + break;
|
| + }
|
| + case TK_OR: {
|
| + testcase( jumpIfNull==0 );
|
| + sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
|
| + sqlite3ExprCachePush(pParse);
|
| + sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
|
| + sqlite3ExprCachePop(pParse);
|
| + break;
|
| + }
|
| + case TK_NOT: {
|
| + testcase( jumpIfNull==0 );
|
| + sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
|
| + break;
|
| + }
|
| + case TK_LT:
|
| + case TK_LE:
|
| + case TK_GT:
|
| + case TK_GE:
|
| + case TK_NE:
|
| + case TK_EQ: {
|
| + testcase( jumpIfNull==0 );
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
| + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| + r1, r2, dest, jumpIfNull);
|
| + assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
|
| + assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
|
| + assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
|
| + assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
|
| + assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
|
| + assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
|
| + testcase( regFree1==0 );
|
| + testcase( regFree2==0 );
|
| + break;
|
| + }
|
| + case TK_IS:
|
| + case TK_ISNOT: {
|
| + testcase( op==TK_IS );
|
| + testcase( op==TK_ISNOT );
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
| + op = (op==TK_IS) ? TK_EQ : TK_NE;
|
| + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| + r1, r2, dest, SQLITE_NULLEQ);
|
| + VdbeCoverageIf(v, op==TK_EQ);
|
| + VdbeCoverageIf(v, op==TK_NE);
|
| + testcase( regFree1==0 );
|
| + testcase( regFree2==0 );
|
| + break;
|
| + }
|
| + case TK_ISNULL:
|
| + case TK_NOTNULL: {
|
| + assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
|
| + assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + sqlite3VdbeAddOp2(v, op, r1, dest);
|
| + VdbeCoverageIf(v, op==TK_ISNULL);
|
| + VdbeCoverageIf(v, op==TK_NOTNULL);
|
| + testcase( regFree1==0 );
|
| + break;
|
| + }
|
| + case TK_BETWEEN: {
|
| + testcase( jumpIfNull==0 );
|
| + exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| + case TK_IN: {
|
| + int destIfFalse = sqlite3VdbeMakeLabel(v);
|
| + int destIfNull = jumpIfNull ? dest : destIfFalse;
|
| + sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
|
| + sqlite3VdbeResolveLabel(v, destIfFalse);
|
| + break;
|
| + }
|
| +#endif
|
| + default: {
|
| + if( exprAlwaysTrue(pExpr) ){
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
|
| + }else if( exprAlwaysFalse(pExpr) ){
|
| + /* No-op */
|
| + }else{
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
|
| + sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
|
| + VdbeCoverage(v);
|
| + testcase( regFree1==0 );
|
| + testcase( jumpIfNull==0 );
|
| + }
|
| + break;
|
| + }
|
| + }
|
| + sqlite3ReleaseTempReg(pParse, regFree1);
|
| + sqlite3ReleaseTempReg(pParse, regFree2);
|
| +}
|
| +
|
| +/*
|
| +** Generate code for a boolean expression such that a jump is made
|
| +** to the label "dest" if the expression is false but execution
|
| +** continues straight thru if the expression is true.
|
| +**
|
| +** If the expression evaluates to NULL (neither true nor false) then
|
| +** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
|
| +** is 0.
|
| +*/
|
| +void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
| + Vdbe *v = pParse->pVdbe;
|
| + int op = 0;
|
| + int regFree1 = 0;
|
| + int regFree2 = 0;
|
| + int r1, r2;
|
| +
|
| + assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
|
| + if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
|
| + if( pExpr==0 ) return;
|
| +
|
| + /* The value of pExpr->op and op are related as follows:
|
| + **
|
| + ** pExpr->op op
|
| + ** --------- ----------
|
| + ** TK_ISNULL OP_NotNull
|
| + ** TK_NOTNULL OP_IsNull
|
| + ** TK_NE OP_Eq
|
| + ** TK_EQ OP_Ne
|
| + ** TK_GT OP_Le
|
| + ** TK_LE OP_Gt
|
| + ** TK_GE OP_Lt
|
| + ** TK_LT OP_Ge
|
| + **
|
| + ** For other values of pExpr->op, op is undefined and unused.
|
| + ** The value of TK_ and OP_ constants are arranged such that we
|
| + ** can compute the mapping above using the following expression.
|
| + ** Assert()s verify that the computation is correct.
|
| + */
|
| + op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
|
| +
|
| + /* Verify correct alignment of TK_ and OP_ constants
|
| + */
|
| + assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
|
| + assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
|
| + assert( pExpr->op!=TK_NE || op==OP_Eq );
|
| + assert( pExpr->op!=TK_EQ || op==OP_Ne );
|
| + assert( pExpr->op!=TK_LT || op==OP_Ge );
|
| + assert( pExpr->op!=TK_LE || op==OP_Gt );
|
| + assert( pExpr->op!=TK_GT || op==OP_Le );
|
| + assert( pExpr->op!=TK_GE || op==OP_Lt );
|
| +
|
| + switch( pExpr->op ){
|
| + case TK_AND: {
|
| + testcase( jumpIfNull==0 );
|
| + sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
|
| + sqlite3ExprCachePush(pParse);
|
| + sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
|
| + sqlite3ExprCachePop(pParse);
|
| + break;
|
| + }
|
| + case TK_OR: {
|
| + int d2 = sqlite3VdbeMakeLabel(v);
|
| + testcase( jumpIfNull==0 );
|
| + sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
|
| + sqlite3ExprCachePush(pParse);
|
| + sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
|
| + sqlite3VdbeResolveLabel(v, d2);
|
| + sqlite3ExprCachePop(pParse);
|
| + break;
|
| + }
|
| + case TK_NOT: {
|
| + testcase( jumpIfNull==0 );
|
| + sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
|
| + break;
|
| + }
|
| + case TK_LT:
|
| + case TK_LE:
|
| + case TK_GT:
|
| + case TK_GE:
|
| + case TK_NE:
|
| + case TK_EQ: {
|
| + testcase( jumpIfNull==0 );
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
| + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| + r1, r2, dest, jumpIfNull);
|
| + assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
|
| + assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
|
| + assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
|
| + assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
|
| + assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
|
| + assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
|
| + testcase( regFree1==0 );
|
| + testcase( regFree2==0 );
|
| + break;
|
| + }
|
| + case TK_IS:
|
| + case TK_ISNOT: {
|
| + testcase( pExpr->op==TK_IS );
|
| + testcase( pExpr->op==TK_ISNOT );
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
| + op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
|
| + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| + r1, r2, dest, SQLITE_NULLEQ);
|
| + VdbeCoverageIf(v, op==TK_EQ);
|
| + VdbeCoverageIf(v, op==TK_NE);
|
| + testcase( regFree1==0 );
|
| + testcase( regFree2==0 );
|
| + break;
|
| + }
|
| + case TK_ISNULL:
|
| + case TK_NOTNULL: {
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + sqlite3VdbeAddOp2(v, op, r1, dest);
|
| + testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL);
|
| + testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL);
|
| + testcase( regFree1==0 );
|
| + break;
|
| + }
|
| + case TK_BETWEEN: {
|
| + testcase( jumpIfNull==0 );
|
| + exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| + case TK_IN: {
|
| + if( jumpIfNull ){
|
| + sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
|
| + }else{
|
| + int destIfNull = sqlite3VdbeMakeLabel(v);
|
| + sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
|
| + sqlite3VdbeResolveLabel(v, destIfNull);
|
| + }
|
| + break;
|
| + }
|
| +#endif
|
| + default: {
|
| + if( exprAlwaysFalse(pExpr) ){
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
|
| + }else if( exprAlwaysTrue(pExpr) ){
|
| + /* no-op */
|
| + }else{
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
|
| + sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
|
| + VdbeCoverage(v);
|
| + testcase( regFree1==0 );
|
| + testcase( jumpIfNull==0 );
|
| + }
|
| + break;
|
| + }
|
| + }
|
| + sqlite3ReleaseTempReg(pParse, regFree1);
|
| + sqlite3ReleaseTempReg(pParse, regFree2);
|
| +}
|
| +
|
| +/*
|
| +** Do a deep comparison of two expression trees. Return 0 if the two
|
| +** expressions are completely identical. Return 1 if they differ only
|
| +** by a COLLATE operator at the top level. Return 2 if there are differences
|
| +** other than the top-level COLLATE operator.
|
| +**
|
| +** If any subelement of pB has Expr.iTable==(-1) then it is allowed
|
| +** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
|
| +**
|
| +** The pA side might be using TK_REGISTER. If that is the case and pB is
|
| +** not using TK_REGISTER but is otherwise equivalent, then still return 0.
|
| +**
|
| +** Sometimes this routine will return 2 even if the two expressions
|
| +** really are equivalent. If we cannot prove that the expressions are
|
| +** identical, we return 2 just to be safe. So if this routine
|
| +** returns 2, then you do not really know for certain if the two
|
| +** expressions are the same. But if you get a 0 or 1 return, then you
|
| +** can be sure the expressions are the same. In the places where
|
| +** this routine is used, it does not hurt to get an extra 2 - that
|
| +** just might result in some slightly slower code. But returning
|
| +** an incorrect 0 or 1 could lead to a malfunction.
|
| +*/
|
| +int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
|
| + u32 combinedFlags;
|
| + if( pA==0 || pB==0 ){
|
| + return pB==pA ? 0 : 2;
|
| + }
|
| + combinedFlags = pA->flags | pB->flags;
|
| + if( combinedFlags & EP_IntValue ){
|
| + if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
|
| + return 0;
|
| + }
|
| + return 2;
|
| + }
|
| + if( pA->op!=pB->op ){
|
| + if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
|
| + return 1;
|
| + }
|
| + if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
|
| + return 1;
|
| + }
|
| + return 2;
|
| + }
|
| + if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){
|
| + if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
|
| + return pA->op==TK_COLLATE ? 1 : 2;
|
| + }
|
| + }
|
| + if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
|
| + if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
|
| + if( combinedFlags & EP_xIsSelect ) return 2;
|
| + if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
|
| + if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
|
| + if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
|
| + if( ALWAYS((combinedFlags & EP_Reduced)==0) ){
|
| + if( pA->iColumn!=pB->iColumn ) return 2;
|
| + if( pA->iTable!=pB->iTable
|
| + && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
|
| + }
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/*
|
| +** Compare two ExprList objects. Return 0 if they are identical and
|
| +** non-zero if they differ in any way.
|
| +**
|
| +** If any subelement of pB has Expr.iTable==(-1) then it is allowed
|
| +** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
|
| +**
|
| +** This routine might return non-zero for equivalent ExprLists. The
|
| +** only consequence will be disabled optimizations. But this routine
|
| +** must never return 0 if the two ExprList objects are different, or
|
| +** a malfunction will result.
|
| +**
|
| +** Two NULL pointers are considered to be the same. But a NULL pointer
|
| +** always differs from a non-NULL pointer.
|
| +*/
|
| +int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
|
| + int i;
|
| + if( pA==0 && pB==0 ) return 0;
|
| + if( pA==0 || pB==0 ) return 1;
|
| + if( pA->nExpr!=pB->nExpr ) return 1;
|
| + for(i=0; i<pA->nExpr; i++){
|
| + Expr *pExprA = pA->a[i].pExpr;
|
| + Expr *pExprB = pB->a[i].pExpr;
|
| + if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
|
| + if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/*
|
| +** Return true if we can prove the pE2 will always be true if pE1 is
|
| +** true. Return false if we cannot complete the proof or if pE2 might
|
| +** be false. Examples:
|
| +**
|
| +** pE1: x==5 pE2: x==5 Result: true
|
| +** pE1: x>0 pE2: x==5 Result: false
|
| +** pE1: x=21 pE2: x=21 OR y=43 Result: true
|
| +** pE1: x!=123 pE2: x IS NOT NULL Result: true
|
| +** pE1: x!=?1 pE2: x IS NOT NULL Result: true
|
| +** pE1: x IS NULL pE2: x IS NOT NULL Result: false
|
| +** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false
|
| +**
|
| +** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
|
| +** Expr.iTable<0 then assume a table number given by iTab.
|
| +**
|
| +** When in doubt, return false. Returning true might give a performance
|
| +** improvement. Returning false might cause a performance reduction, but
|
| +** it will always give the correct answer and is hence always safe.
|
| +*/
|
| +int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
|
| + if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
|
| + return 1;
|
| + }
|
| + if( pE2->op==TK_OR
|
| + && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
|
| + || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
|
| + ){
|
| + return 1;
|
| + }
|
| + if( pE2->op==TK_NOTNULL
|
| + && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
|
| + && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
|
| + ){
|
| + return 1;
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/*
|
| +** An instance of the following structure is used by the tree walker
|
| +** to count references to table columns in the arguments of an
|
| +** aggregate function, in order to implement the
|
| +** sqlite3FunctionThisSrc() routine.
|
| +*/
|
| +struct SrcCount {
|
| + SrcList *pSrc; /* One particular FROM clause in a nested query */
|
| + int nThis; /* Number of references to columns in pSrcList */
|
| + int nOther; /* Number of references to columns in other FROM clauses */
|
| +};
|
| +
|
| +/*
|
| +** Count the number of references to columns.
|
| +*/
|
| +static int exprSrcCount(Walker *pWalker, Expr *pExpr){
|
| + /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
|
| + ** is always called before sqlite3ExprAnalyzeAggregates() and so the
|
| + ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If
|
| + ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
|
| + ** NEVER() will need to be removed. */
|
| + if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
|
| + int i;
|
| + struct SrcCount *p = pWalker->u.pSrcCount;
|
| + SrcList *pSrc = p->pSrc;
|
| + for(i=0; i<pSrc->nSrc; i++){
|
| + if( pExpr->iTable==pSrc->a[i].iCursor ) break;
|
| + }
|
| + if( i<pSrc->nSrc ){
|
| + p->nThis++;
|
| + }else{
|
| + p->nOther++;
|
| + }
|
| + }
|
| + return WRC_Continue;
|
| +}
|
| +
|
| +/*
|
| +** Determine if any of the arguments to the pExpr Function reference
|
| +** pSrcList. Return true if they do. Also return true if the function
|
| +** has no arguments or has only constant arguments. Return false if pExpr
|
| +** references columns but not columns of tables found in pSrcList.
|
| +*/
|
| +int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
|
| + Walker w;
|
| + struct SrcCount cnt;
|
| + assert( pExpr->op==TK_AGG_FUNCTION );
|
| + memset(&w, 0, sizeof(w));
|
| + w.xExprCallback = exprSrcCount;
|
| + w.u.pSrcCount = &cnt;
|
| + cnt.pSrc = pSrcList;
|
| + cnt.nThis = 0;
|
| + cnt.nOther = 0;
|
| + sqlite3WalkExprList(&w, pExpr->x.pList);
|
| + return cnt.nThis>0 || cnt.nOther==0;
|
| +}
|
| +
|
| +/*
|
| +** Add a new element to the pAggInfo->aCol[] array. Return the index of
|
| +** the new element. Return a negative number if malloc fails.
|
| +*/
|
| +static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
|
| + int i;
|
| + pInfo->aCol = sqlite3ArrayAllocate(
|
| + db,
|
| + pInfo->aCol,
|
| + sizeof(pInfo->aCol[0]),
|
| + &pInfo->nColumn,
|
| + &i
|
| + );
|
| + return i;
|
| +}
|
| +
|
| +/*
|
| +** Add a new element to the pAggInfo->aFunc[] array. Return the index of
|
| +** the new element. Return a negative number if malloc fails.
|
| +*/
|
| +static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
|
| + int i;
|
| + pInfo->aFunc = sqlite3ArrayAllocate(
|
| + db,
|
| + pInfo->aFunc,
|
| + sizeof(pInfo->aFunc[0]),
|
| + &pInfo->nFunc,
|
| + &i
|
| + );
|
| + return i;
|
| +}
|
| +
|
| +/*
|
| +** This is the xExprCallback for a tree walker. It is used to
|
| +** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
|
| +** for additional information.
|
| +*/
|
| +static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
|
| + int i;
|
| + NameContext *pNC = pWalker->u.pNC;
|
| + Parse *pParse = pNC->pParse;
|
| + SrcList *pSrcList = pNC->pSrcList;
|
| + AggInfo *pAggInfo = pNC->pAggInfo;
|
| +
|
| + switch( pExpr->op ){
|
| + case TK_AGG_COLUMN:
|
| + case TK_COLUMN: {
|
| + testcase( pExpr->op==TK_AGG_COLUMN );
|
| + testcase( pExpr->op==TK_COLUMN );
|
| + /* Check to see if the column is in one of the tables in the FROM
|
| + ** clause of the aggregate query */
|
| + if( ALWAYS(pSrcList!=0) ){
|
| + struct SrcList_item *pItem = pSrcList->a;
|
| + for(i=0; i<pSrcList->nSrc; i++, pItem++){
|
| + struct AggInfo_col *pCol;
|
| + assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
|
| + if( pExpr->iTable==pItem->iCursor ){
|
| + /* If we reach this point, it means that pExpr refers to a table
|
| + ** that is in the FROM clause of the aggregate query.
|
| + **
|
| + ** Make an entry for the column in pAggInfo->aCol[] if there
|
| + ** is not an entry there already.
|
| + */
|
| + int k;
|
| + pCol = pAggInfo->aCol;
|
| + for(k=0; k<pAggInfo->nColumn; k++, pCol++){
|
| + if( pCol->iTable==pExpr->iTable &&
|
| + pCol->iColumn==pExpr->iColumn ){
|
| + break;
|
| + }
|
| + }
|
| + if( (k>=pAggInfo->nColumn)
|
| + && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
|
| + ){
|
| + pCol = &pAggInfo->aCol[k];
|
| + pCol->pTab = pExpr->pTab;
|
| + pCol->iTable = pExpr->iTable;
|
| + pCol->iColumn = pExpr->iColumn;
|
| + pCol->iMem = ++pParse->nMem;
|
| + pCol->iSorterColumn = -1;
|
| + pCol->pExpr = pExpr;
|
| + if( pAggInfo->pGroupBy ){
|
| + int j, n;
|
| + ExprList *pGB = pAggInfo->pGroupBy;
|
| + struct ExprList_item *pTerm = pGB->a;
|
| + n = pGB->nExpr;
|
| + for(j=0; j<n; j++, pTerm++){
|
| + Expr *pE = pTerm->pExpr;
|
| + if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
|
| + pE->iColumn==pExpr->iColumn ){
|
| + pCol->iSorterColumn = j;
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + if( pCol->iSorterColumn<0 ){
|
| + pCol->iSorterColumn = pAggInfo->nSortingColumn++;
|
| + }
|
| + }
|
| + /* There is now an entry for pExpr in pAggInfo->aCol[] (either
|
| + ** because it was there before or because we just created it).
|
| + ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
|
| + ** pAggInfo->aCol[] entry.
|
| + */
|
| + ExprSetVVAProperty(pExpr, EP_NoReduce);
|
| + pExpr->pAggInfo = pAggInfo;
|
| + pExpr->op = TK_AGG_COLUMN;
|
| + pExpr->iAgg = (i16)k;
|
| + break;
|
| + } /* endif pExpr->iTable==pItem->iCursor */
|
| + } /* end loop over pSrcList */
|
| + }
|
| + return WRC_Prune;
|
| + }
|
| + case TK_AGG_FUNCTION: {
|
| + if( (pNC->ncFlags & NC_InAggFunc)==0
|
| + && pWalker->walkerDepth==pExpr->op2
|
| + ){
|
| + /* Check to see if pExpr is a duplicate of another aggregate
|
| + ** function that is already in the pAggInfo structure
|
| + */
|
| + struct AggInfo_func *pItem = pAggInfo->aFunc;
|
| + for(i=0; i<pAggInfo->nFunc; i++, pItem++){
|
| + if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
|
| + break;
|
| + }
|
| + }
|
| + if( i>=pAggInfo->nFunc ){
|
| + /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
|
| + */
|
| + u8 enc = ENC(pParse->db);
|
| + i = addAggInfoFunc(pParse->db, pAggInfo);
|
| + if( i>=0 ){
|
| + assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
| + pItem = &pAggInfo->aFunc[i];
|
| + pItem->pExpr = pExpr;
|
| + pItem->iMem = ++pParse->nMem;
|
| + assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| + pItem->pFunc = sqlite3FindFunction(pParse->db,
|
| + pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
|
| + pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
|
| + if( pExpr->flags & EP_Distinct ){
|
| + pItem->iDistinct = pParse->nTab++;
|
| + }else{
|
| + pItem->iDistinct = -1;
|
| + }
|
| + }
|
| + }
|
| + /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
|
| + */
|
| + assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
|
| + ExprSetVVAProperty(pExpr, EP_NoReduce);
|
| + pExpr->iAgg = (i16)i;
|
| + pExpr->pAggInfo = pAggInfo;
|
| + return WRC_Prune;
|
| + }else{
|
| + return WRC_Continue;
|
| + }
|
| + }
|
| + }
|
| + return WRC_Continue;
|
| +}
|
| +static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
|
| + UNUSED_PARAMETER(pWalker);
|
| + UNUSED_PARAMETER(pSelect);
|
| + return WRC_Continue;
|
| +}
|
| +
|
| +/*
|
| +** Analyze the pExpr expression looking for aggregate functions and
|
| +** for variables that need to be added to AggInfo object that pNC->pAggInfo
|
| +** points to. Additional entries are made on the AggInfo object as
|
| +** necessary.
|
| +**
|
| +** This routine should only be called after the expression has been
|
| +** analyzed by sqlite3ResolveExprNames().
|
| +*/
|
| +void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
|
| + Walker w;
|
| + memset(&w, 0, sizeof(w));
|
| + w.xExprCallback = analyzeAggregate;
|
| + w.xSelectCallback = analyzeAggregatesInSelect;
|
| + w.u.pNC = pNC;
|
| + assert( pNC->pSrcList!=0 );
|
| + sqlite3WalkExpr(&w, pExpr);
|
| +}
|
| +
|
| +/*
|
| +** Call sqlite3ExprAnalyzeAggregates() for every expression in an
|
| +** expression list. Return the number of errors.
|
| +**
|
| +** If an error is found, the analysis is cut short.
|
| +*/
|
| +void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
|
| + struct ExprList_item *pItem;
|
| + int i;
|
| + if( pList ){
|
| + for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
|
| + sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Allocate a single new register for use to hold some intermediate result.
|
| +*/
|
| +int sqlite3GetTempReg(Parse *pParse){
|
| + if( pParse->nTempReg==0 ){
|
| + return ++pParse->nMem;
|
| + }
|
| + return pParse->aTempReg[--pParse->nTempReg];
|
| +}
|
| +
|
| +/*
|
| +** Deallocate a register, making available for reuse for some other
|
| +** purpose.
|
| +**
|
| +** If a register is currently being used by the column cache, then
|
| +** the deallocation is deferred until the column cache line that uses
|
| +** the register becomes stale.
|
| +*/
|
| +void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
|
| + if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
|
| + int i;
|
| + struct yColCache *p;
|
| + for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| + if( p->iReg==iReg ){
|
| + p->tempReg = 1;
|
| + return;
|
| + }
|
| + }
|
| + pParse->aTempReg[pParse->nTempReg++] = iReg;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Allocate or deallocate a block of nReg consecutive registers
|
| +*/
|
| +int sqlite3GetTempRange(Parse *pParse, int nReg){
|
| + int i, n;
|
| + i = pParse->iRangeReg;
|
| + n = pParse->nRangeReg;
|
| + if( nReg<=n ){
|
| + assert( !usedAsColumnCache(pParse, i, i+n-1) );
|
| + pParse->iRangeReg += nReg;
|
| + pParse->nRangeReg -= nReg;
|
| + }else{
|
| + i = pParse->nMem+1;
|
| + pParse->nMem += nReg;
|
| + }
|
| + return i;
|
| +}
|
| +void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
|
| + sqlite3ExprCacheRemove(pParse, iReg, nReg);
|
| + if( nReg>pParse->nRangeReg ){
|
| + pParse->nRangeReg = nReg;
|
| + pParse->iRangeReg = iReg;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Mark all temporary registers as being unavailable for reuse.
|
| +*/
|
| +void sqlite3ClearTempRegCache(Parse *pParse){
|
| + pParse->nTempReg = 0;
|
| + pParse->nRangeReg = 0;
|
| +}
|
|
|