Index: third_party/sqlite/sqlite-src-3080704/src/where.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/src/where.c b/third_party/sqlite/sqlite-src-3080704/src/where.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..bc0110779ea051f46e02c825002686879fffab5d |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3080704/src/where.c |
@@ -0,0 +1,6609 @@ |
+/* |
+** 2001 September 15 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** This module contains C code that generates VDBE code used to process |
+** the WHERE clause of SQL statements. This module is responsible for |
+** generating the code that loops through a table looking for applicable |
+** rows. Indices are selected and used to speed the search when doing |
+** so is applicable. Because this module is responsible for selecting |
+** indices, you might also think of this module as the "query optimizer". |
+*/ |
+#include "sqliteInt.h" |
+#include "whereInt.h" |
+ |
+/* |
+** Return the estimated number of output rows from a WHERE clause |
+*/ |
+u64 sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ |
+ return sqlite3LogEstToInt(pWInfo->nRowOut); |
+} |
+ |
+/* |
+** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this |
+** WHERE clause returns outputs for DISTINCT processing. |
+*/ |
+int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ |
+ return pWInfo->eDistinct; |
+} |
+ |
+/* |
+** Return TRUE if the WHERE clause returns rows in ORDER BY order. |
+** Return FALSE if the output needs to be sorted. |
+*/ |
+int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ |
+ return pWInfo->nOBSat; |
+} |
+ |
+/* |
+** Return the VDBE address or label to jump to in order to continue |
+** immediately with the next row of a WHERE clause. |
+*/ |
+int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ |
+ assert( pWInfo->iContinue!=0 ); |
+ return pWInfo->iContinue; |
+} |
+ |
+/* |
+** Return the VDBE address or label to jump to in order to break |
+** out of a WHERE loop. |
+*/ |
+int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ |
+ return pWInfo->iBreak; |
+} |
+ |
+/* |
+** Return TRUE if an UPDATE or DELETE statement can operate directly on |
+** the rowids returned by a WHERE clause. Return FALSE if doing an |
+** UPDATE or DELETE might change subsequent WHERE clause results. |
+** |
+** If the ONEPASS optimization is used (if this routine returns true) |
+** then also write the indices of open cursors used by ONEPASS |
+** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data |
+** table and iaCur[1] gets the cursor used by an auxiliary index. |
+** Either value may be -1, indicating that cursor is not used. |
+** Any cursors returned will have been opened for writing. |
+** |
+** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is |
+** unable to use the ONEPASS optimization. |
+*/ |
+int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ |
+ memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); |
+ return pWInfo->okOnePass; |
+} |
+ |
+/* |
+** Move the content of pSrc into pDest |
+*/ |
+static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ |
+ pDest->n = pSrc->n; |
+ memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); |
+} |
+ |
+/* |
+** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. |
+** |
+** The new entry might overwrite an existing entry, or it might be |
+** appended, or it might be discarded. Do whatever is the right thing |
+** so that pSet keeps the N_OR_COST best entries seen so far. |
+*/ |
+static int whereOrInsert( |
+ WhereOrSet *pSet, /* The WhereOrSet to be updated */ |
+ Bitmask prereq, /* Prerequisites of the new entry */ |
+ LogEst rRun, /* Run-cost of the new entry */ |
+ LogEst nOut /* Number of outputs for the new entry */ |
+){ |
+ u16 i; |
+ WhereOrCost *p; |
+ for(i=pSet->n, p=pSet->a; i>0; i--, p++){ |
+ if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ |
+ goto whereOrInsert_done; |
+ } |
+ if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ |
+ return 0; |
+ } |
+ } |
+ if( pSet->n<N_OR_COST ){ |
+ p = &pSet->a[pSet->n++]; |
+ p->nOut = nOut; |
+ }else{ |
+ p = pSet->a; |
+ for(i=1; i<pSet->n; i++){ |
+ if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; |
+ } |
+ if( p->rRun<=rRun ) return 0; |
+ } |
+whereOrInsert_done: |
+ p->prereq = prereq; |
+ p->rRun = rRun; |
+ if( p->nOut>nOut ) p->nOut = nOut; |
+ return 1; |
+} |
+ |
+/* |
+** Initialize a preallocated WhereClause structure. |
+*/ |
+static void whereClauseInit( |
+ WhereClause *pWC, /* The WhereClause to be initialized */ |
+ WhereInfo *pWInfo /* The WHERE processing context */ |
+){ |
+ pWC->pWInfo = pWInfo; |
+ pWC->pOuter = 0; |
+ pWC->nTerm = 0; |
+ pWC->nSlot = ArraySize(pWC->aStatic); |
+ pWC->a = pWC->aStatic; |
+} |
+ |
+/* Forward reference */ |
+static void whereClauseClear(WhereClause*); |
+ |
+/* |
+** Deallocate all memory associated with a WhereOrInfo object. |
+*/ |
+static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ |
+ whereClauseClear(&p->wc); |
+ sqlite3DbFree(db, p); |
+} |
+ |
+/* |
+** Deallocate all memory associated with a WhereAndInfo object. |
+*/ |
+static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ |
+ whereClauseClear(&p->wc); |
+ sqlite3DbFree(db, p); |
+} |
+ |
+/* |
+** Deallocate a WhereClause structure. The WhereClause structure |
+** itself is not freed. This routine is the inverse of whereClauseInit(). |
+*/ |
+static void whereClauseClear(WhereClause *pWC){ |
+ int i; |
+ WhereTerm *a; |
+ sqlite3 *db = pWC->pWInfo->pParse->db; |
+ for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ |
+ if( a->wtFlags & TERM_DYNAMIC ){ |
+ sqlite3ExprDelete(db, a->pExpr); |
+ } |
+ if( a->wtFlags & TERM_ORINFO ){ |
+ whereOrInfoDelete(db, a->u.pOrInfo); |
+ }else if( a->wtFlags & TERM_ANDINFO ){ |
+ whereAndInfoDelete(db, a->u.pAndInfo); |
+ } |
+ } |
+ if( pWC->a!=pWC->aStatic ){ |
+ sqlite3DbFree(db, pWC->a); |
+ } |
+} |
+ |
+/* |
+** Add a single new WhereTerm entry to the WhereClause object pWC. |
+** The new WhereTerm object is constructed from Expr p and with wtFlags. |
+** The index in pWC->a[] of the new WhereTerm is returned on success. |
+** 0 is returned if the new WhereTerm could not be added due to a memory |
+** allocation error. The memory allocation failure will be recorded in |
+** the db->mallocFailed flag so that higher-level functions can detect it. |
+** |
+** This routine will increase the size of the pWC->a[] array as necessary. |
+** |
+** If the wtFlags argument includes TERM_DYNAMIC, then responsibility |
+** for freeing the expression p is assumed by the WhereClause object pWC. |
+** This is true even if this routine fails to allocate a new WhereTerm. |
+** |
+** WARNING: This routine might reallocate the space used to store |
+** WhereTerms. All pointers to WhereTerms should be invalidated after |
+** calling this routine. Such pointers may be reinitialized by referencing |
+** the pWC->a[] array. |
+*/ |
+static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){ |
+ WhereTerm *pTerm; |
+ int idx; |
+ testcase( wtFlags & TERM_VIRTUAL ); |
+ if( pWC->nTerm>=pWC->nSlot ){ |
+ WhereTerm *pOld = pWC->a; |
+ sqlite3 *db = pWC->pWInfo->pParse->db; |
+ pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); |
+ if( pWC->a==0 ){ |
+ if( wtFlags & TERM_DYNAMIC ){ |
+ sqlite3ExprDelete(db, p); |
+ } |
+ pWC->a = pOld; |
+ return 0; |
+ } |
+ memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); |
+ if( pOld!=pWC->aStatic ){ |
+ sqlite3DbFree(db, pOld); |
+ } |
+ pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); |
+ } |
+ pTerm = &pWC->a[idx = pWC->nTerm++]; |
+ if( p && ExprHasProperty(p, EP_Unlikely) ){ |
+ pTerm->truthProb = sqlite3LogEst(p->iTable) - 99; |
+ }else{ |
+ pTerm->truthProb = 1; |
+ } |
+ pTerm->pExpr = sqlite3ExprSkipCollate(p); |
+ pTerm->wtFlags = wtFlags; |
+ pTerm->pWC = pWC; |
+ pTerm->iParent = -1; |
+ return idx; |
+} |
+ |
+/* |
+** This routine identifies subexpressions in the WHERE clause where |
+** each subexpression is separated by the AND operator or some other |
+** operator specified in the op parameter. The WhereClause structure |
+** is filled with pointers to subexpressions. For example: |
+** |
+** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) |
+** \________/ \_______________/ \________________/ |
+** slot[0] slot[1] slot[2] |
+** |
+** The original WHERE clause in pExpr is unaltered. All this routine |
+** does is make slot[] entries point to substructure within pExpr. |
+** |
+** In the previous sentence and in the diagram, "slot[]" refers to |
+** the WhereClause.a[] array. The slot[] array grows as needed to contain |
+** all terms of the WHERE clause. |
+*/ |
+static void whereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ |
+ pWC->op = op; |
+ if( pExpr==0 ) return; |
+ if( pExpr->op!=op ){ |
+ whereClauseInsert(pWC, pExpr, 0); |
+ }else{ |
+ whereSplit(pWC, pExpr->pLeft, op); |
+ whereSplit(pWC, pExpr->pRight, op); |
+ } |
+} |
+ |
+/* |
+** Initialize a WhereMaskSet object |
+*/ |
+#define initMaskSet(P) (P)->n=0 |
+ |
+/* |
+** Return the bitmask for the given cursor number. Return 0 if |
+** iCursor is not in the set. |
+*/ |
+static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){ |
+ int i; |
+ assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); |
+ for(i=0; i<pMaskSet->n; i++){ |
+ if( pMaskSet->ix[i]==iCursor ){ |
+ return MASKBIT(i); |
+ } |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** Create a new mask for cursor iCursor. |
+** |
+** There is one cursor per table in the FROM clause. The number of |
+** tables in the FROM clause is limited by a test early in the |
+** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] |
+** array will never overflow. |
+*/ |
+static void createMask(WhereMaskSet *pMaskSet, int iCursor){ |
+ assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); |
+ pMaskSet->ix[pMaskSet->n++] = iCursor; |
+} |
+ |
+/* |
+** These routines walk (recursively) an expression tree and generate |
+** a bitmask indicating which tables are used in that expression |
+** tree. |
+*/ |
+static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*); |
+static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*); |
+static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){ |
+ Bitmask mask = 0; |
+ if( p==0 ) return 0; |
+ if( p->op==TK_COLUMN ){ |
+ mask = getMask(pMaskSet, p->iTable); |
+ return mask; |
+ } |
+ mask = exprTableUsage(pMaskSet, p->pRight); |
+ mask |= exprTableUsage(pMaskSet, p->pLeft); |
+ if( ExprHasProperty(p, EP_xIsSelect) ){ |
+ mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect); |
+ }else{ |
+ mask |= exprListTableUsage(pMaskSet, p->x.pList); |
+ } |
+ return mask; |
+} |
+static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){ |
+ int i; |
+ Bitmask mask = 0; |
+ if( pList ){ |
+ for(i=0; i<pList->nExpr; i++){ |
+ mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); |
+ } |
+ } |
+ return mask; |
+} |
+static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){ |
+ Bitmask mask = 0; |
+ while( pS ){ |
+ SrcList *pSrc = pS->pSrc; |
+ mask |= exprListTableUsage(pMaskSet, pS->pEList); |
+ mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); |
+ mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); |
+ mask |= exprTableUsage(pMaskSet, pS->pWhere); |
+ mask |= exprTableUsage(pMaskSet, pS->pHaving); |
+ if( ALWAYS(pSrc!=0) ){ |
+ int i; |
+ for(i=0; i<pSrc->nSrc; i++){ |
+ mask |= exprSelectTableUsage(pMaskSet, pSrc->a[i].pSelect); |
+ mask |= exprTableUsage(pMaskSet, pSrc->a[i].pOn); |
+ } |
+ } |
+ pS = pS->pPrior; |
+ } |
+ return mask; |
+} |
+ |
+/* |
+** Return TRUE if the given operator is one of the operators that is |
+** allowed for an indexable WHERE clause term. The allowed operators are |
+** "=", "<", ">", "<=", ">=", "IN", and "IS NULL" |
+*/ |
+static int allowedOp(int op){ |
+ assert( TK_GT>TK_EQ && TK_GT<TK_GE ); |
+ assert( TK_LT>TK_EQ && TK_LT<TK_GE ); |
+ assert( TK_LE>TK_EQ && TK_LE<TK_GE ); |
+ assert( TK_GE==TK_EQ+4 ); |
+ return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; |
+} |
+ |
+/* |
+** Commute a comparison operator. Expressions of the form "X op Y" |
+** are converted into "Y op X". |
+** |
+** If left/right precedence rules come into play when determining the |
+** collating sequence, then COLLATE operators are adjusted to ensure |
+** that the collating sequence does not change. For example: |
+** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on |
+** the left hand side of a comparison overrides any collation sequence |
+** attached to the right. For the same reason the EP_Collate flag |
+** is not commuted. |
+*/ |
+static void exprCommute(Parse *pParse, Expr *pExpr){ |
+ u16 expRight = (pExpr->pRight->flags & EP_Collate); |
+ u16 expLeft = (pExpr->pLeft->flags & EP_Collate); |
+ assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); |
+ if( expRight==expLeft ){ |
+ /* Either X and Y both have COLLATE operator or neither do */ |
+ if( expRight ){ |
+ /* Both X and Y have COLLATE operators. Make sure X is always |
+ ** used by clearing the EP_Collate flag from Y. */ |
+ pExpr->pRight->flags &= ~EP_Collate; |
+ }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){ |
+ /* Neither X nor Y have COLLATE operators, but X has a non-default |
+ ** collating sequence. So add the EP_Collate marker on X to cause |
+ ** it to be searched first. */ |
+ pExpr->pLeft->flags |= EP_Collate; |
+ } |
+ } |
+ SWAP(Expr*,pExpr->pRight,pExpr->pLeft); |
+ if( pExpr->op>=TK_GT ){ |
+ assert( TK_LT==TK_GT+2 ); |
+ assert( TK_GE==TK_LE+2 ); |
+ assert( TK_GT>TK_EQ ); |
+ assert( TK_GT<TK_LE ); |
+ assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); |
+ pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; |
+ } |
+} |
+ |
+/* |
+** Translate from TK_xx operator to WO_xx bitmask. |
+*/ |
+static u16 operatorMask(int op){ |
+ u16 c; |
+ assert( allowedOp(op) ); |
+ if( op==TK_IN ){ |
+ c = WO_IN; |
+ }else if( op==TK_ISNULL ){ |
+ c = WO_ISNULL; |
+ }else{ |
+ assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); |
+ c = (u16)(WO_EQ<<(op-TK_EQ)); |
+ } |
+ assert( op!=TK_ISNULL || c==WO_ISNULL ); |
+ assert( op!=TK_IN || c==WO_IN ); |
+ assert( op!=TK_EQ || c==WO_EQ ); |
+ assert( op!=TK_LT || c==WO_LT ); |
+ assert( op!=TK_LE || c==WO_LE ); |
+ assert( op!=TK_GT || c==WO_GT ); |
+ assert( op!=TK_GE || c==WO_GE ); |
+ return c; |
+} |
+ |
+/* |
+** Advance to the next WhereTerm that matches according to the criteria |
+** established when the pScan object was initialized by whereScanInit(). |
+** Return NULL if there are no more matching WhereTerms. |
+*/ |
+static WhereTerm *whereScanNext(WhereScan *pScan){ |
+ int iCur; /* The cursor on the LHS of the term */ |
+ int iColumn; /* The column on the LHS of the term. -1 for IPK */ |
+ Expr *pX; /* An expression being tested */ |
+ WhereClause *pWC; /* Shorthand for pScan->pWC */ |
+ WhereTerm *pTerm; /* The term being tested */ |
+ int k = pScan->k; /* Where to start scanning */ |
+ |
+ while( pScan->iEquiv<=pScan->nEquiv ){ |
+ iCur = pScan->aEquiv[pScan->iEquiv-2]; |
+ iColumn = pScan->aEquiv[pScan->iEquiv-1]; |
+ while( (pWC = pScan->pWC)!=0 ){ |
+ for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ |
+ if( pTerm->leftCursor==iCur |
+ && pTerm->u.leftColumn==iColumn |
+ && (pScan->iEquiv<=2 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) |
+ ){ |
+ if( (pTerm->eOperator & WO_EQUIV)!=0 |
+ && pScan->nEquiv<ArraySize(pScan->aEquiv) |
+ ){ |
+ int j; |
+ pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight); |
+ assert( pX->op==TK_COLUMN ); |
+ for(j=0; j<pScan->nEquiv; j+=2){ |
+ if( pScan->aEquiv[j]==pX->iTable |
+ && pScan->aEquiv[j+1]==pX->iColumn ){ |
+ break; |
+ } |
+ } |
+ if( j==pScan->nEquiv ){ |
+ pScan->aEquiv[j] = pX->iTable; |
+ pScan->aEquiv[j+1] = pX->iColumn; |
+ pScan->nEquiv += 2; |
+ } |
+ } |
+ if( (pTerm->eOperator & pScan->opMask)!=0 ){ |
+ /* Verify the affinity and collating sequence match */ |
+ if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ |
+ CollSeq *pColl; |
+ Parse *pParse = pWC->pWInfo->pParse; |
+ pX = pTerm->pExpr; |
+ if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ |
+ continue; |
+ } |
+ assert(pX->pLeft); |
+ pColl = sqlite3BinaryCompareCollSeq(pParse, |
+ pX->pLeft, pX->pRight); |
+ if( pColl==0 ) pColl = pParse->db->pDfltColl; |
+ if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ |
+ continue; |
+ } |
+ } |
+ if( (pTerm->eOperator & WO_EQ)!=0 |
+ && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN |
+ && pX->iTable==pScan->aEquiv[0] |
+ && pX->iColumn==pScan->aEquiv[1] |
+ ){ |
+ continue; |
+ } |
+ pScan->k = k+1; |
+ return pTerm; |
+ } |
+ } |
+ } |
+ pScan->pWC = pScan->pWC->pOuter; |
+ k = 0; |
+ } |
+ pScan->pWC = pScan->pOrigWC; |
+ k = 0; |
+ pScan->iEquiv += 2; |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** Initialize a WHERE clause scanner object. Return a pointer to the |
+** first match. Return NULL if there are no matches. |
+** |
+** The scanner will be searching the WHERE clause pWC. It will look |
+** for terms of the form "X <op> <expr>" where X is column iColumn of table |
+** iCur. The <op> must be one of the operators described by opMask. |
+** |
+** If the search is for X and the WHERE clause contains terms of the |
+** form X=Y then this routine might also return terms of the form |
+** "Y <op> <expr>". The number of levels of transitivity is limited, |
+** but is enough to handle most commonly occurring SQL statements. |
+** |
+** If X is not the INTEGER PRIMARY KEY then X must be compatible with |
+** index pIdx. |
+*/ |
+static WhereTerm *whereScanInit( |
+ WhereScan *pScan, /* The WhereScan object being initialized */ |
+ WhereClause *pWC, /* The WHERE clause to be scanned */ |
+ int iCur, /* Cursor to scan for */ |
+ int iColumn, /* Column to scan for */ |
+ u32 opMask, /* Operator(s) to scan for */ |
+ Index *pIdx /* Must be compatible with this index */ |
+){ |
+ int j; |
+ |
+ /* memset(pScan, 0, sizeof(*pScan)); */ |
+ pScan->pOrigWC = pWC; |
+ pScan->pWC = pWC; |
+ if( pIdx && iColumn>=0 ){ |
+ pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; |
+ for(j=0; pIdx->aiColumn[j]!=iColumn; j++){ |
+ if( NEVER(j>pIdx->nColumn) ) return 0; |
+ } |
+ pScan->zCollName = pIdx->azColl[j]; |
+ }else{ |
+ pScan->idxaff = 0; |
+ pScan->zCollName = 0; |
+ } |
+ pScan->opMask = opMask; |
+ pScan->k = 0; |
+ pScan->aEquiv[0] = iCur; |
+ pScan->aEquiv[1] = iColumn; |
+ pScan->nEquiv = 2; |
+ pScan->iEquiv = 2; |
+ return whereScanNext(pScan); |
+} |
+ |
+/* |
+** Search for a term in the WHERE clause that is of the form "X <op> <expr>" |
+** where X is a reference to the iColumn of table iCur and <op> is one of |
+** the WO_xx operator codes specified by the op parameter. |
+** Return a pointer to the term. Return 0 if not found. |
+** |
+** The term returned might by Y=<expr> if there is another constraint in |
+** the WHERE clause that specifies that X=Y. Any such constraints will be |
+** identified by the WO_EQUIV bit in the pTerm->eOperator field. The |
+** aEquiv[] array holds X and all its equivalents, with each SQL variable |
+** taking up two slots in aEquiv[]. The first slot is for the cursor number |
+** and the second is for the column number. There are 22 slots in aEquiv[] |
+** so that means we can look for X plus up to 10 other equivalent values. |
+** Hence a search for X will return <expr> if X=A1 and A1=A2 and A2=A3 |
+** and ... and A9=A10 and A10=<expr>. |
+** |
+** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" |
+** then try for the one with no dependencies on <expr> - in other words where |
+** <expr> is a constant expression of some kind. Only return entries of |
+** the form "X <op> Y" where Y is a column in another table if no terms of |
+** the form "X <op> <const-expr>" exist. If no terms with a constant RHS |
+** exist, try to return a term that does not use WO_EQUIV. |
+*/ |
+static WhereTerm *findTerm( |
+ WhereClause *pWC, /* The WHERE clause to be searched */ |
+ int iCur, /* Cursor number of LHS */ |
+ int iColumn, /* Column number of LHS */ |
+ Bitmask notReady, /* RHS must not overlap with this mask */ |
+ u32 op, /* Mask of WO_xx values describing operator */ |
+ Index *pIdx /* Must be compatible with this index, if not NULL */ |
+){ |
+ WhereTerm *pResult = 0; |
+ WhereTerm *p; |
+ WhereScan scan; |
+ |
+ p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); |
+ while( p ){ |
+ if( (p->prereqRight & notReady)==0 ){ |
+ if( p->prereqRight==0 && (p->eOperator&WO_EQ)!=0 ){ |
+ return p; |
+ } |
+ if( pResult==0 ) pResult = p; |
+ } |
+ p = whereScanNext(&scan); |
+ } |
+ return pResult; |
+} |
+ |
+/* Forward reference */ |
+static void exprAnalyze(SrcList*, WhereClause*, int); |
+ |
+/* |
+** Call exprAnalyze on all terms in a WHERE clause. |
+*/ |
+static void exprAnalyzeAll( |
+ SrcList *pTabList, /* the FROM clause */ |
+ WhereClause *pWC /* the WHERE clause to be analyzed */ |
+){ |
+ int i; |
+ for(i=pWC->nTerm-1; i>=0; i--){ |
+ exprAnalyze(pTabList, pWC, i); |
+ } |
+} |
+ |
+#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION |
+/* |
+** Check to see if the given expression is a LIKE or GLOB operator that |
+** can be optimized using inequality constraints. Return TRUE if it is |
+** so and false if not. |
+** |
+** In order for the operator to be optimizible, the RHS must be a string |
+** literal that does not begin with a wildcard. |
+*/ |
+static int isLikeOrGlob( |
+ Parse *pParse, /* Parsing and code generating context */ |
+ Expr *pExpr, /* Test this expression */ |
+ Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ |
+ int *pisComplete, /* True if the only wildcard is % in the last character */ |
+ int *pnoCase /* True if uppercase is equivalent to lowercase */ |
+){ |
+ const char *z = 0; /* String on RHS of LIKE operator */ |
+ Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ |
+ ExprList *pList; /* List of operands to the LIKE operator */ |
+ int c; /* One character in z[] */ |
+ int cnt; /* Number of non-wildcard prefix characters */ |
+ char wc[3]; /* Wildcard characters */ |
+ sqlite3 *db = pParse->db; /* Database connection */ |
+ sqlite3_value *pVal = 0; |
+ int op; /* Opcode of pRight */ |
+ |
+ if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ |
+ return 0; |
+ } |
+#ifdef SQLITE_EBCDIC |
+ if( *pnoCase ) return 0; |
+#endif |
+ pList = pExpr->x.pList; |
+ pLeft = pList->a[1].pExpr; |
+ if( pLeft->op!=TK_COLUMN |
+ || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT |
+ || IsVirtual(pLeft->pTab) |
+ ){ |
+ /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must |
+ ** be the name of an indexed column with TEXT affinity. */ |
+ return 0; |
+ } |
+ assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ |
+ |
+ pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); |
+ op = pRight->op; |
+ if( op==TK_VARIABLE ){ |
+ Vdbe *pReprepare = pParse->pReprepare; |
+ int iCol = pRight->iColumn; |
+ pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_NONE); |
+ if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ |
+ z = (char *)sqlite3_value_text(pVal); |
+ } |
+ sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); |
+ assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); |
+ }else if( op==TK_STRING ){ |
+ z = pRight->u.zToken; |
+ } |
+ if( z ){ |
+ cnt = 0; |
+ while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ |
+ cnt++; |
+ } |
+ if( cnt!=0 && 255!=(u8)z[cnt-1] ){ |
+ Expr *pPrefix; |
+ *pisComplete = c==wc[0] && z[cnt+1]==0; |
+ pPrefix = sqlite3Expr(db, TK_STRING, z); |
+ if( pPrefix ) pPrefix->u.zToken[cnt] = 0; |
+ *ppPrefix = pPrefix; |
+ if( op==TK_VARIABLE ){ |
+ Vdbe *v = pParse->pVdbe; |
+ sqlite3VdbeSetVarmask(v, pRight->iColumn); |
+ if( *pisComplete && pRight->u.zToken[1] ){ |
+ /* If the rhs of the LIKE expression is a variable, and the current |
+ ** value of the variable means there is no need to invoke the LIKE |
+ ** function, then no OP_Variable will be added to the program. |
+ ** This causes problems for the sqlite3_bind_parameter_name() |
+ ** API. To work around them, add a dummy OP_Variable here. |
+ */ |
+ int r1 = sqlite3GetTempReg(pParse); |
+ sqlite3ExprCodeTarget(pParse, pRight, r1); |
+ sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); |
+ sqlite3ReleaseTempReg(pParse, r1); |
+ } |
+ } |
+ }else{ |
+ z = 0; |
+ } |
+ } |
+ |
+ sqlite3ValueFree(pVal); |
+ return (z!=0); |
+} |
+#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ |
+ |
+ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+/* |
+** Check to see if the given expression is of the form |
+** |
+** column MATCH expr |
+** |
+** If it is then return TRUE. If not, return FALSE. |
+*/ |
+static int isMatchOfColumn( |
+ Expr *pExpr /* Test this expression */ |
+){ |
+ ExprList *pList; |
+ |
+ if( pExpr->op!=TK_FUNCTION ){ |
+ return 0; |
+ } |
+ if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){ |
+ return 0; |
+ } |
+ pList = pExpr->x.pList; |
+ if( pList->nExpr!=2 ){ |
+ return 0; |
+ } |
+ if( pList->a[1].pExpr->op != TK_COLUMN ){ |
+ return 0; |
+ } |
+ return 1; |
+} |
+#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
+ |
+/* |
+** If the pBase expression originated in the ON or USING clause of |
+** a join, then transfer the appropriate markings over to derived. |
+*/ |
+static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ |
+ if( pDerived ){ |
+ pDerived->flags |= pBase->flags & EP_FromJoin; |
+ pDerived->iRightJoinTable = pBase->iRightJoinTable; |
+ } |
+} |
+ |
+#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) |
+/* |
+** Analyze a term that consists of two or more OR-connected |
+** subterms. So in: |
+** |
+** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) |
+** ^^^^^^^^^^^^^^^^^^^^ |
+** |
+** This routine analyzes terms such as the middle term in the above example. |
+** A WhereOrTerm object is computed and attached to the term under |
+** analysis, regardless of the outcome of the analysis. Hence: |
+** |
+** WhereTerm.wtFlags |= TERM_ORINFO |
+** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object |
+** |
+** The term being analyzed must have two or more of OR-connected subterms. |
+** A single subterm might be a set of AND-connected sub-subterms. |
+** Examples of terms under analysis: |
+** |
+** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 |
+** (B) x=expr1 OR expr2=x OR x=expr3 |
+** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) |
+** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') |
+** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) |
+** |
+** CASE 1: |
+** |
+** If all subterms are of the form T.C=expr for some single column of C and |
+** a single table T (as shown in example B above) then create a new virtual |
+** term that is an equivalent IN expression. In other words, if the term |
+** being analyzed is: |
+** |
+** x = expr1 OR expr2 = x OR x = expr3 |
+** |
+** then create a new virtual term like this: |
+** |
+** x IN (expr1,expr2,expr3) |
+** |
+** CASE 2: |
+** |
+** If all subterms are indexable by a single table T, then set |
+** |
+** WhereTerm.eOperator = WO_OR |
+** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T |
+** |
+** A subterm is "indexable" if it is of the form |
+** "T.C <op> <expr>" where C is any column of table T and |
+** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". |
+** A subterm is also indexable if it is an AND of two or more |
+** subsubterms at least one of which is indexable. Indexable AND |
+** subterms have their eOperator set to WO_AND and they have |
+** u.pAndInfo set to a dynamically allocated WhereAndTerm object. |
+** |
+** From another point of view, "indexable" means that the subterm could |
+** potentially be used with an index if an appropriate index exists. |
+** This analysis does not consider whether or not the index exists; that |
+** is decided elsewhere. This analysis only looks at whether subterms |
+** appropriate for indexing exist. |
+** |
+** All examples A through E above satisfy case 2. But if a term |
+** also satisfies case 1 (such as B) we know that the optimizer will |
+** always prefer case 1, so in that case we pretend that case 2 is not |
+** satisfied. |
+** |
+** It might be the case that multiple tables are indexable. For example, |
+** (E) above is indexable on tables P, Q, and R. |
+** |
+** Terms that satisfy case 2 are candidates for lookup by using |
+** separate indices to find rowids for each subterm and composing |
+** the union of all rowids using a RowSet object. This is similar |
+** to "bitmap indices" in other database engines. |
+** |
+** OTHERWISE: |
+** |
+** If neither case 1 nor case 2 apply, then leave the eOperator set to |
+** zero. This term is not useful for search. |
+*/ |
+static void exprAnalyzeOrTerm( |
+ SrcList *pSrc, /* the FROM clause */ |
+ WhereClause *pWC, /* the complete WHERE clause */ |
+ int idxTerm /* Index of the OR-term to be analyzed */ |
+){ |
+ WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ |
+ Parse *pParse = pWInfo->pParse; /* Parser context */ |
+ sqlite3 *db = pParse->db; /* Database connection */ |
+ WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ |
+ Expr *pExpr = pTerm->pExpr; /* The expression of the term */ |
+ int i; /* Loop counters */ |
+ WhereClause *pOrWc; /* Breakup of pTerm into subterms */ |
+ WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ |
+ WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ |
+ Bitmask chngToIN; /* Tables that might satisfy case 1 */ |
+ Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ |
+ |
+ /* |
+ ** Break the OR clause into its separate subterms. The subterms are |
+ ** stored in a WhereClause structure containing within the WhereOrInfo |
+ ** object that is attached to the original OR clause term. |
+ */ |
+ assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); |
+ assert( pExpr->op==TK_OR ); |
+ pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); |
+ if( pOrInfo==0 ) return; |
+ pTerm->wtFlags |= TERM_ORINFO; |
+ pOrWc = &pOrInfo->wc; |
+ whereClauseInit(pOrWc, pWInfo); |
+ whereSplit(pOrWc, pExpr, TK_OR); |
+ exprAnalyzeAll(pSrc, pOrWc); |
+ if( db->mallocFailed ) return; |
+ assert( pOrWc->nTerm>=2 ); |
+ |
+ /* |
+ ** Compute the set of tables that might satisfy cases 1 or 2. |
+ */ |
+ indexable = ~(Bitmask)0; |
+ chngToIN = ~(Bitmask)0; |
+ for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ |
+ if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ |
+ WhereAndInfo *pAndInfo; |
+ assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); |
+ chngToIN = 0; |
+ pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo)); |
+ if( pAndInfo ){ |
+ WhereClause *pAndWC; |
+ WhereTerm *pAndTerm; |
+ int j; |
+ Bitmask b = 0; |
+ pOrTerm->u.pAndInfo = pAndInfo; |
+ pOrTerm->wtFlags |= TERM_ANDINFO; |
+ pOrTerm->eOperator = WO_AND; |
+ pAndWC = &pAndInfo->wc; |
+ whereClauseInit(pAndWC, pWC->pWInfo); |
+ whereSplit(pAndWC, pOrTerm->pExpr, TK_AND); |
+ exprAnalyzeAll(pSrc, pAndWC); |
+ pAndWC->pOuter = pWC; |
+ testcase( db->mallocFailed ); |
+ if( !db->mallocFailed ){ |
+ for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ |
+ assert( pAndTerm->pExpr ); |
+ if( allowedOp(pAndTerm->pExpr->op) ){ |
+ b |= getMask(&pWInfo->sMaskSet, pAndTerm->leftCursor); |
+ } |
+ } |
+ } |
+ indexable &= b; |
+ } |
+ }else if( pOrTerm->wtFlags & TERM_COPIED ){ |
+ /* Skip this term for now. We revisit it when we process the |
+ ** corresponding TERM_VIRTUAL term */ |
+ }else{ |
+ Bitmask b; |
+ b = getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor); |
+ if( pOrTerm->wtFlags & TERM_VIRTUAL ){ |
+ WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; |
+ b |= getMask(&pWInfo->sMaskSet, pOther->leftCursor); |
+ } |
+ indexable &= b; |
+ if( (pOrTerm->eOperator & WO_EQ)==0 ){ |
+ chngToIN = 0; |
+ }else{ |
+ chngToIN &= b; |
+ } |
+ } |
+ } |
+ |
+ /* |
+ ** Record the set of tables that satisfy case 2. The set might be |
+ ** empty. |
+ */ |
+ pOrInfo->indexable = indexable; |
+ pTerm->eOperator = indexable==0 ? 0 : WO_OR; |
+ |
+ /* |
+ ** chngToIN holds a set of tables that *might* satisfy case 1. But |
+ ** we have to do some additional checking to see if case 1 really |
+ ** is satisfied. |
+ ** |
+ ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means |
+ ** that there is no possibility of transforming the OR clause into an |
+ ** IN operator because one or more terms in the OR clause contain |
+ ** something other than == on a column in the single table. The 1-bit |
+ ** case means that every term of the OR clause is of the form |
+ ** "table.column=expr" for some single table. The one bit that is set |
+ ** will correspond to the common table. We still need to check to make |
+ ** sure the same column is used on all terms. The 2-bit case is when |
+ ** the all terms are of the form "table1.column=table2.column". It |
+ ** might be possible to form an IN operator with either table1.column |
+ ** or table2.column as the LHS if either is common to every term of |
+ ** the OR clause. |
+ ** |
+ ** Note that terms of the form "table.column1=table.column2" (the |
+ ** same table on both sizes of the ==) cannot be optimized. |
+ */ |
+ if( chngToIN ){ |
+ int okToChngToIN = 0; /* True if the conversion to IN is valid */ |
+ int iColumn = -1; /* Column index on lhs of IN operator */ |
+ int iCursor = -1; /* Table cursor common to all terms */ |
+ int j = 0; /* Loop counter */ |
+ |
+ /* Search for a table and column that appears on one side or the |
+ ** other of the == operator in every subterm. That table and column |
+ ** will be recorded in iCursor and iColumn. There might not be any |
+ ** such table and column. Set okToChngToIN if an appropriate table |
+ ** and column is found but leave okToChngToIN false if not found. |
+ */ |
+ for(j=0; j<2 && !okToChngToIN; j++){ |
+ pOrTerm = pOrWc->a; |
+ for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ |
+ assert( pOrTerm->eOperator & WO_EQ ); |
+ pOrTerm->wtFlags &= ~TERM_OR_OK; |
+ if( pOrTerm->leftCursor==iCursor ){ |
+ /* This is the 2-bit case and we are on the second iteration and |
+ ** current term is from the first iteration. So skip this term. */ |
+ assert( j==1 ); |
+ continue; |
+ } |
+ if( (chngToIN & getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor))==0 ){ |
+ /* This term must be of the form t1.a==t2.b where t2 is in the |
+ ** chngToIN set but t1 is not. This term will be either preceded |
+ ** or follwed by an inverted copy (t2.b==t1.a). Skip this term |
+ ** and use its inversion. */ |
+ testcase( pOrTerm->wtFlags & TERM_COPIED ); |
+ testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); |
+ assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); |
+ continue; |
+ } |
+ iColumn = pOrTerm->u.leftColumn; |
+ iCursor = pOrTerm->leftCursor; |
+ break; |
+ } |
+ if( i<0 ){ |
+ /* No candidate table+column was found. This can only occur |
+ ** on the second iteration */ |
+ assert( j==1 ); |
+ assert( IsPowerOfTwo(chngToIN) ); |
+ assert( chngToIN==getMask(&pWInfo->sMaskSet, iCursor) ); |
+ break; |
+ } |
+ testcase( j==1 ); |
+ |
+ /* We have found a candidate table and column. Check to see if that |
+ ** table and column is common to every term in the OR clause */ |
+ okToChngToIN = 1; |
+ for(; i>=0 && okToChngToIN; i--, pOrTerm++){ |
+ assert( pOrTerm->eOperator & WO_EQ ); |
+ if( pOrTerm->leftCursor!=iCursor ){ |
+ pOrTerm->wtFlags &= ~TERM_OR_OK; |
+ }else if( pOrTerm->u.leftColumn!=iColumn ){ |
+ okToChngToIN = 0; |
+ }else{ |
+ int affLeft, affRight; |
+ /* If the right-hand side is also a column, then the affinities |
+ ** of both right and left sides must be such that no type |
+ ** conversions are required on the right. (Ticket #2249) |
+ */ |
+ affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); |
+ affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); |
+ if( affRight!=0 && affRight!=affLeft ){ |
+ okToChngToIN = 0; |
+ }else{ |
+ pOrTerm->wtFlags |= TERM_OR_OK; |
+ } |
+ } |
+ } |
+ } |
+ |
+ /* At this point, okToChngToIN is true if original pTerm satisfies |
+ ** case 1. In that case, construct a new virtual term that is |
+ ** pTerm converted into an IN operator. |
+ */ |
+ if( okToChngToIN ){ |
+ Expr *pDup; /* A transient duplicate expression */ |
+ ExprList *pList = 0; /* The RHS of the IN operator */ |
+ Expr *pLeft = 0; /* The LHS of the IN operator */ |
+ Expr *pNew; /* The complete IN operator */ |
+ |
+ for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ |
+ if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; |
+ assert( pOrTerm->eOperator & WO_EQ ); |
+ assert( pOrTerm->leftCursor==iCursor ); |
+ assert( pOrTerm->u.leftColumn==iColumn ); |
+ pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); |
+ pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); |
+ pLeft = pOrTerm->pExpr->pLeft; |
+ } |
+ assert( pLeft!=0 ); |
+ pDup = sqlite3ExprDup(db, pLeft, 0); |
+ pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0); |
+ if( pNew ){ |
+ int idxNew; |
+ transferJoinMarkings(pNew, pExpr); |
+ assert( !ExprHasProperty(pNew, EP_xIsSelect) ); |
+ pNew->x.pList = pList; |
+ idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); |
+ testcase( idxNew==0 ); |
+ exprAnalyze(pSrc, pWC, idxNew); |
+ pTerm = &pWC->a[idxTerm]; |
+ pWC->a[idxNew].iParent = idxTerm; |
+ pTerm->nChild = 1; |
+ }else{ |
+ sqlite3ExprListDelete(db, pList); |
+ } |
+ pTerm->eOperator = WO_NOOP; /* case 1 trumps case 2 */ |
+ } |
+ } |
+} |
+#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ |
+ |
+/* |
+** The input to this routine is an WhereTerm structure with only the |
+** "pExpr" field filled in. The job of this routine is to analyze the |
+** subexpression and populate all the other fields of the WhereTerm |
+** structure. |
+** |
+** If the expression is of the form "<expr> <op> X" it gets commuted |
+** to the standard form of "X <op> <expr>". |
+** |
+** If the expression is of the form "X <op> Y" where both X and Y are |
+** columns, then the original expression is unchanged and a new virtual |
+** term of the form "Y <op> X" is added to the WHERE clause and |
+** analyzed separately. The original term is marked with TERM_COPIED |
+** and the new term is marked with TERM_DYNAMIC (because it's pExpr |
+** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it |
+** is a commuted copy of a prior term.) The original term has nChild=1 |
+** and the copy has idxParent set to the index of the original term. |
+*/ |
+static void exprAnalyze( |
+ SrcList *pSrc, /* the FROM clause */ |
+ WhereClause *pWC, /* the WHERE clause */ |
+ int idxTerm /* Index of the term to be analyzed */ |
+){ |
+ WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ |
+ WhereTerm *pTerm; /* The term to be analyzed */ |
+ WhereMaskSet *pMaskSet; /* Set of table index masks */ |
+ Expr *pExpr; /* The expression to be analyzed */ |
+ Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ |
+ Bitmask prereqAll; /* Prerequesites of pExpr */ |
+ Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ |
+ Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ |
+ int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ |
+ int noCase = 0; /* LIKE/GLOB distinguishes case */ |
+ int op; /* Top-level operator. pExpr->op */ |
+ Parse *pParse = pWInfo->pParse; /* Parsing context */ |
+ sqlite3 *db = pParse->db; /* Database connection */ |
+ |
+ if( db->mallocFailed ){ |
+ return; |
+ } |
+ pTerm = &pWC->a[idxTerm]; |
+ pMaskSet = &pWInfo->sMaskSet; |
+ pExpr = pTerm->pExpr; |
+ assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); |
+ prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); |
+ op = pExpr->op; |
+ if( op==TK_IN ){ |
+ assert( pExpr->pRight==0 ); |
+ if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
+ pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect); |
+ }else{ |
+ pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList); |
+ } |
+ }else if( op==TK_ISNULL ){ |
+ pTerm->prereqRight = 0; |
+ }else{ |
+ pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); |
+ } |
+ prereqAll = exprTableUsage(pMaskSet, pExpr); |
+ if( ExprHasProperty(pExpr, EP_FromJoin) ){ |
+ Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable); |
+ prereqAll |= x; |
+ extraRight = x-1; /* ON clause terms may not be used with an index |
+ ** on left table of a LEFT JOIN. Ticket #3015 */ |
+ } |
+ pTerm->prereqAll = prereqAll; |
+ pTerm->leftCursor = -1; |
+ pTerm->iParent = -1; |
+ pTerm->eOperator = 0; |
+ if( allowedOp(op) ){ |
+ Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); |
+ Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); |
+ u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; |
+ if( pLeft->op==TK_COLUMN ){ |
+ pTerm->leftCursor = pLeft->iTable; |
+ pTerm->u.leftColumn = pLeft->iColumn; |
+ pTerm->eOperator = operatorMask(op) & opMask; |
+ } |
+ if( pRight && pRight->op==TK_COLUMN ){ |
+ WhereTerm *pNew; |
+ Expr *pDup; |
+ u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */ |
+ if( pTerm->leftCursor>=0 ){ |
+ int idxNew; |
+ pDup = sqlite3ExprDup(db, pExpr, 0); |
+ if( db->mallocFailed ){ |
+ sqlite3ExprDelete(db, pDup); |
+ return; |
+ } |
+ idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); |
+ if( idxNew==0 ) return; |
+ pNew = &pWC->a[idxNew]; |
+ pNew->iParent = idxTerm; |
+ pTerm = &pWC->a[idxTerm]; |
+ pTerm->nChild = 1; |
+ pTerm->wtFlags |= TERM_COPIED; |
+ if( pExpr->op==TK_EQ |
+ && !ExprHasProperty(pExpr, EP_FromJoin) |
+ && OptimizationEnabled(db, SQLITE_Transitive) |
+ ){ |
+ pTerm->eOperator |= WO_EQUIV; |
+ eExtraOp = WO_EQUIV; |
+ } |
+ }else{ |
+ pDup = pExpr; |
+ pNew = pTerm; |
+ } |
+ exprCommute(pParse, pDup); |
+ pLeft = sqlite3ExprSkipCollate(pDup->pLeft); |
+ pNew->leftCursor = pLeft->iTable; |
+ pNew->u.leftColumn = pLeft->iColumn; |
+ testcase( (prereqLeft | extraRight) != prereqLeft ); |
+ pNew->prereqRight = prereqLeft | extraRight; |
+ pNew->prereqAll = prereqAll; |
+ pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; |
+ } |
+ } |
+ |
+#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION |
+ /* If a term is the BETWEEN operator, create two new virtual terms |
+ ** that define the range that the BETWEEN implements. For example: |
+ ** |
+ ** a BETWEEN b AND c |
+ ** |
+ ** is converted into: |
+ ** |
+ ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) |
+ ** |
+ ** The two new terms are added onto the end of the WhereClause object. |
+ ** The new terms are "dynamic" and are children of the original BETWEEN |
+ ** term. That means that if the BETWEEN term is coded, the children are |
+ ** skipped. Or, if the children are satisfied by an index, the original |
+ ** BETWEEN term is skipped. |
+ */ |
+ else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ |
+ ExprList *pList = pExpr->x.pList; |
+ int i; |
+ static const u8 ops[] = {TK_GE, TK_LE}; |
+ assert( pList!=0 ); |
+ assert( pList->nExpr==2 ); |
+ for(i=0; i<2; i++){ |
+ Expr *pNewExpr; |
+ int idxNew; |
+ pNewExpr = sqlite3PExpr(pParse, ops[i], |
+ sqlite3ExprDup(db, pExpr->pLeft, 0), |
+ sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0); |
+ transferJoinMarkings(pNewExpr, pExpr); |
+ idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); |
+ testcase( idxNew==0 ); |
+ exprAnalyze(pSrc, pWC, idxNew); |
+ pTerm = &pWC->a[idxTerm]; |
+ pWC->a[idxNew].iParent = idxTerm; |
+ } |
+ pTerm->nChild = 2; |
+ } |
+#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ |
+ |
+#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) |
+ /* Analyze a term that is composed of two or more subterms connected by |
+ ** an OR operator. |
+ */ |
+ else if( pExpr->op==TK_OR ){ |
+ assert( pWC->op==TK_AND ); |
+ exprAnalyzeOrTerm(pSrc, pWC, idxTerm); |
+ pTerm = &pWC->a[idxTerm]; |
+ } |
+#endif /* SQLITE_OMIT_OR_OPTIMIZATION */ |
+ |
+#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION |
+ /* Add constraints to reduce the search space on a LIKE or GLOB |
+ ** operator. |
+ ** |
+ ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints |
+ ** |
+ ** x>='abc' AND x<'abd' AND x LIKE 'abc%' |
+ ** |
+ ** The last character of the prefix "abc" is incremented to form the |
+ ** termination condition "abd". |
+ */ |
+ if( pWC->op==TK_AND |
+ && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) |
+ ){ |
+ Expr *pLeft; /* LHS of LIKE/GLOB operator */ |
+ Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ |
+ Expr *pNewExpr1; |
+ Expr *pNewExpr2; |
+ int idxNew1; |
+ int idxNew2; |
+ Token sCollSeqName; /* Name of collating sequence */ |
+ |
+ pLeft = pExpr->x.pList->a[1].pExpr; |
+ pStr2 = sqlite3ExprDup(db, pStr1, 0); |
+ if( !db->mallocFailed ){ |
+ u8 c, *pC; /* Last character before the first wildcard */ |
+ pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; |
+ c = *pC; |
+ if( noCase ){ |
+ /* The point is to increment the last character before the first |
+ ** wildcard. But if we increment '@', that will push it into the |
+ ** alphabetic range where case conversions will mess up the |
+ ** inequality. To avoid this, make sure to also run the full |
+ ** LIKE on all candidate expressions by clearing the isComplete flag |
+ */ |
+ if( c=='A'-1 ) isComplete = 0; |
+ c = sqlite3UpperToLower[c]; |
+ } |
+ *pC = c + 1; |
+ } |
+ sCollSeqName.z = noCase ? "NOCASE" : "BINARY"; |
+ sCollSeqName.n = 6; |
+ pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); |
+ pNewExpr1 = sqlite3PExpr(pParse, TK_GE, |
+ sqlite3ExprAddCollateToken(pParse,pNewExpr1,&sCollSeqName), |
+ pStr1, 0); |
+ transferJoinMarkings(pNewExpr1, pExpr); |
+ idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); |
+ testcase( idxNew1==0 ); |
+ exprAnalyze(pSrc, pWC, idxNew1); |
+ pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); |
+ pNewExpr2 = sqlite3PExpr(pParse, TK_LT, |
+ sqlite3ExprAddCollateToken(pParse,pNewExpr2,&sCollSeqName), |
+ pStr2, 0); |
+ transferJoinMarkings(pNewExpr2, pExpr); |
+ idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); |
+ testcase( idxNew2==0 ); |
+ exprAnalyze(pSrc, pWC, idxNew2); |
+ pTerm = &pWC->a[idxTerm]; |
+ if( isComplete ){ |
+ pWC->a[idxNew1].iParent = idxTerm; |
+ pWC->a[idxNew2].iParent = idxTerm; |
+ pTerm->nChild = 2; |
+ } |
+ } |
+#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ |
+ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ /* Add a WO_MATCH auxiliary term to the constraint set if the |
+ ** current expression is of the form: column MATCH expr. |
+ ** This information is used by the xBestIndex methods of |
+ ** virtual tables. The native query optimizer does not attempt |
+ ** to do anything with MATCH functions. |
+ */ |
+ if( isMatchOfColumn(pExpr) ){ |
+ int idxNew; |
+ Expr *pRight, *pLeft; |
+ WhereTerm *pNewTerm; |
+ Bitmask prereqColumn, prereqExpr; |
+ |
+ pRight = pExpr->x.pList->a[0].pExpr; |
+ pLeft = pExpr->x.pList->a[1].pExpr; |
+ prereqExpr = exprTableUsage(pMaskSet, pRight); |
+ prereqColumn = exprTableUsage(pMaskSet, pLeft); |
+ if( (prereqExpr & prereqColumn)==0 ){ |
+ Expr *pNewExpr; |
+ pNewExpr = sqlite3PExpr(pParse, TK_MATCH, |
+ 0, sqlite3ExprDup(db, pRight, 0), 0); |
+ idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); |
+ testcase( idxNew==0 ); |
+ pNewTerm = &pWC->a[idxNew]; |
+ pNewTerm->prereqRight = prereqExpr; |
+ pNewTerm->leftCursor = pLeft->iTable; |
+ pNewTerm->u.leftColumn = pLeft->iColumn; |
+ pNewTerm->eOperator = WO_MATCH; |
+ pNewTerm->iParent = idxTerm; |
+ pTerm = &pWC->a[idxTerm]; |
+ pTerm->nChild = 1; |
+ pTerm->wtFlags |= TERM_COPIED; |
+ pNewTerm->prereqAll = pTerm->prereqAll; |
+ } |
+ } |
+#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
+ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ /* When sqlite_stat3 histogram data is available an operator of the |
+ ** form "x IS NOT NULL" can sometimes be evaluated more efficiently |
+ ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a |
+ ** virtual term of that form. |
+ ** |
+ ** Note that the virtual term must be tagged with TERM_VNULL. This |
+ ** TERM_VNULL tag will suppress the not-null check at the beginning |
+ ** of the loop. Without the TERM_VNULL flag, the not-null check at |
+ ** the start of the loop will prevent any results from being returned. |
+ */ |
+ if( pExpr->op==TK_NOTNULL |
+ && pExpr->pLeft->op==TK_COLUMN |
+ && pExpr->pLeft->iColumn>=0 |
+ && OptimizationEnabled(db, SQLITE_Stat3) |
+ ){ |
+ Expr *pNewExpr; |
+ Expr *pLeft = pExpr->pLeft; |
+ int idxNew; |
+ WhereTerm *pNewTerm; |
+ |
+ pNewExpr = sqlite3PExpr(pParse, TK_GT, |
+ sqlite3ExprDup(db, pLeft, 0), |
+ sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0); |
+ |
+ idxNew = whereClauseInsert(pWC, pNewExpr, |
+ TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); |
+ if( idxNew ){ |
+ pNewTerm = &pWC->a[idxNew]; |
+ pNewTerm->prereqRight = 0; |
+ pNewTerm->leftCursor = pLeft->iTable; |
+ pNewTerm->u.leftColumn = pLeft->iColumn; |
+ pNewTerm->eOperator = WO_GT; |
+ pNewTerm->iParent = idxTerm; |
+ pTerm = &pWC->a[idxTerm]; |
+ pTerm->nChild = 1; |
+ pTerm->wtFlags |= TERM_COPIED; |
+ pNewTerm->prereqAll = pTerm->prereqAll; |
+ } |
+ } |
+#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
+ |
+ /* Prevent ON clause terms of a LEFT JOIN from being used to drive |
+ ** an index for tables to the left of the join. |
+ */ |
+ pTerm->prereqRight |= extraRight; |
+} |
+ |
+/* |
+** This function searches pList for an entry that matches the iCol-th column |
+** of index pIdx. |
+** |
+** If such an expression is found, its index in pList->a[] is returned. If |
+** no expression is found, -1 is returned. |
+*/ |
+static int findIndexCol( |
+ Parse *pParse, /* Parse context */ |
+ ExprList *pList, /* Expression list to search */ |
+ int iBase, /* Cursor for table associated with pIdx */ |
+ Index *pIdx, /* Index to match column of */ |
+ int iCol /* Column of index to match */ |
+){ |
+ int i; |
+ const char *zColl = pIdx->azColl[iCol]; |
+ |
+ for(i=0; i<pList->nExpr; i++){ |
+ Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr); |
+ if( p->op==TK_COLUMN |
+ && p->iColumn==pIdx->aiColumn[iCol] |
+ && p->iTable==iBase |
+ ){ |
+ CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); |
+ if( ALWAYS(pColl) && 0==sqlite3StrICmp(pColl->zName, zColl) ){ |
+ return i; |
+ } |
+ } |
+ } |
+ |
+ return -1; |
+} |
+ |
+/* |
+** Return true if the DISTINCT expression-list passed as the third argument |
+** is redundant. |
+** |
+** A DISTINCT list is redundant if the database contains some subset of |
+** columns that are unique and non-null. |
+*/ |
+static int isDistinctRedundant( |
+ Parse *pParse, /* Parsing context */ |
+ SrcList *pTabList, /* The FROM clause */ |
+ WhereClause *pWC, /* The WHERE clause */ |
+ ExprList *pDistinct /* The result set that needs to be DISTINCT */ |
+){ |
+ Table *pTab; |
+ Index *pIdx; |
+ int i; |
+ int iBase; |
+ |
+ /* If there is more than one table or sub-select in the FROM clause of |
+ ** this query, then it will not be possible to show that the DISTINCT |
+ ** clause is redundant. */ |
+ if( pTabList->nSrc!=1 ) return 0; |
+ iBase = pTabList->a[0].iCursor; |
+ pTab = pTabList->a[0].pTab; |
+ |
+ /* If any of the expressions is an IPK column on table iBase, then return |
+ ** true. Note: The (p->iTable==iBase) part of this test may be false if the |
+ ** current SELECT is a correlated sub-query. |
+ */ |
+ for(i=0; i<pDistinct->nExpr; i++){ |
+ Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); |
+ if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; |
+ } |
+ |
+ /* Loop through all indices on the table, checking each to see if it makes |
+ ** the DISTINCT qualifier redundant. It does so if: |
+ ** |
+ ** 1. The index is itself UNIQUE, and |
+ ** |
+ ** 2. All of the columns in the index are either part of the pDistinct |
+ ** list, or else the WHERE clause contains a term of the form "col=X", |
+ ** where X is a constant value. The collation sequences of the |
+ ** comparison and select-list expressions must match those of the index. |
+ ** |
+ ** 3. All of those index columns for which the WHERE clause does not |
+ ** contain a "col=X" term are subject to a NOT NULL constraint. |
+ */ |
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
+ if( !IsUniqueIndex(pIdx) ) continue; |
+ for(i=0; i<pIdx->nKeyCol; i++){ |
+ i16 iCol = pIdx->aiColumn[i]; |
+ if( 0==findTerm(pWC, iBase, iCol, ~(Bitmask)0, WO_EQ, pIdx) ){ |
+ int iIdxCol = findIndexCol(pParse, pDistinct, iBase, pIdx, i); |
+ if( iIdxCol<0 || pTab->aCol[iCol].notNull==0 ){ |
+ break; |
+ } |
+ } |
+ } |
+ if( i==pIdx->nKeyCol ){ |
+ /* This index implies that the DISTINCT qualifier is redundant. */ |
+ return 1; |
+ } |
+ } |
+ |
+ return 0; |
+} |
+ |
+ |
+/* |
+** Estimate the logarithm of the input value to base 2. |
+*/ |
+static LogEst estLog(LogEst N){ |
+ return N<=10 ? 0 : sqlite3LogEst(N) - 33; |
+} |
+ |
+/* |
+** Two routines for printing the content of an sqlite3_index_info |
+** structure. Used for testing and debugging only. If neither |
+** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines |
+** are no-ops. |
+*/ |
+#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) |
+static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ |
+ int i; |
+ if( !sqlite3WhereTrace ) return; |
+ for(i=0; i<p->nConstraint; i++){ |
+ sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", |
+ i, |
+ p->aConstraint[i].iColumn, |
+ p->aConstraint[i].iTermOffset, |
+ p->aConstraint[i].op, |
+ p->aConstraint[i].usable); |
+ } |
+ for(i=0; i<p->nOrderBy; i++){ |
+ sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", |
+ i, |
+ p->aOrderBy[i].iColumn, |
+ p->aOrderBy[i].desc); |
+ } |
+} |
+static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ |
+ int i; |
+ if( !sqlite3WhereTrace ) return; |
+ for(i=0; i<p->nConstraint; i++){ |
+ sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", |
+ i, |
+ p->aConstraintUsage[i].argvIndex, |
+ p->aConstraintUsage[i].omit); |
+ } |
+ sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); |
+ sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); |
+ sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); |
+ sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); |
+ sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); |
+} |
+#else |
+#define TRACE_IDX_INPUTS(A) |
+#define TRACE_IDX_OUTPUTS(A) |
+#endif |
+ |
+#ifndef SQLITE_OMIT_AUTOMATIC_INDEX |
+/* |
+** Return TRUE if the WHERE clause term pTerm is of a form where it |
+** could be used with an index to access pSrc, assuming an appropriate |
+** index existed. |
+*/ |
+static int termCanDriveIndex( |
+ WhereTerm *pTerm, /* WHERE clause term to check */ |
+ struct SrcList_item *pSrc, /* Table we are trying to access */ |
+ Bitmask notReady /* Tables in outer loops of the join */ |
+){ |
+ char aff; |
+ if( pTerm->leftCursor!=pSrc->iCursor ) return 0; |
+ if( (pTerm->eOperator & WO_EQ)==0 ) return 0; |
+ if( (pTerm->prereqRight & notReady)!=0 ) return 0; |
+ if( pTerm->u.leftColumn<0 ) return 0; |
+ aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; |
+ if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; |
+ return 1; |
+} |
+#endif |
+ |
+ |
+#ifndef SQLITE_OMIT_AUTOMATIC_INDEX |
+/* |
+** Generate code to construct the Index object for an automatic index |
+** and to set up the WhereLevel object pLevel so that the code generator |
+** makes use of the automatic index. |
+*/ |
+static void constructAutomaticIndex( |
+ Parse *pParse, /* The parsing context */ |
+ WhereClause *pWC, /* The WHERE clause */ |
+ struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ |
+ Bitmask notReady, /* Mask of cursors that are not available */ |
+ WhereLevel *pLevel /* Write new index here */ |
+){ |
+ int nKeyCol; /* Number of columns in the constructed index */ |
+ WhereTerm *pTerm; /* A single term of the WHERE clause */ |
+ WhereTerm *pWCEnd; /* End of pWC->a[] */ |
+ Index *pIdx; /* Object describing the transient index */ |
+ Vdbe *v; /* Prepared statement under construction */ |
+ int addrInit; /* Address of the initialization bypass jump */ |
+ Table *pTable; /* The table being indexed */ |
+ int addrTop; /* Top of the index fill loop */ |
+ int regRecord; /* Register holding an index record */ |
+ int n; /* Column counter */ |
+ int i; /* Loop counter */ |
+ int mxBitCol; /* Maximum column in pSrc->colUsed */ |
+ CollSeq *pColl; /* Collating sequence to on a column */ |
+ WhereLoop *pLoop; /* The Loop object */ |
+ char *zNotUsed; /* Extra space on the end of pIdx */ |
+ Bitmask idxCols; /* Bitmap of columns used for indexing */ |
+ Bitmask extraCols; /* Bitmap of additional columns */ |
+ u8 sentWarning = 0; /* True if a warnning has been issued */ |
+ |
+ /* Generate code to skip over the creation and initialization of the |
+ ** transient index on 2nd and subsequent iterations of the loop. */ |
+ v = pParse->pVdbe; |
+ assert( v!=0 ); |
+ addrInit = sqlite3CodeOnce(pParse); VdbeCoverage(v); |
+ |
+ /* Count the number of columns that will be added to the index |
+ ** and used to match WHERE clause constraints */ |
+ nKeyCol = 0; |
+ pTable = pSrc->pTab; |
+ pWCEnd = &pWC->a[pWC->nTerm]; |
+ pLoop = pLevel->pWLoop; |
+ idxCols = 0; |
+ for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ |
+ if( termCanDriveIndex(pTerm, pSrc, notReady) ){ |
+ int iCol = pTerm->u.leftColumn; |
+ Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); |
+ testcase( iCol==BMS ); |
+ testcase( iCol==BMS-1 ); |
+ if( !sentWarning ){ |
+ sqlite3_log(SQLITE_WARNING_AUTOINDEX, |
+ "automatic index on %s(%s)", pTable->zName, |
+ pTable->aCol[iCol].zName); |
+ sentWarning = 1; |
+ } |
+ if( (idxCols & cMask)==0 ){ |
+ if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ) return; |
+ pLoop->aLTerm[nKeyCol++] = pTerm; |
+ idxCols |= cMask; |
+ } |
+ } |
+ } |
+ assert( nKeyCol>0 ); |
+ pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; |
+ pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED |
+ | WHERE_AUTO_INDEX; |
+ |
+ /* Count the number of additional columns needed to create a |
+ ** covering index. A "covering index" is an index that contains all |
+ ** columns that are needed by the query. With a covering index, the |
+ ** original table never needs to be accessed. Automatic indices must |
+ ** be a covering index because the index will not be updated if the |
+ ** original table changes and the index and table cannot both be used |
+ ** if they go out of sync. |
+ */ |
+ extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); |
+ mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol; |
+ testcase( pTable->nCol==BMS-1 ); |
+ testcase( pTable->nCol==BMS-2 ); |
+ for(i=0; i<mxBitCol; i++){ |
+ if( extraCols & MASKBIT(i) ) nKeyCol++; |
+ } |
+ if( pSrc->colUsed & MASKBIT(BMS-1) ){ |
+ nKeyCol += pTable->nCol - BMS + 1; |
+ } |
+ pLoop->wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY; |
+ |
+ /* Construct the Index object to describe this index */ |
+ pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); |
+ if( pIdx==0 ) return; |
+ pLoop->u.btree.pIndex = pIdx; |
+ pIdx->zName = "auto-index"; |
+ pIdx->pTable = pTable; |
+ n = 0; |
+ idxCols = 0; |
+ for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ |
+ if( termCanDriveIndex(pTerm, pSrc, notReady) ){ |
+ int iCol = pTerm->u.leftColumn; |
+ Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); |
+ testcase( iCol==BMS-1 ); |
+ testcase( iCol==BMS ); |
+ if( (idxCols & cMask)==0 ){ |
+ Expr *pX = pTerm->pExpr; |
+ idxCols |= cMask; |
+ pIdx->aiColumn[n] = pTerm->u.leftColumn; |
+ pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); |
+ pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : "BINARY"; |
+ n++; |
+ } |
+ } |
+ } |
+ assert( (u32)n==pLoop->u.btree.nEq ); |
+ |
+ /* Add additional columns needed to make the automatic index into |
+ ** a covering index */ |
+ for(i=0; i<mxBitCol; i++){ |
+ if( extraCols & MASKBIT(i) ){ |
+ pIdx->aiColumn[n] = i; |
+ pIdx->azColl[n] = "BINARY"; |
+ n++; |
+ } |
+ } |
+ if( pSrc->colUsed & MASKBIT(BMS-1) ){ |
+ for(i=BMS-1; i<pTable->nCol; i++){ |
+ pIdx->aiColumn[n] = i; |
+ pIdx->azColl[n] = "BINARY"; |
+ n++; |
+ } |
+ } |
+ assert( n==nKeyCol ); |
+ pIdx->aiColumn[n] = -1; |
+ pIdx->azColl[n] = "BINARY"; |
+ |
+ /* Create the automatic index */ |
+ assert( pLevel->iIdxCur>=0 ); |
+ pLevel->iIdxCur = pParse->nTab++; |
+ sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); |
+ sqlite3VdbeSetP4KeyInfo(pParse, pIdx); |
+ VdbeComment((v, "for %s", pTable->zName)); |
+ |
+ /* Fill the automatic index with content */ |
+ addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); |
+ regRecord = sqlite3GetTempReg(pParse); |
+ sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0); |
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); |
+ sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); |
+ sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); |
+ sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); |
+ sqlite3VdbeJumpHere(v, addrTop); |
+ sqlite3ReleaseTempReg(pParse, regRecord); |
+ |
+ /* Jump here when skipping the initialization */ |
+ sqlite3VdbeJumpHere(v, addrInit); |
+} |
+#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ |
+ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+/* |
+** Allocate and populate an sqlite3_index_info structure. It is the |
+** responsibility of the caller to eventually release the structure |
+** by passing the pointer returned by this function to sqlite3_free(). |
+*/ |
+static sqlite3_index_info *allocateIndexInfo( |
+ Parse *pParse, |
+ WhereClause *pWC, |
+ struct SrcList_item *pSrc, |
+ ExprList *pOrderBy |
+){ |
+ int i, j; |
+ int nTerm; |
+ struct sqlite3_index_constraint *pIdxCons; |
+ struct sqlite3_index_orderby *pIdxOrderBy; |
+ struct sqlite3_index_constraint_usage *pUsage; |
+ WhereTerm *pTerm; |
+ int nOrderBy; |
+ sqlite3_index_info *pIdxInfo; |
+ |
+ /* Count the number of possible WHERE clause constraints referring |
+ ** to this virtual table */ |
+ for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ |
+ if( pTerm->leftCursor != pSrc->iCursor ) continue; |
+ assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); |
+ testcase( pTerm->eOperator & WO_IN ); |
+ testcase( pTerm->eOperator & WO_ISNULL ); |
+ testcase( pTerm->eOperator & WO_ALL ); |
+ if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV))==0 ) continue; |
+ if( pTerm->wtFlags & TERM_VNULL ) continue; |
+ nTerm++; |
+ } |
+ |
+ /* If the ORDER BY clause contains only columns in the current |
+ ** virtual table then allocate space for the aOrderBy part of |
+ ** the sqlite3_index_info structure. |
+ */ |
+ nOrderBy = 0; |
+ if( pOrderBy ){ |
+ int n = pOrderBy->nExpr; |
+ for(i=0; i<n; i++){ |
+ Expr *pExpr = pOrderBy->a[i].pExpr; |
+ if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; |
+ } |
+ if( i==n){ |
+ nOrderBy = n; |
+ } |
+ } |
+ |
+ /* Allocate the sqlite3_index_info structure |
+ */ |
+ pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) |
+ + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm |
+ + sizeof(*pIdxOrderBy)*nOrderBy ); |
+ if( pIdxInfo==0 ){ |
+ sqlite3ErrorMsg(pParse, "out of memory"); |
+ return 0; |
+ } |
+ |
+ /* Initialize the structure. The sqlite3_index_info structure contains |
+ ** many fields that are declared "const" to prevent xBestIndex from |
+ ** changing them. We have to do some funky casting in order to |
+ ** initialize those fields. |
+ */ |
+ pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; |
+ pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; |
+ pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; |
+ *(int*)&pIdxInfo->nConstraint = nTerm; |
+ *(int*)&pIdxInfo->nOrderBy = nOrderBy; |
+ *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; |
+ *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; |
+ *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = |
+ pUsage; |
+ |
+ for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ |
+ u8 op; |
+ if( pTerm->leftCursor != pSrc->iCursor ) continue; |
+ assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); |
+ testcase( pTerm->eOperator & WO_IN ); |
+ testcase( pTerm->eOperator & WO_ISNULL ); |
+ testcase( pTerm->eOperator & WO_ALL ); |
+ if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV))==0 ) continue; |
+ if( pTerm->wtFlags & TERM_VNULL ) continue; |
+ pIdxCons[j].iColumn = pTerm->u.leftColumn; |
+ pIdxCons[j].iTermOffset = i; |
+ op = (u8)pTerm->eOperator & WO_ALL; |
+ if( op==WO_IN ) op = WO_EQ; |
+ pIdxCons[j].op = op; |
+ /* The direct assignment in the previous line is possible only because |
+ ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The |
+ ** following asserts verify this fact. */ |
+ assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); |
+ assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); |
+ assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); |
+ assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); |
+ assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); |
+ assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); |
+ assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); |
+ j++; |
+ } |
+ for(i=0; i<nOrderBy; i++){ |
+ Expr *pExpr = pOrderBy->a[i].pExpr; |
+ pIdxOrderBy[i].iColumn = pExpr->iColumn; |
+ pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; |
+ } |
+ |
+ return pIdxInfo; |
+} |
+ |
+/* |
+** The table object reference passed as the second argument to this function |
+** must represent a virtual table. This function invokes the xBestIndex() |
+** method of the virtual table with the sqlite3_index_info object that |
+** comes in as the 3rd argument to this function. |
+** |
+** If an error occurs, pParse is populated with an error message and a |
+** non-zero value is returned. Otherwise, 0 is returned and the output |
+** part of the sqlite3_index_info structure is left populated. |
+** |
+** Whether or not an error is returned, it is the responsibility of the |
+** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates |
+** that this is required. |
+*/ |
+static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ |
+ sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; |
+ int i; |
+ int rc; |
+ |
+ TRACE_IDX_INPUTS(p); |
+ rc = pVtab->pModule->xBestIndex(pVtab, p); |
+ TRACE_IDX_OUTPUTS(p); |
+ |
+ if( rc!=SQLITE_OK ){ |
+ if( rc==SQLITE_NOMEM ){ |
+ pParse->db->mallocFailed = 1; |
+ }else if( !pVtab->zErrMsg ){ |
+ sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); |
+ }else{ |
+ sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); |
+ } |
+ } |
+ sqlite3_free(pVtab->zErrMsg); |
+ pVtab->zErrMsg = 0; |
+ |
+ for(i=0; i<p->nConstraint; i++){ |
+ if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){ |
+ sqlite3ErrorMsg(pParse, |
+ "table %s: xBestIndex returned an invalid plan", pTab->zName); |
+ } |
+ } |
+ |
+ return pParse->nErr; |
+} |
+#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ |
+ |
+ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+/* |
+** Estimate the location of a particular key among all keys in an |
+** index. Store the results in aStat as follows: |
+** |
+** aStat[0] Est. number of rows less than pVal |
+** aStat[1] Est. number of rows equal to pVal |
+** |
+** Return SQLITE_OK on success. |
+*/ |
+static void whereKeyStats( |
+ Parse *pParse, /* Database connection */ |
+ Index *pIdx, /* Index to consider domain of */ |
+ UnpackedRecord *pRec, /* Vector of values to consider */ |
+ int roundUp, /* Round up if true. Round down if false */ |
+ tRowcnt *aStat /* OUT: stats written here */ |
+){ |
+ IndexSample *aSample = pIdx->aSample; |
+ int iCol; /* Index of required stats in anEq[] etc. */ |
+ int iMin = 0; /* Smallest sample not yet tested */ |
+ int i = pIdx->nSample; /* Smallest sample larger than or equal to pRec */ |
+ int iTest; /* Next sample to test */ |
+ int res; /* Result of comparison operation */ |
+ |
+#ifndef SQLITE_DEBUG |
+ UNUSED_PARAMETER( pParse ); |
+#endif |
+ assert( pRec!=0 ); |
+ iCol = pRec->nField - 1; |
+ assert( pIdx->nSample>0 ); |
+ assert( pRec->nField>0 && iCol<pIdx->nSampleCol ); |
+ do{ |
+ iTest = (iMin+i)/2; |
+ res = sqlite3VdbeRecordCompare(aSample[iTest].n, aSample[iTest].p, pRec); |
+ if( res<0 ){ |
+ iMin = iTest+1; |
+ }else{ |
+ i = iTest; |
+ } |
+ }while( res && iMin<i ); |
+ |
+#ifdef SQLITE_DEBUG |
+ /* The following assert statements check that the binary search code |
+ ** above found the right answer. This block serves no purpose other |
+ ** than to invoke the asserts. */ |
+ if( res==0 ){ |
+ /* If (res==0) is true, then sample $i must be equal to pRec */ |
+ assert( i<pIdx->nSample ); |
+ assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) |
+ || pParse->db->mallocFailed ); |
+ }else{ |
+ /* Otherwise, pRec must be smaller than sample $i and larger than |
+ ** sample ($i-1). */ |
+ assert( i==pIdx->nSample |
+ || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 |
+ || pParse->db->mallocFailed ); |
+ assert( i==0 |
+ || sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 |
+ || pParse->db->mallocFailed ); |
+ } |
+#endif /* ifdef SQLITE_DEBUG */ |
+ |
+ /* At this point, aSample[i] is the first sample that is greater than |
+ ** or equal to pVal. Or if i==pIdx->nSample, then all samples are less |
+ ** than pVal. If aSample[i]==pVal, then res==0. |
+ */ |
+ if( res==0 ){ |
+ aStat[0] = aSample[i].anLt[iCol]; |
+ aStat[1] = aSample[i].anEq[iCol]; |
+ }else{ |
+ tRowcnt iLower, iUpper, iGap; |
+ if( i==0 ){ |
+ iLower = 0; |
+ iUpper = aSample[0].anLt[iCol]; |
+ }else{ |
+ i64 nRow0 = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); |
+ iUpper = i>=pIdx->nSample ? nRow0 : aSample[i].anLt[iCol]; |
+ iLower = aSample[i-1].anEq[iCol] + aSample[i-1].anLt[iCol]; |
+ } |
+ aStat[1] = pIdx->aAvgEq[iCol]; |
+ if( iLower>=iUpper ){ |
+ iGap = 0; |
+ }else{ |
+ iGap = iUpper - iLower; |
+ } |
+ if( roundUp ){ |
+ iGap = (iGap*2)/3; |
+ }else{ |
+ iGap = iGap/3; |
+ } |
+ aStat[0] = iLower + iGap; |
+ } |
+} |
+#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
+ |
+/* |
+** If it is not NULL, pTerm is a term that provides an upper or lower |
+** bound on a range scan. Without considering pTerm, it is estimated |
+** that the scan will visit nNew rows. This function returns the number |
+** estimated to be visited after taking pTerm into account. |
+** |
+** If the user explicitly specified a likelihood() value for this term, |
+** then the return value is the likelihood multiplied by the number of |
+** input rows. Otherwise, this function assumes that an "IS NOT NULL" term |
+** has a likelihood of 0.50, and any other term a likelihood of 0.25. |
+*/ |
+static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ |
+ LogEst nRet = nNew; |
+ if( pTerm ){ |
+ if( pTerm->truthProb<=0 ){ |
+ nRet += pTerm->truthProb; |
+ }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ |
+ nRet -= 20; assert( 20==sqlite3LogEst(4) ); |
+ } |
+ } |
+ return nRet; |
+} |
+ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+/* |
+** This function is called to estimate the number of rows visited by a |
+** range-scan on a skip-scan index. For example: |
+** |
+** CREATE INDEX i1 ON t1(a, b, c); |
+** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; |
+** |
+** Value pLoop->nOut is currently set to the estimated number of rows |
+** visited for scanning (a=? AND b=?). This function reduces that estimate |
+** by some factor to account for the (c BETWEEN ? AND ?) expression based |
+** on the stat4 data for the index. this scan will be peformed multiple |
+** times (once for each (a,b) combination that matches a=?) is dealt with |
+** by the caller. |
+** |
+** It does this by scanning through all stat4 samples, comparing values |
+** extracted from pLower and pUpper with the corresponding column in each |
+** sample. If L and U are the number of samples found to be less than or |
+** equal to the values extracted from pLower and pUpper respectively, and |
+** N is the total number of samples, the pLoop->nOut value is adjusted |
+** as follows: |
+** |
+** nOut = nOut * ( min(U - L, 1) / N ) |
+** |
+** If pLower is NULL, or a value cannot be extracted from the term, L is |
+** set to zero. If pUpper is NULL, or a value cannot be extracted from it, |
+** U is set to N. |
+** |
+** Normally, this function sets *pbDone to 1 before returning. However, |
+** if no value can be extracted from either pLower or pUpper (and so the |
+** estimate of the number of rows delivered remains unchanged), *pbDone |
+** is left as is. |
+** |
+** If an error occurs, an SQLite error code is returned. Otherwise, |
+** SQLITE_OK. |
+*/ |
+static int whereRangeSkipScanEst( |
+ Parse *pParse, /* Parsing & code generating context */ |
+ WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ |
+ WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ |
+ WhereLoop *pLoop, /* Update the .nOut value of this loop */ |
+ int *pbDone /* Set to true if at least one expr. value extracted */ |
+){ |
+ Index *p = pLoop->u.btree.pIndex; |
+ int nEq = pLoop->u.btree.nEq; |
+ sqlite3 *db = pParse->db; |
+ int nLower = -1; |
+ int nUpper = p->nSample+1; |
+ int rc = SQLITE_OK; |
+ int iCol = p->aiColumn[nEq]; |
+ u8 aff = iCol>=0 ? p->pTable->aCol[iCol].affinity : SQLITE_AFF_INTEGER; |
+ CollSeq *pColl; |
+ |
+ sqlite3_value *p1 = 0; /* Value extracted from pLower */ |
+ sqlite3_value *p2 = 0; /* Value extracted from pUpper */ |
+ sqlite3_value *pVal = 0; /* Value extracted from record */ |
+ |
+ pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); |
+ if( pLower ){ |
+ rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); |
+ nLower = 0; |
+ } |
+ if( pUpper && rc==SQLITE_OK ){ |
+ rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); |
+ nUpper = p2 ? 0 : p->nSample; |
+ } |
+ |
+ if( p1 || p2 ){ |
+ int i; |
+ int nDiff; |
+ for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ |
+ rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); |
+ if( rc==SQLITE_OK && p1 ){ |
+ int res = sqlite3MemCompare(p1, pVal, pColl); |
+ if( res>=0 ) nLower++; |
+ } |
+ if( rc==SQLITE_OK && p2 ){ |
+ int res = sqlite3MemCompare(p2, pVal, pColl); |
+ if( res>=0 ) nUpper++; |
+ } |
+ } |
+ nDiff = (nUpper - nLower); |
+ if( nDiff<=0 ) nDiff = 1; |
+ |
+ /* If there is both an upper and lower bound specified, and the |
+ ** comparisons indicate that they are close together, use the fallback |
+ ** method (assume that the scan visits 1/64 of the rows) for estimating |
+ ** the number of rows visited. Otherwise, estimate the number of rows |
+ ** using the method described in the header comment for this function. */ |
+ if( nDiff!=1 || pUpper==0 || pLower==0 ){ |
+ int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); |
+ pLoop->nOut -= nAdjust; |
+ *pbDone = 1; |
+ WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", |
+ nLower, nUpper, nAdjust*-1, pLoop->nOut)); |
+ } |
+ |
+ }else{ |
+ assert( *pbDone==0 ); |
+ } |
+ |
+ sqlite3ValueFree(p1); |
+ sqlite3ValueFree(p2); |
+ sqlite3ValueFree(pVal); |
+ |
+ return rc; |
+} |
+#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
+ |
+/* |
+** This function is used to estimate the number of rows that will be visited |
+** by scanning an index for a range of values. The range may have an upper |
+** bound, a lower bound, or both. The WHERE clause terms that set the upper |
+** and lower bounds are represented by pLower and pUpper respectively. For |
+** example, assuming that index p is on t1(a): |
+** |
+** ... FROM t1 WHERE a > ? AND a < ? ... |
+** |_____| |_____| |
+** | | |
+** pLower pUpper |
+** |
+** If either of the upper or lower bound is not present, then NULL is passed in |
+** place of the corresponding WhereTerm. |
+** |
+** The value in (pBuilder->pNew->u.btree.nEq) is the index of the index |
+** column subject to the range constraint. Or, equivalently, the number of |
+** equality constraints optimized by the proposed index scan. For example, |
+** assuming index p is on t1(a, b), and the SQL query is: |
+** |
+** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... |
+** |
+** then nEq is set to 1 (as the range restricted column, b, is the second |
+** left-most column of the index). Or, if the query is: |
+** |
+** ... FROM t1 WHERE a > ? AND a < ? ... |
+** |
+** then nEq is set to 0. |
+** |
+** When this function is called, *pnOut is set to the sqlite3LogEst() of the |
+** number of rows that the index scan is expected to visit without |
+** considering the range constraints. If nEq is 0, this is the number of |
+** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) |
+** to account for the range constraints pLower and pUpper. |
+** |
+** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be |
+** used, a single range inequality reduces the search space by a factor of 4. |
+** and a pair of constraints (x>? AND x<?) reduces the expected number of |
+** rows visited by a factor of 64. |
+*/ |
+static int whereRangeScanEst( |
+ Parse *pParse, /* Parsing & code generating context */ |
+ WhereLoopBuilder *pBuilder, |
+ WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ |
+ WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ |
+ WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ |
+){ |
+ int rc = SQLITE_OK; |
+ int nOut = pLoop->nOut; |
+ LogEst nNew; |
+ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ Index *p = pLoop->u.btree.pIndex; |
+ int nEq = pLoop->u.btree.nEq; |
+ |
+ if( p->nSample>0 |
+ && nEq<p->nSampleCol |
+ && OptimizationEnabled(pParse->db, SQLITE_Stat3) |
+ ){ |
+ if( nEq==pBuilder->nRecValid ){ |
+ UnpackedRecord *pRec = pBuilder->pRec; |
+ tRowcnt a[2]; |
+ u8 aff; |
+ |
+ /* Variable iLower will be set to the estimate of the number of rows in |
+ ** the index that are less than the lower bound of the range query. The |
+ ** lower bound being the concatenation of $P and $L, where $P is the |
+ ** key-prefix formed by the nEq values matched against the nEq left-most |
+ ** columns of the index, and $L is the value in pLower. |
+ ** |
+ ** Or, if pLower is NULL or $L cannot be extracted from it (because it |
+ ** is not a simple variable or literal value), the lower bound of the |
+ ** range is $P. Due to a quirk in the way whereKeyStats() works, even |
+ ** if $L is available, whereKeyStats() is called for both ($P) and |
+ ** ($P:$L) and the larger of the two returned values used. |
+ ** |
+ ** Similarly, iUpper is to be set to the estimate of the number of rows |
+ ** less than the upper bound of the range query. Where the upper bound |
+ ** is either ($P) or ($P:$U). Again, even if $U is available, both values |
+ ** of iUpper are requested of whereKeyStats() and the smaller used. |
+ */ |
+ tRowcnt iLower; |
+ tRowcnt iUpper; |
+ |
+ if( pRec ){ |
+ testcase( pRec->nField!=pBuilder->nRecValid ); |
+ pRec->nField = pBuilder->nRecValid; |
+ } |
+ if( nEq==p->nKeyCol ){ |
+ aff = SQLITE_AFF_INTEGER; |
+ }else{ |
+ aff = p->pTable->aCol[p->aiColumn[nEq]].affinity; |
+ } |
+ /* Determine iLower and iUpper using ($P) only. */ |
+ if( nEq==0 ){ |
+ iLower = 0; |
+ iUpper = sqlite3LogEstToInt(p->aiRowLogEst[0]); |
+ }else{ |
+ /* Note: this call could be optimized away - since the same values must |
+ ** have been requested when testing key $P in whereEqualScanEst(). */ |
+ whereKeyStats(pParse, p, pRec, 0, a); |
+ iLower = a[0]; |
+ iUpper = a[0] + a[1]; |
+ } |
+ |
+ assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); |
+ assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); |
+ assert( p->aSortOrder!=0 ); |
+ if( p->aSortOrder[nEq] ){ |
+ /* The roles of pLower and pUpper are swapped for a DESC index */ |
+ SWAP(WhereTerm*, pLower, pUpper); |
+ } |
+ |
+ /* If possible, improve on the iLower estimate using ($P:$L). */ |
+ if( pLower ){ |
+ int bOk; /* True if value is extracted from pExpr */ |
+ Expr *pExpr = pLower->pExpr->pRight; |
+ rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); |
+ if( rc==SQLITE_OK && bOk ){ |
+ tRowcnt iNew; |
+ whereKeyStats(pParse, p, pRec, 0, a); |
+ iNew = a[0] + ((pLower->eOperator & (WO_GT|WO_LE)) ? a[1] : 0); |
+ if( iNew>iLower ) iLower = iNew; |
+ nOut--; |
+ pLower = 0; |
+ } |
+ } |
+ |
+ /* If possible, improve on the iUpper estimate using ($P:$U). */ |
+ if( pUpper ){ |
+ int bOk; /* True if value is extracted from pExpr */ |
+ Expr *pExpr = pUpper->pExpr->pRight; |
+ rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); |
+ if( rc==SQLITE_OK && bOk ){ |
+ tRowcnt iNew; |
+ whereKeyStats(pParse, p, pRec, 1, a); |
+ iNew = a[0] + ((pUpper->eOperator & (WO_GT|WO_LE)) ? a[1] : 0); |
+ if( iNew<iUpper ) iUpper = iNew; |
+ nOut--; |
+ pUpper = 0; |
+ } |
+ } |
+ |
+ pBuilder->pRec = pRec; |
+ if( rc==SQLITE_OK ){ |
+ if( iUpper>iLower ){ |
+ nNew = sqlite3LogEst(iUpper - iLower); |
+ }else{ |
+ nNew = 10; assert( 10==sqlite3LogEst(2) ); |
+ } |
+ if( nNew<nOut ){ |
+ nOut = nNew; |
+ } |
+ WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", |
+ (u32)iLower, (u32)iUpper, nOut)); |
+ } |
+ }else{ |
+ int bDone = 0; |
+ rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); |
+ if( bDone ) return rc; |
+ } |
+ } |
+#else |
+ UNUSED_PARAMETER(pParse); |
+ UNUSED_PARAMETER(pBuilder); |
+ assert( pLower || pUpper ); |
+#endif |
+ assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); |
+ nNew = whereRangeAdjust(pLower, nOut); |
+ nNew = whereRangeAdjust(pUpper, nNew); |
+ |
+ /* TUNING: If there is both an upper and lower limit, assume the range is |
+ ** reduced by an additional 75%. This means that, by default, an open-ended |
+ ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the |
+ ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to |
+ ** match 1/64 of the index. */ |
+ if( pLower && pUpper ) nNew -= 20; |
+ |
+ nOut -= (pLower!=0) + (pUpper!=0); |
+ if( nNew<10 ) nNew = 10; |
+ if( nNew<nOut ) nOut = nNew; |
+#if defined(WHERETRACE_ENABLED) |
+ if( pLoop->nOut>nOut ){ |
+ WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", |
+ pLoop->nOut, nOut)); |
+ } |
+#endif |
+ pLoop->nOut = (LogEst)nOut; |
+ return rc; |
+} |
+ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+/* |
+** Estimate the number of rows that will be returned based on |
+** an equality constraint x=VALUE and where that VALUE occurs in |
+** the histogram data. This only works when x is the left-most |
+** column of an index and sqlite_stat3 histogram data is available |
+** for that index. When pExpr==NULL that means the constraint is |
+** "x IS NULL" instead of "x=VALUE". |
+** |
+** Write the estimated row count into *pnRow and return SQLITE_OK. |
+** If unable to make an estimate, leave *pnRow unchanged and return |
+** non-zero. |
+** |
+** This routine can fail if it is unable to load a collating sequence |
+** required for string comparison, or if unable to allocate memory |
+** for a UTF conversion required for comparison. The error is stored |
+** in the pParse structure. |
+*/ |
+static int whereEqualScanEst( |
+ Parse *pParse, /* Parsing & code generating context */ |
+ WhereLoopBuilder *pBuilder, |
+ Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ |
+ tRowcnt *pnRow /* Write the revised row estimate here */ |
+){ |
+ Index *p = pBuilder->pNew->u.btree.pIndex; |
+ int nEq = pBuilder->pNew->u.btree.nEq; |
+ UnpackedRecord *pRec = pBuilder->pRec; |
+ u8 aff; /* Column affinity */ |
+ int rc; /* Subfunction return code */ |
+ tRowcnt a[2]; /* Statistics */ |
+ int bOk; |
+ |
+ assert( nEq>=1 ); |
+ assert( nEq<=p->nColumn ); |
+ assert( p->aSample!=0 ); |
+ assert( p->nSample>0 ); |
+ assert( pBuilder->nRecValid<nEq ); |
+ |
+ /* If values are not available for all fields of the index to the left |
+ ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ |
+ if( pBuilder->nRecValid<(nEq-1) ){ |
+ return SQLITE_NOTFOUND; |
+ } |
+ |
+ /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() |
+ ** below would return the same value. */ |
+ if( nEq>=p->nColumn ){ |
+ *pnRow = 1; |
+ return SQLITE_OK; |
+ } |
+ |
+ aff = p->pTable->aCol[p->aiColumn[nEq-1]].affinity; |
+ rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq-1, &bOk); |
+ pBuilder->pRec = pRec; |
+ if( rc!=SQLITE_OK ) return rc; |
+ if( bOk==0 ) return SQLITE_NOTFOUND; |
+ pBuilder->nRecValid = nEq; |
+ |
+ whereKeyStats(pParse, p, pRec, 0, a); |
+ WHERETRACE(0x10,("equality scan regions: %d\n", (int)a[1])); |
+ *pnRow = a[1]; |
+ |
+ return rc; |
+} |
+#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
+ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+/* |
+** Estimate the number of rows that will be returned based on |
+** an IN constraint where the right-hand side of the IN operator |
+** is a list of values. Example: |
+** |
+** WHERE x IN (1,2,3,4) |
+** |
+** Write the estimated row count into *pnRow and return SQLITE_OK. |
+** If unable to make an estimate, leave *pnRow unchanged and return |
+** non-zero. |
+** |
+** This routine can fail if it is unable to load a collating sequence |
+** required for string comparison, or if unable to allocate memory |
+** for a UTF conversion required for comparison. The error is stored |
+** in the pParse structure. |
+*/ |
+static int whereInScanEst( |
+ Parse *pParse, /* Parsing & code generating context */ |
+ WhereLoopBuilder *pBuilder, |
+ ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ |
+ tRowcnt *pnRow /* Write the revised row estimate here */ |
+){ |
+ Index *p = pBuilder->pNew->u.btree.pIndex; |
+ i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); |
+ int nRecValid = pBuilder->nRecValid; |
+ int rc = SQLITE_OK; /* Subfunction return code */ |
+ tRowcnt nEst; /* Number of rows for a single term */ |
+ tRowcnt nRowEst = 0; /* New estimate of the number of rows */ |
+ int i; /* Loop counter */ |
+ |
+ assert( p->aSample!=0 ); |
+ for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ |
+ nEst = nRow0; |
+ rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); |
+ nRowEst += nEst; |
+ pBuilder->nRecValid = nRecValid; |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ if( nRowEst > nRow0 ) nRowEst = nRow0; |
+ *pnRow = nRowEst; |
+ WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); |
+ } |
+ assert( pBuilder->nRecValid==nRecValid ); |
+ return rc; |
+} |
+#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
+ |
+/* |
+** Disable a term in the WHERE clause. Except, do not disable the term |
+** if it controls a LEFT OUTER JOIN and it did not originate in the ON |
+** or USING clause of that join. |
+** |
+** Consider the term t2.z='ok' in the following queries: |
+** |
+** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' |
+** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' |
+** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' |
+** |
+** The t2.z='ok' is disabled in the in (2) because it originates |
+** in the ON clause. The term is disabled in (3) because it is not part |
+** of a LEFT OUTER JOIN. In (1), the term is not disabled. |
+** |
+** Disabling a term causes that term to not be tested in the inner loop |
+** of the join. Disabling is an optimization. When terms are satisfied |
+** by indices, we disable them to prevent redundant tests in the inner |
+** loop. We would get the correct results if nothing were ever disabled, |
+** but joins might run a little slower. The trick is to disable as much |
+** as we can without disabling too much. If we disabled in (1), we'd get |
+** the wrong answer. See ticket #813. |
+*/ |
+static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ |
+ if( pTerm |
+ && (pTerm->wtFlags & TERM_CODED)==0 |
+ && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) |
+ && (pLevel->notReady & pTerm->prereqAll)==0 |
+ ){ |
+ pTerm->wtFlags |= TERM_CODED; |
+ if( pTerm->iParent>=0 ){ |
+ WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; |
+ if( (--pOther->nChild)==0 ){ |
+ disableTerm(pLevel, pOther); |
+ } |
+ } |
+ } |
+} |
+ |
+/* |
+** Code an OP_Affinity opcode to apply the column affinity string zAff |
+** to the n registers starting at base. |
+** |
+** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the |
+** beginning and end of zAff are ignored. If all entries in zAff are |
+** SQLITE_AFF_NONE, then no code gets generated. |
+** |
+** This routine makes its own copy of zAff so that the caller is free |
+** to modify zAff after this routine returns. |
+*/ |
+static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ |
+ Vdbe *v = pParse->pVdbe; |
+ if( zAff==0 ){ |
+ assert( pParse->db->mallocFailed ); |
+ return; |
+ } |
+ assert( v!=0 ); |
+ |
+ /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning |
+ ** and end of the affinity string. |
+ */ |
+ while( n>0 && zAff[0]==SQLITE_AFF_NONE ){ |
+ n--; |
+ base++; |
+ zAff++; |
+ } |
+ while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){ |
+ n--; |
+ } |
+ |
+ /* Code the OP_Affinity opcode if there is anything left to do. */ |
+ if( n>0 ){ |
+ sqlite3VdbeAddOp2(v, OP_Affinity, base, n); |
+ sqlite3VdbeChangeP4(v, -1, zAff, n); |
+ sqlite3ExprCacheAffinityChange(pParse, base, n); |
+ } |
+} |
+ |
+ |
+/* |
+** Generate code for a single equality term of the WHERE clause. An equality |
+** term can be either X=expr or X IN (...). pTerm is the term to be |
+** coded. |
+** |
+** The current value for the constraint is left in register iReg. |
+** |
+** For a constraint of the form X=expr, the expression is evaluated and its |
+** result is left on the stack. For constraints of the form X IN (...) |
+** this routine sets up a loop that will iterate over all values of X. |
+*/ |
+static int codeEqualityTerm( |
+ Parse *pParse, /* The parsing context */ |
+ WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ |
+ WhereLevel *pLevel, /* The level of the FROM clause we are working on */ |
+ int iEq, /* Index of the equality term within this level */ |
+ int bRev, /* True for reverse-order IN operations */ |
+ int iTarget /* Attempt to leave results in this register */ |
+){ |
+ Expr *pX = pTerm->pExpr; |
+ Vdbe *v = pParse->pVdbe; |
+ int iReg; /* Register holding results */ |
+ |
+ assert( iTarget>0 ); |
+ if( pX->op==TK_EQ ){ |
+ iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); |
+ }else if( pX->op==TK_ISNULL ){ |
+ iReg = iTarget; |
+ sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); |
+#ifndef SQLITE_OMIT_SUBQUERY |
+ }else{ |
+ int eType; |
+ int iTab; |
+ struct InLoop *pIn; |
+ WhereLoop *pLoop = pLevel->pWLoop; |
+ |
+ if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 |
+ && pLoop->u.btree.pIndex!=0 |
+ && pLoop->u.btree.pIndex->aSortOrder[iEq] |
+ ){ |
+ testcase( iEq==0 ); |
+ testcase( bRev ); |
+ bRev = !bRev; |
+ } |
+ assert( pX->op==TK_IN ); |
+ iReg = iTarget; |
+ eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0); |
+ if( eType==IN_INDEX_INDEX_DESC ){ |
+ testcase( bRev ); |
+ bRev = !bRev; |
+ } |
+ iTab = pX->iTable; |
+ sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); |
+ VdbeCoverageIf(v, bRev); |
+ VdbeCoverageIf(v, !bRev); |
+ assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); |
+ pLoop->wsFlags |= WHERE_IN_ABLE; |
+ if( pLevel->u.in.nIn==0 ){ |
+ pLevel->addrNxt = sqlite3VdbeMakeLabel(v); |
+ } |
+ pLevel->u.in.nIn++; |
+ pLevel->u.in.aInLoop = |
+ sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, |
+ sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); |
+ pIn = pLevel->u.in.aInLoop; |
+ if( pIn ){ |
+ pIn += pLevel->u.in.nIn - 1; |
+ pIn->iCur = iTab; |
+ if( eType==IN_INDEX_ROWID ){ |
+ pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); |
+ }else{ |
+ pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); |
+ } |
+ pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen; |
+ sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v); |
+ }else{ |
+ pLevel->u.in.nIn = 0; |
+ } |
+#endif |
+ } |
+ disableTerm(pLevel, pTerm); |
+ return iReg; |
+} |
+ |
+/* |
+** Generate code that will evaluate all == and IN constraints for an |
+** index scan. |
+** |
+** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). |
+** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 |
+** The index has as many as three equality constraints, but in this |
+** example, the third "c" value is an inequality. So only two |
+** constraints are coded. This routine will generate code to evaluate |
+** a==5 and b IN (1,2,3). The current values for a and b will be stored |
+** in consecutive registers and the index of the first register is returned. |
+** |
+** In the example above nEq==2. But this subroutine works for any value |
+** of nEq including 0. If nEq==0, this routine is nearly a no-op. |
+** The only thing it does is allocate the pLevel->iMem memory cell and |
+** compute the affinity string. |
+** |
+** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints |
+** are == or IN and are covered by the nEq. nExtraReg is 1 if there is |
+** an inequality constraint (such as the "c>=5 AND c<10" in the example) that |
+** occurs after the nEq quality constraints. |
+** |
+** This routine allocates a range of nEq+nExtraReg memory cells and returns |
+** the index of the first memory cell in that range. The code that |
+** calls this routine will use that memory range to store keys for |
+** start and termination conditions of the loop. |
+** key value of the loop. If one or more IN operators appear, then |
+** this routine allocates an additional nEq memory cells for internal |
+** use. |
+** |
+** Before returning, *pzAff is set to point to a buffer containing a |
+** copy of the column affinity string of the index allocated using |
+** sqlite3DbMalloc(). Except, entries in the copy of the string associated |
+** with equality constraints that use NONE affinity are set to |
+** SQLITE_AFF_NONE. This is to deal with SQL such as the following: |
+** |
+** CREATE TABLE t1(a TEXT PRIMARY KEY, b); |
+** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; |
+** |
+** In the example above, the index on t1(a) has TEXT affinity. But since |
+** the right hand side of the equality constraint (t2.b) has NONE affinity, |
+** no conversion should be attempted before using a t2.b value as part of |
+** a key to search the index. Hence the first byte in the returned affinity |
+** string in this example would be set to SQLITE_AFF_NONE. |
+*/ |
+static int codeAllEqualityTerms( |
+ Parse *pParse, /* Parsing context */ |
+ WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ |
+ int bRev, /* Reverse the order of IN operators */ |
+ int nExtraReg, /* Number of extra registers to allocate */ |
+ char **pzAff /* OUT: Set to point to affinity string */ |
+){ |
+ u16 nEq; /* The number of == or IN constraints to code */ |
+ u16 nSkip; /* Number of left-most columns to skip */ |
+ Vdbe *v = pParse->pVdbe; /* The vm under construction */ |
+ Index *pIdx; /* The index being used for this loop */ |
+ WhereTerm *pTerm; /* A single constraint term */ |
+ WhereLoop *pLoop; /* The WhereLoop object */ |
+ int j; /* Loop counter */ |
+ int regBase; /* Base register */ |
+ int nReg; /* Number of registers to allocate */ |
+ char *zAff; /* Affinity string to return */ |
+ |
+ /* This module is only called on query plans that use an index. */ |
+ pLoop = pLevel->pWLoop; |
+ assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); |
+ nEq = pLoop->u.btree.nEq; |
+ nSkip = pLoop->u.btree.nSkip; |
+ pIdx = pLoop->u.btree.pIndex; |
+ assert( pIdx!=0 ); |
+ |
+ /* Figure out how many memory cells we will need then allocate them. |
+ */ |
+ regBase = pParse->nMem + 1; |
+ nReg = pLoop->u.btree.nEq + nExtraReg; |
+ pParse->nMem += nReg; |
+ |
+ zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx)); |
+ if( !zAff ){ |
+ pParse->db->mallocFailed = 1; |
+ } |
+ |
+ if( nSkip ){ |
+ int iIdxCur = pLevel->iIdxCur; |
+ sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); |
+ VdbeCoverageIf(v, bRev==0); |
+ VdbeCoverageIf(v, bRev!=0); |
+ VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); |
+ j = sqlite3VdbeAddOp0(v, OP_Goto); |
+ pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), |
+ iIdxCur, 0, regBase, nSkip); |
+ VdbeCoverageIf(v, bRev==0); |
+ VdbeCoverageIf(v, bRev!=0); |
+ sqlite3VdbeJumpHere(v, j); |
+ for(j=0; j<nSkip; j++){ |
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); |
+ assert( pIdx->aiColumn[j]>=0 ); |
+ VdbeComment((v, "%s", pIdx->pTable->aCol[pIdx->aiColumn[j]].zName)); |
+ } |
+ } |
+ |
+ /* Evaluate the equality constraints |
+ */ |
+ assert( zAff==0 || (int)strlen(zAff)>=nEq ); |
+ for(j=nSkip; j<nEq; j++){ |
+ int r1; |
+ pTerm = pLoop->aLTerm[j]; |
+ assert( pTerm!=0 ); |
+ /* The following testcase is true for indices with redundant columns. |
+ ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ |
+ testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); |
+ testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
+ r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); |
+ if( r1!=regBase+j ){ |
+ if( nReg==1 ){ |
+ sqlite3ReleaseTempReg(pParse, regBase); |
+ regBase = r1; |
+ }else{ |
+ sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); |
+ } |
+ } |
+ testcase( pTerm->eOperator & WO_ISNULL ); |
+ testcase( pTerm->eOperator & WO_IN ); |
+ if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ |
+ Expr *pRight = pTerm->pExpr->pRight; |
+ if( sqlite3ExprCanBeNull(pRight) ){ |
+ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); |
+ VdbeCoverage(v); |
+ } |
+ if( zAff ){ |
+ if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){ |
+ zAff[j] = SQLITE_AFF_NONE; |
+ } |
+ if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ |
+ zAff[j] = SQLITE_AFF_NONE; |
+ } |
+ } |
+ } |
+ } |
+ *pzAff = zAff; |
+ return regBase; |
+} |
+ |
+#ifndef SQLITE_OMIT_EXPLAIN |
+/* |
+** This routine is a helper for explainIndexRange() below |
+** |
+** pStr holds the text of an expression that we are building up one term |
+** at a time. This routine adds a new term to the end of the expression. |
+** Terms are separated by AND so add the "AND" text for second and subsequent |
+** terms only. |
+*/ |
+static void explainAppendTerm( |
+ StrAccum *pStr, /* The text expression being built */ |
+ int iTerm, /* Index of this term. First is zero */ |
+ const char *zColumn, /* Name of the column */ |
+ const char *zOp /* Name of the operator */ |
+){ |
+ if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5); |
+ sqlite3StrAccumAppendAll(pStr, zColumn); |
+ sqlite3StrAccumAppend(pStr, zOp, 1); |
+ sqlite3StrAccumAppend(pStr, "?", 1); |
+} |
+ |
+/* |
+** Argument pLevel describes a strategy for scanning table pTab. This |
+** function appends text to pStr that describes the subset of table |
+** rows scanned by the strategy in the form of an SQL expression. |
+** |
+** For example, if the query: |
+** |
+** SELECT * FROM t1 WHERE a=1 AND b>2; |
+** |
+** is run and there is an index on (a, b), then this function returns a |
+** string similar to: |
+** |
+** "a=? AND b>?" |
+*/ |
+static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop, Table *pTab){ |
+ Index *pIndex = pLoop->u.btree.pIndex; |
+ u16 nEq = pLoop->u.btree.nEq; |
+ u16 nSkip = pLoop->u.btree.nSkip; |
+ int i, j; |
+ Column *aCol = pTab->aCol; |
+ i16 *aiColumn = pIndex->aiColumn; |
+ |
+ if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; |
+ sqlite3StrAccumAppend(pStr, " (", 2); |
+ for(i=0; i<nEq; i++){ |
+ char *z = aiColumn[i] < 0 ? "rowid" : aCol[aiColumn[i]].zName; |
+ if( i>=nSkip ){ |
+ explainAppendTerm(pStr, i, z, "="); |
+ }else{ |
+ if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5); |
+ sqlite3XPrintf(pStr, 0, "ANY(%s)", z); |
+ } |
+ } |
+ |
+ j = i; |
+ if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ |
+ char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName; |
+ explainAppendTerm(pStr, i++, z, ">"); |
+ } |
+ if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ |
+ char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName; |
+ explainAppendTerm(pStr, i, z, "<"); |
+ } |
+ sqlite3StrAccumAppend(pStr, ")", 1); |
+} |
+ |
+/* |
+** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN |
+** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single |
+** record is added to the output to describe the table scan strategy in |
+** pLevel. |
+*/ |
+static void explainOneScan( |
+ Parse *pParse, /* Parse context */ |
+ SrcList *pTabList, /* Table list this loop refers to */ |
+ WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ |
+ int iLevel, /* Value for "level" column of output */ |
+ int iFrom, /* Value for "from" column of output */ |
+ u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ |
+){ |
+#ifndef SQLITE_DEBUG |
+ if( pParse->explain==2 ) |
+#endif |
+ { |
+ struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; |
+ Vdbe *v = pParse->pVdbe; /* VM being constructed */ |
+ sqlite3 *db = pParse->db; /* Database handle */ |
+ int iId = pParse->iSelectId; /* Select id (left-most output column) */ |
+ int isSearch; /* True for a SEARCH. False for SCAN. */ |
+ WhereLoop *pLoop; /* The controlling WhereLoop object */ |
+ u32 flags; /* Flags that describe this loop */ |
+ char *zMsg; /* Text to add to EQP output */ |
+ StrAccum str; /* EQP output string */ |
+ char zBuf[100]; /* Initial space for EQP output string */ |
+ |
+ pLoop = pLevel->pWLoop; |
+ flags = pLoop->wsFlags; |
+ if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return; |
+ |
+ isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 |
+ || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) |
+ || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); |
+ |
+ sqlite3StrAccumInit(&str, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); |
+ str.db = db; |
+ sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN"); |
+ if( pItem->pSelect ){ |
+ sqlite3XPrintf(&str, 0, " SUBQUERY %d", pItem->iSelectId); |
+ }else{ |
+ sqlite3XPrintf(&str, 0, " TABLE %s", pItem->zName); |
+ } |
+ |
+ if( pItem->zAlias ){ |
+ sqlite3XPrintf(&str, 0, " AS %s", pItem->zAlias); |
+ } |
+ if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ |
+ const char *zFmt = 0; |
+ Index *pIdx; |
+ |
+ assert( pLoop->u.btree.pIndex!=0 ); |
+ pIdx = pLoop->u.btree.pIndex; |
+ assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); |
+ if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ |
+ if( isSearch ){ |
+ zFmt = "PRIMARY KEY"; |
+ } |
+ }else if( flags & WHERE_AUTO_INDEX ){ |
+ zFmt = "AUTOMATIC COVERING INDEX"; |
+ }else if( flags & WHERE_IDX_ONLY ){ |
+ zFmt = "COVERING INDEX %s"; |
+ }else{ |
+ zFmt = "INDEX %s"; |
+ } |
+ if( zFmt ){ |
+ sqlite3StrAccumAppend(&str, " USING ", 7); |
+ sqlite3XPrintf(&str, 0, zFmt, pIdx->zName); |
+ explainIndexRange(&str, pLoop, pItem->pTab); |
+ } |
+ }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ |
+ const char *zRange; |
+ if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ |
+ zRange = "(rowid=?)"; |
+ }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ |
+ zRange = "(rowid>? AND rowid<?)"; |
+ }else if( flags&WHERE_BTM_LIMIT ){ |
+ zRange = "(rowid>?)"; |
+ }else{ |
+ assert( flags&WHERE_TOP_LIMIT); |
+ zRange = "(rowid<?)"; |
+ } |
+ sqlite3StrAccumAppendAll(&str, " USING INTEGER PRIMARY KEY "); |
+ sqlite3StrAccumAppendAll(&str, zRange); |
+ } |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ |
+ sqlite3XPrintf(&str, 0, " VIRTUAL TABLE INDEX %d:%s", |
+ pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); |
+ } |
+#endif |
+#ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS |
+ if( pLoop->nOut>=10 ){ |
+ sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); |
+ }else{ |
+ sqlite3StrAccumAppend(&str, " (~1 row)", 9); |
+ } |
+#endif |
+ zMsg = sqlite3StrAccumFinish(&str); |
+ sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC); |
+ } |
+} |
+#else |
+# define explainOneScan(u,v,w,x,y,z) |
+#endif /* SQLITE_OMIT_EXPLAIN */ |
+ |
+ |
+/* |
+** Generate code for the start of the iLevel-th loop in the WHERE clause |
+** implementation described by pWInfo. |
+*/ |
+static Bitmask codeOneLoopStart( |
+ WhereInfo *pWInfo, /* Complete information about the WHERE clause */ |
+ int iLevel, /* Which level of pWInfo->a[] should be coded */ |
+ Bitmask notReady /* Which tables are currently available */ |
+){ |
+ int j, k; /* Loop counters */ |
+ int iCur; /* The VDBE cursor for the table */ |
+ int addrNxt; /* Where to jump to continue with the next IN case */ |
+ int omitTable; /* True if we use the index only */ |
+ int bRev; /* True if we need to scan in reverse order */ |
+ WhereLevel *pLevel; /* The where level to be coded */ |
+ WhereLoop *pLoop; /* The WhereLoop object being coded */ |
+ WhereClause *pWC; /* Decomposition of the entire WHERE clause */ |
+ WhereTerm *pTerm; /* A WHERE clause term */ |
+ Parse *pParse; /* Parsing context */ |
+ sqlite3 *db; /* Database connection */ |
+ Vdbe *v; /* The prepared stmt under constructions */ |
+ struct SrcList_item *pTabItem; /* FROM clause term being coded */ |
+ int addrBrk; /* Jump here to break out of the loop */ |
+ int addrCont; /* Jump here to continue with next cycle */ |
+ int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ |
+ int iReleaseReg = 0; /* Temp register to free before returning */ |
+ |
+ pParse = pWInfo->pParse; |
+ v = pParse->pVdbe; |
+ pWC = &pWInfo->sWC; |
+ db = pParse->db; |
+ pLevel = &pWInfo->a[iLevel]; |
+ pLoop = pLevel->pWLoop; |
+ pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; |
+ iCur = pTabItem->iCursor; |
+ pLevel->notReady = notReady & ~getMask(&pWInfo->sMaskSet, iCur); |
+ bRev = (pWInfo->revMask>>iLevel)&1; |
+ omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 |
+ && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0; |
+ VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); |
+ |
+ /* Create labels for the "break" and "continue" instructions |
+ ** for the current loop. Jump to addrBrk to break out of a loop. |
+ ** Jump to cont to go immediately to the next iteration of the |
+ ** loop. |
+ ** |
+ ** When there is an IN operator, we also have a "addrNxt" label that |
+ ** means to continue with the next IN value combination. When |
+ ** there are no IN operators in the constraints, the "addrNxt" label |
+ ** is the same as "addrBrk". |
+ */ |
+ addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); |
+ addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); |
+ |
+ /* If this is the right table of a LEFT OUTER JOIN, allocate and |
+ ** initialize a memory cell that records if this table matches any |
+ ** row of the left table of the join. |
+ */ |
+ if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ |
+ pLevel->iLeftJoin = ++pParse->nMem; |
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); |
+ VdbeComment((v, "init LEFT JOIN no-match flag")); |
+ } |
+ |
+ /* Special case of a FROM clause subquery implemented as a co-routine */ |
+ if( pTabItem->viaCoroutine ){ |
+ int regYield = pTabItem->regReturn; |
+ sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); |
+ pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); |
+ VdbeCoverage(v); |
+ VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); |
+ pLevel->op = OP_Goto; |
+ }else |
+ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ |
+ /* Case 1: The table is a virtual-table. Use the VFilter and VNext |
+ ** to access the data. |
+ */ |
+ int iReg; /* P3 Value for OP_VFilter */ |
+ int addrNotFound; |
+ int nConstraint = pLoop->nLTerm; |
+ |
+ sqlite3ExprCachePush(pParse); |
+ iReg = sqlite3GetTempRange(pParse, nConstraint+2); |
+ addrNotFound = pLevel->addrBrk; |
+ for(j=0; j<nConstraint; j++){ |
+ int iTarget = iReg+j+2; |
+ pTerm = pLoop->aLTerm[j]; |
+ if( pTerm==0 ) continue; |
+ if( pTerm->eOperator & WO_IN ){ |
+ codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); |
+ addrNotFound = pLevel->addrNxt; |
+ }else{ |
+ sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget); |
+ } |
+ } |
+ sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); |
+ sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); |
+ sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, |
+ pLoop->u.vtab.idxStr, |
+ pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC); |
+ VdbeCoverage(v); |
+ pLoop->u.vtab.needFree = 0; |
+ for(j=0; j<nConstraint && j<16; j++){ |
+ if( (pLoop->u.vtab.omitMask>>j)&1 ){ |
+ disableTerm(pLevel, pLoop->aLTerm[j]); |
+ } |
+ } |
+ pLevel->op = OP_VNext; |
+ pLevel->p1 = iCur; |
+ pLevel->p2 = sqlite3VdbeCurrentAddr(v); |
+ sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); |
+ sqlite3ExprCachePop(pParse); |
+ }else |
+#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
+ |
+ if( (pLoop->wsFlags & WHERE_IPK)!=0 |
+ && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 |
+ ){ |
+ /* Case 2: We can directly reference a single row using an |
+ ** equality comparison against the ROWID field. Or |
+ ** we reference multiple rows using a "rowid IN (...)" |
+ ** construct. |
+ */ |
+ assert( pLoop->u.btree.nEq==1 ); |
+ pTerm = pLoop->aLTerm[0]; |
+ assert( pTerm!=0 ); |
+ assert( pTerm->pExpr!=0 ); |
+ assert( omitTable==0 ); |
+ testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
+ iReleaseReg = ++pParse->nMem; |
+ iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); |
+ if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); |
+ addrNxt = pLevel->addrNxt; |
+ sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v); |
+ sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); |
+ VdbeCoverage(v); |
+ sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1); |
+ sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); |
+ VdbeComment((v, "pk")); |
+ pLevel->op = OP_Noop; |
+ }else if( (pLoop->wsFlags & WHERE_IPK)!=0 |
+ && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 |
+ ){ |
+ /* Case 3: We have an inequality comparison against the ROWID field. |
+ */ |
+ int testOp = OP_Noop; |
+ int start; |
+ int memEndValue = 0; |
+ WhereTerm *pStart, *pEnd; |
+ |
+ assert( omitTable==0 ); |
+ j = 0; |
+ pStart = pEnd = 0; |
+ if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; |
+ if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; |
+ assert( pStart!=0 || pEnd!=0 ); |
+ if( bRev ){ |
+ pTerm = pStart; |
+ pStart = pEnd; |
+ pEnd = pTerm; |
+ } |
+ if( pStart ){ |
+ Expr *pX; /* The expression that defines the start bound */ |
+ int r1, rTemp; /* Registers for holding the start boundary */ |
+ |
+ /* The following constant maps TK_xx codes into corresponding |
+ ** seek opcodes. It depends on a particular ordering of TK_xx |
+ */ |
+ const u8 aMoveOp[] = { |
+ /* TK_GT */ OP_SeekGT, |
+ /* TK_LE */ OP_SeekLE, |
+ /* TK_LT */ OP_SeekLT, |
+ /* TK_GE */ OP_SeekGE |
+ }; |
+ assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ |
+ assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ |
+ assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ |
+ |
+ assert( (pStart->wtFlags & TERM_VNULL)==0 ); |
+ testcase( pStart->wtFlags & TERM_VIRTUAL ); |
+ pX = pStart->pExpr; |
+ assert( pX!=0 ); |
+ testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ |
+ r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); |
+ sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); |
+ VdbeComment((v, "pk")); |
+ VdbeCoverageIf(v, pX->op==TK_GT); |
+ VdbeCoverageIf(v, pX->op==TK_LE); |
+ VdbeCoverageIf(v, pX->op==TK_LT); |
+ VdbeCoverageIf(v, pX->op==TK_GE); |
+ sqlite3ExprCacheAffinityChange(pParse, r1, 1); |
+ sqlite3ReleaseTempReg(pParse, rTemp); |
+ disableTerm(pLevel, pStart); |
+ }else{ |
+ sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); |
+ VdbeCoverageIf(v, bRev==0); |
+ VdbeCoverageIf(v, bRev!=0); |
+ } |
+ if( pEnd ){ |
+ Expr *pX; |
+ pX = pEnd->pExpr; |
+ assert( pX!=0 ); |
+ assert( (pEnd->wtFlags & TERM_VNULL)==0 ); |
+ testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ |
+ testcase( pEnd->wtFlags & TERM_VIRTUAL ); |
+ memEndValue = ++pParse->nMem; |
+ sqlite3ExprCode(pParse, pX->pRight, memEndValue); |
+ if( pX->op==TK_LT || pX->op==TK_GT ){ |
+ testOp = bRev ? OP_Le : OP_Ge; |
+ }else{ |
+ testOp = bRev ? OP_Lt : OP_Gt; |
+ } |
+ disableTerm(pLevel, pEnd); |
+ } |
+ start = sqlite3VdbeCurrentAddr(v); |
+ pLevel->op = bRev ? OP_Prev : OP_Next; |
+ pLevel->p1 = iCur; |
+ pLevel->p2 = start; |
+ assert( pLevel->p5==0 ); |
+ if( testOp!=OP_Noop ){ |
+ iRowidReg = ++pParse->nMem; |
+ sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); |
+ sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); |
+ sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); |
+ VdbeCoverageIf(v, testOp==OP_Le); |
+ VdbeCoverageIf(v, testOp==OP_Lt); |
+ VdbeCoverageIf(v, testOp==OP_Ge); |
+ VdbeCoverageIf(v, testOp==OP_Gt); |
+ sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); |
+ } |
+ }else if( pLoop->wsFlags & WHERE_INDEXED ){ |
+ /* Case 4: A scan using an index. |
+ ** |
+ ** The WHERE clause may contain zero or more equality |
+ ** terms ("==" or "IN" operators) that refer to the N |
+ ** left-most columns of the index. It may also contain |
+ ** inequality constraints (>, <, >= or <=) on the indexed |
+ ** column that immediately follows the N equalities. Only |
+ ** the right-most column can be an inequality - the rest must |
+ ** use the "==" and "IN" operators. For example, if the |
+ ** index is on (x,y,z), then the following clauses are all |
+ ** optimized: |
+ ** |
+ ** x=5 |
+ ** x=5 AND y=10 |
+ ** x=5 AND y<10 |
+ ** x=5 AND y>5 AND y<10 |
+ ** x=5 AND y=5 AND z<=10 |
+ ** |
+ ** The z<10 term of the following cannot be used, only |
+ ** the x=5 term: |
+ ** |
+ ** x=5 AND z<10 |
+ ** |
+ ** N may be zero if there are inequality constraints. |
+ ** If there are no inequality constraints, then N is at |
+ ** least one. |
+ ** |
+ ** This case is also used when there are no WHERE clause |
+ ** constraints but an index is selected anyway, in order |
+ ** to force the output order to conform to an ORDER BY. |
+ */ |
+ static const u8 aStartOp[] = { |
+ 0, |
+ 0, |
+ OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ |
+ OP_Last, /* 3: (!start_constraints && startEq && bRev) */ |
+ OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ |
+ OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ |
+ OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ |
+ OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ |
+ }; |
+ static const u8 aEndOp[] = { |
+ OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ |
+ OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ |
+ OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ |
+ OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ |
+ }; |
+ u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ |
+ int regBase; /* Base register holding constraint values */ |
+ WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ |
+ WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ |
+ int startEq; /* True if range start uses ==, >= or <= */ |
+ int endEq; /* True if range end uses ==, >= or <= */ |
+ int start_constraints; /* Start of range is constrained */ |
+ int nConstraint; /* Number of constraint terms */ |
+ Index *pIdx; /* The index we will be using */ |
+ int iIdxCur; /* The VDBE cursor for the index */ |
+ int nExtraReg = 0; /* Number of extra registers needed */ |
+ int op; /* Instruction opcode */ |
+ char *zStartAff; /* Affinity for start of range constraint */ |
+ char cEndAff = 0; /* Affinity for end of range constraint */ |
+ u8 bSeekPastNull = 0; /* True to seek past initial nulls */ |
+ u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ |
+ |
+ pIdx = pLoop->u.btree.pIndex; |
+ iIdxCur = pLevel->iIdxCur; |
+ assert( nEq>=pLoop->u.btree.nSkip ); |
+ |
+ /* If this loop satisfies a sort order (pOrderBy) request that |
+ ** was passed to this function to implement a "SELECT min(x) ..." |
+ ** query, then the caller will only allow the loop to run for |
+ ** a single iteration. This means that the first row returned |
+ ** should not have a NULL value stored in 'x'. If column 'x' is |
+ ** the first one after the nEq equality constraints in the index, |
+ ** this requires some special handling. |
+ */ |
+ assert( pWInfo->pOrderBy==0 |
+ || pWInfo->pOrderBy->nExpr==1 |
+ || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 ); |
+ if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 |
+ && pWInfo->nOBSat>0 |
+ && (pIdx->nKeyCol>nEq) |
+ ){ |
+ assert( pLoop->u.btree.nSkip==0 ); |
+ bSeekPastNull = 1; |
+ nExtraReg = 1; |
+ } |
+ |
+ /* Find any inequality constraint terms for the start and end |
+ ** of the range. |
+ */ |
+ j = nEq; |
+ if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ |
+ pRangeStart = pLoop->aLTerm[j++]; |
+ nExtraReg = 1; |
+ } |
+ if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ |
+ pRangeEnd = pLoop->aLTerm[j++]; |
+ nExtraReg = 1; |
+ if( pRangeStart==0 |
+ && (j = pIdx->aiColumn[nEq])>=0 |
+ && pIdx->pTable->aCol[j].notNull==0 |
+ ){ |
+ bSeekPastNull = 1; |
+ } |
+ } |
+ assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); |
+ |
+ /* Generate code to evaluate all constraint terms using == or IN |
+ ** and store the values of those terms in an array of registers |
+ ** starting at regBase. |
+ */ |
+ regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); |
+ assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); |
+ if( zStartAff ) cEndAff = zStartAff[nEq]; |
+ addrNxt = pLevel->addrNxt; |
+ |
+ /* If we are doing a reverse order scan on an ascending index, or |
+ ** a forward order scan on a descending index, interchange the |
+ ** start and end terms (pRangeStart and pRangeEnd). |
+ */ |
+ if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) |
+ || (bRev && pIdx->nKeyCol==nEq) |
+ ){ |
+ SWAP(WhereTerm *, pRangeEnd, pRangeStart); |
+ SWAP(u8, bSeekPastNull, bStopAtNull); |
+ } |
+ |
+ testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); |
+ testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); |
+ testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); |
+ testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); |
+ startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); |
+ endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); |
+ start_constraints = pRangeStart || nEq>0; |
+ |
+ /* Seek the index cursor to the start of the range. */ |
+ nConstraint = nEq; |
+ if( pRangeStart ){ |
+ Expr *pRight = pRangeStart->pExpr->pRight; |
+ sqlite3ExprCode(pParse, pRight, regBase+nEq); |
+ if( (pRangeStart->wtFlags & TERM_VNULL)==0 |
+ && sqlite3ExprCanBeNull(pRight) |
+ ){ |
+ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); |
+ VdbeCoverage(v); |
+ } |
+ if( zStartAff ){ |
+ if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){ |
+ /* Since the comparison is to be performed with no conversions |
+ ** applied to the operands, set the affinity to apply to pRight to |
+ ** SQLITE_AFF_NONE. */ |
+ zStartAff[nEq] = SQLITE_AFF_NONE; |
+ } |
+ if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){ |
+ zStartAff[nEq] = SQLITE_AFF_NONE; |
+ } |
+ } |
+ nConstraint++; |
+ testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); |
+ }else if( bSeekPastNull ){ |
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); |
+ nConstraint++; |
+ startEq = 0; |
+ start_constraints = 1; |
+ } |
+ codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); |
+ op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; |
+ assert( op!=0 ); |
+ sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); |
+ VdbeCoverage(v); |
+ VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); |
+ VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); |
+ VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); |
+ VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); |
+ VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); |
+ VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); |
+ |
+ /* Load the value for the inequality constraint at the end of the |
+ ** range (if any). |
+ */ |
+ nConstraint = nEq; |
+ if( pRangeEnd ){ |
+ Expr *pRight = pRangeEnd->pExpr->pRight; |
+ sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); |
+ sqlite3ExprCode(pParse, pRight, regBase+nEq); |
+ if( (pRangeEnd->wtFlags & TERM_VNULL)==0 |
+ && sqlite3ExprCanBeNull(pRight) |
+ ){ |
+ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); |
+ VdbeCoverage(v); |
+ } |
+ if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_NONE |
+ && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff) |
+ ){ |
+ codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff); |
+ } |
+ nConstraint++; |
+ testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); |
+ }else if( bStopAtNull ){ |
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); |
+ endEq = 0; |
+ nConstraint++; |
+ } |
+ sqlite3DbFree(db, zStartAff); |
+ |
+ /* Top of the loop body */ |
+ pLevel->p2 = sqlite3VdbeCurrentAddr(v); |
+ |
+ /* Check if the index cursor is past the end of the range. */ |
+ if( nConstraint ){ |
+ op = aEndOp[bRev*2 + endEq]; |
+ sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); |
+ testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); |
+ testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); |
+ testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); |
+ testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); |
+ } |
+ |
+ /* Seek the table cursor, if required */ |
+ disableTerm(pLevel, pRangeStart); |
+ disableTerm(pLevel, pRangeEnd); |
+ if( omitTable ){ |
+ /* pIdx is a covering index. No need to access the main table. */ |
+ }else if( HasRowid(pIdx->pTable) ){ |
+ iRowidReg = ++pParse->nMem; |
+ sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); |
+ sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); |
+ sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */ |
+ }else if( iCur!=iIdxCur ){ |
+ Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); |
+ iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); |
+ for(j=0; j<pPk->nKeyCol; j++){ |
+ k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); |
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); |
+ } |
+ sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, |
+ iRowidReg, pPk->nKeyCol); VdbeCoverage(v); |
+ } |
+ |
+ /* Record the instruction used to terminate the loop. Disable |
+ ** WHERE clause terms made redundant by the index range scan. |
+ */ |
+ if( pLoop->wsFlags & WHERE_ONEROW ){ |
+ pLevel->op = OP_Noop; |
+ }else if( bRev ){ |
+ pLevel->op = OP_Prev; |
+ }else{ |
+ pLevel->op = OP_Next; |
+ } |
+ pLevel->p1 = iIdxCur; |
+ pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; |
+ if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ |
+ pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; |
+ }else{ |
+ assert( pLevel->p5==0 ); |
+ } |
+ }else |
+ |
+#ifndef SQLITE_OMIT_OR_OPTIMIZATION |
+ if( pLoop->wsFlags & WHERE_MULTI_OR ){ |
+ /* Case 5: Two or more separately indexed terms connected by OR |
+ ** |
+ ** Example: |
+ ** |
+ ** CREATE TABLE t1(a,b,c,d); |
+ ** CREATE INDEX i1 ON t1(a); |
+ ** CREATE INDEX i2 ON t1(b); |
+ ** CREATE INDEX i3 ON t1(c); |
+ ** |
+ ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) |
+ ** |
+ ** In the example, there are three indexed terms connected by OR. |
+ ** The top of the loop looks like this: |
+ ** |
+ ** Null 1 # Zero the rowset in reg 1 |
+ ** |
+ ** Then, for each indexed term, the following. The arguments to |
+ ** RowSetTest are such that the rowid of the current row is inserted |
+ ** into the RowSet. If it is already present, control skips the |
+ ** Gosub opcode and jumps straight to the code generated by WhereEnd(). |
+ ** |
+ ** sqlite3WhereBegin(<term>) |
+ ** RowSetTest # Insert rowid into rowset |
+ ** Gosub 2 A |
+ ** sqlite3WhereEnd() |
+ ** |
+ ** Following the above, code to terminate the loop. Label A, the target |
+ ** of the Gosub above, jumps to the instruction right after the Goto. |
+ ** |
+ ** Null 1 # Zero the rowset in reg 1 |
+ ** Goto B # The loop is finished. |
+ ** |
+ ** A: <loop body> # Return data, whatever. |
+ ** |
+ ** Return 2 # Jump back to the Gosub |
+ ** |
+ ** B: <after the loop> |
+ ** |
+ ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then |
+ ** use an ephemeral index instead of a RowSet to record the primary |
+ ** keys of the rows we have already seen. |
+ ** |
+ */ |
+ WhereClause *pOrWc; /* The OR-clause broken out into subterms */ |
+ SrcList *pOrTab; /* Shortened table list or OR-clause generation */ |
+ Index *pCov = 0; /* Potential covering index (or NULL) */ |
+ int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ |
+ |
+ int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ |
+ int regRowset = 0; /* Register for RowSet object */ |
+ int regRowid = 0; /* Register holding rowid */ |
+ int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ |
+ int iRetInit; /* Address of regReturn init */ |
+ int untestedTerms = 0; /* Some terms not completely tested */ |
+ int ii; /* Loop counter */ |
+ u16 wctrlFlags; /* Flags for sub-WHERE clause */ |
+ Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ |
+ Table *pTab = pTabItem->pTab; |
+ |
+ pTerm = pLoop->aLTerm[0]; |
+ assert( pTerm!=0 ); |
+ assert( pTerm->eOperator & WO_OR ); |
+ assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); |
+ pOrWc = &pTerm->u.pOrInfo->wc; |
+ pLevel->op = OP_Return; |
+ pLevel->p1 = regReturn; |
+ |
+ /* Set up a new SrcList in pOrTab containing the table being scanned |
+ ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. |
+ ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). |
+ */ |
+ if( pWInfo->nLevel>1 ){ |
+ int nNotReady; /* The number of notReady tables */ |
+ struct SrcList_item *origSrc; /* Original list of tables */ |
+ nNotReady = pWInfo->nLevel - iLevel - 1; |
+ pOrTab = sqlite3StackAllocRaw(db, |
+ sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); |
+ if( pOrTab==0 ) return notReady; |
+ pOrTab->nAlloc = (u8)(nNotReady + 1); |
+ pOrTab->nSrc = pOrTab->nAlloc; |
+ memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); |
+ origSrc = pWInfo->pTabList->a; |
+ for(k=1; k<=nNotReady; k++){ |
+ memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); |
+ } |
+ }else{ |
+ pOrTab = pWInfo->pTabList; |
+ } |
+ |
+ /* Initialize the rowset register to contain NULL. An SQL NULL is |
+ ** equivalent to an empty rowset. Or, create an ephemeral index |
+ ** capable of holding primary keys in the case of a WITHOUT ROWID. |
+ ** |
+ ** Also initialize regReturn to contain the address of the instruction |
+ ** immediately following the OP_Return at the bottom of the loop. This |
+ ** is required in a few obscure LEFT JOIN cases where control jumps |
+ ** over the top of the loop into the body of it. In this case the |
+ ** correct response for the end-of-loop code (the OP_Return) is to |
+ ** fall through to the next instruction, just as an OP_Next does if |
+ ** called on an uninitialized cursor. |
+ */ |
+ if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ |
+ if( HasRowid(pTab) ){ |
+ regRowset = ++pParse->nMem; |
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); |
+ }else{ |
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab); |
+ regRowset = pParse->nTab++; |
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); |
+ sqlite3VdbeSetP4KeyInfo(pParse, pPk); |
+ } |
+ regRowid = ++pParse->nMem; |
+ } |
+ iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); |
+ |
+ /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y |
+ ** Then for every term xN, evaluate as the subexpression: xN AND z |
+ ** That way, terms in y that are factored into the disjunction will |
+ ** be picked up by the recursive calls to sqlite3WhereBegin() below. |
+ ** |
+ ** Actually, each subexpression is converted to "xN AND w" where w is |
+ ** the "interesting" terms of z - terms that did not originate in the |
+ ** ON or USING clause of a LEFT JOIN, and terms that are usable as |
+ ** indices. |
+ ** |
+ ** This optimization also only applies if the (x1 OR x2 OR ...) term |
+ ** is not contained in the ON clause of a LEFT JOIN. |
+ ** See ticket http://www.sqlite.org/src/info/f2369304e4 |
+ */ |
+ if( pWC->nTerm>1 ){ |
+ int iTerm; |
+ for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ |
+ Expr *pExpr = pWC->a[iTerm].pExpr; |
+ if( &pWC->a[iTerm] == pTerm ) continue; |
+ if( ExprHasProperty(pExpr, EP_FromJoin) ) continue; |
+ testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); |
+ testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); |
+ if( pWC->a[iTerm].wtFlags & (TERM_ORINFO|TERM_VIRTUAL) ) continue; |
+ if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; |
+ pExpr = sqlite3ExprDup(db, pExpr, 0); |
+ pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr); |
+ } |
+ if( pAndExpr ){ |
+ pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0); |
+ } |
+ } |
+ |
+ /* Run a separate WHERE clause for each term of the OR clause. After |
+ ** eliminating duplicates from other WHERE clauses, the action for each |
+ ** sub-WHERE clause is to to invoke the main loop body as a subroutine. |
+ */ |
+ wctrlFlags = WHERE_OMIT_OPEN_CLOSE |
+ | WHERE_FORCE_TABLE |
+ | WHERE_ONETABLE_ONLY; |
+ for(ii=0; ii<pOrWc->nTerm; ii++){ |
+ WhereTerm *pOrTerm = &pOrWc->a[ii]; |
+ if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ |
+ WhereInfo *pSubWInfo; /* Info for single OR-term scan */ |
+ Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ |
+ int j1 = 0; /* Address of jump operation */ |
+ if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){ |
+ pAndExpr->pLeft = pOrExpr; |
+ pOrExpr = pAndExpr; |
+ } |
+ /* Loop through table entries that match term pOrTerm. */ |
+ WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); |
+ pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, |
+ wctrlFlags, iCovCur); |
+ assert( pSubWInfo || pParse->nErr || db->mallocFailed ); |
+ if( pSubWInfo ){ |
+ WhereLoop *pSubLoop; |
+ explainOneScan( |
+ pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 |
+ ); |
+ /* This is the sub-WHERE clause body. First skip over |
+ ** duplicate rows from prior sub-WHERE clauses, and record the |
+ ** rowid (or PRIMARY KEY) for the current row so that the same |
+ ** row will be skipped in subsequent sub-WHERE clauses. |
+ */ |
+ if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ |
+ int r; |
+ int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); |
+ if( HasRowid(pTab) ){ |
+ r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0); |
+ j1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, r,iSet); |
+ VdbeCoverage(v); |
+ }else{ |
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab); |
+ int nPk = pPk->nKeyCol; |
+ int iPk; |
+ |
+ /* Read the PK into an array of temp registers. */ |
+ r = sqlite3GetTempRange(pParse, nPk); |
+ for(iPk=0; iPk<nPk; iPk++){ |
+ int iCol = pPk->aiColumn[iPk]; |
+ sqlite3ExprCodeGetColumn(pParse, pTab, iCol, iCur, r+iPk, 0); |
+ } |
+ |
+ /* Check if the temp table already contains this key. If so, |
+ ** the row has already been included in the result set and |
+ ** can be ignored (by jumping past the Gosub below). Otherwise, |
+ ** insert the key into the temp table and proceed with processing |
+ ** the row. |
+ ** |
+ ** Use some of the same optimizations as OP_RowSetTest: If iSet |
+ ** is zero, assume that the key cannot already be present in |
+ ** the temp table. And if iSet is -1, assume that there is no |
+ ** need to insert the key into the temp table, as it will never |
+ ** be tested for. */ |
+ if( iSet ){ |
+ j1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); |
+ VdbeCoverage(v); |
+ } |
+ if( iSet>=0 ){ |
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); |
+ sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0); |
+ if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); |
+ } |
+ |
+ /* Release the array of temp registers */ |
+ sqlite3ReleaseTempRange(pParse, r, nPk); |
+ } |
+ } |
+ |
+ /* Invoke the main loop body as a subroutine */ |
+ sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); |
+ |
+ /* Jump here (skipping the main loop body subroutine) if the |
+ ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ |
+ if( j1 ) sqlite3VdbeJumpHere(v, j1); |
+ |
+ /* The pSubWInfo->untestedTerms flag means that this OR term |
+ ** contained one or more AND term from a notReady table. The |
+ ** terms from the notReady table could not be tested and will |
+ ** need to be tested later. |
+ */ |
+ if( pSubWInfo->untestedTerms ) untestedTerms = 1; |
+ |
+ /* If all of the OR-connected terms are optimized using the same |
+ ** index, and the index is opened using the same cursor number |
+ ** by each call to sqlite3WhereBegin() made by this loop, it may |
+ ** be possible to use that index as a covering index. |
+ ** |
+ ** If the call to sqlite3WhereBegin() above resulted in a scan that |
+ ** uses an index, and this is either the first OR-connected term |
+ ** processed or the index is the same as that used by all previous |
+ ** terms, set pCov to the candidate covering index. Otherwise, set |
+ ** pCov to NULL to indicate that no candidate covering index will |
+ ** be available. |
+ */ |
+ pSubLoop = pSubWInfo->a[0].pWLoop; |
+ assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); |
+ if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 |
+ && (ii==0 || pSubLoop->u.btree.pIndex==pCov) |
+ && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) |
+ ){ |
+ assert( pSubWInfo->a[0].iIdxCur==iCovCur ); |
+ pCov = pSubLoop->u.btree.pIndex; |
+ wctrlFlags |= WHERE_REOPEN_IDX; |
+ }else{ |
+ pCov = 0; |
+ } |
+ |
+ /* Finish the loop through table entries that match term pOrTerm. */ |
+ sqlite3WhereEnd(pSubWInfo); |
+ } |
+ } |
+ } |
+ pLevel->u.pCovidx = pCov; |
+ if( pCov ) pLevel->iIdxCur = iCovCur; |
+ if( pAndExpr ){ |
+ pAndExpr->pLeft = 0; |
+ sqlite3ExprDelete(db, pAndExpr); |
+ } |
+ sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk); |
+ sqlite3VdbeResolveLabel(v, iLoopBody); |
+ |
+ if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab); |
+ if( !untestedTerms ) disableTerm(pLevel, pTerm); |
+ }else |
+#endif /* SQLITE_OMIT_OR_OPTIMIZATION */ |
+ |
+ { |
+ /* Case 6: There is no usable index. We must do a complete |
+ ** scan of the entire table. |
+ */ |
+ static const u8 aStep[] = { OP_Next, OP_Prev }; |
+ static const u8 aStart[] = { OP_Rewind, OP_Last }; |
+ assert( bRev==0 || bRev==1 ); |
+ if( pTabItem->isRecursive ){ |
+ /* Tables marked isRecursive have only a single row that is stored in |
+ ** a pseudo-cursor. No need to Rewind or Next such cursors. */ |
+ pLevel->op = OP_Noop; |
+ }else{ |
+ pLevel->op = aStep[bRev]; |
+ pLevel->p1 = iCur; |
+ pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); |
+ VdbeCoverageIf(v, bRev==0); |
+ VdbeCoverageIf(v, bRev!=0); |
+ pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; |
+ } |
+ } |
+ |
+ /* Insert code to test every subexpression that can be completely |
+ ** computed using the current set of tables. |
+ */ |
+ for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ |
+ Expr *pE; |
+ testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
+ testcase( pTerm->wtFlags & TERM_CODED ); |
+ if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
+ if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ |
+ testcase( pWInfo->untestedTerms==0 |
+ && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ); |
+ pWInfo->untestedTerms = 1; |
+ continue; |
+ } |
+ pE = pTerm->pExpr; |
+ assert( pE!=0 ); |
+ if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ |
+ continue; |
+ } |
+ sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); |
+ pTerm->wtFlags |= TERM_CODED; |
+ } |
+ |
+ /* Insert code to test for implied constraints based on transitivity |
+ ** of the "==" operator. |
+ ** |
+ ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" |
+ ** and we are coding the t1 loop and the t2 loop has not yet coded, |
+ ** then we cannot use the "t1.a=t2.b" constraint, but we can code |
+ ** the implied "t1.a=123" constraint. |
+ */ |
+ for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ |
+ Expr *pE, *pEAlt; |
+ WhereTerm *pAlt; |
+ if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
+ if( pTerm->eOperator!=(WO_EQUIV|WO_EQ) ) continue; |
+ if( pTerm->leftCursor!=iCur ) continue; |
+ if( pLevel->iLeftJoin ) continue; |
+ pE = pTerm->pExpr; |
+ assert( !ExprHasProperty(pE, EP_FromJoin) ); |
+ assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); |
+ pAlt = findTerm(pWC, iCur, pTerm->u.leftColumn, notReady, WO_EQ|WO_IN, 0); |
+ if( pAlt==0 ) continue; |
+ if( pAlt->wtFlags & (TERM_CODED) ) continue; |
+ testcase( pAlt->eOperator & WO_EQ ); |
+ testcase( pAlt->eOperator & WO_IN ); |
+ VdbeModuleComment((v, "begin transitive constraint")); |
+ pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt)); |
+ if( pEAlt ){ |
+ *pEAlt = *pAlt->pExpr; |
+ pEAlt->pLeft = pE->pLeft; |
+ sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL); |
+ sqlite3StackFree(db, pEAlt); |
+ } |
+ } |
+ |
+ /* For a LEFT OUTER JOIN, generate code that will record the fact that |
+ ** at least one row of the right table has matched the left table. |
+ */ |
+ if( pLevel->iLeftJoin ){ |
+ pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); |
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); |
+ VdbeComment((v, "record LEFT JOIN hit")); |
+ sqlite3ExprCacheClear(pParse); |
+ for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ |
+ testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
+ testcase( pTerm->wtFlags & TERM_CODED ); |
+ if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
+ if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ |
+ assert( pWInfo->untestedTerms ); |
+ continue; |
+ } |
+ assert( pTerm->pExpr ); |
+ sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); |
+ pTerm->wtFlags |= TERM_CODED; |
+ } |
+ } |
+ |
+ return pLevel->notReady; |
+} |
+ |
+#ifdef WHERETRACE_ENABLED |
+/* |
+** Print the content of a WhereTerm object |
+*/ |
+static void whereTermPrint(WhereTerm *pTerm, int iTerm){ |
+ if( pTerm==0 ){ |
+ sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); |
+ }else{ |
+ char zType[4]; |
+ memcpy(zType, "...", 4); |
+ if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; |
+ if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; |
+ if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L'; |
+ sqlite3DebugPrintf("TERM-%-3d %p %s cursor=%-3d prob=%-3d op=0x%03x\n", |
+ iTerm, pTerm, zType, pTerm->leftCursor, pTerm->truthProb, |
+ pTerm->eOperator); |
+ sqlite3TreeViewExpr(0, pTerm->pExpr, 0); |
+ } |
+} |
+#endif |
+ |
+#ifdef WHERETRACE_ENABLED |
+/* |
+** Print a WhereLoop object for debugging purposes |
+*/ |
+static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){ |
+ WhereInfo *pWInfo = pWC->pWInfo; |
+ int nb = 1+(pWInfo->pTabList->nSrc+7)/8; |
+ struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab; |
+ Table *pTab = pItem->pTab; |
+ sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, |
+ p->iTab, nb, p->maskSelf, nb, p->prereq); |
+ sqlite3DebugPrintf(" %12s", |
+ pItem->zAlias ? pItem->zAlias : pTab->zName); |
+ if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ |
+ const char *zName; |
+ if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ |
+ if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ |
+ int i = sqlite3Strlen30(zName) - 1; |
+ while( zName[i]!='_' ) i--; |
+ zName += i; |
+ } |
+ sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); |
+ }else{ |
+ sqlite3DebugPrintf("%20s",""); |
+ } |
+ }else{ |
+ char *z; |
+ if( p->u.vtab.idxStr ){ |
+ z = sqlite3_mprintf("(%d,\"%s\",%x)", |
+ p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); |
+ }else{ |
+ z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); |
+ } |
+ sqlite3DebugPrintf(" %-19s", z); |
+ sqlite3_free(z); |
+ } |
+ if( p->wsFlags & WHERE_SKIPSCAN ){ |
+ sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->u.btree.nSkip); |
+ }else{ |
+ sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); |
+ } |
+ sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); |
+ if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ |
+ int i; |
+ for(i=0; i<p->nLTerm; i++){ |
+ whereTermPrint(p->aLTerm[i], i); |
+ } |
+ } |
+} |
+#endif |
+ |
+/* |
+** Convert bulk memory into a valid WhereLoop that can be passed |
+** to whereLoopClear harmlessly. |
+*/ |
+static void whereLoopInit(WhereLoop *p){ |
+ p->aLTerm = p->aLTermSpace; |
+ p->nLTerm = 0; |
+ p->nLSlot = ArraySize(p->aLTermSpace); |
+ p->wsFlags = 0; |
+} |
+ |
+/* |
+** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. |
+*/ |
+static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ |
+ if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ |
+ if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ |
+ sqlite3_free(p->u.vtab.idxStr); |
+ p->u.vtab.needFree = 0; |
+ p->u.vtab.idxStr = 0; |
+ }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ |
+ sqlite3DbFree(db, p->u.btree.pIndex->zColAff); |
+ sqlite3KeyInfoUnref(p->u.btree.pIndex->pKeyInfo); |
+ sqlite3DbFree(db, p->u.btree.pIndex); |
+ p->u.btree.pIndex = 0; |
+ } |
+ } |
+} |
+ |
+/* |
+** Deallocate internal memory used by a WhereLoop object |
+*/ |
+static void whereLoopClear(sqlite3 *db, WhereLoop *p){ |
+ if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); |
+ whereLoopClearUnion(db, p); |
+ whereLoopInit(p); |
+} |
+ |
+/* |
+** Increase the memory allocation for pLoop->aLTerm[] to be at least n. |
+*/ |
+static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ |
+ WhereTerm **paNew; |
+ if( p->nLSlot>=n ) return SQLITE_OK; |
+ n = (n+7)&~7; |
+ paNew = sqlite3DbMallocRaw(db, sizeof(p->aLTerm[0])*n); |
+ if( paNew==0 ) return SQLITE_NOMEM; |
+ memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); |
+ if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); |
+ p->aLTerm = paNew; |
+ p->nLSlot = n; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Transfer content from the second pLoop into the first. |
+*/ |
+static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ |
+ whereLoopClearUnion(db, pTo); |
+ if( whereLoopResize(db, pTo, pFrom->nLTerm) ){ |
+ memset(&pTo->u, 0, sizeof(pTo->u)); |
+ return SQLITE_NOMEM; |
+ } |
+ memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); |
+ memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); |
+ if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ |
+ pFrom->u.vtab.needFree = 0; |
+ }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ |
+ pFrom->u.btree.pIndex = 0; |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Delete a WhereLoop object |
+*/ |
+static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ |
+ whereLoopClear(db, p); |
+ sqlite3DbFree(db, p); |
+} |
+ |
+/* |
+** Free a WhereInfo structure |
+*/ |
+static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ |
+ if( ALWAYS(pWInfo) ){ |
+ whereClauseClear(&pWInfo->sWC); |
+ while( pWInfo->pLoops ){ |
+ WhereLoop *p = pWInfo->pLoops; |
+ pWInfo->pLoops = p->pNextLoop; |
+ whereLoopDelete(db, p); |
+ } |
+ sqlite3DbFree(db, pWInfo); |
+ } |
+} |
+ |
+/* |
+** Return TRUE if both of the following are true: |
+** |
+** (1) X has the same or lower cost that Y |
+** (2) X is a proper subset of Y |
+** |
+** By "proper subset" we mean that X uses fewer WHERE clause terms |
+** than Y and that every WHERE clause term used by X is also used |
+** by Y. |
+** |
+** If X is a proper subset of Y then Y is a better choice and ought |
+** to have a lower cost. This routine returns TRUE when that cost |
+** relationship is inverted and needs to be adjusted. |
+*/ |
+static int whereLoopCheaperProperSubset( |
+ const WhereLoop *pX, /* First WhereLoop to compare */ |
+ const WhereLoop *pY /* Compare against this WhereLoop */ |
+){ |
+ int i, j; |
+ if( pX->nLTerm >= pY->nLTerm ) return 0; /* X is not a subset of Y */ |
+ if( pX->rRun >= pY->rRun ){ |
+ if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */ |
+ if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */ |
+ } |
+ for(i=pX->nLTerm-1; i>=0; i--){ |
+ for(j=pY->nLTerm-1; j>=0; j--){ |
+ if( pY->aLTerm[j]==pX->aLTerm[i] ) break; |
+ } |
+ if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ |
+ } |
+ return 1; /* All conditions meet */ |
+} |
+ |
+/* |
+** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so |
+** that: |
+** |
+** (1) pTemplate costs less than any other WhereLoops that are a proper |
+** subset of pTemplate |
+** |
+** (2) pTemplate costs more than any other WhereLoops for which pTemplate |
+** is a proper subset. |
+** |
+** To say "WhereLoop X is a proper subset of Y" means that X uses fewer |
+** WHERE clause terms than Y and that every WHERE clause term used by X is |
+** also used by Y. |
+** |
+** This adjustment is omitted for SKIPSCAN loops. In a SKIPSCAN loop, the |
+** WhereLoop.nLTerm field is not an accurate measure of the number of WHERE |
+** clause terms covered, since some of the first nLTerm entries in aLTerm[] |
+** will be NULL (because they are skipped). That makes it more difficult |
+** to compare the loops. We could add extra code to do the comparison, and |
+** perhaps we will someday. But SKIPSCAN is sufficiently uncommon, and this |
+** adjustment is sufficient minor, that it is very difficult to construct |
+** a test case where the extra code would improve the query plan. Better |
+** to avoid the added complexity and just omit cost adjustments to SKIPSCAN |
+** loops. |
+*/ |
+static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ |
+ if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; |
+ if( (pTemplate->wsFlags & WHERE_SKIPSCAN)!=0 ) return; |
+ for(; p; p=p->pNextLoop){ |
+ if( p->iTab!=pTemplate->iTab ) continue; |
+ if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; |
+ if( (p->wsFlags & WHERE_SKIPSCAN)!=0 ) continue; |
+ if( whereLoopCheaperProperSubset(p, pTemplate) ){ |
+ /* Adjust pTemplate cost downward so that it is cheaper than its |
+ ** subset p */ |
+ pTemplate->rRun = p->rRun; |
+ pTemplate->nOut = p->nOut - 1; |
+ }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ |
+ /* Adjust pTemplate cost upward so that it is costlier than p since |
+ ** pTemplate is a proper subset of p */ |
+ pTemplate->rRun = p->rRun; |
+ pTemplate->nOut = p->nOut + 1; |
+ } |
+ } |
+} |
+ |
+/* |
+** Search the list of WhereLoops in *ppPrev looking for one that can be |
+** supplanted by pTemplate. |
+** |
+** Return NULL if the WhereLoop list contains an entry that can supplant |
+** pTemplate, in other words if pTemplate does not belong on the list. |
+** |
+** If pX is a WhereLoop that pTemplate can supplant, then return the |
+** link that points to pX. |
+** |
+** If pTemplate cannot supplant any existing element of the list but needs |
+** to be added to the list, then return a pointer to the tail of the list. |
+*/ |
+static WhereLoop **whereLoopFindLesser( |
+ WhereLoop **ppPrev, |
+ const WhereLoop *pTemplate |
+){ |
+ WhereLoop *p; |
+ for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ |
+ if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ |
+ /* If either the iTab or iSortIdx values for two WhereLoop are different |
+ ** then those WhereLoops need to be considered separately. Neither is |
+ ** a candidate to replace the other. */ |
+ continue; |
+ } |
+ /* In the current implementation, the rSetup value is either zero |
+ ** or the cost of building an automatic index (NlogN) and the NlogN |
+ ** is the same for compatible WhereLoops. */ |
+ assert( p->rSetup==0 || pTemplate->rSetup==0 |
+ || p->rSetup==pTemplate->rSetup ); |
+ |
+ /* whereLoopAddBtree() always generates and inserts the automatic index |
+ ** case first. Hence compatible candidate WhereLoops never have a larger |
+ ** rSetup. Call this SETUP-INVARIANT */ |
+ assert( p->rSetup>=pTemplate->rSetup ); |
+ |
+ /* Any loop using an appliation-defined index (or PRIMARY KEY or |
+ ** UNIQUE constraint) with one or more == constraints is better |
+ ** than an automatic index. */ |
+ if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 |
+ && (pTemplate->wsFlags & WHERE_INDEXED)!=0 |
+ && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 |
+ && (p->prereq & pTemplate->prereq)==pTemplate->prereq |
+ ){ |
+ break; |
+ } |
+ |
+ /* If existing WhereLoop p is better than pTemplate, pTemplate can be |
+ ** discarded. WhereLoop p is better if: |
+ ** (1) p has no more dependencies than pTemplate, and |
+ ** (2) p has an equal or lower cost than pTemplate |
+ */ |
+ if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ |
+ && p->rSetup<=pTemplate->rSetup /* (2a) */ |
+ && p->rRun<=pTemplate->rRun /* (2b) */ |
+ && p->nOut<=pTemplate->nOut /* (2c) */ |
+ ){ |
+ return 0; /* Discard pTemplate */ |
+ } |
+ |
+ /* If pTemplate is always better than p, then cause p to be overwritten |
+ ** with pTemplate. pTemplate is better than p if: |
+ ** (1) pTemplate has no more dependences than p, and |
+ ** (2) pTemplate has an equal or lower cost than p. |
+ */ |
+ if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ |
+ && p->rRun>=pTemplate->rRun /* (2a) */ |
+ && p->nOut>=pTemplate->nOut /* (2b) */ |
+ ){ |
+ assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ |
+ break; /* Cause p to be overwritten by pTemplate */ |
+ } |
+ } |
+ return ppPrev; |
+} |
+ |
+/* |
+** Insert or replace a WhereLoop entry using the template supplied. |
+** |
+** An existing WhereLoop entry might be overwritten if the new template |
+** is better and has fewer dependencies. Or the template will be ignored |
+** and no insert will occur if an existing WhereLoop is faster and has |
+** fewer dependencies than the template. Otherwise a new WhereLoop is |
+** added based on the template. |
+** |
+** If pBuilder->pOrSet is not NULL then we care about only the |
+** prerequisites and rRun and nOut costs of the N best loops. That |
+** information is gathered in the pBuilder->pOrSet object. This special |
+** processing mode is used only for OR clause processing. |
+** |
+** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we |
+** still might overwrite similar loops with the new template if the |
+** new template is better. Loops may be overwritten if the following |
+** conditions are met: |
+** |
+** (1) They have the same iTab. |
+** (2) They have the same iSortIdx. |
+** (3) The template has same or fewer dependencies than the current loop |
+** (4) The template has the same or lower cost than the current loop |
+*/ |
+static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ |
+ WhereLoop **ppPrev, *p; |
+ WhereInfo *pWInfo = pBuilder->pWInfo; |
+ sqlite3 *db = pWInfo->pParse->db; |
+ |
+ /* If pBuilder->pOrSet is defined, then only keep track of the costs |
+ ** and prereqs. |
+ */ |
+ if( pBuilder->pOrSet!=0 ){ |
+#if WHERETRACE_ENABLED |
+ u16 n = pBuilder->pOrSet->n; |
+ int x = |
+#endif |
+ whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, |
+ pTemplate->nOut); |
+#if WHERETRACE_ENABLED /* 0x8 */ |
+ if( sqlite3WhereTrace & 0x8 ){ |
+ sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); |
+ whereLoopPrint(pTemplate, pBuilder->pWC); |
+ } |
+#endif |
+ return SQLITE_OK; |
+ } |
+ |
+ /* Look for an existing WhereLoop to replace with pTemplate |
+ */ |
+ whereLoopAdjustCost(pWInfo->pLoops, pTemplate); |
+ ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); |
+ |
+ if( ppPrev==0 ){ |
+ /* There already exists a WhereLoop on the list that is better |
+ ** than pTemplate, so just ignore pTemplate */ |
+#if WHERETRACE_ENABLED /* 0x8 */ |
+ if( sqlite3WhereTrace & 0x8 ){ |
+ sqlite3DebugPrintf(" skip: "); |
+ whereLoopPrint(pTemplate, pBuilder->pWC); |
+ } |
+#endif |
+ return SQLITE_OK; |
+ }else{ |
+ p = *ppPrev; |
+ } |
+ |
+ /* If we reach this point it means that either p[] should be overwritten |
+ ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new |
+ ** WhereLoop and insert it. |
+ */ |
+#if WHERETRACE_ENABLED /* 0x8 */ |
+ if( sqlite3WhereTrace & 0x8 ){ |
+ if( p!=0 ){ |
+ sqlite3DebugPrintf("replace: "); |
+ whereLoopPrint(p, pBuilder->pWC); |
+ } |
+ sqlite3DebugPrintf(" add: "); |
+ whereLoopPrint(pTemplate, pBuilder->pWC); |
+ } |
+#endif |
+ if( p==0 ){ |
+ /* Allocate a new WhereLoop to add to the end of the list */ |
+ *ppPrev = p = sqlite3DbMallocRaw(db, sizeof(WhereLoop)); |
+ if( p==0 ) return SQLITE_NOMEM; |
+ whereLoopInit(p); |
+ p->pNextLoop = 0; |
+ }else{ |
+ /* We will be overwriting WhereLoop p[]. But before we do, first |
+ ** go through the rest of the list and delete any other entries besides |
+ ** p[] that are also supplated by pTemplate */ |
+ WhereLoop **ppTail = &p->pNextLoop; |
+ WhereLoop *pToDel; |
+ while( *ppTail ){ |
+ ppTail = whereLoopFindLesser(ppTail, pTemplate); |
+ if( ppTail==0 ) break; |
+ pToDel = *ppTail; |
+ if( pToDel==0 ) break; |
+ *ppTail = pToDel->pNextLoop; |
+#if WHERETRACE_ENABLED /* 0x8 */ |
+ if( sqlite3WhereTrace & 0x8 ){ |
+ sqlite3DebugPrintf(" delete: "); |
+ whereLoopPrint(pToDel, pBuilder->pWC); |
+ } |
+#endif |
+ whereLoopDelete(db, pToDel); |
+ } |
+ } |
+ whereLoopXfer(db, p, pTemplate); |
+ if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ |
+ Index *pIndex = p->u.btree.pIndex; |
+ if( pIndex && pIndex->tnum==0 ){ |
+ p->u.btree.pIndex = 0; |
+ } |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Adjust the WhereLoop.nOut value downward to account for terms of the |
+** WHERE clause that reference the loop but which are not used by an |
+** index. |
+** |
+** In the current implementation, the first extra WHERE clause term reduces |
+** the number of output rows by a factor of 10 and each additional term |
+** reduces the number of output rows by sqrt(2). |
+*/ |
+static void whereLoopOutputAdjust( |
+ WhereClause *pWC, /* The WHERE clause */ |
+ WhereLoop *pLoop, /* The loop to adjust downward */ |
+ LogEst nRow /* Number of rows in the entire table */ |
+){ |
+ WhereTerm *pTerm, *pX; |
+ Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); |
+ int i, j; |
+ int nEq = 0; /* Number of = constraints not within likely()/unlikely() */ |
+ |
+ for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){ |
+ if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break; |
+ if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; |
+ if( (pTerm->prereqAll & notAllowed)!=0 ) continue; |
+ for(j=pLoop->nLTerm-1; j>=0; j--){ |
+ pX = pLoop->aLTerm[j]; |
+ if( pX==0 ) continue; |
+ if( pX==pTerm ) break; |
+ if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; |
+ } |
+ if( j<0 ){ |
+ if( pTerm->truthProb<=0 ){ |
+ pLoop->nOut += pTerm->truthProb; |
+ }else{ |
+ pLoop->nOut--; |
+ if( pTerm->eOperator&WO_EQ ) nEq++; |
+ } |
+ } |
+ } |
+ /* TUNING: If there is at least one equality constraint in the WHERE |
+ ** clause that does not have a likelihood() explicitly assigned to it |
+ ** then do not let the estimated number of output rows exceed half |
+ ** the number of rows in the table. */ |
+ if( nEq && pLoop->nOut>nRow-10 ){ |
+ pLoop->nOut = nRow - 10; |
+ } |
+} |
+ |
+/* |
+** Adjust the cost C by the costMult facter T. This only occurs if |
+** compiled with -DSQLITE_ENABLE_COSTMULT |
+*/ |
+#ifdef SQLITE_ENABLE_COSTMULT |
+# define ApplyCostMultiplier(C,T) C += T |
+#else |
+# define ApplyCostMultiplier(C,T) |
+#endif |
+ |
+/* |
+** We have so far matched pBuilder->pNew->u.btree.nEq terms of the |
+** index pIndex. Try to match one more. |
+** |
+** When this function is called, pBuilder->pNew->nOut contains the |
+** number of rows expected to be visited by filtering using the nEq |
+** terms only. If it is modified, this value is restored before this |
+** function returns. |
+** |
+** If pProbe->tnum==0, that means pIndex is a fake index used for the |
+** INTEGER PRIMARY KEY. |
+*/ |
+static int whereLoopAddBtreeIndex( |
+ WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ |
+ struct SrcList_item *pSrc, /* FROM clause term being analyzed */ |
+ Index *pProbe, /* An index on pSrc */ |
+ LogEst nInMul /* log(Number of iterations due to IN) */ |
+){ |
+ WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ |
+ Parse *pParse = pWInfo->pParse; /* Parsing context */ |
+ sqlite3 *db = pParse->db; /* Database connection malloc context */ |
+ WhereLoop *pNew; /* Template WhereLoop under construction */ |
+ WhereTerm *pTerm; /* A WhereTerm under consideration */ |
+ int opMask; /* Valid operators for constraints */ |
+ WhereScan scan; /* Iterator for WHERE terms */ |
+ Bitmask saved_prereq; /* Original value of pNew->prereq */ |
+ u16 saved_nLTerm; /* Original value of pNew->nLTerm */ |
+ u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ |
+ u16 saved_nSkip; /* Original value of pNew->u.btree.nSkip */ |
+ u32 saved_wsFlags; /* Original value of pNew->wsFlags */ |
+ LogEst saved_nOut; /* Original value of pNew->nOut */ |
+ int iCol; /* Index of the column in the table */ |
+ int rc = SQLITE_OK; /* Return code */ |
+ LogEst rSize; /* Number of rows in the table */ |
+ LogEst rLogSize; /* Logarithm of table size */ |
+ WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ |
+ |
+ pNew = pBuilder->pNew; |
+ if( db->mallocFailed ) return SQLITE_NOMEM; |
+ |
+ assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); |
+ assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); |
+ if( pNew->wsFlags & WHERE_BTM_LIMIT ){ |
+ opMask = WO_LT|WO_LE; |
+ }else if( pProbe->tnum<=0 || (pSrc->jointype & JT_LEFT)!=0 ){ |
+ opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE; |
+ }else{ |
+ opMask = WO_EQ|WO_IN|WO_ISNULL|WO_GT|WO_GE|WO_LT|WO_LE; |
+ } |
+ if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); |
+ |
+ assert( pNew->u.btree.nEq<pProbe->nColumn ); |
+ iCol = pProbe->aiColumn[pNew->u.btree.nEq]; |
+ |
+ pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, iCol, |
+ opMask, pProbe); |
+ saved_nEq = pNew->u.btree.nEq; |
+ saved_nSkip = pNew->u.btree.nSkip; |
+ saved_nLTerm = pNew->nLTerm; |
+ saved_wsFlags = pNew->wsFlags; |
+ saved_prereq = pNew->prereq; |
+ saved_nOut = pNew->nOut; |
+ pNew->rSetup = 0; |
+ rSize = pProbe->aiRowLogEst[0]; |
+ rLogSize = estLog(rSize); |
+ |
+ /* Consider using a skip-scan if there are no WHERE clause constraints |
+ ** available for the left-most terms of the index, and if the average |
+ ** number of repeats in the left-most terms is at least 18. |
+ ** |
+ ** The magic number 18 is selected on the basis that scanning 17 rows |
+ ** is almost always quicker than an index seek (even though if the index |
+ ** contains fewer than 2^17 rows we assume otherwise in other parts of |
+ ** the code). And, even if it is not, it should not be too much slower. |
+ ** On the other hand, the extra seeks could end up being significantly |
+ ** more expensive. */ |
+ assert( 42==sqlite3LogEst(18) ); |
+ if( saved_nEq==saved_nSkip |
+ && saved_nEq+1<pProbe->nKeyCol |
+ && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ |
+ && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK |
+ ){ |
+ LogEst nIter; |
+ pNew->u.btree.nEq++; |
+ pNew->u.btree.nSkip++; |
+ pNew->aLTerm[pNew->nLTerm++] = 0; |
+ pNew->wsFlags |= WHERE_SKIPSCAN; |
+ nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; |
+ if( pTerm ){ |
+ /* TUNING: When estimating skip-scan for a term that is also indexable, |
+ ** multiply the cost of the skip-scan by 2.0, to make it a little less |
+ ** desirable than the regular index lookup. */ |
+ nIter += 10; assert( 10==sqlite3LogEst(2) ); |
+ } |
+ pNew->nOut -= nIter; |
+ /* TUNING: Because uncertainties in the estimates for skip-scan queries, |
+ ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ |
+ nIter += 5; |
+ whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); |
+ pNew->nOut = saved_nOut; |
+ pNew->u.btree.nEq = saved_nEq; |
+ pNew->u.btree.nSkip = saved_nSkip; |
+ } |
+ for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ |
+ u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ |
+ LogEst rCostIdx; |
+ LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ |
+ int nIn = 0; |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ int nRecValid = pBuilder->nRecValid; |
+#endif |
+ if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) |
+ && (iCol<0 || pSrc->pTab->aCol[iCol].notNull) |
+ ){ |
+ continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ |
+ } |
+ if( pTerm->prereqRight & pNew->maskSelf ) continue; |
+ |
+ pNew->wsFlags = saved_wsFlags; |
+ pNew->u.btree.nEq = saved_nEq; |
+ pNew->nLTerm = saved_nLTerm; |
+ if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ |
+ pNew->aLTerm[pNew->nLTerm++] = pTerm; |
+ pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; |
+ |
+ assert( nInMul==0 |
+ || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 |
+ || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 |
+ || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 |
+ ); |
+ |
+ if( eOp & WO_IN ){ |
+ Expr *pExpr = pTerm->pExpr; |
+ pNew->wsFlags |= WHERE_COLUMN_IN; |
+ if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
+ /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ |
+ nIn = 46; assert( 46==sqlite3LogEst(25) ); |
+ }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ |
+ /* "x IN (value, value, ...)" */ |
+ nIn = sqlite3LogEst(pExpr->x.pList->nExpr); |
+ } |
+ assert( nIn>0 ); /* RHS always has 2 or more terms... The parser |
+ ** changes "x IN (?)" into "x=?". */ |
+ |
+ }else if( eOp & (WO_EQ) ){ |
+ pNew->wsFlags |= WHERE_COLUMN_EQ; |
+ if( iCol<0 || (nInMul==0 && pNew->u.btree.nEq==pProbe->nKeyCol-1) ){ |
+ if( iCol>=0 && !IsUniqueIndex(pProbe) ){ |
+ pNew->wsFlags |= WHERE_UNQ_WANTED; |
+ }else{ |
+ pNew->wsFlags |= WHERE_ONEROW; |
+ } |
+ } |
+ }else if( eOp & WO_ISNULL ){ |
+ pNew->wsFlags |= WHERE_COLUMN_NULL; |
+ }else if( eOp & (WO_GT|WO_GE) ){ |
+ testcase( eOp & WO_GT ); |
+ testcase( eOp & WO_GE ); |
+ pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; |
+ pBtm = pTerm; |
+ pTop = 0; |
+ }else{ |
+ assert( eOp & (WO_LT|WO_LE) ); |
+ testcase( eOp & WO_LT ); |
+ testcase( eOp & WO_LE ); |
+ pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; |
+ pTop = pTerm; |
+ pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? |
+ pNew->aLTerm[pNew->nLTerm-2] : 0; |
+ } |
+ |
+ /* At this point pNew->nOut is set to the number of rows expected to |
+ ** be visited by the index scan before considering term pTerm, or the |
+ ** values of nIn and nInMul. In other words, assuming that all |
+ ** "x IN(...)" terms are replaced with "x = ?". This block updates |
+ ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ |
+ assert( pNew->nOut==saved_nOut ); |
+ if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ |
+ /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4 |
+ ** data, using some other estimate. */ |
+ whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); |
+ }else{ |
+ int nEq = ++pNew->u.btree.nEq; |
+ assert( eOp & (WO_ISNULL|WO_EQ|WO_IN) ); |
+ |
+ assert( pNew->nOut==saved_nOut ); |
+ if( pTerm->truthProb<=0 && iCol>=0 ){ |
+ assert( (eOp & WO_IN) || nIn==0 ); |
+ testcase( eOp & WO_IN ); |
+ pNew->nOut += pTerm->truthProb; |
+ pNew->nOut -= nIn; |
+ }else{ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ tRowcnt nOut = 0; |
+ if( nInMul==0 |
+ && pProbe->nSample |
+ && pNew->u.btree.nEq<=pProbe->nSampleCol |
+ && OptimizationEnabled(db, SQLITE_Stat3) |
+ && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)) |
+ ){ |
+ Expr *pExpr = pTerm->pExpr; |
+ if( (eOp & (WO_EQ|WO_ISNULL))!=0 ){ |
+ testcase( eOp & WO_EQ ); |
+ testcase( eOp & WO_ISNULL ); |
+ rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); |
+ }else{ |
+ rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); |
+ } |
+ if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; |
+ if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ |
+ if( nOut ){ |
+ pNew->nOut = sqlite3LogEst(nOut); |
+ if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; |
+ pNew->nOut -= nIn; |
+ } |
+ } |
+ if( nOut==0 ) |
+#endif |
+ { |
+ pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); |
+ if( eOp & WO_ISNULL ){ |
+ /* TUNING: If there is no likelihood() value, assume that a |
+ ** "col IS NULL" expression matches twice as many rows |
+ ** as (col=?). */ |
+ pNew->nOut += 10; |
+ } |
+ } |
+ } |
+ } |
+ |
+ /* Set rCostIdx to the cost of visiting selected rows in index. Add |
+ ** it to pNew->rRun, which is currently set to the cost of the index |
+ ** seek only. Then, if this is a non-covering index, add the cost of |
+ ** visiting the rows in the main table. */ |
+ rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; |
+ pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); |
+ if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ |
+ pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); |
+ } |
+ ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); |
+ |
+ nOutUnadjusted = pNew->nOut; |
+ pNew->rRun += nInMul + nIn; |
+ pNew->nOut += nInMul + nIn; |
+ whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); |
+ rc = whereLoopInsert(pBuilder, pNew); |
+ |
+ if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ |
+ pNew->nOut = saved_nOut; |
+ }else{ |
+ pNew->nOut = nOutUnadjusted; |
+ } |
+ |
+ if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 |
+ && pNew->u.btree.nEq<pProbe->nColumn |
+ ){ |
+ whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); |
+ } |
+ pNew->nOut = saved_nOut; |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ pBuilder->nRecValid = nRecValid; |
+#endif |
+ } |
+ pNew->prereq = saved_prereq; |
+ pNew->u.btree.nEq = saved_nEq; |
+ pNew->u.btree.nSkip = saved_nSkip; |
+ pNew->wsFlags = saved_wsFlags; |
+ pNew->nOut = saved_nOut; |
+ pNew->nLTerm = saved_nLTerm; |
+ return rc; |
+} |
+ |
+/* |
+** Return True if it is possible that pIndex might be useful in |
+** implementing the ORDER BY clause in pBuilder. |
+** |
+** Return False if pBuilder does not contain an ORDER BY clause or |
+** if there is no way for pIndex to be useful in implementing that |
+** ORDER BY clause. |
+*/ |
+static int indexMightHelpWithOrderBy( |
+ WhereLoopBuilder *pBuilder, |
+ Index *pIndex, |
+ int iCursor |
+){ |
+ ExprList *pOB; |
+ int ii, jj; |
+ |
+ if( pIndex->bUnordered ) return 0; |
+ if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; |
+ for(ii=0; ii<pOB->nExpr; ii++){ |
+ Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr); |
+ if( pExpr->op!=TK_COLUMN ) return 0; |
+ if( pExpr->iTable==iCursor ){ |
+ if( pExpr->iColumn<0 ) return 1; |
+ for(jj=0; jj<pIndex->nKeyCol; jj++){ |
+ if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; |
+ } |
+ } |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** Return a bitmask where 1s indicate that the corresponding column of |
+** the table is used by an index. Only the first 63 columns are considered. |
+*/ |
+static Bitmask columnsInIndex(Index *pIdx){ |
+ Bitmask m = 0; |
+ int j; |
+ for(j=pIdx->nColumn-1; j>=0; j--){ |
+ int x = pIdx->aiColumn[j]; |
+ if( x>=0 ){ |
+ testcase( x==BMS-1 ); |
+ testcase( x==BMS-2 ); |
+ if( x<BMS-1 ) m |= MASKBIT(x); |
+ } |
+ } |
+ return m; |
+} |
+ |
+/* Check to see if a partial index with pPartIndexWhere can be used |
+** in the current query. Return true if it can be and false if not. |
+*/ |
+static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){ |
+ int i; |
+ WhereTerm *pTerm; |
+ for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ |
+ if( sqlite3ExprImpliesExpr(pTerm->pExpr, pWhere, iTab) ) return 1; |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** Add all WhereLoop objects for a single table of the join where the table |
+** is idenfied by pBuilder->pNew->iTab. That table is guaranteed to be |
+** a b-tree table, not a virtual table. |
+** |
+** The costs (WhereLoop.rRun) of the b-tree loops added by this function |
+** are calculated as follows: |
+** |
+** For a full scan, assuming the table (or index) contains nRow rows: |
+** |
+** cost = nRow * 3.0 // full-table scan |
+** cost = nRow * K // scan of covering index |
+** cost = nRow * (K+3.0) // scan of non-covering index |
+** |
+** where K is a value between 1.1 and 3.0 set based on the relative |
+** estimated average size of the index and table records. |
+** |
+** For an index scan, where nVisit is the number of index rows visited |
+** by the scan, and nSeek is the number of seek operations required on |
+** the index b-tree: |
+** |
+** cost = nSeek * (log(nRow) + K * nVisit) // covering index |
+** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index |
+** |
+** Normally, nSeek is 1. nSeek values greater than 1 come about if the |
+** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when |
+** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. |
+** |
+** The estimated values (nRow, nVisit, nSeek) often contain a large amount |
+** of uncertainty. For this reason, scoring is designed to pick plans that |
+** "do the least harm" if the estimates are inaccurate. For example, a |
+** log(nRow) factor is omitted from a non-covering index scan in order to |
+** bias the scoring in favor of using an index, since the worst-case |
+** performance of using an index is far better than the worst-case performance |
+** of a full table scan. |
+*/ |
+static int whereLoopAddBtree( |
+ WhereLoopBuilder *pBuilder, /* WHERE clause information */ |
+ Bitmask mExtra /* Extra prerequesites for using this table */ |
+){ |
+ WhereInfo *pWInfo; /* WHERE analysis context */ |
+ Index *pProbe; /* An index we are evaluating */ |
+ Index sPk; /* A fake index object for the primary key */ |
+ LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ |
+ i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ |
+ SrcList *pTabList; /* The FROM clause */ |
+ struct SrcList_item *pSrc; /* The FROM clause btree term to add */ |
+ WhereLoop *pNew; /* Template WhereLoop object */ |
+ int rc = SQLITE_OK; /* Return code */ |
+ int iSortIdx = 1; /* Index number */ |
+ int b; /* A boolean value */ |
+ LogEst rSize; /* number of rows in the table */ |
+ LogEst rLogSize; /* Logarithm of the number of rows in the table */ |
+ WhereClause *pWC; /* The parsed WHERE clause */ |
+ Table *pTab; /* Table being queried */ |
+ |
+ pNew = pBuilder->pNew; |
+ pWInfo = pBuilder->pWInfo; |
+ pTabList = pWInfo->pTabList; |
+ pSrc = pTabList->a + pNew->iTab; |
+ pTab = pSrc->pTab; |
+ pWC = pBuilder->pWC; |
+ assert( !IsVirtual(pSrc->pTab) ); |
+ |
+ if( pSrc->pIndex ){ |
+ /* An INDEXED BY clause specifies a particular index to use */ |
+ pProbe = pSrc->pIndex; |
+ }else if( !HasRowid(pTab) ){ |
+ pProbe = pTab->pIndex; |
+ }else{ |
+ /* There is no INDEXED BY clause. Create a fake Index object in local |
+ ** variable sPk to represent the rowid primary key index. Make this |
+ ** fake index the first in a chain of Index objects with all of the real |
+ ** indices to follow */ |
+ Index *pFirst; /* First of real indices on the table */ |
+ memset(&sPk, 0, sizeof(Index)); |
+ sPk.nKeyCol = 1; |
+ sPk.nColumn = 1; |
+ sPk.aiColumn = &aiColumnPk; |
+ sPk.aiRowLogEst = aiRowEstPk; |
+ sPk.onError = OE_Replace; |
+ sPk.pTable = pTab; |
+ sPk.szIdxRow = pTab->szTabRow; |
+ aiRowEstPk[0] = pTab->nRowLogEst; |
+ aiRowEstPk[1] = 0; |
+ pFirst = pSrc->pTab->pIndex; |
+ if( pSrc->notIndexed==0 ){ |
+ /* The real indices of the table are only considered if the |
+ ** NOT INDEXED qualifier is omitted from the FROM clause */ |
+ sPk.pNext = pFirst; |
+ } |
+ pProbe = &sPk; |
+ } |
+ rSize = pTab->nRowLogEst; |
+ rLogSize = estLog(rSize); |
+ |
+#ifndef SQLITE_OMIT_AUTOMATIC_INDEX |
+ /* Automatic indexes */ |
+ if( !pBuilder->pOrSet |
+ && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 |
+ && pSrc->pIndex==0 |
+ && !pSrc->viaCoroutine |
+ && !pSrc->notIndexed |
+ && HasRowid(pTab) |
+ && !pSrc->isCorrelated |
+ && !pSrc->isRecursive |
+ ){ |
+ /* Generate auto-index WhereLoops */ |
+ WhereTerm *pTerm; |
+ WhereTerm *pWCEnd = pWC->a + pWC->nTerm; |
+ for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ |
+ if( pTerm->prereqRight & pNew->maskSelf ) continue; |
+ if( termCanDriveIndex(pTerm, pSrc, 0) ){ |
+ pNew->u.btree.nEq = 1; |
+ pNew->u.btree.nSkip = 0; |
+ pNew->u.btree.pIndex = 0; |
+ pNew->nLTerm = 1; |
+ pNew->aLTerm[0] = pTerm; |
+ /* TUNING: One-time cost for computing the automatic index is |
+ ** estimated to be X*N*log2(N) where N is the number of rows in |
+ ** the table being indexed and where X is 7 (LogEst=28) for normal |
+ ** tables or 1.375 (LogEst=4) for views and subqueries. The value |
+ ** of X is smaller for views and subqueries so that the query planner |
+ ** will be more aggressive about generating automatic indexes for |
+ ** those objects, since there is no opportunity to add schema |
+ ** indexes on subqueries and views. */ |
+ pNew->rSetup = rLogSize + rSize + 4; |
+ if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){ |
+ pNew->rSetup += 24; |
+ } |
+ ApplyCostMultiplier(pNew->rSetup, pTab->costMult); |
+ /* TUNING: Each index lookup yields 20 rows in the table. This |
+ ** is more than the usual guess of 10 rows, since we have no way |
+ ** of knowing how selective the index will ultimately be. It would |
+ ** not be unreasonable to make this value much larger. */ |
+ pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); |
+ pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); |
+ pNew->wsFlags = WHERE_AUTO_INDEX; |
+ pNew->prereq = mExtra | pTerm->prereqRight; |
+ rc = whereLoopInsert(pBuilder, pNew); |
+ } |
+ } |
+ } |
+#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ |
+ |
+ /* Loop over all indices |
+ */ |
+ for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){ |
+ if( pProbe->pPartIdxWhere!=0 |
+ && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){ |
+ testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ |
+ continue; /* Partial index inappropriate for this query */ |
+ } |
+ rSize = pProbe->aiRowLogEst[0]; |
+ pNew->u.btree.nEq = 0; |
+ pNew->u.btree.nSkip = 0; |
+ pNew->nLTerm = 0; |
+ pNew->iSortIdx = 0; |
+ pNew->rSetup = 0; |
+ pNew->prereq = mExtra; |
+ pNew->nOut = rSize; |
+ pNew->u.btree.pIndex = pProbe; |
+ b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); |
+ /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ |
+ assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); |
+ if( pProbe->tnum<=0 ){ |
+ /* Integer primary key index */ |
+ pNew->wsFlags = WHERE_IPK; |
+ |
+ /* Full table scan */ |
+ pNew->iSortIdx = b ? iSortIdx : 0; |
+ /* TUNING: Cost of full table scan is (N*3.0). */ |
+ pNew->rRun = rSize + 16; |
+ ApplyCostMultiplier(pNew->rRun, pTab->costMult); |
+ whereLoopOutputAdjust(pWC, pNew, rSize); |
+ rc = whereLoopInsert(pBuilder, pNew); |
+ pNew->nOut = rSize; |
+ if( rc ) break; |
+ }else{ |
+ Bitmask m; |
+ if( pProbe->isCovering ){ |
+ pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; |
+ m = 0; |
+ }else{ |
+ m = pSrc->colUsed & ~columnsInIndex(pProbe); |
+ pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; |
+ } |
+ |
+ /* Full scan via index */ |
+ if( b |
+ || !HasRowid(pTab) |
+ || ( m==0 |
+ && pProbe->bUnordered==0 |
+ && (pProbe->szIdxRow<pTab->szTabRow) |
+ && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 |
+ && sqlite3GlobalConfig.bUseCis |
+ && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) |
+ ) |
+ ){ |
+ pNew->iSortIdx = b ? iSortIdx : 0; |
+ |
+ /* The cost of visiting the index rows is N*K, where K is |
+ ** between 1.1 and 3.0, depending on the relative sizes of the |
+ ** index and table rows. If this is a non-covering index scan, |
+ ** also add the cost of visiting table rows (N*3.0). */ |
+ pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; |
+ if( m!=0 ){ |
+ pNew->rRun = sqlite3LogEstAdd(pNew->rRun, rSize+16); |
+ } |
+ ApplyCostMultiplier(pNew->rRun, pTab->costMult); |
+ whereLoopOutputAdjust(pWC, pNew, rSize); |
+ rc = whereLoopInsert(pBuilder, pNew); |
+ pNew->nOut = rSize; |
+ if( rc ) break; |
+ } |
+ } |
+ |
+ rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ sqlite3Stat4ProbeFree(pBuilder->pRec); |
+ pBuilder->nRecValid = 0; |
+ pBuilder->pRec = 0; |
+#endif |
+ |
+ /* If there was an INDEXED BY clause, then only that one index is |
+ ** considered. */ |
+ if( pSrc->pIndex ) break; |
+ } |
+ return rc; |
+} |
+ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+/* |
+** Add all WhereLoop objects for a table of the join identified by |
+** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. |
+*/ |
+static int whereLoopAddVirtual( |
+ WhereLoopBuilder *pBuilder, /* WHERE clause information */ |
+ Bitmask mExtra |
+){ |
+ WhereInfo *pWInfo; /* WHERE analysis context */ |
+ Parse *pParse; /* The parsing context */ |
+ WhereClause *pWC; /* The WHERE clause */ |
+ struct SrcList_item *pSrc; /* The FROM clause term to search */ |
+ Table *pTab; |
+ sqlite3 *db; |
+ sqlite3_index_info *pIdxInfo; |
+ struct sqlite3_index_constraint *pIdxCons; |
+ struct sqlite3_index_constraint_usage *pUsage; |
+ WhereTerm *pTerm; |
+ int i, j; |
+ int iTerm, mxTerm; |
+ int nConstraint; |
+ int seenIn = 0; /* True if an IN operator is seen */ |
+ int seenVar = 0; /* True if a non-constant constraint is seen */ |
+ int iPhase; /* 0: const w/o IN, 1: const, 2: no IN, 2: IN */ |
+ WhereLoop *pNew; |
+ int rc = SQLITE_OK; |
+ |
+ pWInfo = pBuilder->pWInfo; |
+ pParse = pWInfo->pParse; |
+ db = pParse->db; |
+ pWC = pBuilder->pWC; |
+ pNew = pBuilder->pNew; |
+ pSrc = &pWInfo->pTabList->a[pNew->iTab]; |
+ pTab = pSrc->pTab; |
+ assert( IsVirtual(pTab) ); |
+ pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pBuilder->pOrderBy); |
+ if( pIdxInfo==0 ) return SQLITE_NOMEM; |
+ pNew->prereq = 0; |
+ pNew->rSetup = 0; |
+ pNew->wsFlags = WHERE_VIRTUALTABLE; |
+ pNew->nLTerm = 0; |
+ pNew->u.vtab.needFree = 0; |
+ pUsage = pIdxInfo->aConstraintUsage; |
+ nConstraint = pIdxInfo->nConstraint; |
+ if( whereLoopResize(db, pNew, nConstraint) ){ |
+ sqlite3DbFree(db, pIdxInfo); |
+ return SQLITE_NOMEM; |
+ } |
+ |
+ for(iPhase=0; iPhase<=3; iPhase++){ |
+ if( !seenIn && (iPhase&1)!=0 ){ |
+ iPhase++; |
+ if( iPhase>3 ) break; |
+ } |
+ if( !seenVar && iPhase>1 ) break; |
+ pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; |
+ for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ |
+ j = pIdxCons->iTermOffset; |
+ pTerm = &pWC->a[j]; |
+ switch( iPhase ){ |
+ case 0: /* Constants without IN operator */ |
+ pIdxCons->usable = 0; |
+ if( (pTerm->eOperator & WO_IN)!=0 ){ |
+ seenIn = 1; |
+ } |
+ if( pTerm->prereqRight!=0 ){ |
+ seenVar = 1; |
+ }else if( (pTerm->eOperator & WO_IN)==0 ){ |
+ pIdxCons->usable = 1; |
+ } |
+ break; |
+ case 1: /* Constants with IN operators */ |
+ assert( seenIn ); |
+ pIdxCons->usable = (pTerm->prereqRight==0); |
+ break; |
+ case 2: /* Variables without IN */ |
+ assert( seenVar ); |
+ pIdxCons->usable = (pTerm->eOperator & WO_IN)==0; |
+ break; |
+ default: /* Variables with IN */ |
+ assert( seenVar && seenIn ); |
+ pIdxCons->usable = 1; |
+ break; |
+ } |
+ } |
+ memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); |
+ if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr); |
+ pIdxInfo->idxStr = 0; |
+ pIdxInfo->idxNum = 0; |
+ pIdxInfo->needToFreeIdxStr = 0; |
+ pIdxInfo->orderByConsumed = 0; |
+ pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; |
+ pIdxInfo->estimatedRows = 25; |
+ rc = vtabBestIndex(pParse, pTab, pIdxInfo); |
+ if( rc ) goto whereLoopAddVtab_exit; |
+ pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; |
+ pNew->prereq = mExtra; |
+ mxTerm = -1; |
+ assert( pNew->nLSlot>=nConstraint ); |
+ for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; |
+ pNew->u.vtab.omitMask = 0; |
+ for(i=0; i<nConstraint; i++, pIdxCons++){ |
+ if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ |
+ j = pIdxCons->iTermOffset; |
+ if( iTerm>=nConstraint |
+ || j<0 |
+ || j>=pWC->nTerm |
+ || pNew->aLTerm[iTerm]!=0 |
+ ){ |
+ rc = SQLITE_ERROR; |
+ sqlite3ErrorMsg(pParse, "%s.xBestIndex() malfunction", pTab->zName); |
+ goto whereLoopAddVtab_exit; |
+ } |
+ testcase( iTerm==nConstraint-1 ); |
+ testcase( j==0 ); |
+ testcase( j==pWC->nTerm-1 ); |
+ pTerm = &pWC->a[j]; |
+ pNew->prereq |= pTerm->prereqRight; |
+ assert( iTerm<pNew->nLSlot ); |
+ pNew->aLTerm[iTerm] = pTerm; |
+ if( iTerm>mxTerm ) mxTerm = iTerm; |
+ testcase( iTerm==15 ); |
+ testcase( iTerm==16 ); |
+ if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm; |
+ if( (pTerm->eOperator & WO_IN)!=0 ){ |
+ if( pUsage[i].omit==0 ){ |
+ /* Do not attempt to use an IN constraint if the virtual table |
+ ** says that the equivalent EQ constraint cannot be safely omitted. |
+ ** If we do attempt to use such a constraint, some rows might be |
+ ** repeated in the output. */ |
+ break; |
+ } |
+ /* A virtual table that is constrained by an IN clause may not |
+ ** consume the ORDER BY clause because (1) the order of IN terms |
+ ** is not necessarily related to the order of output terms and |
+ ** (2) Multiple outputs from a single IN value will not merge |
+ ** together. */ |
+ pIdxInfo->orderByConsumed = 0; |
+ } |
+ } |
+ } |
+ if( i>=nConstraint ){ |
+ pNew->nLTerm = mxTerm+1; |
+ assert( pNew->nLTerm<=pNew->nLSlot ); |
+ pNew->u.vtab.idxNum = pIdxInfo->idxNum; |
+ pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; |
+ pIdxInfo->needToFreeIdxStr = 0; |
+ pNew->u.vtab.idxStr = pIdxInfo->idxStr; |
+ pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? |
+ pIdxInfo->nOrderBy : 0); |
+ pNew->rSetup = 0; |
+ pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); |
+ pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); |
+ whereLoopInsert(pBuilder, pNew); |
+ if( pNew->u.vtab.needFree ){ |
+ sqlite3_free(pNew->u.vtab.idxStr); |
+ pNew->u.vtab.needFree = 0; |
+ } |
+ } |
+ } |
+ |
+whereLoopAddVtab_exit: |
+ if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr); |
+ sqlite3DbFree(db, pIdxInfo); |
+ return rc; |
+} |
+#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
+ |
+/* |
+** Add WhereLoop entries to handle OR terms. This works for either |
+** btrees or virtual tables. |
+*/ |
+static int whereLoopAddOr(WhereLoopBuilder *pBuilder, Bitmask mExtra){ |
+ WhereInfo *pWInfo = pBuilder->pWInfo; |
+ WhereClause *pWC; |
+ WhereLoop *pNew; |
+ WhereTerm *pTerm, *pWCEnd; |
+ int rc = SQLITE_OK; |
+ int iCur; |
+ WhereClause tempWC; |
+ WhereLoopBuilder sSubBuild; |
+ WhereOrSet sSum, sCur; |
+ struct SrcList_item *pItem; |
+ |
+ pWC = pBuilder->pWC; |
+ pWCEnd = pWC->a + pWC->nTerm; |
+ pNew = pBuilder->pNew; |
+ memset(&sSum, 0, sizeof(sSum)); |
+ pItem = pWInfo->pTabList->a + pNew->iTab; |
+ iCur = pItem->iCursor; |
+ |
+ for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ |
+ if( (pTerm->eOperator & WO_OR)!=0 |
+ && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 |
+ ){ |
+ WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; |
+ WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; |
+ WhereTerm *pOrTerm; |
+ int once = 1; |
+ int i, j; |
+ |
+ sSubBuild = *pBuilder; |
+ sSubBuild.pOrderBy = 0; |
+ sSubBuild.pOrSet = &sCur; |
+ |
+ WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); |
+ for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ |
+ if( (pOrTerm->eOperator & WO_AND)!=0 ){ |
+ sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; |
+ }else if( pOrTerm->leftCursor==iCur ){ |
+ tempWC.pWInfo = pWC->pWInfo; |
+ tempWC.pOuter = pWC; |
+ tempWC.op = TK_AND; |
+ tempWC.nTerm = 1; |
+ tempWC.a = pOrTerm; |
+ sSubBuild.pWC = &tempWC; |
+ }else{ |
+ continue; |
+ } |
+ sCur.n = 0; |
+#ifdef WHERETRACE_ENABLED |
+ WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", |
+ (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); |
+ if( sqlite3WhereTrace & 0x400 ){ |
+ for(i=0; i<sSubBuild.pWC->nTerm; i++){ |
+ whereTermPrint(&sSubBuild.pWC->a[i], i); |
+ } |
+ } |
+#endif |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ if( IsVirtual(pItem->pTab) ){ |
+ rc = whereLoopAddVirtual(&sSubBuild, mExtra); |
+ }else |
+#endif |
+ { |
+ rc = whereLoopAddBtree(&sSubBuild, mExtra); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = whereLoopAddOr(&sSubBuild, mExtra); |
+ } |
+ assert( rc==SQLITE_OK || sCur.n==0 ); |
+ if( sCur.n==0 ){ |
+ sSum.n = 0; |
+ break; |
+ }else if( once ){ |
+ whereOrMove(&sSum, &sCur); |
+ once = 0; |
+ }else{ |
+ WhereOrSet sPrev; |
+ whereOrMove(&sPrev, &sSum); |
+ sSum.n = 0; |
+ for(i=0; i<sPrev.n; i++){ |
+ for(j=0; j<sCur.n; j++){ |
+ whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, |
+ sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), |
+ sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); |
+ } |
+ } |
+ } |
+ } |
+ pNew->nLTerm = 1; |
+ pNew->aLTerm[0] = pTerm; |
+ pNew->wsFlags = WHERE_MULTI_OR; |
+ pNew->rSetup = 0; |
+ pNew->iSortIdx = 0; |
+ memset(&pNew->u, 0, sizeof(pNew->u)); |
+ for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ |
+ /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs |
+ ** of all sub-scans required by the OR-scan. However, due to rounding |
+ ** errors, it may be that the cost of the OR-scan is equal to its |
+ ** most expensive sub-scan. Add the smallest possible penalty |
+ ** (equivalent to multiplying the cost by 1.07) to ensure that |
+ ** this does not happen. Otherwise, for WHERE clauses such as the |
+ ** following where there is an index on "y": |
+ ** |
+ ** WHERE likelihood(x=?, 0.99) OR y=? |
+ ** |
+ ** the planner may elect to "OR" together a full-table scan and an |
+ ** index lookup. And other similarly odd results. */ |
+ pNew->rRun = sSum.a[i].rRun + 1; |
+ pNew->nOut = sSum.a[i].nOut; |
+ pNew->prereq = sSum.a[i].prereq; |
+ rc = whereLoopInsert(pBuilder, pNew); |
+ } |
+ WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Add all WhereLoop objects for all tables |
+*/ |
+static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ |
+ WhereInfo *pWInfo = pBuilder->pWInfo; |
+ Bitmask mExtra = 0; |
+ Bitmask mPrior = 0; |
+ int iTab; |
+ SrcList *pTabList = pWInfo->pTabList; |
+ struct SrcList_item *pItem; |
+ sqlite3 *db = pWInfo->pParse->db; |
+ int nTabList = pWInfo->nLevel; |
+ int rc = SQLITE_OK; |
+ u8 priorJoinType = 0; |
+ WhereLoop *pNew; |
+ |
+ /* Loop over the tables in the join, from left to right */ |
+ pNew = pBuilder->pNew; |
+ whereLoopInit(pNew); |
+ for(iTab=0, pItem=pTabList->a; iTab<nTabList; iTab++, pItem++){ |
+ pNew->iTab = iTab; |
+ pNew->maskSelf = getMask(&pWInfo->sMaskSet, pItem->iCursor); |
+ if( ((pItem->jointype|priorJoinType) & (JT_LEFT|JT_CROSS))!=0 ){ |
+ mExtra = mPrior; |
+ } |
+ priorJoinType = pItem->jointype; |
+ if( IsVirtual(pItem->pTab) ){ |
+ rc = whereLoopAddVirtual(pBuilder, mExtra); |
+ }else{ |
+ rc = whereLoopAddBtree(pBuilder, mExtra); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = whereLoopAddOr(pBuilder, mExtra); |
+ } |
+ mPrior |= pNew->maskSelf; |
+ if( rc || db->mallocFailed ) break; |
+ } |
+ whereLoopClear(db, pNew); |
+ return rc; |
+} |
+ |
+/* |
+** Examine a WherePath (with the addition of the extra WhereLoop of the 5th |
+** parameters) to see if it outputs rows in the requested ORDER BY |
+** (or GROUP BY) without requiring a separate sort operation. Return N: |
+** |
+** N>0: N terms of the ORDER BY clause are satisfied |
+** N==0: No terms of the ORDER BY clause are satisfied |
+** N<0: Unknown yet how many terms of ORDER BY might be satisfied. |
+** |
+** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as |
+** strict. With GROUP BY and DISTINCT the only requirement is that |
+** equivalent rows appear immediately adjacent to one another. GROUP BY |
+** and DISTINCT do not require rows to appear in any particular order as long |
+** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT |
+** the pOrderBy terms can be matched in any order. With ORDER BY, the |
+** pOrderBy terms must be matched in strict left-to-right order. |
+*/ |
+static i8 wherePathSatisfiesOrderBy( |
+ WhereInfo *pWInfo, /* The WHERE clause */ |
+ ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ |
+ WherePath *pPath, /* The WherePath to check */ |
+ u16 wctrlFlags, /* Might contain WHERE_GROUPBY or WHERE_DISTINCTBY */ |
+ u16 nLoop, /* Number of entries in pPath->aLoop[] */ |
+ WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ |
+ Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ |
+){ |
+ u8 revSet; /* True if rev is known */ |
+ u8 rev; /* Composite sort order */ |
+ u8 revIdx; /* Index sort order */ |
+ u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ |
+ u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ |
+ u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ |
+ u16 nKeyCol; /* Number of key columns in pIndex */ |
+ u16 nColumn; /* Total number of ordered columns in the index */ |
+ u16 nOrderBy; /* Number terms in the ORDER BY clause */ |
+ int iLoop; /* Index of WhereLoop in pPath being processed */ |
+ int i, j; /* Loop counters */ |
+ int iCur; /* Cursor number for current WhereLoop */ |
+ int iColumn; /* A column number within table iCur */ |
+ WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ |
+ WhereTerm *pTerm; /* A single term of the WHERE clause */ |
+ Expr *pOBExpr; /* An expression from the ORDER BY clause */ |
+ CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ |
+ Index *pIndex; /* The index associated with pLoop */ |
+ sqlite3 *db = pWInfo->pParse->db; /* Database connection */ |
+ Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ |
+ Bitmask obDone; /* Mask of all ORDER BY terms */ |
+ Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ |
+ Bitmask ready; /* Mask of inner loops */ |
+ |
+ /* |
+ ** We say the WhereLoop is "one-row" if it generates no more than one |
+ ** row of output. A WhereLoop is one-row if all of the following are true: |
+ ** (a) All index columns match with WHERE_COLUMN_EQ. |
+ ** (b) The index is unique |
+ ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. |
+ ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. |
+ ** |
+ ** We say the WhereLoop is "order-distinct" if the set of columns from |
+ ** that WhereLoop that are in the ORDER BY clause are different for every |
+ ** row of the WhereLoop. Every one-row WhereLoop is automatically |
+ ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause |
+ ** is not order-distinct. To be order-distinct is not quite the same as being |
+ ** UNIQUE since a UNIQUE column or index can have multiple rows that |
+ ** are NULL and NULL values are equivalent for the purpose of order-distinct. |
+ ** To be order-distinct, the columns must be UNIQUE and NOT NULL. |
+ ** |
+ ** The rowid for a table is always UNIQUE and NOT NULL so whenever the |
+ ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is |
+ ** automatically order-distinct. |
+ */ |
+ |
+ assert( pOrderBy!=0 ); |
+ if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; |
+ |
+ nOrderBy = pOrderBy->nExpr; |
+ testcase( nOrderBy==BMS-1 ); |
+ if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ |
+ isOrderDistinct = 1; |
+ obDone = MASKBIT(nOrderBy)-1; |
+ orderDistinctMask = 0; |
+ ready = 0; |
+ for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ |
+ if( iLoop>0 ) ready |= pLoop->maskSelf; |
+ pLoop = iLoop<nLoop ? pPath->aLoop[iLoop] : pLast; |
+ if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ |
+ if( pLoop->u.vtab.isOrdered ) obSat = obDone; |
+ break; |
+ } |
+ iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; |
+ |
+ /* Mark off any ORDER BY term X that is a column in the table of |
+ ** the current loop for which there is term in the WHERE |
+ ** clause of the form X IS NULL or X=? that reference only outer |
+ ** loops. |
+ */ |
+ for(i=0; i<nOrderBy; i++){ |
+ if( MASKBIT(i) & obSat ) continue; |
+ pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); |
+ if( pOBExpr->op!=TK_COLUMN ) continue; |
+ if( pOBExpr->iTable!=iCur ) continue; |
+ pTerm = findTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, |
+ ~ready, WO_EQ|WO_ISNULL, 0); |
+ if( pTerm==0 ) continue; |
+ if( (pTerm->eOperator&WO_EQ)!=0 && pOBExpr->iColumn>=0 ){ |
+ const char *z1, *z2; |
+ pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); |
+ if( !pColl ) pColl = db->pDfltColl; |
+ z1 = pColl->zName; |
+ pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr); |
+ if( !pColl ) pColl = db->pDfltColl; |
+ z2 = pColl->zName; |
+ if( sqlite3StrICmp(z1, z2)!=0 ) continue; |
+ } |
+ obSat |= MASKBIT(i); |
+ } |
+ |
+ if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ |
+ if( pLoop->wsFlags & WHERE_IPK ){ |
+ pIndex = 0; |
+ nKeyCol = 0; |
+ nColumn = 1; |
+ }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ |
+ return 0; |
+ }else{ |
+ nKeyCol = pIndex->nKeyCol; |
+ nColumn = pIndex->nColumn; |
+ assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); |
+ assert( pIndex->aiColumn[nColumn-1]==(-1) || !HasRowid(pIndex->pTable)); |
+ isOrderDistinct = IsUniqueIndex(pIndex); |
+ } |
+ |
+ /* Loop through all columns of the index and deal with the ones |
+ ** that are not constrained by == or IN. |
+ */ |
+ rev = revSet = 0; |
+ distinctColumns = 0; |
+ for(j=0; j<nColumn; j++){ |
+ u8 bOnce; /* True to run the ORDER BY search loop */ |
+ |
+ /* Skip over == and IS NULL terms */ |
+ if( j<pLoop->u.btree.nEq |
+ && pLoop->u.btree.nSkip==0 |
+ && ((i = pLoop->aLTerm[j]->eOperator) & (WO_EQ|WO_ISNULL))!=0 |
+ ){ |
+ if( i & WO_ISNULL ){ |
+ testcase( isOrderDistinct ); |
+ isOrderDistinct = 0; |
+ } |
+ continue; |
+ } |
+ |
+ /* Get the column number in the table (iColumn) and sort order |
+ ** (revIdx) for the j-th column of the index. |
+ */ |
+ if( pIndex ){ |
+ iColumn = pIndex->aiColumn[j]; |
+ revIdx = pIndex->aSortOrder[j]; |
+ if( iColumn==pIndex->pTable->iPKey ) iColumn = -1; |
+ }else{ |
+ iColumn = -1; |
+ revIdx = 0; |
+ } |
+ |
+ /* An unconstrained column that might be NULL means that this |
+ ** WhereLoop is not well-ordered |
+ */ |
+ if( isOrderDistinct |
+ && iColumn>=0 |
+ && j>=pLoop->u.btree.nEq |
+ && pIndex->pTable->aCol[iColumn].notNull==0 |
+ ){ |
+ isOrderDistinct = 0; |
+ } |
+ |
+ /* Find the ORDER BY term that corresponds to the j-th column |
+ ** of the index and mark that ORDER BY term off |
+ */ |
+ bOnce = 1; |
+ isMatch = 0; |
+ for(i=0; bOnce && i<nOrderBy; i++){ |
+ if( MASKBIT(i) & obSat ) continue; |
+ pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); |
+ testcase( wctrlFlags & WHERE_GROUPBY ); |
+ testcase( wctrlFlags & WHERE_DISTINCTBY ); |
+ if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; |
+ if( pOBExpr->op!=TK_COLUMN ) continue; |
+ if( pOBExpr->iTable!=iCur ) continue; |
+ if( pOBExpr->iColumn!=iColumn ) continue; |
+ if( iColumn>=0 ){ |
+ pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); |
+ if( !pColl ) pColl = db->pDfltColl; |
+ if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; |
+ } |
+ isMatch = 1; |
+ break; |
+ } |
+ if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ |
+ /* Make sure the sort order is compatible in an ORDER BY clause. |
+ ** Sort order is irrelevant for a GROUP BY clause. */ |
+ if( revSet ){ |
+ if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0; |
+ }else{ |
+ rev = revIdx ^ pOrderBy->a[i].sortOrder; |
+ if( rev ) *pRevMask |= MASKBIT(iLoop); |
+ revSet = 1; |
+ } |
+ } |
+ if( isMatch ){ |
+ if( iColumn<0 ){ |
+ testcase( distinctColumns==0 ); |
+ distinctColumns = 1; |
+ } |
+ obSat |= MASKBIT(i); |
+ }else{ |
+ /* No match found */ |
+ if( j==0 || j<nKeyCol ){ |
+ testcase( isOrderDistinct!=0 ); |
+ isOrderDistinct = 0; |
+ } |
+ break; |
+ } |
+ } /* end Loop over all index columns */ |
+ if( distinctColumns ){ |
+ testcase( isOrderDistinct==0 ); |
+ isOrderDistinct = 1; |
+ } |
+ } /* end-if not one-row */ |
+ |
+ /* Mark off any other ORDER BY terms that reference pLoop */ |
+ if( isOrderDistinct ){ |
+ orderDistinctMask |= pLoop->maskSelf; |
+ for(i=0; i<nOrderBy; i++){ |
+ Expr *p; |
+ Bitmask mTerm; |
+ if( MASKBIT(i) & obSat ) continue; |
+ p = pOrderBy->a[i].pExpr; |
+ mTerm = exprTableUsage(&pWInfo->sMaskSet,p); |
+ if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; |
+ if( (mTerm&~orderDistinctMask)==0 ){ |
+ obSat |= MASKBIT(i); |
+ } |
+ } |
+ } |
+ } /* End the loop over all WhereLoops from outer-most down to inner-most */ |
+ if( obSat==obDone ) return (i8)nOrderBy; |
+ if( !isOrderDistinct ){ |
+ for(i=nOrderBy-1; i>0; i--){ |
+ Bitmask m = MASKBIT(i) - 1; |
+ if( (obSat&m)==m ) return i; |
+ } |
+ return 0; |
+ } |
+ return -1; |
+} |
+ |
+ |
+/* |
+** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), |
+** the planner assumes that the specified pOrderBy list is actually a GROUP |
+** BY clause - and so any order that groups rows as required satisfies the |
+** request. |
+** |
+** Normally, in this case it is not possible for the caller to determine |
+** whether or not the rows are really being delivered in sorted order, or |
+** just in some other order that provides the required grouping. However, |
+** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then |
+** this function may be called on the returned WhereInfo object. It returns |
+** true if the rows really will be sorted in the specified order, or false |
+** otherwise. |
+** |
+** For example, assuming: |
+** |
+** CREATE INDEX i1 ON t1(x, Y); |
+** |
+** then |
+** |
+** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 |
+** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 |
+*/ |
+int sqlite3WhereIsSorted(WhereInfo *pWInfo){ |
+ assert( pWInfo->wctrlFlags & WHERE_GROUPBY ); |
+ assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); |
+ return pWInfo->sorted; |
+} |
+ |
+#ifdef WHERETRACE_ENABLED |
+/* For debugging use only: */ |
+static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ |
+ static char zName[65]; |
+ int i; |
+ for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } |
+ if( pLast ) zName[i++] = pLast->cId; |
+ zName[i] = 0; |
+ return zName; |
+} |
+#endif |
+ |
+/* |
+** Return the cost of sorting nRow rows, assuming that the keys have |
+** nOrderby columns and that the first nSorted columns are already in |
+** order. |
+*/ |
+static LogEst whereSortingCost( |
+ WhereInfo *pWInfo, |
+ LogEst nRow, |
+ int nOrderBy, |
+ int nSorted |
+){ |
+ /* TUNING: Estimated cost of a full external sort, where N is |
+ ** the number of rows to sort is: |
+ ** |
+ ** cost = (3.0 * N * log(N)). |
+ ** |
+ ** Or, if the order-by clause has X terms but only the last Y |
+ ** terms are out of order, then block-sorting will reduce the |
+ ** sorting cost to: |
+ ** |
+ ** cost = (3.0 * N * log(N)) * (Y/X) |
+ ** |
+ ** The (Y/X) term is implemented using stack variable rScale |
+ ** below. */ |
+ LogEst rScale, rSortCost; |
+ assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); |
+ rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; |
+ rSortCost = nRow + estLog(nRow) + rScale + 16; |
+ |
+ /* TUNING: The cost of implementing DISTINCT using a B-TREE is |
+ ** similar but with a larger constant of proportionality. |
+ ** Multiply by an additional factor of 3.0. */ |
+ if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ |
+ rSortCost += 16; |
+ } |
+ |
+ return rSortCost; |
+} |
+ |
+/* |
+** Given the list of WhereLoop objects at pWInfo->pLoops, this routine |
+** attempts to find the lowest cost path that visits each WhereLoop |
+** once. This path is then loaded into the pWInfo->a[].pWLoop fields. |
+** |
+** Assume that the total number of output rows that will need to be sorted |
+** will be nRowEst (in the 10*log2 representation). Or, ignore sorting |
+** costs if nRowEst==0. |
+** |
+** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation |
+** error occurs. |
+*/ |
+static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ |
+ int mxChoice; /* Maximum number of simultaneous paths tracked */ |
+ int nLoop; /* Number of terms in the join */ |
+ Parse *pParse; /* Parsing context */ |
+ sqlite3 *db; /* The database connection */ |
+ int iLoop; /* Loop counter over the terms of the join */ |
+ int ii, jj; /* Loop counters */ |
+ int mxI = 0; /* Index of next entry to replace */ |
+ int nOrderBy; /* Number of ORDER BY clause terms */ |
+ LogEst mxCost = 0; /* Maximum cost of a set of paths */ |
+ LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ |
+ int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ |
+ WherePath *aFrom; /* All nFrom paths at the previous level */ |
+ WherePath *aTo; /* The nTo best paths at the current level */ |
+ WherePath *pFrom; /* An element of aFrom[] that we are working on */ |
+ WherePath *pTo; /* An element of aTo[] that we are working on */ |
+ WhereLoop *pWLoop; /* One of the WhereLoop objects */ |
+ WhereLoop **pX; /* Used to divy up the pSpace memory */ |
+ LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ |
+ char *pSpace; /* Temporary memory used by this routine */ |
+ int nSpace; /* Bytes of space allocated at pSpace */ |
+ |
+ pParse = pWInfo->pParse; |
+ db = pParse->db; |
+ nLoop = pWInfo->nLevel; |
+ /* TUNING: For simple queries, only the best path is tracked. |
+ ** For 2-way joins, the 5 best paths are followed. |
+ ** For joins of 3 or more tables, track the 10 best paths */ |
+ mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); |
+ assert( nLoop<=pWInfo->pTabList->nSrc ); |
+ WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); |
+ |
+ /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this |
+ ** case the purpose of this call is to estimate the number of rows returned |
+ ** by the overall query. Once this estimate has been obtained, the caller |
+ ** will invoke this function a second time, passing the estimate as the |
+ ** nRowEst parameter. */ |
+ if( pWInfo->pOrderBy==0 || nRowEst==0 ){ |
+ nOrderBy = 0; |
+ }else{ |
+ nOrderBy = pWInfo->pOrderBy->nExpr; |
+ } |
+ |
+ /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ |
+ nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; |
+ nSpace += sizeof(LogEst) * nOrderBy; |
+ pSpace = sqlite3DbMallocRaw(db, nSpace); |
+ if( pSpace==0 ) return SQLITE_NOMEM; |
+ aTo = (WherePath*)pSpace; |
+ aFrom = aTo+mxChoice; |
+ memset(aFrom, 0, sizeof(aFrom[0])); |
+ pX = (WhereLoop**)(aFrom+mxChoice); |
+ for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ |
+ pFrom->aLoop = pX; |
+ } |
+ if( nOrderBy ){ |
+ /* If there is an ORDER BY clause and it is not being ignored, set up |
+ ** space for the aSortCost[] array. Each element of the aSortCost array |
+ ** is either zero - meaning it has not yet been initialized - or the |
+ ** cost of sorting nRowEst rows of data where the first X terms of |
+ ** the ORDER BY clause are already in order, where X is the array |
+ ** index. */ |
+ aSortCost = (LogEst*)pX; |
+ memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); |
+ } |
+ assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); |
+ assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); |
+ |
+ /* Seed the search with a single WherePath containing zero WhereLoops. |
+ ** |
+ ** TUNING: Do not let the number of iterations go above 25. If the cost |
+ ** of computing an automatic index is not paid back within the first 25 |
+ ** rows, then do not use the automatic index. */ |
+ aFrom[0].nRow = MIN(pParse->nQueryLoop, 46); assert( 46==sqlite3LogEst(25) ); |
+ nFrom = 1; |
+ assert( aFrom[0].isOrdered==0 ); |
+ if( nOrderBy ){ |
+ /* If nLoop is zero, then there are no FROM terms in the query. Since |
+ ** in this case the query may return a maximum of one row, the results |
+ ** are already in the requested order. Set isOrdered to nOrderBy to |
+ ** indicate this. Or, if nLoop is greater than zero, set isOrdered to |
+ ** -1, indicating that the result set may or may not be ordered, |
+ ** depending on the loops added to the current plan. */ |
+ aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; |
+ } |
+ |
+ /* Compute successively longer WherePaths using the previous generation |
+ ** of WherePaths as the basis for the next. Keep track of the mxChoice |
+ ** best paths at each generation */ |
+ for(iLoop=0; iLoop<nLoop; iLoop++){ |
+ nTo = 0; |
+ for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ |
+ for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ |
+ LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ |
+ LogEst rCost; /* Cost of path (pFrom+pWLoop) */ |
+ LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ |
+ i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */ |
+ Bitmask maskNew; /* Mask of src visited by (..) */ |
+ Bitmask revMask = 0; /* Mask of rev-order loops for (..) */ |
+ |
+ if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; |
+ if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; |
+ /* At this point, pWLoop is a candidate to be the next loop. |
+ ** Compute its cost */ |
+ rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); |
+ rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); |
+ nOut = pFrom->nRow + pWLoop->nOut; |
+ maskNew = pFrom->maskLoop | pWLoop->maskSelf; |
+ if( isOrdered<0 ){ |
+ isOrdered = wherePathSatisfiesOrderBy(pWInfo, |
+ pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, |
+ iLoop, pWLoop, &revMask); |
+ }else{ |
+ revMask = pFrom->revLoop; |
+ } |
+ if( isOrdered>=0 && isOrdered<nOrderBy ){ |
+ if( aSortCost[isOrdered]==0 ){ |
+ aSortCost[isOrdered] = whereSortingCost( |
+ pWInfo, nRowEst, nOrderBy, isOrdered |
+ ); |
+ } |
+ rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]); |
+ |
+ WHERETRACE(0x002, |
+ ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", |
+ aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, |
+ rUnsorted, rCost)); |
+ }else{ |
+ rCost = rUnsorted; |
+ } |
+ |
+ /* Check to see if pWLoop should be added to the set of |
+ ** mxChoice best-so-far paths. |
+ ** |
+ ** First look for an existing path among best-so-far paths |
+ ** that covers the same set of loops and has the same isOrdered |
+ ** setting as the current path candidate. |
+ ** |
+ ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent |
+ ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range |
+ ** of legal values for isOrdered, -1..64. |
+ */ |
+ for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ |
+ if( pTo->maskLoop==maskNew |
+ && ((pTo->isOrdered^isOrdered)&0x80)==0 |
+ ){ |
+ testcase( jj==nTo-1 ); |
+ break; |
+ } |
+ } |
+ if( jj>=nTo ){ |
+ /* None of the existing best-so-far paths match the candidate. */ |
+ if( nTo>=mxChoice |
+ && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) |
+ ){ |
+ /* The current candidate is no better than any of the mxChoice |
+ ** paths currently in the best-so-far buffer. So discard |
+ ** this candidate as not viable. */ |
+#ifdef WHERETRACE_ENABLED /* 0x4 */ |
+ if( sqlite3WhereTrace&0x4 ){ |
+ sqlite3DebugPrintf("Skip %s cost=%-3d,%3d order=%c\n", |
+ wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, |
+ isOrdered>=0 ? isOrdered+'0' : '?'); |
+ } |
+#endif |
+ continue; |
+ } |
+ /* If we reach this points it means that the new candidate path |
+ ** needs to be added to the set of best-so-far paths. */ |
+ if( nTo<mxChoice ){ |
+ /* Increase the size of the aTo set by one */ |
+ jj = nTo++; |
+ }else{ |
+ /* New path replaces the prior worst to keep count below mxChoice */ |
+ jj = mxI; |
+ } |
+ pTo = &aTo[jj]; |
+#ifdef WHERETRACE_ENABLED /* 0x4 */ |
+ if( sqlite3WhereTrace&0x4 ){ |
+ sqlite3DebugPrintf("New %s cost=%-3d,%3d order=%c\n", |
+ wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, |
+ isOrdered>=0 ? isOrdered+'0' : '?'); |
+ } |
+#endif |
+ }else{ |
+ /* Control reaches here if best-so-far path pTo=aTo[jj] covers the |
+ ** same set of loops and has the sam isOrdered setting as the |
+ ** candidate path. Check to see if the candidate should replace |
+ ** pTo or if the candidate should be skipped */ |
+ if( pTo->rCost<rCost || (pTo->rCost==rCost && pTo->nRow<=nOut) ){ |
+#ifdef WHERETRACE_ENABLED /* 0x4 */ |
+ if( sqlite3WhereTrace&0x4 ){ |
+ sqlite3DebugPrintf( |
+ "Skip %s cost=%-3d,%3d order=%c", |
+ wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, |
+ isOrdered>=0 ? isOrdered+'0' : '?'); |
+ sqlite3DebugPrintf(" vs %s cost=%-3d,%d order=%c\n", |
+ wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, |
+ pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); |
+ } |
+#endif |
+ /* Discard the candidate path from further consideration */ |
+ testcase( pTo->rCost==rCost ); |
+ continue; |
+ } |
+ testcase( pTo->rCost==rCost+1 ); |
+ /* Control reaches here if the candidate path is better than the |
+ ** pTo path. Replace pTo with the candidate. */ |
+#ifdef WHERETRACE_ENABLED /* 0x4 */ |
+ if( sqlite3WhereTrace&0x4 ){ |
+ sqlite3DebugPrintf( |
+ "Update %s cost=%-3d,%3d order=%c", |
+ wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, |
+ isOrdered>=0 ? isOrdered+'0' : '?'); |
+ sqlite3DebugPrintf(" was %s cost=%-3d,%3d order=%c\n", |
+ wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, |
+ pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); |
+ } |
+#endif |
+ } |
+ /* pWLoop is a winner. Add it to the set of best so far */ |
+ pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; |
+ pTo->revLoop = revMask; |
+ pTo->nRow = nOut; |
+ pTo->rCost = rCost; |
+ pTo->rUnsorted = rUnsorted; |
+ pTo->isOrdered = isOrdered; |
+ memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); |
+ pTo->aLoop[iLoop] = pWLoop; |
+ if( nTo>=mxChoice ){ |
+ mxI = 0; |
+ mxCost = aTo[0].rCost; |
+ mxUnsorted = aTo[0].nRow; |
+ for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ |
+ if( pTo->rCost>mxCost |
+ || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) |
+ ){ |
+ mxCost = pTo->rCost; |
+ mxUnsorted = pTo->rUnsorted; |
+ mxI = jj; |
+ } |
+ } |
+ } |
+ } |
+ } |
+ |
+#ifdef WHERETRACE_ENABLED /* >=2 */ |
+ if( sqlite3WhereTrace>=2 ){ |
+ sqlite3DebugPrintf("---- after round %d ----\n", iLoop); |
+ for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ |
+ sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", |
+ wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, |
+ pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); |
+ if( pTo->isOrdered>0 ){ |
+ sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); |
+ }else{ |
+ sqlite3DebugPrintf("\n"); |
+ } |
+ } |
+ } |
+#endif |
+ |
+ /* Swap the roles of aFrom and aTo for the next generation */ |
+ pFrom = aTo; |
+ aTo = aFrom; |
+ aFrom = pFrom; |
+ nFrom = nTo; |
+ } |
+ |
+ if( nFrom==0 ){ |
+ sqlite3ErrorMsg(pParse, "no query solution"); |
+ sqlite3DbFree(db, pSpace); |
+ return SQLITE_ERROR; |
+ } |
+ |
+ /* Find the lowest cost path. pFrom will be left pointing to that path */ |
+ pFrom = aFrom; |
+ for(ii=1; ii<nFrom; ii++){ |
+ if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; |
+ } |
+ assert( pWInfo->nLevel==nLoop ); |
+ /* Load the lowest cost path into pWInfo */ |
+ for(iLoop=0; iLoop<nLoop; iLoop++){ |
+ WhereLevel *pLevel = pWInfo->a + iLoop; |
+ pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; |
+ pLevel->iFrom = pWLoop->iTab; |
+ pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; |
+ } |
+ if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 |
+ && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 |
+ && pWInfo->eDistinct==WHERE_DISTINCT_NOOP |
+ && nRowEst |
+ ){ |
+ Bitmask notUsed; |
+ int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, |
+ WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); |
+ if( rc==pWInfo->pResultSet->nExpr ){ |
+ pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; |
+ } |
+ } |
+ if( pWInfo->pOrderBy ){ |
+ if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ |
+ if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ |
+ pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; |
+ } |
+ }else{ |
+ pWInfo->nOBSat = pFrom->isOrdered; |
+ if( pWInfo->nOBSat<0 ) pWInfo->nOBSat = 0; |
+ pWInfo->revMask = pFrom->revLoop; |
+ } |
+ if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) |
+ && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr |
+ ){ |
+ Bitmask revMask = 0; |
+ int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, |
+ pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask |
+ ); |
+ assert( pWInfo->sorted==0 ); |
+ if( nOrder==pWInfo->pOrderBy->nExpr ){ |
+ pWInfo->sorted = 1; |
+ pWInfo->revMask = revMask; |
+ } |
+ } |
+ } |
+ |
+ |
+ pWInfo->nRowOut = pFrom->nRow; |
+ |
+ /* Free temporary memory and return success */ |
+ sqlite3DbFree(db, pSpace); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Most queries use only a single table (they are not joins) and have |
+** simple == constraints against indexed fields. This routine attempts |
+** to plan those simple cases using much less ceremony than the |
+** general-purpose query planner, and thereby yield faster sqlite3_prepare() |
+** times for the common case. |
+** |
+** Return non-zero on success, if this query can be handled by this |
+** no-frills query planner. Return zero if this query needs the |
+** general-purpose query planner. |
+*/ |
+static int whereShortCut(WhereLoopBuilder *pBuilder){ |
+ WhereInfo *pWInfo; |
+ struct SrcList_item *pItem; |
+ WhereClause *pWC; |
+ WhereTerm *pTerm; |
+ WhereLoop *pLoop; |
+ int iCur; |
+ int j; |
+ Table *pTab; |
+ Index *pIdx; |
+ |
+ pWInfo = pBuilder->pWInfo; |
+ if( pWInfo->wctrlFlags & WHERE_FORCE_TABLE ) return 0; |
+ assert( pWInfo->pTabList->nSrc>=1 ); |
+ pItem = pWInfo->pTabList->a; |
+ pTab = pItem->pTab; |
+ if( IsVirtual(pTab) ) return 0; |
+ if( pItem->zIndex ) return 0; |
+ iCur = pItem->iCursor; |
+ pWC = &pWInfo->sWC; |
+ pLoop = pBuilder->pNew; |
+ pLoop->wsFlags = 0; |
+ pLoop->u.btree.nSkip = 0; |
+ pTerm = findTerm(pWC, iCur, -1, 0, WO_EQ, 0); |
+ if( pTerm ){ |
+ pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; |
+ pLoop->aLTerm[0] = pTerm; |
+ pLoop->nLTerm = 1; |
+ pLoop->u.btree.nEq = 1; |
+ /* TUNING: Cost of a rowid lookup is 10 */ |
+ pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ |
+ }else{ |
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
+ assert( pLoop->aLTermSpace==pLoop->aLTerm ); |
+ assert( ArraySize(pLoop->aLTermSpace)==4 ); |
+ if( !IsUniqueIndex(pIdx) |
+ || pIdx->pPartIdxWhere!=0 |
+ || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) |
+ ) continue; |
+ for(j=0; j<pIdx->nKeyCol; j++){ |
+ pTerm = findTerm(pWC, iCur, pIdx->aiColumn[j], 0, WO_EQ, pIdx); |
+ if( pTerm==0 ) break; |
+ pLoop->aLTerm[j] = pTerm; |
+ } |
+ if( j!=pIdx->nKeyCol ) continue; |
+ pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; |
+ if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){ |
+ pLoop->wsFlags |= WHERE_IDX_ONLY; |
+ } |
+ pLoop->nLTerm = j; |
+ pLoop->u.btree.nEq = j; |
+ pLoop->u.btree.pIndex = pIdx; |
+ /* TUNING: Cost of a unique index lookup is 15 */ |
+ pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ |
+ break; |
+ } |
+ } |
+ if( pLoop->wsFlags ){ |
+ pLoop->nOut = (LogEst)1; |
+ pWInfo->a[0].pWLoop = pLoop; |
+ pLoop->maskSelf = getMask(&pWInfo->sMaskSet, iCur); |
+ pWInfo->a[0].iTabCur = iCur; |
+ pWInfo->nRowOut = 1; |
+ if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; |
+ if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ |
+ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; |
+ } |
+#ifdef SQLITE_DEBUG |
+ pLoop->cId = '0'; |
+#endif |
+ return 1; |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** Generate the beginning of the loop used for WHERE clause processing. |
+** The return value is a pointer to an opaque structure that contains |
+** information needed to terminate the loop. Later, the calling routine |
+** should invoke sqlite3WhereEnd() with the return value of this function |
+** in order to complete the WHERE clause processing. |
+** |
+** If an error occurs, this routine returns NULL. |
+** |
+** The basic idea is to do a nested loop, one loop for each table in |
+** the FROM clause of a select. (INSERT and UPDATE statements are the |
+** same as a SELECT with only a single table in the FROM clause.) For |
+** example, if the SQL is this: |
+** |
+** SELECT * FROM t1, t2, t3 WHERE ...; |
+** |
+** Then the code generated is conceptually like the following: |
+** |
+** foreach row1 in t1 do \ Code generated |
+** foreach row2 in t2 do |-- by sqlite3WhereBegin() |
+** foreach row3 in t3 do / |
+** ... |
+** end \ Code generated |
+** end |-- by sqlite3WhereEnd() |
+** end / |
+** |
+** Note that the loops might not be nested in the order in which they |
+** appear in the FROM clause if a different order is better able to make |
+** use of indices. Note also that when the IN operator appears in |
+** the WHERE clause, it might result in additional nested loops for |
+** scanning through all values on the right-hand side of the IN. |
+** |
+** There are Btree cursors associated with each table. t1 uses cursor |
+** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. |
+** And so forth. This routine generates code to open those VDBE cursors |
+** and sqlite3WhereEnd() generates the code to close them. |
+** |
+** The code that sqlite3WhereBegin() generates leaves the cursors named |
+** in pTabList pointing at their appropriate entries. The [...] code |
+** can use OP_Column and OP_Rowid opcodes on these cursors to extract |
+** data from the various tables of the loop. |
+** |
+** If the WHERE clause is empty, the foreach loops must each scan their |
+** entire tables. Thus a three-way join is an O(N^3) operation. But if |
+** the tables have indices and there are terms in the WHERE clause that |
+** refer to those indices, a complete table scan can be avoided and the |
+** code will run much faster. Most of the work of this routine is checking |
+** to see if there are indices that can be used to speed up the loop. |
+** |
+** Terms of the WHERE clause are also used to limit which rows actually |
+** make it to the "..." in the middle of the loop. After each "foreach", |
+** terms of the WHERE clause that use only terms in that loop and outer |
+** loops are evaluated and if false a jump is made around all subsequent |
+** inner loops (or around the "..." if the test occurs within the inner- |
+** most loop) |
+** |
+** OUTER JOINS |
+** |
+** An outer join of tables t1 and t2 is conceptally coded as follows: |
+** |
+** foreach row1 in t1 do |
+** flag = 0 |
+** foreach row2 in t2 do |
+** start: |
+** ... |
+** flag = 1 |
+** end |
+** if flag==0 then |
+** move the row2 cursor to a null row |
+** goto start |
+** fi |
+** end |
+** |
+** ORDER BY CLAUSE PROCESSING |
+** |
+** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause |
+** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement |
+** if there is one. If there is no ORDER BY clause or if this routine |
+** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. |
+** |
+** The iIdxCur parameter is the cursor number of an index. If |
+** WHERE_ONETABLE_ONLY is set, iIdxCur is the cursor number of an index |
+** to use for OR clause processing. The WHERE clause should use this |
+** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is |
+** the first cursor in an array of cursors for all indices. iIdxCur should |
+** be used to compute the appropriate cursor depending on which index is |
+** used. |
+*/ |
+WhereInfo *sqlite3WhereBegin( |
+ Parse *pParse, /* The parser context */ |
+ SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ |
+ Expr *pWhere, /* The WHERE clause */ |
+ ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ |
+ ExprList *pResultSet, /* Result set of the query */ |
+ u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */ |
+ int iIdxCur /* If WHERE_ONETABLE_ONLY is set, index cursor number */ |
+){ |
+ int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ |
+ int nTabList; /* Number of elements in pTabList */ |
+ WhereInfo *pWInfo; /* Will become the return value of this function */ |
+ Vdbe *v = pParse->pVdbe; /* The virtual database engine */ |
+ Bitmask notReady; /* Cursors that are not yet positioned */ |
+ WhereLoopBuilder sWLB; /* The WhereLoop builder */ |
+ WhereMaskSet *pMaskSet; /* The expression mask set */ |
+ WhereLevel *pLevel; /* A single level in pWInfo->a[] */ |
+ WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ |
+ int ii; /* Loop counter */ |
+ sqlite3 *db; /* Database connection */ |
+ int rc; /* Return code */ |
+ |
+ |
+ /* Variable initialization */ |
+ db = pParse->db; |
+ memset(&sWLB, 0, sizeof(sWLB)); |
+ |
+ /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ |
+ testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); |
+ if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; |
+ sWLB.pOrderBy = pOrderBy; |
+ |
+ /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via |
+ ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ |
+ if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ |
+ wctrlFlags &= ~WHERE_WANT_DISTINCT; |
+ } |
+ |
+ /* The number of tables in the FROM clause is limited by the number of |
+ ** bits in a Bitmask |
+ */ |
+ testcase( pTabList->nSrc==BMS ); |
+ if( pTabList->nSrc>BMS ){ |
+ sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); |
+ return 0; |
+ } |
+ |
+ /* This function normally generates a nested loop for all tables in |
+ ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should |
+ ** only generate code for the first table in pTabList and assume that |
+ ** any cursors associated with subsequent tables are uninitialized. |
+ */ |
+ nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc; |
+ |
+ /* Allocate and initialize the WhereInfo structure that will become the |
+ ** return value. A single allocation is used to store the WhereInfo |
+ ** struct, the contents of WhereInfo.a[], the WhereClause structure |
+ ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte |
+ ** field (type Bitmask) it must be aligned on an 8-byte boundary on |
+ ** some architectures. Hence the ROUND8() below. |
+ */ |
+ nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); |
+ pWInfo = sqlite3DbMallocZero(db, nByteWInfo + sizeof(WhereLoop)); |
+ if( db->mallocFailed ){ |
+ sqlite3DbFree(db, pWInfo); |
+ pWInfo = 0; |
+ goto whereBeginError; |
+ } |
+ pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; |
+ pWInfo->nLevel = nTabList; |
+ pWInfo->pParse = pParse; |
+ pWInfo->pTabList = pTabList; |
+ pWInfo->pOrderBy = pOrderBy; |
+ pWInfo->pResultSet = pResultSet; |
+ pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v); |
+ pWInfo->wctrlFlags = wctrlFlags; |
+ pWInfo->savedNQueryLoop = pParse->nQueryLoop; |
+ pMaskSet = &pWInfo->sMaskSet; |
+ sWLB.pWInfo = pWInfo; |
+ sWLB.pWC = &pWInfo->sWC; |
+ sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); |
+ assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); |
+ whereLoopInit(sWLB.pNew); |
+#ifdef SQLITE_DEBUG |
+ sWLB.pNew->cId = '*'; |
+#endif |
+ |
+ /* Split the WHERE clause into separate subexpressions where each |
+ ** subexpression is separated by an AND operator. |
+ */ |
+ initMaskSet(pMaskSet); |
+ whereClauseInit(&pWInfo->sWC, pWInfo); |
+ whereSplit(&pWInfo->sWC, pWhere, TK_AND); |
+ |
+ /* Special case: a WHERE clause that is constant. Evaluate the |
+ ** expression and either jump over all of the code or fall thru. |
+ */ |
+ for(ii=0; ii<sWLB.pWC->nTerm; ii++){ |
+ if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){ |
+ sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak, |
+ SQLITE_JUMPIFNULL); |
+ sWLB.pWC->a[ii].wtFlags |= TERM_CODED; |
+ } |
+ } |
+ |
+ /* Special case: No FROM clause |
+ */ |
+ if( nTabList==0 ){ |
+ if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; |
+ if( wctrlFlags & WHERE_WANT_DISTINCT ){ |
+ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; |
+ } |
+ } |
+ |
+ /* Assign a bit from the bitmask to every term in the FROM clause. |
+ ** |
+ ** When assigning bitmask values to FROM clause cursors, it must be |
+ ** the case that if X is the bitmask for the N-th FROM clause term then |
+ ** the bitmask for all FROM clause terms to the left of the N-th term |
+ ** is (X-1). An expression from the ON clause of a LEFT JOIN can use |
+ ** its Expr.iRightJoinTable value to find the bitmask of the right table |
+ ** of the join. Subtracting one from the right table bitmask gives a |
+ ** bitmask for all tables to the left of the join. Knowing the bitmask |
+ ** for all tables to the left of a left join is important. Ticket #3015. |
+ ** |
+ ** Note that bitmasks are created for all pTabList->nSrc tables in |
+ ** pTabList, not just the first nTabList tables. nTabList is normally |
+ ** equal to pTabList->nSrc but might be shortened to 1 if the |
+ ** WHERE_ONETABLE_ONLY flag is set. |
+ */ |
+ for(ii=0; ii<pTabList->nSrc; ii++){ |
+ createMask(pMaskSet, pTabList->a[ii].iCursor); |
+ } |
+#ifndef NDEBUG |
+ { |
+ Bitmask toTheLeft = 0; |
+ for(ii=0; ii<pTabList->nSrc; ii++){ |
+ Bitmask m = getMask(pMaskSet, pTabList->a[ii].iCursor); |
+ assert( (m-1)==toTheLeft ); |
+ toTheLeft |= m; |
+ } |
+ } |
+#endif |
+ |
+ /* Analyze all of the subexpressions. Note that exprAnalyze() might |
+ ** add new virtual terms onto the end of the WHERE clause. We do not |
+ ** want to analyze these virtual terms, so start analyzing at the end |
+ ** and work forward so that the added virtual terms are never processed. |
+ */ |
+ exprAnalyzeAll(pTabList, &pWInfo->sWC); |
+ if( db->mallocFailed ){ |
+ goto whereBeginError; |
+ } |
+ |
+ if( wctrlFlags & WHERE_WANT_DISTINCT ){ |
+ if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ |
+ /* The DISTINCT marking is pointless. Ignore it. */ |
+ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; |
+ }else if( pOrderBy==0 ){ |
+ /* Try to ORDER BY the result set to make distinct processing easier */ |
+ pWInfo->wctrlFlags |= WHERE_DISTINCTBY; |
+ pWInfo->pOrderBy = pResultSet; |
+ } |
+ } |
+ |
+ /* Construct the WhereLoop objects */ |
+ WHERETRACE(0xffff,("*** Optimizer Start ***\n")); |
+#if defined(WHERETRACE_ENABLED) |
+ /* Display all terms of the WHERE clause */ |
+ if( sqlite3WhereTrace & 0x100 ){ |
+ int i; |
+ for(i=0; i<sWLB.pWC->nTerm; i++){ |
+ whereTermPrint(&sWLB.pWC->a[i], i); |
+ } |
+ } |
+#endif |
+ |
+ if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ |
+ rc = whereLoopAddAll(&sWLB); |
+ if( rc ) goto whereBeginError; |
+ |
+ /* Display all of the WhereLoop objects if wheretrace is enabled */ |
+#ifdef WHERETRACE_ENABLED /* !=0 */ |
+ if( sqlite3WhereTrace ){ |
+ WhereLoop *p; |
+ int i; |
+ static char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" |
+ "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; |
+ for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ |
+ p->cId = zLabel[i%sizeof(zLabel)]; |
+ whereLoopPrint(p, sWLB.pWC); |
+ } |
+ } |
+#endif |
+ |
+ wherePathSolver(pWInfo, 0); |
+ if( db->mallocFailed ) goto whereBeginError; |
+ if( pWInfo->pOrderBy ){ |
+ wherePathSolver(pWInfo, pWInfo->nRowOut+1); |
+ if( db->mallocFailed ) goto whereBeginError; |
+ } |
+ } |
+ if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ |
+ pWInfo->revMask = (Bitmask)(-1); |
+ } |
+ if( pParse->nErr || NEVER(db->mallocFailed) ){ |
+ goto whereBeginError; |
+ } |
+#ifdef WHERETRACE_ENABLED /* !=0 */ |
+ if( sqlite3WhereTrace ){ |
+ int ii; |
+ sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); |
+ if( pWInfo->nOBSat>0 ){ |
+ sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); |
+ } |
+ switch( pWInfo->eDistinct ){ |
+ case WHERE_DISTINCT_UNIQUE: { |
+ sqlite3DebugPrintf(" DISTINCT=unique"); |
+ break; |
+ } |
+ case WHERE_DISTINCT_ORDERED: { |
+ sqlite3DebugPrintf(" DISTINCT=ordered"); |
+ break; |
+ } |
+ case WHERE_DISTINCT_UNORDERED: { |
+ sqlite3DebugPrintf(" DISTINCT=unordered"); |
+ break; |
+ } |
+ } |
+ sqlite3DebugPrintf("\n"); |
+ for(ii=0; ii<pWInfo->nLevel; ii++){ |
+ whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); |
+ } |
+ } |
+#endif |
+ /* Attempt to omit tables from the join that do not effect the result */ |
+ if( pWInfo->nLevel>=2 |
+ && pResultSet!=0 |
+ && OptimizationEnabled(db, SQLITE_OmitNoopJoin) |
+ ){ |
+ Bitmask tabUsed = exprListTableUsage(pMaskSet, pResultSet); |
+ if( sWLB.pOrderBy ) tabUsed |= exprListTableUsage(pMaskSet, sWLB.pOrderBy); |
+ while( pWInfo->nLevel>=2 ){ |
+ WhereTerm *pTerm, *pEnd; |
+ pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop; |
+ if( (pWInfo->pTabList->a[pLoop->iTab].jointype & JT_LEFT)==0 ) break; |
+ if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 |
+ && (pLoop->wsFlags & WHERE_ONEROW)==0 |
+ ){ |
+ break; |
+ } |
+ if( (tabUsed & pLoop->maskSelf)!=0 ) break; |
+ pEnd = sWLB.pWC->a + sWLB.pWC->nTerm; |
+ for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ |
+ if( (pTerm->prereqAll & pLoop->maskSelf)!=0 |
+ && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) |
+ ){ |
+ break; |
+ } |
+ } |
+ if( pTerm<pEnd ) break; |
+ WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); |
+ pWInfo->nLevel--; |
+ nTabList--; |
+ } |
+ } |
+ WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); |
+ pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; |
+ |
+ /* If the caller is an UPDATE or DELETE statement that is requesting |
+ ** to use a one-pass algorithm, determine if this is appropriate. |
+ ** The one-pass algorithm only works if the WHERE clause constrains |
+ ** the statement to update a single row. |
+ */ |
+ assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); |
+ if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 |
+ && (pWInfo->a[0].pWLoop->wsFlags & WHERE_ONEROW)!=0 ){ |
+ pWInfo->okOnePass = 1; |
+ if( HasRowid(pTabList->a[0].pTab) ){ |
+ pWInfo->a[0].pWLoop->wsFlags &= ~WHERE_IDX_ONLY; |
+ } |
+ } |
+ |
+ /* Open all tables in the pTabList and any indices selected for |
+ ** searching those tables. |
+ */ |
+ notReady = ~(Bitmask)0; |
+ for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ |
+ Table *pTab; /* Table to open */ |
+ int iDb; /* Index of database containing table/index */ |
+ struct SrcList_item *pTabItem; |
+ |
+ pTabItem = &pTabList->a[pLevel->iFrom]; |
+ pTab = pTabItem->pTab; |
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
+ pLoop = pLevel->pWLoop; |
+ if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ |
+ /* Do nothing */ |
+ }else |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ |
+ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); |
+ int iCur = pTabItem->iCursor; |
+ sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); |
+ }else if( IsVirtual(pTab) ){ |
+ /* noop */ |
+ }else |
+#endif |
+ if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 |
+ && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){ |
+ int op = OP_OpenRead; |
+ if( pWInfo->okOnePass ){ |
+ op = OP_OpenWrite; |
+ pWInfo->aiCurOnePass[0] = pTabItem->iCursor; |
+ }; |
+ sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); |
+ assert( pTabItem->iCursor==pLevel->iTabCur ); |
+ testcase( !pWInfo->okOnePass && pTab->nCol==BMS-1 ); |
+ testcase( !pWInfo->okOnePass && pTab->nCol==BMS ); |
+ if( !pWInfo->okOnePass && pTab->nCol<BMS && HasRowid(pTab) ){ |
+ Bitmask b = pTabItem->colUsed; |
+ int n = 0; |
+ for(; b; b=b>>1, n++){} |
+ sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, |
+ SQLITE_INT_TO_PTR(n), P4_INT32); |
+ assert( n<=pTab->nCol ); |
+ } |
+ }else{ |
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
+ } |
+ if( pLoop->wsFlags & WHERE_INDEXED ){ |
+ Index *pIx = pLoop->u.btree.pIndex; |
+ int iIndexCur; |
+ int op = OP_OpenRead; |
+ /* iIdxCur is always set if to a positive value if ONEPASS is possible */ |
+ assert( iIdxCur!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); |
+ if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) |
+ && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 |
+ ){ |
+ /* This is one term of an OR-optimization using the PRIMARY KEY of a |
+ ** WITHOUT ROWID table. No need for a separate index */ |
+ iIndexCur = pLevel->iTabCur; |
+ op = 0; |
+ }else if( pWInfo->okOnePass ){ |
+ Index *pJ = pTabItem->pTab->pIndex; |
+ iIndexCur = iIdxCur; |
+ assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); |
+ while( ALWAYS(pJ) && pJ!=pIx ){ |
+ iIndexCur++; |
+ pJ = pJ->pNext; |
+ } |
+ op = OP_OpenWrite; |
+ pWInfo->aiCurOnePass[1] = iIndexCur; |
+ }else if( iIdxCur && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ){ |
+ iIndexCur = iIdxCur; |
+ if( wctrlFlags & WHERE_REOPEN_IDX ) op = OP_ReopenIdx; |
+ }else{ |
+ iIndexCur = pParse->nTab++; |
+ } |
+ pLevel->iIdxCur = iIndexCur; |
+ assert( pIx->pSchema==pTab->pSchema ); |
+ assert( iIndexCur>=0 ); |
+ if( op ){ |
+ sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); |
+ sqlite3VdbeSetP4KeyInfo(pParse, pIx); |
+ VdbeComment((v, "%s", pIx->zName)); |
+ } |
+ } |
+ if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); |
+ notReady &= ~getMask(&pWInfo->sMaskSet, pTabItem->iCursor); |
+ } |
+ pWInfo->iTop = sqlite3VdbeCurrentAddr(v); |
+ if( db->mallocFailed ) goto whereBeginError; |
+ |
+ /* Generate the code to do the search. Each iteration of the for |
+ ** loop below generates code for a single nested loop of the VM |
+ ** program. |
+ */ |
+ notReady = ~(Bitmask)0; |
+ for(ii=0; ii<nTabList; ii++){ |
+ pLevel = &pWInfo->a[ii]; |
+#ifndef SQLITE_OMIT_AUTOMATIC_INDEX |
+ if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ |
+ constructAutomaticIndex(pParse, &pWInfo->sWC, |
+ &pTabList->a[pLevel->iFrom], notReady, pLevel); |
+ if( db->mallocFailed ) goto whereBeginError; |
+ } |
+#endif |
+ explainOneScan(pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags); |
+ pLevel->addrBody = sqlite3VdbeCurrentAddr(v); |
+ notReady = codeOneLoopStart(pWInfo, ii, notReady); |
+ pWInfo->iContinue = pLevel->addrCont; |
+ } |
+ |
+ /* Done. */ |
+ VdbeModuleComment((v, "Begin WHERE-core")); |
+ return pWInfo; |
+ |
+ /* Jump here if malloc fails */ |
+whereBeginError: |
+ if( pWInfo ){ |
+ pParse->nQueryLoop = pWInfo->savedNQueryLoop; |
+ whereInfoFree(db, pWInfo); |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** Generate the end of the WHERE loop. See comments on |
+** sqlite3WhereBegin() for additional information. |
+*/ |
+void sqlite3WhereEnd(WhereInfo *pWInfo){ |
+ Parse *pParse = pWInfo->pParse; |
+ Vdbe *v = pParse->pVdbe; |
+ int i; |
+ WhereLevel *pLevel; |
+ WhereLoop *pLoop; |
+ SrcList *pTabList = pWInfo->pTabList; |
+ sqlite3 *db = pParse->db; |
+ |
+ /* Generate loop termination code. |
+ */ |
+ VdbeModuleComment((v, "End WHERE-core")); |
+ sqlite3ExprCacheClear(pParse); |
+ for(i=pWInfo->nLevel-1; i>=0; i--){ |
+ int addr; |
+ pLevel = &pWInfo->a[i]; |
+ pLoop = pLevel->pWLoop; |
+ sqlite3VdbeResolveLabel(v, pLevel->addrCont); |
+ if( pLevel->op!=OP_Noop ){ |
+ sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); |
+ sqlite3VdbeChangeP5(v, pLevel->p5); |
+ VdbeCoverage(v); |
+ VdbeCoverageIf(v, pLevel->op==OP_Next); |
+ VdbeCoverageIf(v, pLevel->op==OP_Prev); |
+ VdbeCoverageIf(v, pLevel->op==OP_VNext); |
+ } |
+ if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ |
+ struct InLoop *pIn; |
+ int j; |
+ sqlite3VdbeResolveLabel(v, pLevel->addrNxt); |
+ for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ |
+ sqlite3VdbeJumpHere(v, pIn->addrInTop+1); |
+ sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); |
+ VdbeCoverage(v); |
+ VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen); |
+ VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen); |
+ sqlite3VdbeJumpHere(v, pIn->addrInTop-1); |
+ } |
+ sqlite3DbFree(db, pLevel->u.in.aInLoop); |
+ } |
+ sqlite3VdbeResolveLabel(v, pLevel->addrBrk); |
+ if( pLevel->addrSkip ){ |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrSkip); |
+ VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); |
+ sqlite3VdbeJumpHere(v, pLevel->addrSkip); |
+ sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); |
+ } |
+ if( pLevel->iLeftJoin ){ |
+ addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); |
+ assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 |
+ || (pLoop->wsFlags & WHERE_INDEXED)!=0 ); |
+ if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){ |
+ sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); |
+ } |
+ if( pLoop->wsFlags & WHERE_INDEXED ){ |
+ sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); |
+ } |
+ if( pLevel->op==OP_Return ){ |
+ sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); |
+ }else{ |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst); |
+ } |
+ sqlite3VdbeJumpHere(v, addr); |
+ } |
+ VdbeModuleComment((v, "End WHERE-loop%d: %s", i, |
+ pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); |
+ } |
+ |
+ /* The "break" point is here, just past the end of the outer loop. |
+ ** Set it. |
+ */ |
+ sqlite3VdbeResolveLabel(v, pWInfo->iBreak); |
+ |
+ assert( pWInfo->nLevel<=pTabList->nSrc ); |
+ for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ |
+ int k, last; |
+ VdbeOp *pOp; |
+ Index *pIdx = 0; |
+ struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; |
+ Table *pTab = pTabItem->pTab; |
+ assert( pTab!=0 ); |
+ pLoop = pLevel->pWLoop; |
+ |
+ /* For a co-routine, change all OP_Column references to the table of |
+ ** the co-routine into OP_SCopy of result contained in a register. |
+ ** OP_Rowid becomes OP_Null. |
+ */ |
+ if( pTabItem->viaCoroutine && !db->mallocFailed ){ |
+ last = sqlite3VdbeCurrentAddr(v); |
+ k = pLevel->addrBody; |
+ pOp = sqlite3VdbeGetOp(v, k); |
+ for(; k<last; k++, pOp++){ |
+ if( pOp->p1!=pLevel->iTabCur ) continue; |
+ if( pOp->opcode==OP_Column ){ |
+ pOp->opcode = OP_Copy; |
+ pOp->p1 = pOp->p2 + pTabItem->regResult; |
+ pOp->p2 = pOp->p3; |
+ pOp->p3 = 0; |
+ }else if( pOp->opcode==OP_Rowid ){ |
+ pOp->opcode = OP_Null; |
+ pOp->p1 = 0; |
+ pOp->p3 = 0; |
+ } |
+ } |
+ continue; |
+ } |
+ |
+ /* Close all of the cursors that were opened by sqlite3WhereBegin. |
+ ** Except, do not close cursors that will be reused by the OR optimization |
+ ** (WHERE_OMIT_OPEN_CLOSE). And do not close the OP_OpenWrite cursors |
+ ** created for the ONEPASS optimization. |
+ */ |
+ if( (pTab->tabFlags & TF_Ephemeral)==0 |
+ && pTab->pSelect==0 |
+ && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 |
+ ){ |
+ int ws = pLoop->wsFlags; |
+ if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){ |
+ sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); |
+ } |
+ if( (ws & WHERE_INDEXED)!=0 |
+ && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0 |
+ && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1] |
+ ){ |
+ sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); |
+ } |
+ } |
+ |
+ /* If this scan uses an index, make VDBE code substitutions to read data |
+ ** from the index instead of from the table where possible. In some cases |
+ ** this optimization prevents the table from ever being read, which can |
+ ** yield a significant performance boost. |
+ ** |
+ ** Calls to the code generator in between sqlite3WhereBegin and |
+ ** sqlite3WhereEnd will have created code that references the table |
+ ** directly. This loop scans all that code looking for opcodes |
+ ** that reference the table and converts them into opcodes that |
+ ** reference the index. |
+ */ |
+ if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ |
+ pIdx = pLoop->u.btree.pIndex; |
+ }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ |
+ pIdx = pLevel->u.pCovidx; |
+ } |
+ if( pIdx && !db->mallocFailed ){ |
+ last = sqlite3VdbeCurrentAddr(v); |
+ k = pLevel->addrBody; |
+ pOp = sqlite3VdbeGetOp(v, k); |
+ for(; k<last; k++, pOp++){ |
+ if( pOp->p1!=pLevel->iTabCur ) continue; |
+ if( pOp->opcode==OP_Column ){ |
+ int x = pOp->p2; |
+ assert( pIdx->pTable==pTab ); |
+ if( !HasRowid(pTab) ){ |
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab); |
+ x = pPk->aiColumn[x]; |
+ } |
+ x = sqlite3ColumnOfIndex(pIdx, x); |
+ if( x>=0 ){ |
+ pOp->p2 = x; |
+ pOp->p1 = pLevel->iIdxCur; |
+ } |
+ assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 ); |
+ }else if( pOp->opcode==OP_Rowid ){ |
+ pOp->p1 = pLevel->iIdxCur; |
+ pOp->opcode = OP_IdxRowid; |
+ } |
+ } |
+ } |
+ } |
+ |
+ /* Final cleanup |
+ */ |
+ pParse->nQueryLoop = pWInfo->savedNQueryLoop; |
+ whereInfoFree(db, pWInfo); |
+ return; |
+} |