| Index: third_party/sqlite/sqlite-src-3080704/src/where.c
|
| diff --git a/third_party/sqlite/sqlite-src-3080704/src/where.c b/third_party/sqlite/sqlite-src-3080704/src/where.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..bc0110779ea051f46e02c825002686879fffab5d
|
| --- /dev/null
|
| +++ b/third_party/sqlite/sqlite-src-3080704/src/where.c
|
| @@ -0,0 +1,6609 @@
|
| +/*
|
| +** 2001 September 15
|
| +**
|
| +** The author disclaims copyright to this source code. In place of
|
| +** a legal notice, here is a blessing:
|
| +**
|
| +** May you do good and not evil.
|
| +** May you find forgiveness for yourself and forgive others.
|
| +** May you share freely, never taking more than you give.
|
| +**
|
| +*************************************************************************
|
| +** This module contains C code that generates VDBE code used to process
|
| +** the WHERE clause of SQL statements. This module is responsible for
|
| +** generating the code that loops through a table looking for applicable
|
| +** rows. Indices are selected and used to speed the search when doing
|
| +** so is applicable. Because this module is responsible for selecting
|
| +** indices, you might also think of this module as the "query optimizer".
|
| +*/
|
| +#include "sqliteInt.h"
|
| +#include "whereInt.h"
|
| +
|
| +/*
|
| +** Return the estimated number of output rows from a WHERE clause
|
| +*/
|
| +u64 sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
|
| + return sqlite3LogEstToInt(pWInfo->nRowOut);
|
| +}
|
| +
|
| +/*
|
| +** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
|
| +** WHERE clause returns outputs for DISTINCT processing.
|
| +*/
|
| +int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
|
| + return pWInfo->eDistinct;
|
| +}
|
| +
|
| +/*
|
| +** Return TRUE if the WHERE clause returns rows in ORDER BY order.
|
| +** Return FALSE if the output needs to be sorted.
|
| +*/
|
| +int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
|
| + return pWInfo->nOBSat;
|
| +}
|
| +
|
| +/*
|
| +** Return the VDBE address or label to jump to in order to continue
|
| +** immediately with the next row of a WHERE clause.
|
| +*/
|
| +int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
|
| + assert( pWInfo->iContinue!=0 );
|
| + return pWInfo->iContinue;
|
| +}
|
| +
|
| +/*
|
| +** Return the VDBE address or label to jump to in order to break
|
| +** out of a WHERE loop.
|
| +*/
|
| +int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
|
| + return pWInfo->iBreak;
|
| +}
|
| +
|
| +/*
|
| +** Return TRUE if an UPDATE or DELETE statement can operate directly on
|
| +** the rowids returned by a WHERE clause. Return FALSE if doing an
|
| +** UPDATE or DELETE might change subsequent WHERE clause results.
|
| +**
|
| +** If the ONEPASS optimization is used (if this routine returns true)
|
| +** then also write the indices of open cursors used by ONEPASS
|
| +** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data
|
| +** table and iaCur[1] gets the cursor used by an auxiliary index.
|
| +** Either value may be -1, indicating that cursor is not used.
|
| +** Any cursors returned will have been opened for writing.
|
| +**
|
| +** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
|
| +** unable to use the ONEPASS optimization.
|
| +*/
|
| +int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
|
| + memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
|
| + return pWInfo->okOnePass;
|
| +}
|
| +
|
| +/*
|
| +** Move the content of pSrc into pDest
|
| +*/
|
| +static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
|
| + pDest->n = pSrc->n;
|
| + memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
|
| +}
|
| +
|
| +/*
|
| +** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
|
| +**
|
| +** The new entry might overwrite an existing entry, or it might be
|
| +** appended, or it might be discarded. Do whatever is the right thing
|
| +** so that pSet keeps the N_OR_COST best entries seen so far.
|
| +*/
|
| +static int whereOrInsert(
|
| + WhereOrSet *pSet, /* The WhereOrSet to be updated */
|
| + Bitmask prereq, /* Prerequisites of the new entry */
|
| + LogEst rRun, /* Run-cost of the new entry */
|
| + LogEst nOut /* Number of outputs for the new entry */
|
| +){
|
| + u16 i;
|
| + WhereOrCost *p;
|
| + for(i=pSet->n, p=pSet->a; i>0; i--, p++){
|
| + if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
|
| + goto whereOrInsert_done;
|
| + }
|
| + if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
|
| + return 0;
|
| + }
|
| + }
|
| + if( pSet->n<N_OR_COST ){
|
| + p = &pSet->a[pSet->n++];
|
| + p->nOut = nOut;
|
| + }else{
|
| + p = pSet->a;
|
| + for(i=1; i<pSet->n; i++){
|
| + if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
|
| + }
|
| + if( p->rRun<=rRun ) return 0;
|
| + }
|
| +whereOrInsert_done:
|
| + p->prereq = prereq;
|
| + p->rRun = rRun;
|
| + if( p->nOut>nOut ) p->nOut = nOut;
|
| + return 1;
|
| +}
|
| +
|
| +/*
|
| +** Initialize a preallocated WhereClause structure.
|
| +*/
|
| +static void whereClauseInit(
|
| + WhereClause *pWC, /* The WhereClause to be initialized */
|
| + WhereInfo *pWInfo /* The WHERE processing context */
|
| +){
|
| + pWC->pWInfo = pWInfo;
|
| + pWC->pOuter = 0;
|
| + pWC->nTerm = 0;
|
| + pWC->nSlot = ArraySize(pWC->aStatic);
|
| + pWC->a = pWC->aStatic;
|
| +}
|
| +
|
| +/* Forward reference */
|
| +static void whereClauseClear(WhereClause*);
|
| +
|
| +/*
|
| +** Deallocate all memory associated with a WhereOrInfo object.
|
| +*/
|
| +static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
|
| + whereClauseClear(&p->wc);
|
| + sqlite3DbFree(db, p);
|
| +}
|
| +
|
| +/*
|
| +** Deallocate all memory associated with a WhereAndInfo object.
|
| +*/
|
| +static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
|
| + whereClauseClear(&p->wc);
|
| + sqlite3DbFree(db, p);
|
| +}
|
| +
|
| +/*
|
| +** Deallocate a WhereClause structure. The WhereClause structure
|
| +** itself is not freed. This routine is the inverse of whereClauseInit().
|
| +*/
|
| +static void whereClauseClear(WhereClause *pWC){
|
| + int i;
|
| + WhereTerm *a;
|
| + sqlite3 *db = pWC->pWInfo->pParse->db;
|
| + for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
|
| + if( a->wtFlags & TERM_DYNAMIC ){
|
| + sqlite3ExprDelete(db, a->pExpr);
|
| + }
|
| + if( a->wtFlags & TERM_ORINFO ){
|
| + whereOrInfoDelete(db, a->u.pOrInfo);
|
| + }else if( a->wtFlags & TERM_ANDINFO ){
|
| + whereAndInfoDelete(db, a->u.pAndInfo);
|
| + }
|
| + }
|
| + if( pWC->a!=pWC->aStatic ){
|
| + sqlite3DbFree(db, pWC->a);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Add a single new WhereTerm entry to the WhereClause object pWC.
|
| +** The new WhereTerm object is constructed from Expr p and with wtFlags.
|
| +** The index in pWC->a[] of the new WhereTerm is returned on success.
|
| +** 0 is returned if the new WhereTerm could not be added due to a memory
|
| +** allocation error. The memory allocation failure will be recorded in
|
| +** the db->mallocFailed flag so that higher-level functions can detect it.
|
| +**
|
| +** This routine will increase the size of the pWC->a[] array as necessary.
|
| +**
|
| +** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
|
| +** for freeing the expression p is assumed by the WhereClause object pWC.
|
| +** This is true even if this routine fails to allocate a new WhereTerm.
|
| +**
|
| +** WARNING: This routine might reallocate the space used to store
|
| +** WhereTerms. All pointers to WhereTerms should be invalidated after
|
| +** calling this routine. Such pointers may be reinitialized by referencing
|
| +** the pWC->a[] array.
|
| +*/
|
| +static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){
|
| + WhereTerm *pTerm;
|
| + int idx;
|
| + testcase( wtFlags & TERM_VIRTUAL );
|
| + if( pWC->nTerm>=pWC->nSlot ){
|
| + WhereTerm *pOld = pWC->a;
|
| + sqlite3 *db = pWC->pWInfo->pParse->db;
|
| + pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
|
| + if( pWC->a==0 ){
|
| + if( wtFlags & TERM_DYNAMIC ){
|
| + sqlite3ExprDelete(db, p);
|
| + }
|
| + pWC->a = pOld;
|
| + return 0;
|
| + }
|
| + memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
|
| + if( pOld!=pWC->aStatic ){
|
| + sqlite3DbFree(db, pOld);
|
| + }
|
| + pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
|
| + }
|
| + pTerm = &pWC->a[idx = pWC->nTerm++];
|
| + if( p && ExprHasProperty(p, EP_Unlikely) ){
|
| + pTerm->truthProb = sqlite3LogEst(p->iTable) - 99;
|
| + }else{
|
| + pTerm->truthProb = 1;
|
| + }
|
| + pTerm->pExpr = sqlite3ExprSkipCollate(p);
|
| + pTerm->wtFlags = wtFlags;
|
| + pTerm->pWC = pWC;
|
| + pTerm->iParent = -1;
|
| + return idx;
|
| +}
|
| +
|
| +/*
|
| +** This routine identifies subexpressions in the WHERE clause where
|
| +** each subexpression is separated by the AND operator or some other
|
| +** operator specified in the op parameter. The WhereClause structure
|
| +** is filled with pointers to subexpressions. For example:
|
| +**
|
| +** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
|
| +** \________/ \_______________/ \________________/
|
| +** slot[0] slot[1] slot[2]
|
| +**
|
| +** The original WHERE clause in pExpr is unaltered. All this routine
|
| +** does is make slot[] entries point to substructure within pExpr.
|
| +**
|
| +** In the previous sentence and in the diagram, "slot[]" refers to
|
| +** the WhereClause.a[] array. The slot[] array grows as needed to contain
|
| +** all terms of the WHERE clause.
|
| +*/
|
| +static void whereSplit(WhereClause *pWC, Expr *pExpr, u8 op){
|
| + pWC->op = op;
|
| + if( pExpr==0 ) return;
|
| + if( pExpr->op!=op ){
|
| + whereClauseInsert(pWC, pExpr, 0);
|
| + }else{
|
| + whereSplit(pWC, pExpr->pLeft, op);
|
| + whereSplit(pWC, pExpr->pRight, op);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Initialize a WhereMaskSet object
|
| +*/
|
| +#define initMaskSet(P) (P)->n=0
|
| +
|
| +/*
|
| +** Return the bitmask for the given cursor number. Return 0 if
|
| +** iCursor is not in the set.
|
| +*/
|
| +static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){
|
| + int i;
|
| + assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
|
| + for(i=0; i<pMaskSet->n; i++){
|
| + if( pMaskSet->ix[i]==iCursor ){
|
| + return MASKBIT(i);
|
| + }
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/*
|
| +** Create a new mask for cursor iCursor.
|
| +**
|
| +** There is one cursor per table in the FROM clause. The number of
|
| +** tables in the FROM clause is limited by a test early in the
|
| +** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
|
| +** array will never overflow.
|
| +*/
|
| +static void createMask(WhereMaskSet *pMaskSet, int iCursor){
|
| + assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
|
| + pMaskSet->ix[pMaskSet->n++] = iCursor;
|
| +}
|
| +
|
| +/*
|
| +** These routines walk (recursively) an expression tree and generate
|
| +** a bitmask indicating which tables are used in that expression
|
| +** tree.
|
| +*/
|
| +static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*);
|
| +static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*);
|
| +static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){
|
| + Bitmask mask = 0;
|
| + if( p==0 ) return 0;
|
| + if( p->op==TK_COLUMN ){
|
| + mask = getMask(pMaskSet, p->iTable);
|
| + return mask;
|
| + }
|
| + mask = exprTableUsage(pMaskSet, p->pRight);
|
| + mask |= exprTableUsage(pMaskSet, p->pLeft);
|
| + if( ExprHasProperty(p, EP_xIsSelect) ){
|
| + mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect);
|
| + }else{
|
| + mask |= exprListTableUsage(pMaskSet, p->x.pList);
|
| + }
|
| + return mask;
|
| +}
|
| +static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){
|
| + int i;
|
| + Bitmask mask = 0;
|
| + if( pList ){
|
| + for(i=0; i<pList->nExpr; i++){
|
| + mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
|
| + }
|
| + }
|
| + return mask;
|
| +}
|
| +static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){
|
| + Bitmask mask = 0;
|
| + while( pS ){
|
| + SrcList *pSrc = pS->pSrc;
|
| + mask |= exprListTableUsage(pMaskSet, pS->pEList);
|
| + mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
|
| + mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
|
| + mask |= exprTableUsage(pMaskSet, pS->pWhere);
|
| + mask |= exprTableUsage(pMaskSet, pS->pHaving);
|
| + if( ALWAYS(pSrc!=0) ){
|
| + int i;
|
| + for(i=0; i<pSrc->nSrc; i++){
|
| + mask |= exprSelectTableUsage(pMaskSet, pSrc->a[i].pSelect);
|
| + mask |= exprTableUsage(pMaskSet, pSrc->a[i].pOn);
|
| + }
|
| + }
|
| + pS = pS->pPrior;
|
| + }
|
| + return mask;
|
| +}
|
| +
|
| +/*
|
| +** Return TRUE if the given operator is one of the operators that is
|
| +** allowed for an indexable WHERE clause term. The allowed operators are
|
| +** "=", "<", ">", "<=", ">=", "IN", and "IS NULL"
|
| +*/
|
| +static int allowedOp(int op){
|
| + assert( TK_GT>TK_EQ && TK_GT<TK_GE );
|
| + assert( TK_LT>TK_EQ && TK_LT<TK_GE );
|
| + assert( TK_LE>TK_EQ && TK_LE<TK_GE );
|
| + assert( TK_GE==TK_EQ+4 );
|
| + return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
|
| +}
|
| +
|
| +/*
|
| +** Commute a comparison operator. Expressions of the form "X op Y"
|
| +** are converted into "Y op X".
|
| +**
|
| +** If left/right precedence rules come into play when determining the
|
| +** collating sequence, then COLLATE operators are adjusted to ensure
|
| +** that the collating sequence does not change. For example:
|
| +** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on
|
| +** the left hand side of a comparison overrides any collation sequence
|
| +** attached to the right. For the same reason the EP_Collate flag
|
| +** is not commuted.
|
| +*/
|
| +static void exprCommute(Parse *pParse, Expr *pExpr){
|
| + u16 expRight = (pExpr->pRight->flags & EP_Collate);
|
| + u16 expLeft = (pExpr->pLeft->flags & EP_Collate);
|
| + assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
|
| + if( expRight==expLeft ){
|
| + /* Either X and Y both have COLLATE operator or neither do */
|
| + if( expRight ){
|
| + /* Both X and Y have COLLATE operators. Make sure X is always
|
| + ** used by clearing the EP_Collate flag from Y. */
|
| + pExpr->pRight->flags &= ~EP_Collate;
|
| + }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){
|
| + /* Neither X nor Y have COLLATE operators, but X has a non-default
|
| + ** collating sequence. So add the EP_Collate marker on X to cause
|
| + ** it to be searched first. */
|
| + pExpr->pLeft->flags |= EP_Collate;
|
| + }
|
| + }
|
| + SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
|
| + if( pExpr->op>=TK_GT ){
|
| + assert( TK_LT==TK_GT+2 );
|
| + assert( TK_GE==TK_LE+2 );
|
| + assert( TK_GT>TK_EQ );
|
| + assert( TK_GT<TK_LE );
|
| + assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
|
| + pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Translate from TK_xx operator to WO_xx bitmask.
|
| +*/
|
| +static u16 operatorMask(int op){
|
| + u16 c;
|
| + assert( allowedOp(op) );
|
| + if( op==TK_IN ){
|
| + c = WO_IN;
|
| + }else if( op==TK_ISNULL ){
|
| + c = WO_ISNULL;
|
| + }else{
|
| + assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
|
| + c = (u16)(WO_EQ<<(op-TK_EQ));
|
| + }
|
| + assert( op!=TK_ISNULL || c==WO_ISNULL );
|
| + assert( op!=TK_IN || c==WO_IN );
|
| + assert( op!=TK_EQ || c==WO_EQ );
|
| + assert( op!=TK_LT || c==WO_LT );
|
| + assert( op!=TK_LE || c==WO_LE );
|
| + assert( op!=TK_GT || c==WO_GT );
|
| + assert( op!=TK_GE || c==WO_GE );
|
| + return c;
|
| +}
|
| +
|
| +/*
|
| +** Advance to the next WhereTerm that matches according to the criteria
|
| +** established when the pScan object was initialized by whereScanInit().
|
| +** Return NULL if there are no more matching WhereTerms.
|
| +*/
|
| +static WhereTerm *whereScanNext(WhereScan *pScan){
|
| + int iCur; /* The cursor on the LHS of the term */
|
| + int iColumn; /* The column on the LHS of the term. -1 for IPK */
|
| + Expr *pX; /* An expression being tested */
|
| + WhereClause *pWC; /* Shorthand for pScan->pWC */
|
| + WhereTerm *pTerm; /* The term being tested */
|
| + int k = pScan->k; /* Where to start scanning */
|
| +
|
| + while( pScan->iEquiv<=pScan->nEquiv ){
|
| + iCur = pScan->aEquiv[pScan->iEquiv-2];
|
| + iColumn = pScan->aEquiv[pScan->iEquiv-1];
|
| + while( (pWC = pScan->pWC)!=0 ){
|
| + for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
|
| + if( pTerm->leftCursor==iCur
|
| + && pTerm->u.leftColumn==iColumn
|
| + && (pScan->iEquiv<=2 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
|
| + ){
|
| + if( (pTerm->eOperator & WO_EQUIV)!=0
|
| + && pScan->nEquiv<ArraySize(pScan->aEquiv)
|
| + ){
|
| + int j;
|
| + pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight);
|
| + assert( pX->op==TK_COLUMN );
|
| + for(j=0; j<pScan->nEquiv; j+=2){
|
| + if( pScan->aEquiv[j]==pX->iTable
|
| + && pScan->aEquiv[j+1]==pX->iColumn ){
|
| + break;
|
| + }
|
| + }
|
| + if( j==pScan->nEquiv ){
|
| + pScan->aEquiv[j] = pX->iTable;
|
| + pScan->aEquiv[j+1] = pX->iColumn;
|
| + pScan->nEquiv += 2;
|
| + }
|
| + }
|
| + if( (pTerm->eOperator & pScan->opMask)!=0 ){
|
| + /* Verify the affinity and collating sequence match */
|
| + if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
|
| + CollSeq *pColl;
|
| + Parse *pParse = pWC->pWInfo->pParse;
|
| + pX = pTerm->pExpr;
|
| + if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
|
| + continue;
|
| + }
|
| + assert(pX->pLeft);
|
| + pColl = sqlite3BinaryCompareCollSeq(pParse,
|
| + pX->pLeft, pX->pRight);
|
| + if( pColl==0 ) pColl = pParse->db->pDfltColl;
|
| + if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
|
| + continue;
|
| + }
|
| + }
|
| + if( (pTerm->eOperator & WO_EQ)!=0
|
| + && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
|
| + && pX->iTable==pScan->aEquiv[0]
|
| + && pX->iColumn==pScan->aEquiv[1]
|
| + ){
|
| + continue;
|
| + }
|
| + pScan->k = k+1;
|
| + return pTerm;
|
| + }
|
| + }
|
| + }
|
| + pScan->pWC = pScan->pWC->pOuter;
|
| + k = 0;
|
| + }
|
| + pScan->pWC = pScan->pOrigWC;
|
| + k = 0;
|
| + pScan->iEquiv += 2;
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/*
|
| +** Initialize a WHERE clause scanner object. Return a pointer to the
|
| +** first match. Return NULL if there are no matches.
|
| +**
|
| +** The scanner will be searching the WHERE clause pWC. It will look
|
| +** for terms of the form "X <op> <expr>" where X is column iColumn of table
|
| +** iCur. The <op> must be one of the operators described by opMask.
|
| +**
|
| +** If the search is for X and the WHERE clause contains terms of the
|
| +** form X=Y then this routine might also return terms of the form
|
| +** "Y <op> <expr>". The number of levels of transitivity is limited,
|
| +** but is enough to handle most commonly occurring SQL statements.
|
| +**
|
| +** If X is not the INTEGER PRIMARY KEY then X must be compatible with
|
| +** index pIdx.
|
| +*/
|
| +static WhereTerm *whereScanInit(
|
| + WhereScan *pScan, /* The WhereScan object being initialized */
|
| + WhereClause *pWC, /* The WHERE clause to be scanned */
|
| + int iCur, /* Cursor to scan for */
|
| + int iColumn, /* Column to scan for */
|
| + u32 opMask, /* Operator(s) to scan for */
|
| + Index *pIdx /* Must be compatible with this index */
|
| +){
|
| + int j;
|
| +
|
| + /* memset(pScan, 0, sizeof(*pScan)); */
|
| + pScan->pOrigWC = pWC;
|
| + pScan->pWC = pWC;
|
| + if( pIdx && iColumn>=0 ){
|
| + pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
|
| + for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
|
| + if( NEVER(j>pIdx->nColumn) ) return 0;
|
| + }
|
| + pScan->zCollName = pIdx->azColl[j];
|
| + }else{
|
| + pScan->idxaff = 0;
|
| + pScan->zCollName = 0;
|
| + }
|
| + pScan->opMask = opMask;
|
| + pScan->k = 0;
|
| + pScan->aEquiv[0] = iCur;
|
| + pScan->aEquiv[1] = iColumn;
|
| + pScan->nEquiv = 2;
|
| + pScan->iEquiv = 2;
|
| + return whereScanNext(pScan);
|
| +}
|
| +
|
| +/*
|
| +** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
|
| +** where X is a reference to the iColumn of table iCur and <op> is one of
|
| +** the WO_xx operator codes specified by the op parameter.
|
| +** Return a pointer to the term. Return 0 if not found.
|
| +**
|
| +** The term returned might by Y=<expr> if there is another constraint in
|
| +** the WHERE clause that specifies that X=Y. Any such constraints will be
|
| +** identified by the WO_EQUIV bit in the pTerm->eOperator field. The
|
| +** aEquiv[] array holds X and all its equivalents, with each SQL variable
|
| +** taking up two slots in aEquiv[]. The first slot is for the cursor number
|
| +** and the second is for the column number. There are 22 slots in aEquiv[]
|
| +** so that means we can look for X plus up to 10 other equivalent values.
|
| +** Hence a search for X will return <expr> if X=A1 and A1=A2 and A2=A3
|
| +** and ... and A9=A10 and A10=<expr>.
|
| +**
|
| +** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
|
| +** then try for the one with no dependencies on <expr> - in other words where
|
| +** <expr> is a constant expression of some kind. Only return entries of
|
| +** the form "X <op> Y" where Y is a column in another table if no terms of
|
| +** the form "X <op> <const-expr>" exist. If no terms with a constant RHS
|
| +** exist, try to return a term that does not use WO_EQUIV.
|
| +*/
|
| +static WhereTerm *findTerm(
|
| + WhereClause *pWC, /* The WHERE clause to be searched */
|
| + int iCur, /* Cursor number of LHS */
|
| + int iColumn, /* Column number of LHS */
|
| + Bitmask notReady, /* RHS must not overlap with this mask */
|
| + u32 op, /* Mask of WO_xx values describing operator */
|
| + Index *pIdx /* Must be compatible with this index, if not NULL */
|
| +){
|
| + WhereTerm *pResult = 0;
|
| + WhereTerm *p;
|
| + WhereScan scan;
|
| +
|
| + p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
|
| + while( p ){
|
| + if( (p->prereqRight & notReady)==0 ){
|
| + if( p->prereqRight==0 && (p->eOperator&WO_EQ)!=0 ){
|
| + return p;
|
| + }
|
| + if( pResult==0 ) pResult = p;
|
| + }
|
| + p = whereScanNext(&scan);
|
| + }
|
| + return pResult;
|
| +}
|
| +
|
| +/* Forward reference */
|
| +static void exprAnalyze(SrcList*, WhereClause*, int);
|
| +
|
| +/*
|
| +** Call exprAnalyze on all terms in a WHERE clause.
|
| +*/
|
| +static void exprAnalyzeAll(
|
| + SrcList *pTabList, /* the FROM clause */
|
| + WhereClause *pWC /* the WHERE clause to be analyzed */
|
| +){
|
| + int i;
|
| + for(i=pWC->nTerm-1; i>=0; i--){
|
| + exprAnalyze(pTabList, pWC, i);
|
| + }
|
| +}
|
| +
|
| +#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
|
| +/*
|
| +** Check to see if the given expression is a LIKE or GLOB operator that
|
| +** can be optimized using inequality constraints. Return TRUE if it is
|
| +** so and false if not.
|
| +**
|
| +** In order for the operator to be optimizible, the RHS must be a string
|
| +** literal that does not begin with a wildcard.
|
| +*/
|
| +static int isLikeOrGlob(
|
| + Parse *pParse, /* Parsing and code generating context */
|
| + Expr *pExpr, /* Test this expression */
|
| + Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */
|
| + int *pisComplete, /* True if the only wildcard is % in the last character */
|
| + int *pnoCase /* True if uppercase is equivalent to lowercase */
|
| +){
|
| + const char *z = 0; /* String on RHS of LIKE operator */
|
| + Expr *pRight, *pLeft; /* Right and left size of LIKE operator */
|
| + ExprList *pList; /* List of operands to the LIKE operator */
|
| + int c; /* One character in z[] */
|
| + int cnt; /* Number of non-wildcard prefix characters */
|
| + char wc[3]; /* Wildcard characters */
|
| + sqlite3 *db = pParse->db; /* Database connection */
|
| + sqlite3_value *pVal = 0;
|
| + int op; /* Opcode of pRight */
|
| +
|
| + if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
|
| + return 0;
|
| + }
|
| +#ifdef SQLITE_EBCDIC
|
| + if( *pnoCase ) return 0;
|
| +#endif
|
| + pList = pExpr->x.pList;
|
| + pLeft = pList->a[1].pExpr;
|
| + if( pLeft->op!=TK_COLUMN
|
| + || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT
|
| + || IsVirtual(pLeft->pTab)
|
| + ){
|
| + /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must
|
| + ** be the name of an indexed column with TEXT affinity. */
|
| + return 0;
|
| + }
|
| + assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */
|
| +
|
| + pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr);
|
| + op = pRight->op;
|
| + if( op==TK_VARIABLE ){
|
| + Vdbe *pReprepare = pParse->pReprepare;
|
| + int iCol = pRight->iColumn;
|
| + pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_NONE);
|
| + if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
|
| + z = (char *)sqlite3_value_text(pVal);
|
| + }
|
| + sqlite3VdbeSetVarmask(pParse->pVdbe, iCol);
|
| + assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
|
| + }else if( op==TK_STRING ){
|
| + z = pRight->u.zToken;
|
| + }
|
| + if( z ){
|
| + cnt = 0;
|
| + while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
|
| + cnt++;
|
| + }
|
| + if( cnt!=0 && 255!=(u8)z[cnt-1] ){
|
| + Expr *pPrefix;
|
| + *pisComplete = c==wc[0] && z[cnt+1]==0;
|
| + pPrefix = sqlite3Expr(db, TK_STRING, z);
|
| + if( pPrefix ) pPrefix->u.zToken[cnt] = 0;
|
| + *ppPrefix = pPrefix;
|
| + if( op==TK_VARIABLE ){
|
| + Vdbe *v = pParse->pVdbe;
|
| + sqlite3VdbeSetVarmask(v, pRight->iColumn);
|
| + if( *pisComplete && pRight->u.zToken[1] ){
|
| + /* If the rhs of the LIKE expression is a variable, and the current
|
| + ** value of the variable means there is no need to invoke the LIKE
|
| + ** function, then no OP_Variable will be added to the program.
|
| + ** This causes problems for the sqlite3_bind_parameter_name()
|
| + ** API. To work around them, add a dummy OP_Variable here.
|
| + */
|
| + int r1 = sqlite3GetTempReg(pParse);
|
| + sqlite3ExprCodeTarget(pParse, pRight, r1);
|
| + sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
|
| + sqlite3ReleaseTempReg(pParse, r1);
|
| + }
|
| + }
|
| + }else{
|
| + z = 0;
|
| + }
|
| + }
|
| +
|
| + sqlite3ValueFree(pVal);
|
| + return (z!=0);
|
| +}
|
| +#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
|
| +
|
| +
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| +/*
|
| +** Check to see if the given expression is of the form
|
| +**
|
| +** column MATCH expr
|
| +**
|
| +** If it is then return TRUE. If not, return FALSE.
|
| +*/
|
| +static int isMatchOfColumn(
|
| + Expr *pExpr /* Test this expression */
|
| +){
|
| + ExprList *pList;
|
| +
|
| + if( pExpr->op!=TK_FUNCTION ){
|
| + return 0;
|
| + }
|
| + if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){
|
| + return 0;
|
| + }
|
| + pList = pExpr->x.pList;
|
| + if( pList->nExpr!=2 ){
|
| + return 0;
|
| + }
|
| + if( pList->a[1].pExpr->op != TK_COLUMN ){
|
| + return 0;
|
| + }
|
| + return 1;
|
| +}
|
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
| +
|
| +/*
|
| +** If the pBase expression originated in the ON or USING clause of
|
| +** a join, then transfer the appropriate markings over to derived.
|
| +*/
|
| +static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
|
| + if( pDerived ){
|
| + pDerived->flags |= pBase->flags & EP_FromJoin;
|
| + pDerived->iRightJoinTable = pBase->iRightJoinTable;
|
| + }
|
| +}
|
| +
|
| +#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
|
| +/*
|
| +** Analyze a term that consists of two or more OR-connected
|
| +** subterms. So in:
|
| +**
|
| +** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
|
| +** ^^^^^^^^^^^^^^^^^^^^
|
| +**
|
| +** This routine analyzes terms such as the middle term in the above example.
|
| +** A WhereOrTerm object is computed and attached to the term under
|
| +** analysis, regardless of the outcome of the analysis. Hence:
|
| +**
|
| +** WhereTerm.wtFlags |= TERM_ORINFO
|
| +** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object
|
| +**
|
| +** The term being analyzed must have two or more of OR-connected subterms.
|
| +** A single subterm might be a set of AND-connected sub-subterms.
|
| +** Examples of terms under analysis:
|
| +**
|
| +** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
|
| +** (B) x=expr1 OR expr2=x OR x=expr3
|
| +** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
|
| +** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
|
| +** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
|
| +**
|
| +** CASE 1:
|
| +**
|
| +** If all subterms are of the form T.C=expr for some single column of C and
|
| +** a single table T (as shown in example B above) then create a new virtual
|
| +** term that is an equivalent IN expression. In other words, if the term
|
| +** being analyzed is:
|
| +**
|
| +** x = expr1 OR expr2 = x OR x = expr3
|
| +**
|
| +** then create a new virtual term like this:
|
| +**
|
| +** x IN (expr1,expr2,expr3)
|
| +**
|
| +** CASE 2:
|
| +**
|
| +** If all subterms are indexable by a single table T, then set
|
| +**
|
| +** WhereTerm.eOperator = WO_OR
|
| +** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T
|
| +**
|
| +** A subterm is "indexable" if it is of the form
|
| +** "T.C <op> <expr>" where C is any column of table T and
|
| +** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
|
| +** A subterm is also indexable if it is an AND of two or more
|
| +** subsubterms at least one of which is indexable. Indexable AND
|
| +** subterms have their eOperator set to WO_AND and they have
|
| +** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
|
| +**
|
| +** From another point of view, "indexable" means that the subterm could
|
| +** potentially be used with an index if an appropriate index exists.
|
| +** This analysis does not consider whether or not the index exists; that
|
| +** is decided elsewhere. This analysis only looks at whether subterms
|
| +** appropriate for indexing exist.
|
| +**
|
| +** All examples A through E above satisfy case 2. But if a term
|
| +** also satisfies case 1 (such as B) we know that the optimizer will
|
| +** always prefer case 1, so in that case we pretend that case 2 is not
|
| +** satisfied.
|
| +**
|
| +** It might be the case that multiple tables are indexable. For example,
|
| +** (E) above is indexable on tables P, Q, and R.
|
| +**
|
| +** Terms that satisfy case 2 are candidates for lookup by using
|
| +** separate indices to find rowids for each subterm and composing
|
| +** the union of all rowids using a RowSet object. This is similar
|
| +** to "bitmap indices" in other database engines.
|
| +**
|
| +** OTHERWISE:
|
| +**
|
| +** If neither case 1 nor case 2 apply, then leave the eOperator set to
|
| +** zero. This term is not useful for search.
|
| +*/
|
| +static void exprAnalyzeOrTerm(
|
| + SrcList *pSrc, /* the FROM clause */
|
| + WhereClause *pWC, /* the complete WHERE clause */
|
| + int idxTerm /* Index of the OR-term to be analyzed */
|
| +){
|
| + WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */
|
| + Parse *pParse = pWInfo->pParse; /* Parser context */
|
| + sqlite3 *db = pParse->db; /* Database connection */
|
| + WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */
|
| + Expr *pExpr = pTerm->pExpr; /* The expression of the term */
|
| + int i; /* Loop counters */
|
| + WhereClause *pOrWc; /* Breakup of pTerm into subterms */
|
| + WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */
|
| + WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */
|
| + Bitmask chngToIN; /* Tables that might satisfy case 1 */
|
| + Bitmask indexable; /* Tables that are indexable, satisfying case 2 */
|
| +
|
| + /*
|
| + ** Break the OR clause into its separate subterms. The subterms are
|
| + ** stored in a WhereClause structure containing within the WhereOrInfo
|
| + ** object that is attached to the original OR clause term.
|
| + */
|
| + assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
|
| + assert( pExpr->op==TK_OR );
|
| + pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
|
| + if( pOrInfo==0 ) return;
|
| + pTerm->wtFlags |= TERM_ORINFO;
|
| + pOrWc = &pOrInfo->wc;
|
| + whereClauseInit(pOrWc, pWInfo);
|
| + whereSplit(pOrWc, pExpr, TK_OR);
|
| + exprAnalyzeAll(pSrc, pOrWc);
|
| + if( db->mallocFailed ) return;
|
| + assert( pOrWc->nTerm>=2 );
|
| +
|
| + /*
|
| + ** Compute the set of tables that might satisfy cases 1 or 2.
|
| + */
|
| + indexable = ~(Bitmask)0;
|
| + chngToIN = ~(Bitmask)0;
|
| + for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
|
| + if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
|
| + WhereAndInfo *pAndInfo;
|
| + assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
|
| + chngToIN = 0;
|
| + pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo));
|
| + if( pAndInfo ){
|
| + WhereClause *pAndWC;
|
| + WhereTerm *pAndTerm;
|
| + int j;
|
| + Bitmask b = 0;
|
| + pOrTerm->u.pAndInfo = pAndInfo;
|
| + pOrTerm->wtFlags |= TERM_ANDINFO;
|
| + pOrTerm->eOperator = WO_AND;
|
| + pAndWC = &pAndInfo->wc;
|
| + whereClauseInit(pAndWC, pWC->pWInfo);
|
| + whereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
|
| + exprAnalyzeAll(pSrc, pAndWC);
|
| + pAndWC->pOuter = pWC;
|
| + testcase( db->mallocFailed );
|
| + if( !db->mallocFailed ){
|
| + for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
|
| + assert( pAndTerm->pExpr );
|
| + if( allowedOp(pAndTerm->pExpr->op) ){
|
| + b |= getMask(&pWInfo->sMaskSet, pAndTerm->leftCursor);
|
| + }
|
| + }
|
| + }
|
| + indexable &= b;
|
| + }
|
| + }else if( pOrTerm->wtFlags & TERM_COPIED ){
|
| + /* Skip this term for now. We revisit it when we process the
|
| + ** corresponding TERM_VIRTUAL term */
|
| + }else{
|
| + Bitmask b;
|
| + b = getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor);
|
| + if( pOrTerm->wtFlags & TERM_VIRTUAL ){
|
| + WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
|
| + b |= getMask(&pWInfo->sMaskSet, pOther->leftCursor);
|
| + }
|
| + indexable &= b;
|
| + if( (pOrTerm->eOperator & WO_EQ)==0 ){
|
| + chngToIN = 0;
|
| + }else{
|
| + chngToIN &= b;
|
| + }
|
| + }
|
| + }
|
| +
|
| + /*
|
| + ** Record the set of tables that satisfy case 2. The set might be
|
| + ** empty.
|
| + */
|
| + pOrInfo->indexable = indexable;
|
| + pTerm->eOperator = indexable==0 ? 0 : WO_OR;
|
| +
|
| + /*
|
| + ** chngToIN holds a set of tables that *might* satisfy case 1. But
|
| + ** we have to do some additional checking to see if case 1 really
|
| + ** is satisfied.
|
| + **
|
| + ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means
|
| + ** that there is no possibility of transforming the OR clause into an
|
| + ** IN operator because one or more terms in the OR clause contain
|
| + ** something other than == on a column in the single table. The 1-bit
|
| + ** case means that every term of the OR clause is of the form
|
| + ** "table.column=expr" for some single table. The one bit that is set
|
| + ** will correspond to the common table. We still need to check to make
|
| + ** sure the same column is used on all terms. The 2-bit case is when
|
| + ** the all terms are of the form "table1.column=table2.column". It
|
| + ** might be possible to form an IN operator with either table1.column
|
| + ** or table2.column as the LHS if either is common to every term of
|
| + ** the OR clause.
|
| + **
|
| + ** Note that terms of the form "table.column1=table.column2" (the
|
| + ** same table on both sizes of the ==) cannot be optimized.
|
| + */
|
| + if( chngToIN ){
|
| + int okToChngToIN = 0; /* True if the conversion to IN is valid */
|
| + int iColumn = -1; /* Column index on lhs of IN operator */
|
| + int iCursor = -1; /* Table cursor common to all terms */
|
| + int j = 0; /* Loop counter */
|
| +
|
| + /* Search for a table and column that appears on one side or the
|
| + ** other of the == operator in every subterm. That table and column
|
| + ** will be recorded in iCursor and iColumn. There might not be any
|
| + ** such table and column. Set okToChngToIN if an appropriate table
|
| + ** and column is found but leave okToChngToIN false if not found.
|
| + */
|
| + for(j=0; j<2 && !okToChngToIN; j++){
|
| + pOrTerm = pOrWc->a;
|
| + for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
|
| + assert( pOrTerm->eOperator & WO_EQ );
|
| + pOrTerm->wtFlags &= ~TERM_OR_OK;
|
| + if( pOrTerm->leftCursor==iCursor ){
|
| + /* This is the 2-bit case and we are on the second iteration and
|
| + ** current term is from the first iteration. So skip this term. */
|
| + assert( j==1 );
|
| + continue;
|
| + }
|
| + if( (chngToIN & getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor))==0 ){
|
| + /* This term must be of the form t1.a==t2.b where t2 is in the
|
| + ** chngToIN set but t1 is not. This term will be either preceded
|
| + ** or follwed by an inverted copy (t2.b==t1.a). Skip this term
|
| + ** and use its inversion. */
|
| + testcase( pOrTerm->wtFlags & TERM_COPIED );
|
| + testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
|
| + assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
|
| + continue;
|
| + }
|
| + iColumn = pOrTerm->u.leftColumn;
|
| + iCursor = pOrTerm->leftCursor;
|
| + break;
|
| + }
|
| + if( i<0 ){
|
| + /* No candidate table+column was found. This can only occur
|
| + ** on the second iteration */
|
| + assert( j==1 );
|
| + assert( IsPowerOfTwo(chngToIN) );
|
| + assert( chngToIN==getMask(&pWInfo->sMaskSet, iCursor) );
|
| + break;
|
| + }
|
| + testcase( j==1 );
|
| +
|
| + /* We have found a candidate table and column. Check to see if that
|
| + ** table and column is common to every term in the OR clause */
|
| + okToChngToIN = 1;
|
| + for(; i>=0 && okToChngToIN; i--, pOrTerm++){
|
| + assert( pOrTerm->eOperator & WO_EQ );
|
| + if( pOrTerm->leftCursor!=iCursor ){
|
| + pOrTerm->wtFlags &= ~TERM_OR_OK;
|
| + }else if( pOrTerm->u.leftColumn!=iColumn ){
|
| + okToChngToIN = 0;
|
| + }else{
|
| + int affLeft, affRight;
|
| + /* If the right-hand side is also a column, then the affinities
|
| + ** of both right and left sides must be such that no type
|
| + ** conversions are required on the right. (Ticket #2249)
|
| + */
|
| + affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
|
| + affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
|
| + if( affRight!=0 && affRight!=affLeft ){
|
| + okToChngToIN = 0;
|
| + }else{
|
| + pOrTerm->wtFlags |= TERM_OR_OK;
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + /* At this point, okToChngToIN is true if original pTerm satisfies
|
| + ** case 1. In that case, construct a new virtual term that is
|
| + ** pTerm converted into an IN operator.
|
| + */
|
| + if( okToChngToIN ){
|
| + Expr *pDup; /* A transient duplicate expression */
|
| + ExprList *pList = 0; /* The RHS of the IN operator */
|
| + Expr *pLeft = 0; /* The LHS of the IN operator */
|
| + Expr *pNew; /* The complete IN operator */
|
| +
|
| + for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
|
| + if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
|
| + assert( pOrTerm->eOperator & WO_EQ );
|
| + assert( pOrTerm->leftCursor==iCursor );
|
| + assert( pOrTerm->u.leftColumn==iColumn );
|
| + pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
|
| + pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup);
|
| + pLeft = pOrTerm->pExpr->pLeft;
|
| + }
|
| + assert( pLeft!=0 );
|
| + pDup = sqlite3ExprDup(db, pLeft, 0);
|
| + pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0);
|
| + if( pNew ){
|
| + int idxNew;
|
| + transferJoinMarkings(pNew, pExpr);
|
| + assert( !ExprHasProperty(pNew, EP_xIsSelect) );
|
| + pNew->x.pList = pList;
|
| + idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
|
| + testcase( idxNew==0 );
|
| + exprAnalyze(pSrc, pWC, idxNew);
|
| + pTerm = &pWC->a[idxTerm];
|
| + pWC->a[idxNew].iParent = idxTerm;
|
| + pTerm->nChild = 1;
|
| + }else{
|
| + sqlite3ExprListDelete(db, pList);
|
| + }
|
| + pTerm->eOperator = WO_NOOP; /* case 1 trumps case 2 */
|
| + }
|
| + }
|
| +}
|
| +#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
|
| +
|
| +/*
|
| +** The input to this routine is an WhereTerm structure with only the
|
| +** "pExpr" field filled in. The job of this routine is to analyze the
|
| +** subexpression and populate all the other fields of the WhereTerm
|
| +** structure.
|
| +**
|
| +** If the expression is of the form "<expr> <op> X" it gets commuted
|
| +** to the standard form of "X <op> <expr>".
|
| +**
|
| +** If the expression is of the form "X <op> Y" where both X and Y are
|
| +** columns, then the original expression is unchanged and a new virtual
|
| +** term of the form "Y <op> X" is added to the WHERE clause and
|
| +** analyzed separately. The original term is marked with TERM_COPIED
|
| +** and the new term is marked with TERM_DYNAMIC (because it's pExpr
|
| +** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
|
| +** is a commuted copy of a prior term.) The original term has nChild=1
|
| +** and the copy has idxParent set to the index of the original term.
|
| +*/
|
| +static void exprAnalyze(
|
| + SrcList *pSrc, /* the FROM clause */
|
| + WhereClause *pWC, /* the WHERE clause */
|
| + int idxTerm /* Index of the term to be analyzed */
|
| +){
|
| + WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */
|
| + WhereTerm *pTerm; /* The term to be analyzed */
|
| + WhereMaskSet *pMaskSet; /* Set of table index masks */
|
| + Expr *pExpr; /* The expression to be analyzed */
|
| + Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */
|
| + Bitmask prereqAll; /* Prerequesites of pExpr */
|
| + Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */
|
| + Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */
|
| + int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */
|
| + int noCase = 0; /* LIKE/GLOB distinguishes case */
|
| + int op; /* Top-level operator. pExpr->op */
|
| + Parse *pParse = pWInfo->pParse; /* Parsing context */
|
| + sqlite3 *db = pParse->db; /* Database connection */
|
| +
|
| + if( db->mallocFailed ){
|
| + return;
|
| + }
|
| + pTerm = &pWC->a[idxTerm];
|
| + pMaskSet = &pWInfo->sMaskSet;
|
| + pExpr = pTerm->pExpr;
|
| + assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE );
|
| + prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
|
| + op = pExpr->op;
|
| + if( op==TK_IN ){
|
| + assert( pExpr->pRight==0 );
|
| + if( ExprHasProperty(pExpr, EP_xIsSelect) ){
|
| + pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect);
|
| + }else{
|
| + pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList);
|
| + }
|
| + }else if( op==TK_ISNULL ){
|
| + pTerm->prereqRight = 0;
|
| + }else{
|
| + pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
|
| + }
|
| + prereqAll = exprTableUsage(pMaskSet, pExpr);
|
| + if( ExprHasProperty(pExpr, EP_FromJoin) ){
|
| + Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable);
|
| + prereqAll |= x;
|
| + extraRight = x-1; /* ON clause terms may not be used with an index
|
| + ** on left table of a LEFT JOIN. Ticket #3015 */
|
| + }
|
| + pTerm->prereqAll = prereqAll;
|
| + pTerm->leftCursor = -1;
|
| + pTerm->iParent = -1;
|
| + pTerm->eOperator = 0;
|
| + if( allowedOp(op) ){
|
| + Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft);
|
| + Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight);
|
| + u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV;
|
| + if( pLeft->op==TK_COLUMN ){
|
| + pTerm->leftCursor = pLeft->iTable;
|
| + pTerm->u.leftColumn = pLeft->iColumn;
|
| + pTerm->eOperator = operatorMask(op) & opMask;
|
| + }
|
| + if( pRight && pRight->op==TK_COLUMN ){
|
| + WhereTerm *pNew;
|
| + Expr *pDup;
|
| + u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */
|
| + if( pTerm->leftCursor>=0 ){
|
| + int idxNew;
|
| + pDup = sqlite3ExprDup(db, pExpr, 0);
|
| + if( db->mallocFailed ){
|
| + sqlite3ExprDelete(db, pDup);
|
| + return;
|
| + }
|
| + idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
|
| + if( idxNew==0 ) return;
|
| + pNew = &pWC->a[idxNew];
|
| + pNew->iParent = idxTerm;
|
| + pTerm = &pWC->a[idxTerm];
|
| + pTerm->nChild = 1;
|
| + pTerm->wtFlags |= TERM_COPIED;
|
| + if( pExpr->op==TK_EQ
|
| + && !ExprHasProperty(pExpr, EP_FromJoin)
|
| + && OptimizationEnabled(db, SQLITE_Transitive)
|
| + ){
|
| + pTerm->eOperator |= WO_EQUIV;
|
| + eExtraOp = WO_EQUIV;
|
| + }
|
| + }else{
|
| + pDup = pExpr;
|
| + pNew = pTerm;
|
| + }
|
| + exprCommute(pParse, pDup);
|
| + pLeft = sqlite3ExprSkipCollate(pDup->pLeft);
|
| + pNew->leftCursor = pLeft->iTable;
|
| + pNew->u.leftColumn = pLeft->iColumn;
|
| + testcase( (prereqLeft | extraRight) != prereqLeft );
|
| + pNew->prereqRight = prereqLeft | extraRight;
|
| + pNew->prereqAll = prereqAll;
|
| + pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask;
|
| + }
|
| + }
|
| +
|
| +#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
|
| + /* If a term is the BETWEEN operator, create two new virtual terms
|
| + ** that define the range that the BETWEEN implements. For example:
|
| + **
|
| + ** a BETWEEN b AND c
|
| + **
|
| + ** is converted into:
|
| + **
|
| + ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
|
| + **
|
| + ** The two new terms are added onto the end of the WhereClause object.
|
| + ** The new terms are "dynamic" and are children of the original BETWEEN
|
| + ** term. That means that if the BETWEEN term is coded, the children are
|
| + ** skipped. Or, if the children are satisfied by an index, the original
|
| + ** BETWEEN term is skipped.
|
| + */
|
| + else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
|
| + ExprList *pList = pExpr->x.pList;
|
| + int i;
|
| + static const u8 ops[] = {TK_GE, TK_LE};
|
| + assert( pList!=0 );
|
| + assert( pList->nExpr==2 );
|
| + for(i=0; i<2; i++){
|
| + Expr *pNewExpr;
|
| + int idxNew;
|
| + pNewExpr = sqlite3PExpr(pParse, ops[i],
|
| + sqlite3ExprDup(db, pExpr->pLeft, 0),
|
| + sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0);
|
| + transferJoinMarkings(pNewExpr, pExpr);
|
| + idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
|
| + testcase( idxNew==0 );
|
| + exprAnalyze(pSrc, pWC, idxNew);
|
| + pTerm = &pWC->a[idxTerm];
|
| + pWC->a[idxNew].iParent = idxTerm;
|
| + }
|
| + pTerm->nChild = 2;
|
| + }
|
| +#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
|
| +
|
| +#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
|
| + /* Analyze a term that is composed of two or more subterms connected by
|
| + ** an OR operator.
|
| + */
|
| + else if( pExpr->op==TK_OR ){
|
| + assert( pWC->op==TK_AND );
|
| + exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
|
| + pTerm = &pWC->a[idxTerm];
|
| + }
|
| +#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
|
| +
|
| +#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
|
| + /* Add constraints to reduce the search space on a LIKE or GLOB
|
| + ** operator.
|
| + **
|
| + ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
|
| + **
|
| + ** x>='abc' AND x<'abd' AND x LIKE 'abc%'
|
| + **
|
| + ** The last character of the prefix "abc" is incremented to form the
|
| + ** termination condition "abd".
|
| + */
|
| + if( pWC->op==TK_AND
|
| + && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
|
| + ){
|
| + Expr *pLeft; /* LHS of LIKE/GLOB operator */
|
| + Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */
|
| + Expr *pNewExpr1;
|
| + Expr *pNewExpr2;
|
| + int idxNew1;
|
| + int idxNew2;
|
| + Token sCollSeqName; /* Name of collating sequence */
|
| +
|
| + pLeft = pExpr->x.pList->a[1].pExpr;
|
| + pStr2 = sqlite3ExprDup(db, pStr1, 0);
|
| + if( !db->mallocFailed ){
|
| + u8 c, *pC; /* Last character before the first wildcard */
|
| + pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
|
| + c = *pC;
|
| + if( noCase ){
|
| + /* The point is to increment the last character before the first
|
| + ** wildcard. But if we increment '@', that will push it into the
|
| + ** alphabetic range where case conversions will mess up the
|
| + ** inequality. To avoid this, make sure to also run the full
|
| + ** LIKE on all candidate expressions by clearing the isComplete flag
|
| + */
|
| + if( c=='A'-1 ) isComplete = 0;
|
| + c = sqlite3UpperToLower[c];
|
| + }
|
| + *pC = c + 1;
|
| + }
|
| + sCollSeqName.z = noCase ? "NOCASE" : "BINARY";
|
| + sCollSeqName.n = 6;
|
| + pNewExpr1 = sqlite3ExprDup(db, pLeft, 0);
|
| + pNewExpr1 = sqlite3PExpr(pParse, TK_GE,
|
| + sqlite3ExprAddCollateToken(pParse,pNewExpr1,&sCollSeqName),
|
| + pStr1, 0);
|
| + transferJoinMarkings(pNewExpr1, pExpr);
|
| + idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
|
| + testcase( idxNew1==0 );
|
| + exprAnalyze(pSrc, pWC, idxNew1);
|
| + pNewExpr2 = sqlite3ExprDup(db, pLeft, 0);
|
| + pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
|
| + sqlite3ExprAddCollateToken(pParse,pNewExpr2,&sCollSeqName),
|
| + pStr2, 0);
|
| + transferJoinMarkings(pNewExpr2, pExpr);
|
| + idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
|
| + testcase( idxNew2==0 );
|
| + exprAnalyze(pSrc, pWC, idxNew2);
|
| + pTerm = &pWC->a[idxTerm];
|
| + if( isComplete ){
|
| + pWC->a[idxNew1].iParent = idxTerm;
|
| + pWC->a[idxNew2].iParent = idxTerm;
|
| + pTerm->nChild = 2;
|
| + }
|
| + }
|
| +#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
|
| +
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| + /* Add a WO_MATCH auxiliary term to the constraint set if the
|
| + ** current expression is of the form: column MATCH expr.
|
| + ** This information is used by the xBestIndex methods of
|
| + ** virtual tables. The native query optimizer does not attempt
|
| + ** to do anything with MATCH functions.
|
| + */
|
| + if( isMatchOfColumn(pExpr) ){
|
| + int idxNew;
|
| + Expr *pRight, *pLeft;
|
| + WhereTerm *pNewTerm;
|
| + Bitmask prereqColumn, prereqExpr;
|
| +
|
| + pRight = pExpr->x.pList->a[0].pExpr;
|
| + pLeft = pExpr->x.pList->a[1].pExpr;
|
| + prereqExpr = exprTableUsage(pMaskSet, pRight);
|
| + prereqColumn = exprTableUsage(pMaskSet, pLeft);
|
| + if( (prereqExpr & prereqColumn)==0 ){
|
| + Expr *pNewExpr;
|
| + pNewExpr = sqlite3PExpr(pParse, TK_MATCH,
|
| + 0, sqlite3ExprDup(db, pRight, 0), 0);
|
| + idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
|
| + testcase( idxNew==0 );
|
| + pNewTerm = &pWC->a[idxNew];
|
| + pNewTerm->prereqRight = prereqExpr;
|
| + pNewTerm->leftCursor = pLeft->iTable;
|
| + pNewTerm->u.leftColumn = pLeft->iColumn;
|
| + pNewTerm->eOperator = WO_MATCH;
|
| + pNewTerm->iParent = idxTerm;
|
| + pTerm = &pWC->a[idxTerm];
|
| + pTerm->nChild = 1;
|
| + pTerm->wtFlags |= TERM_COPIED;
|
| + pNewTerm->prereqAll = pTerm->prereqAll;
|
| + }
|
| + }
|
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
| +
|
| +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
|
| + /* When sqlite_stat3 histogram data is available an operator of the
|
| + ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
|
| + ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a
|
| + ** virtual term of that form.
|
| + **
|
| + ** Note that the virtual term must be tagged with TERM_VNULL. This
|
| + ** TERM_VNULL tag will suppress the not-null check at the beginning
|
| + ** of the loop. Without the TERM_VNULL flag, the not-null check at
|
| + ** the start of the loop will prevent any results from being returned.
|
| + */
|
| + if( pExpr->op==TK_NOTNULL
|
| + && pExpr->pLeft->op==TK_COLUMN
|
| + && pExpr->pLeft->iColumn>=0
|
| + && OptimizationEnabled(db, SQLITE_Stat3)
|
| + ){
|
| + Expr *pNewExpr;
|
| + Expr *pLeft = pExpr->pLeft;
|
| + int idxNew;
|
| + WhereTerm *pNewTerm;
|
| +
|
| + pNewExpr = sqlite3PExpr(pParse, TK_GT,
|
| + sqlite3ExprDup(db, pLeft, 0),
|
| + sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0);
|
| +
|
| + idxNew = whereClauseInsert(pWC, pNewExpr,
|
| + TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL);
|
| + if( idxNew ){
|
| + pNewTerm = &pWC->a[idxNew];
|
| + pNewTerm->prereqRight = 0;
|
| + pNewTerm->leftCursor = pLeft->iTable;
|
| + pNewTerm->u.leftColumn = pLeft->iColumn;
|
| + pNewTerm->eOperator = WO_GT;
|
| + pNewTerm->iParent = idxTerm;
|
| + pTerm = &pWC->a[idxTerm];
|
| + pTerm->nChild = 1;
|
| + pTerm->wtFlags |= TERM_COPIED;
|
| + pNewTerm->prereqAll = pTerm->prereqAll;
|
| + }
|
| + }
|
| +#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
|
| +
|
| + /* Prevent ON clause terms of a LEFT JOIN from being used to drive
|
| + ** an index for tables to the left of the join.
|
| + */
|
| + pTerm->prereqRight |= extraRight;
|
| +}
|
| +
|
| +/*
|
| +** This function searches pList for an entry that matches the iCol-th column
|
| +** of index pIdx.
|
| +**
|
| +** If such an expression is found, its index in pList->a[] is returned. If
|
| +** no expression is found, -1 is returned.
|
| +*/
|
| +static int findIndexCol(
|
| + Parse *pParse, /* Parse context */
|
| + ExprList *pList, /* Expression list to search */
|
| + int iBase, /* Cursor for table associated with pIdx */
|
| + Index *pIdx, /* Index to match column of */
|
| + int iCol /* Column of index to match */
|
| +){
|
| + int i;
|
| + const char *zColl = pIdx->azColl[iCol];
|
| +
|
| + for(i=0; i<pList->nExpr; i++){
|
| + Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr);
|
| + if( p->op==TK_COLUMN
|
| + && p->iColumn==pIdx->aiColumn[iCol]
|
| + && p->iTable==iBase
|
| + ){
|
| + CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
|
| + if( ALWAYS(pColl) && 0==sqlite3StrICmp(pColl->zName, zColl) ){
|
| + return i;
|
| + }
|
| + }
|
| + }
|
| +
|
| + return -1;
|
| +}
|
| +
|
| +/*
|
| +** Return true if the DISTINCT expression-list passed as the third argument
|
| +** is redundant.
|
| +**
|
| +** A DISTINCT list is redundant if the database contains some subset of
|
| +** columns that are unique and non-null.
|
| +*/
|
| +static int isDistinctRedundant(
|
| + Parse *pParse, /* Parsing context */
|
| + SrcList *pTabList, /* The FROM clause */
|
| + WhereClause *pWC, /* The WHERE clause */
|
| + ExprList *pDistinct /* The result set that needs to be DISTINCT */
|
| +){
|
| + Table *pTab;
|
| + Index *pIdx;
|
| + int i;
|
| + int iBase;
|
| +
|
| + /* If there is more than one table or sub-select in the FROM clause of
|
| + ** this query, then it will not be possible to show that the DISTINCT
|
| + ** clause is redundant. */
|
| + if( pTabList->nSrc!=1 ) return 0;
|
| + iBase = pTabList->a[0].iCursor;
|
| + pTab = pTabList->a[0].pTab;
|
| +
|
| + /* If any of the expressions is an IPK column on table iBase, then return
|
| + ** true. Note: The (p->iTable==iBase) part of this test may be false if the
|
| + ** current SELECT is a correlated sub-query.
|
| + */
|
| + for(i=0; i<pDistinct->nExpr; i++){
|
| + Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr);
|
| + if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
|
| + }
|
| +
|
| + /* Loop through all indices on the table, checking each to see if it makes
|
| + ** the DISTINCT qualifier redundant. It does so if:
|
| + **
|
| + ** 1. The index is itself UNIQUE, and
|
| + **
|
| + ** 2. All of the columns in the index are either part of the pDistinct
|
| + ** list, or else the WHERE clause contains a term of the form "col=X",
|
| + ** where X is a constant value. The collation sequences of the
|
| + ** comparison and select-list expressions must match those of the index.
|
| + **
|
| + ** 3. All of those index columns for which the WHERE clause does not
|
| + ** contain a "col=X" term are subject to a NOT NULL constraint.
|
| + */
|
| + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
| + if( !IsUniqueIndex(pIdx) ) continue;
|
| + for(i=0; i<pIdx->nKeyCol; i++){
|
| + i16 iCol = pIdx->aiColumn[i];
|
| + if( 0==findTerm(pWC, iBase, iCol, ~(Bitmask)0, WO_EQ, pIdx) ){
|
| + int iIdxCol = findIndexCol(pParse, pDistinct, iBase, pIdx, i);
|
| + if( iIdxCol<0 || pTab->aCol[iCol].notNull==0 ){
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + if( i==pIdx->nKeyCol ){
|
| + /* This index implies that the DISTINCT qualifier is redundant. */
|
| + return 1;
|
| + }
|
| + }
|
| +
|
| + return 0;
|
| +}
|
| +
|
| +
|
| +/*
|
| +** Estimate the logarithm of the input value to base 2.
|
| +*/
|
| +static LogEst estLog(LogEst N){
|
| + return N<=10 ? 0 : sqlite3LogEst(N) - 33;
|
| +}
|
| +
|
| +/*
|
| +** Two routines for printing the content of an sqlite3_index_info
|
| +** structure. Used for testing and debugging only. If neither
|
| +** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
|
| +** are no-ops.
|
| +*/
|
| +#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
|
| +static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
|
| + int i;
|
| + if( !sqlite3WhereTrace ) return;
|
| + for(i=0; i<p->nConstraint; i++){
|
| + sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
|
| + i,
|
| + p->aConstraint[i].iColumn,
|
| + p->aConstraint[i].iTermOffset,
|
| + p->aConstraint[i].op,
|
| + p->aConstraint[i].usable);
|
| + }
|
| + for(i=0; i<p->nOrderBy; i++){
|
| + sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
|
| + i,
|
| + p->aOrderBy[i].iColumn,
|
| + p->aOrderBy[i].desc);
|
| + }
|
| +}
|
| +static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
|
| + int i;
|
| + if( !sqlite3WhereTrace ) return;
|
| + for(i=0; i<p->nConstraint; i++){
|
| + sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
|
| + i,
|
| + p->aConstraintUsage[i].argvIndex,
|
| + p->aConstraintUsage[i].omit);
|
| + }
|
| + sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
|
| + sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
|
| + sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
|
| + sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
|
| + sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows);
|
| +}
|
| +#else
|
| +#define TRACE_IDX_INPUTS(A)
|
| +#define TRACE_IDX_OUTPUTS(A)
|
| +#endif
|
| +
|
| +#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
|
| +/*
|
| +** Return TRUE if the WHERE clause term pTerm is of a form where it
|
| +** could be used with an index to access pSrc, assuming an appropriate
|
| +** index existed.
|
| +*/
|
| +static int termCanDriveIndex(
|
| + WhereTerm *pTerm, /* WHERE clause term to check */
|
| + struct SrcList_item *pSrc, /* Table we are trying to access */
|
| + Bitmask notReady /* Tables in outer loops of the join */
|
| +){
|
| + char aff;
|
| + if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
|
| + if( (pTerm->eOperator & WO_EQ)==0 ) return 0;
|
| + if( (pTerm->prereqRight & notReady)!=0 ) return 0;
|
| + if( pTerm->u.leftColumn<0 ) return 0;
|
| + aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
|
| + if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
|
| + return 1;
|
| +}
|
| +#endif
|
| +
|
| +
|
| +#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
|
| +/*
|
| +** Generate code to construct the Index object for an automatic index
|
| +** and to set up the WhereLevel object pLevel so that the code generator
|
| +** makes use of the automatic index.
|
| +*/
|
| +static void constructAutomaticIndex(
|
| + Parse *pParse, /* The parsing context */
|
| + WhereClause *pWC, /* The WHERE clause */
|
| + struct SrcList_item *pSrc, /* The FROM clause term to get the next index */
|
| + Bitmask notReady, /* Mask of cursors that are not available */
|
| + WhereLevel *pLevel /* Write new index here */
|
| +){
|
| + int nKeyCol; /* Number of columns in the constructed index */
|
| + WhereTerm *pTerm; /* A single term of the WHERE clause */
|
| + WhereTerm *pWCEnd; /* End of pWC->a[] */
|
| + Index *pIdx; /* Object describing the transient index */
|
| + Vdbe *v; /* Prepared statement under construction */
|
| + int addrInit; /* Address of the initialization bypass jump */
|
| + Table *pTable; /* The table being indexed */
|
| + int addrTop; /* Top of the index fill loop */
|
| + int regRecord; /* Register holding an index record */
|
| + int n; /* Column counter */
|
| + int i; /* Loop counter */
|
| + int mxBitCol; /* Maximum column in pSrc->colUsed */
|
| + CollSeq *pColl; /* Collating sequence to on a column */
|
| + WhereLoop *pLoop; /* The Loop object */
|
| + char *zNotUsed; /* Extra space on the end of pIdx */
|
| + Bitmask idxCols; /* Bitmap of columns used for indexing */
|
| + Bitmask extraCols; /* Bitmap of additional columns */
|
| + u8 sentWarning = 0; /* True if a warnning has been issued */
|
| +
|
| + /* Generate code to skip over the creation and initialization of the
|
| + ** transient index on 2nd and subsequent iterations of the loop. */
|
| + v = pParse->pVdbe;
|
| + assert( v!=0 );
|
| + addrInit = sqlite3CodeOnce(pParse); VdbeCoverage(v);
|
| +
|
| + /* Count the number of columns that will be added to the index
|
| + ** and used to match WHERE clause constraints */
|
| + nKeyCol = 0;
|
| + pTable = pSrc->pTab;
|
| + pWCEnd = &pWC->a[pWC->nTerm];
|
| + pLoop = pLevel->pWLoop;
|
| + idxCols = 0;
|
| + for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
|
| + if( termCanDriveIndex(pTerm, pSrc, notReady) ){
|
| + int iCol = pTerm->u.leftColumn;
|
| + Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
|
| + testcase( iCol==BMS );
|
| + testcase( iCol==BMS-1 );
|
| + if( !sentWarning ){
|
| + sqlite3_log(SQLITE_WARNING_AUTOINDEX,
|
| + "automatic index on %s(%s)", pTable->zName,
|
| + pTable->aCol[iCol].zName);
|
| + sentWarning = 1;
|
| + }
|
| + if( (idxCols & cMask)==0 ){
|
| + if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ) return;
|
| + pLoop->aLTerm[nKeyCol++] = pTerm;
|
| + idxCols |= cMask;
|
| + }
|
| + }
|
| + }
|
| + assert( nKeyCol>0 );
|
| + pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
|
| + pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
|
| + | WHERE_AUTO_INDEX;
|
| +
|
| + /* Count the number of additional columns needed to create a
|
| + ** covering index. A "covering index" is an index that contains all
|
| + ** columns that are needed by the query. With a covering index, the
|
| + ** original table never needs to be accessed. Automatic indices must
|
| + ** be a covering index because the index will not be updated if the
|
| + ** original table changes and the index and table cannot both be used
|
| + ** if they go out of sync.
|
| + */
|
| + extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
|
| + mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol;
|
| + testcase( pTable->nCol==BMS-1 );
|
| + testcase( pTable->nCol==BMS-2 );
|
| + for(i=0; i<mxBitCol; i++){
|
| + if( extraCols & MASKBIT(i) ) nKeyCol++;
|
| + }
|
| + if( pSrc->colUsed & MASKBIT(BMS-1) ){
|
| + nKeyCol += pTable->nCol - BMS + 1;
|
| + }
|
| + pLoop->wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY;
|
| +
|
| + /* Construct the Index object to describe this index */
|
| + pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
|
| + if( pIdx==0 ) return;
|
| + pLoop->u.btree.pIndex = pIdx;
|
| + pIdx->zName = "auto-index";
|
| + pIdx->pTable = pTable;
|
| + n = 0;
|
| + idxCols = 0;
|
| + for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
|
| + if( termCanDriveIndex(pTerm, pSrc, notReady) ){
|
| + int iCol = pTerm->u.leftColumn;
|
| + Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
|
| + testcase( iCol==BMS-1 );
|
| + testcase( iCol==BMS );
|
| + if( (idxCols & cMask)==0 ){
|
| + Expr *pX = pTerm->pExpr;
|
| + idxCols |= cMask;
|
| + pIdx->aiColumn[n] = pTerm->u.leftColumn;
|
| + pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
|
| + pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : "BINARY";
|
| + n++;
|
| + }
|
| + }
|
| + }
|
| + assert( (u32)n==pLoop->u.btree.nEq );
|
| +
|
| + /* Add additional columns needed to make the automatic index into
|
| + ** a covering index */
|
| + for(i=0; i<mxBitCol; i++){
|
| + if( extraCols & MASKBIT(i) ){
|
| + pIdx->aiColumn[n] = i;
|
| + pIdx->azColl[n] = "BINARY";
|
| + n++;
|
| + }
|
| + }
|
| + if( pSrc->colUsed & MASKBIT(BMS-1) ){
|
| + for(i=BMS-1; i<pTable->nCol; i++){
|
| + pIdx->aiColumn[n] = i;
|
| + pIdx->azColl[n] = "BINARY";
|
| + n++;
|
| + }
|
| + }
|
| + assert( n==nKeyCol );
|
| + pIdx->aiColumn[n] = -1;
|
| + pIdx->azColl[n] = "BINARY";
|
| +
|
| + /* Create the automatic index */
|
| + assert( pLevel->iIdxCur>=0 );
|
| + pLevel->iIdxCur = pParse->nTab++;
|
| + sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
|
| + sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
|
| + VdbeComment((v, "for %s", pTable->zName));
|
| +
|
| + /* Fill the automatic index with content */
|
| + addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
|
| + regRecord = sqlite3GetTempReg(pParse);
|
| + sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0);
|
| + sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
|
| + sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
|
| + sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
|
| + sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
|
| + sqlite3VdbeJumpHere(v, addrTop);
|
| + sqlite3ReleaseTempReg(pParse, regRecord);
|
| +
|
| + /* Jump here when skipping the initialization */
|
| + sqlite3VdbeJumpHere(v, addrInit);
|
| +}
|
| +#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
|
| +
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| +/*
|
| +** Allocate and populate an sqlite3_index_info structure. It is the
|
| +** responsibility of the caller to eventually release the structure
|
| +** by passing the pointer returned by this function to sqlite3_free().
|
| +*/
|
| +static sqlite3_index_info *allocateIndexInfo(
|
| + Parse *pParse,
|
| + WhereClause *pWC,
|
| + struct SrcList_item *pSrc,
|
| + ExprList *pOrderBy
|
| +){
|
| + int i, j;
|
| + int nTerm;
|
| + struct sqlite3_index_constraint *pIdxCons;
|
| + struct sqlite3_index_orderby *pIdxOrderBy;
|
| + struct sqlite3_index_constraint_usage *pUsage;
|
| + WhereTerm *pTerm;
|
| + int nOrderBy;
|
| + sqlite3_index_info *pIdxInfo;
|
| +
|
| + /* Count the number of possible WHERE clause constraints referring
|
| + ** to this virtual table */
|
| + for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
|
| + if( pTerm->leftCursor != pSrc->iCursor ) continue;
|
| + assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
|
| + testcase( pTerm->eOperator & WO_IN );
|
| + testcase( pTerm->eOperator & WO_ISNULL );
|
| + testcase( pTerm->eOperator & WO_ALL );
|
| + if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV))==0 ) continue;
|
| + if( pTerm->wtFlags & TERM_VNULL ) continue;
|
| + nTerm++;
|
| + }
|
| +
|
| + /* If the ORDER BY clause contains only columns in the current
|
| + ** virtual table then allocate space for the aOrderBy part of
|
| + ** the sqlite3_index_info structure.
|
| + */
|
| + nOrderBy = 0;
|
| + if( pOrderBy ){
|
| + int n = pOrderBy->nExpr;
|
| + for(i=0; i<n; i++){
|
| + Expr *pExpr = pOrderBy->a[i].pExpr;
|
| + if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
|
| + }
|
| + if( i==n){
|
| + nOrderBy = n;
|
| + }
|
| + }
|
| +
|
| + /* Allocate the sqlite3_index_info structure
|
| + */
|
| + pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
|
| + + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
|
| + + sizeof(*pIdxOrderBy)*nOrderBy );
|
| + if( pIdxInfo==0 ){
|
| + sqlite3ErrorMsg(pParse, "out of memory");
|
| + return 0;
|
| + }
|
| +
|
| + /* Initialize the structure. The sqlite3_index_info structure contains
|
| + ** many fields that are declared "const" to prevent xBestIndex from
|
| + ** changing them. We have to do some funky casting in order to
|
| + ** initialize those fields.
|
| + */
|
| + pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
|
| + pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
|
| + pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
|
| + *(int*)&pIdxInfo->nConstraint = nTerm;
|
| + *(int*)&pIdxInfo->nOrderBy = nOrderBy;
|
| + *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
|
| + *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
|
| + *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
|
| + pUsage;
|
| +
|
| + for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
|
| + u8 op;
|
| + if( pTerm->leftCursor != pSrc->iCursor ) continue;
|
| + assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
|
| + testcase( pTerm->eOperator & WO_IN );
|
| + testcase( pTerm->eOperator & WO_ISNULL );
|
| + testcase( pTerm->eOperator & WO_ALL );
|
| + if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV))==0 ) continue;
|
| + if( pTerm->wtFlags & TERM_VNULL ) continue;
|
| + pIdxCons[j].iColumn = pTerm->u.leftColumn;
|
| + pIdxCons[j].iTermOffset = i;
|
| + op = (u8)pTerm->eOperator & WO_ALL;
|
| + if( op==WO_IN ) op = WO_EQ;
|
| + pIdxCons[j].op = op;
|
| + /* The direct assignment in the previous line is possible only because
|
| + ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
|
| + ** following asserts verify this fact. */
|
| + assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
|
| + assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
|
| + assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
|
| + assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
|
| + assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
|
| + assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
|
| + assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
|
| + j++;
|
| + }
|
| + for(i=0; i<nOrderBy; i++){
|
| + Expr *pExpr = pOrderBy->a[i].pExpr;
|
| + pIdxOrderBy[i].iColumn = pExpr->iColumn;
|
| + pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
|
| + }
|
| +
|
| + return pIdxInfo;
|
| +}
|
| +
|
| +/*
|
| +** The table object reference passed as the second argument to this function
|
| +** must represent a virtual table. This function invokes the xBestIndex()
|
| +** method of the virtual table with the sqlite3_index_info object that
|
| +** comes in as the 3rd argument to this function.
|
| +**
|
| +** If an error occurs, pParse is populated with an error message and a
|
| +** non-zero value is returned. Otherwise, 0 is returned and the output
|
| +** part of the sqlite3_index_info structure is left populated.
|
| +**
|
| +** Whether or not an error is returned, it is the responsibility of the
|
| +** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
|
| +** that this is required.
|
| +*/
|
| +static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
|
| + sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
|
| + int i;
|
| + int rc;
|
| +
|
| + TRACE_IDX_INPUTS(p);
|
| + rc = pVtab->pModule->xBestIndex(pVtab, p);
|
| + TRACE_IDX_OUTPUTS(p);
|
| +
|
| + if( rc!=SQLITE_OK ){
|
| + if( rc==SQLITE_NOMEM ){
|
| + pParse->db->mallocFailed = 1;
|
| + }else if( !pVtab->zErrMsg ){
|
| + sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
|
| + }else{
|
| + sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
|
| + }
|
| + }
|
| + sqlite3_free(pVtab->zErrMsg);
|
| + pVtab->zErrMsg = 0;
|
| +
|
| + for(i=0; i<p->nConstraint; i++){
|
| + if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
|
| + sqlite3ErrorMsg(pParse,
|
| + "table %s: xBestIndex returned an invalid plan", pTab->zName);
|
| + }
|
| + }
|
| +
|
| + return pParse->nErr;
|
| +}
|
| +#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
|
| +
|
| +
|
| +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
|
| +/*
|
| +** Estimate the location of a particular key among all keys in an
|
| +** index. Store the results in aStat as follows:
|
| +**
|
| +** aStat[0] Est. number of rows less than pVal
|
| +** aStat[1] Est. number of rows equal to pVal
|
| +**
|
| +** Return SQLITE_OK on success.
|
| +*/
|
| +static void whereKeyStats(
|
| + Parse *pParse, /* Database connection */
|
| + Index *pIdx, /* Index to consider domain of */
|
| + UnpackedRecord *pRec, /* Vector of values to consider */
|
| + int roundUp, /* Round up if true. Round down if false */
|
| + tRowcnt *aStat /* OUT: stats written here */
|
| +){
|
| + IndexSample *aSample = pIdx->aSample;
|
| + int iCol; /* Index of required stats in anEq[] etc. */
|
| + int iMin = 0; /* Smallest sample not yet tested */
|
| + int i = pIdx->nSample; /* Smallest sample larger than or equal to pRec */
|
| + int iTest; /* Next sample to test */
|
| + int res; /* Result of comparison operation */
|
| +
|
| +#ifndef SQLITE_DEBUG
|
| + UNUSED_PARAMETER( pParse );
|
| +#endif
|
| + assert( pRec!=0 );
|
| + iCol = pRec->nField - 1;
|
| + assert( pIdx->nSample>0 );
|
| + assert( pRec->nField>0 && iCol<pIdx->nSampleCol );
|
| + do{
|
| + iTest = (iMin+i)/2;
|
| + res = sqlite3VdbeRecordCompare(aSample[iTest].n, aSample[iTest].p, pRec);
|
| + if( res<0 ){
|
| + iMin = iTest+1;
|
| + }else{
|
| + i = iTest;
|
| + }
|
| + }while( res && iMin<i );
|
| +
|
| +#ifdef SQLITE_DEBUG
|
| + /* The following assert statements check that the binary search code
|
| + ** above found the right answer. This block serves no purpose other
|
| + ** than to invoke the asserts. */
|
| + if( res==0 ){
|
| + /* If (res==0) is true, then sample $i must be equal to pRec */
|
| + assert( i<pIdx->nSample );
|
| + assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
|
| + || pParse->db->mallocFailed );
|
| + }else{
|
| + /* Otherwise, pRec must be smaller than sample $i and larger than
|
| + ** sample ($i-1). */
|
| + assert( i==pIdx->nSample
|
| + || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
|
| + || pParse->db->mallocFailed );
|
| + assert( i==0
|
| + || sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
|
| + || pParse->db->mallocFailed );
|
| + }
|
| +#endif /* ifdef SQLITE_DEBUG */
|
| +
|
| + /* At this point, aSample[i] is the first sample that is greater than
|
| + ** or equal to pVal. Or if i==pIdx->nSample, then all samples are less
|
| + ** than pVal. If aSample[i]==pVal, then res==0.
|
| + */
|
| + if( res==0 ){
|
| + aStat[0] = aSample[i].anLt[iCol];
|
| + aStat[1] = aSample[i].anEq[iCol];
|
| + }else{
|
| + tRowcnt iLower, iUpper, iGap;
|
| + if( i==0 ){
|
| + iLower = 0;
|
| + iUpper = aSample[0].anLt[iCol];
|
| + }else{
|
| + i64 nRow0 = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
|
| + iUpper = i>=pIdx->nSample ? nRow0 : aSample[i].anLt[iCol];
|
| + iLower = aSample[i-1].anEq[iCol] + aSample[i-1].anLt[iCol];
|
| + }
|
| + aStat[1] = pIdx->aAvgEq[iCol];
|
| + if( iLower>=iUpper ){
|
| + iGap = 0;
|
| + }else{
|
| + iGap = iUpper - iLower;
|
| + }
|
| + if( roundUp ){
|
| + iGap = (iGap*2)/3;
|
| + }else{
|
| + iGap = iGap/3;
|
| + }
|
| + aStat[0] = iLower + iGap;
|
| + }
|
| +}
|
| +#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
|
| +
|
| +/*
|
| +** If it is not NULL, pTerm is a term that provides an upper or lower
|
| +** bound on a range scan. Without considering pTerm, it is estimated
|
| +** that the scan will visit nNew rows. This function returns the number
|
| +** estimated to be visited after taking pTerm into account.
|
| +**
|
| +** If the user explicitly specified a likelihood() value for this term,
|
| +** then the return value is the likelihood multiplied by the number of
|
| +** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
|
| +** has a likelihood of 0.50, and any other term a likelihood of 0.25.
|
| +*/
|
| +static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
|
| + LogEst nRet = nNew;
|
| + if( pTerm ){
|
| + if( pTerm->truthProb<=0 ){
|
| + nRet += pTerm->truthProb;
|
| + }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
|
| + nRet -= 20; assert( 20==sqlite3LogEst(4) );
|
| + }
|
| + }
|
| + return nRet;
|
| +}
|
| +
|
| +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
|
| +/*
|
| +** This function is called to estimate the number of rows visited by a
|
| +** range-scan on a skip-scan index. For example:
|
| +**
|
| +** CREATE INDEX i1 ON t1(a, b, c);
|
| +** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
|
| +**
|
| +** Value pLoop->nOut is currently set to the estimated number of rows
|
| +** visited for scanning (a=? AND b=?). This function reduces that estimate
|
| +** by some factor to account for the (c BETWEEN ? AND ?) expression based
|
| +** on the stat4 data for the index. this scan will be peformed multiple
|
| +** times (once for each (a,b) combination that matches a=?) is dealt with
|
| +** by the caller.
|
| +**
|
| +** It does this by scanning through all stat4 samples, comparing values
|
| +** extracted from pLower and pUpper with the corresponding column in each
|
| +** sample. If L and U are the number of samples found to be less than or
|
| +** equal to the values extracted from pLower and pUpper respectively, and
|
| +** N is the total number of samples, the pLoop->nOut value is adjusted
|
| +** as follows:
|
| +**
|
| +** nOut = nOut * ( min(U - L, 1) / N )
|
| +**
|
| +** If pLower is NULL, or a value cannot be extracted from the term, L is
|
| +** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
|
| +** U is set to N.
|
| +**
|
| +** Normally, this function sets *pbDone to 1 before returning. However,
|
| +** if no value can be extracted from either pLower or pUpper (and so the
|
| +** estimate of the number of rows delivered remains unchanged), *pbDone
|
| +** is left as is.
|
| +**
|
| +** If an error occurs, an SQLite error code is returned. Otherwise,
|
| +** SQLITE_OK.
|
| +*/
|
| +static int whereRangeSkipScanEst(
|
| + Parse *pParse, /* Parsing & code generating context */
|
| + WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
|
| + WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
|
| + WhereLoop *pLoop, /* Update the .nOut value of this loop */
|
| + int *pbDone /* Set to true if at least one expr. value extracted */
|
| +){
|
| + Index *p = pLoop->u.btree.pIndex;
|
| + int nEq = pLoop->u.btree.nEq;
|
| + sqlite3 *db = pParse->db;
|
| + int nLower = -1;
|
| + int nUpper = p->nSample+1;
|
| + int rc = SQLITE_OK;
|
| + int iCol = p->aiColumn[nEq];
|
| + u8 aff = iCol>=0 ? p->pTable->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
|
| + CollSeq *pColl;
|
| +
|
| + sqlite3_value *p1 = 0; /* Value extracted from pLower */
|
| + sqlite3_value *p2 = 0; /* Value extracted from pUpper */
|
| + sqlite3_value *pVal = 0; /* Value extracted from record */
|
| +
|
| + pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
|
| + if( pLower ){
|
| + rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
|
| + nLower = 0;
|
| + }
|
| + if( pUpper && rc==SQLITE_OK ){
|
| + rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
|
| + nUpper = p2 ? 0 : p->nSample;
|
| + }
|
| +
|
| + if( p1 || p2 ){
|
| + int i;
|
| + int nDiff;
|
| + for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
|
| + rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
|
| + if( rc==SQLITE_OK && p1 ){
|
| + int res = sqlite3MemCompare(p1, pVal, pColl);
|
| + if( res>=0 ) nLower++;
|
| + }
|
| + if( rc==SQLITE_OK && p2 ){
|
| + int res = sqlite3MemCompare(p2, pVal, pColl);
|
| + if( res>=0 ) nUpper++;
|
| + }
|
| + }
|
| + nDiff = (nUpper - nLower);
|
| + if( nDiff<=0 ) nDiff = 1;
|
| +
|
| + /* If there is both an upper and lower bound specified, and the
|
| + ** comparisons indicate that they are close together, use the fallback
|
| + ** method (assume that the scan visits 1/64 of the rows) for estimating
|
| + ** the number of rows visited. Otherwise, estimate the number of rows
|
| + ** using the method described in the header comment for this function. */
|
| + if( nDiff!=1 || pUpper==0 || pLower==0 ){
|
| + int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
|
| + pLoop->nOut -= nAdjust;
|
| + *pbDone = 1;
|
| + WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n",
|
| + nLower, nUpper, nAdjust*-1, pLoop->nOut));
|
| + }
|
| +
|
| + }else{
|
| + assert( *pbDone==0 );
|
| + }
|
| +
|
| + sqlite3ValueFree(p1);
|
| + sqlite3ValueFree(p2);
|
| + sqlite3ValueFree(pVal);
|
| +
|
| + return rc;
|
| +}
|
| +#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
|
| +
|
| +/*
|
| +** This function is used to estimate the number of rows that will be visited
|
| +** by scanning an index for a range of values. The range may have an upper
|
| +** bound, a lower bound, or both. The WHERE clause terms that set the upper
|
| +** and lower bounds are represented by pLower and pUpper respectively. For
|
| +** example, assuming that index p is on t1(a):
|
| +**
|
| +** ... FROM t1 WHERE a > ? AND a < ? ...
|
| +** |_____| |_____|
|
| +** | |
|
| +** pLower pUpper
|
| +**
|
| +** If either of the upper or lower bound is not present, then NULL is passed in
|
| +** place of the corresponding WhereTerm.
|
| +**
|
| +** The value in (pBuilder->pNew->u.btree.nEq) is the index of the index
|
| +** column subject to the range constraint. Or, equivalently, the number of
|
| +** equality constraints optimized by the proposed index scan. For example,
|
| +** assuming index p is on t1(a, b), and the SQL query is:
|
| +**
|
| +** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
|
| +**
|
| +** then nEq is set to 1 (as the range restricted column, b, is the second
|
| +** left-most column of the index). Or, if the query is:
|
| +**
|
| +** ... FROM t1 WHERE a > ? AND a < ? ...
|
| +**
|
| +** then nEq is set to 0.
|
| +**
|
| +** When this function is called, *pnOut is set to the sqlite3LogEst() of the
|
| +** number of rows that the index scan is expected to visit without
|
| +** considering the range constraints. If nEq is 0, this is the number of
|
| +** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
|
| +** to account for the range constraints pLower and pUpper.
|
| +**
|
| +** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
|
| +** used, a single range inequality reduces the search space by a factor of 4.
|
| +** and a pair of constraints (x>? AND x<?) reduces the expected number of
|
| +** rows visited by a factor of 64.
|
| +*/
|
| +static int whereRangeScanEst(
|
| + Parse *pParse, /* Parsing & code generating context */
|
| + WhereLoopBuilder *pBuilder,
|
| + WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
|
| + WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
|
| + WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */
|
| +){
|
| + int rc = SQLITE_OK;
|
| + int nOut = pLoop->nOut;
|
| + LogEst nNew;
|
| +
|
| +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
|
| + Index *p = pLoop->u.btree.pIndex;
|
| + int nEq = pLoop->u.btree.nEq;
|
| +
|
| + if( p->nSample>0
|
| + && nEq<p->nSampleCol
|
| + && OptimizationEnabled(pParse->db, SQLITE_Stat3)
|
| + ){
|
| + if( nEq==pBuilder->nRecValid ){
|
| + UnpackedRecord *pRec = pBuilder->pRec;
|
| + tRowcnt a[2];
|
| + u8 aff;
|
| +
|
| + /* Variable iLower will be set to the estimate of the number of rows in
|
| + ** the index that are less than the lower bound of the range query. The
|
| + ** lower bound being the concatenation of $P and $L, where $P is the
|
| + ** key-prefix formed by the nEq values matched against the nEq left-most
|
| + ** columns of the index, and $L is the value in pLower.
|
| + **
|
| + ** Or, if pLower is NULL or $L cannot be extracted from it (because it
|
| + ** is not a simple variable or literal value), the lower bound of the
|
| + ** range is $P. Due to a quirk in the way whereKeyStats() works, even
|
| + ** if $L is available, whereKeyStats() is called for both ($P) and
|
| + ** ($P:$L) and the larger of the two returned values used.
|
| + **
|
| + ** Similarly, iUpper is to be set to the estimate of the number of rows
|
| + ** less than the upper bound of the range query. Where the upper bound
|
| + ** is either ($P) or ($P:$U). Again, even if $U is available, both values
|
| + ** of iUpper are requested of whereKeyStats() and the smaller used.
|
| + */
|
| + tRowcnt iLower;
|
| + tRowcnt iUpper;
|
| +
|
| + if( pRec ){
|
| + testcase( pRec->nField!=pBuilder->nRecValid );
|
| + pRec->nField = pBuilder->nRecValid;
|
| + }
|
| + if( nEq==p->nKeyCol ){
|
| + aff = SQLITE_AFF_INTEGER;
|
| + }else{
|
| + aff = p->pTable->aCol[p->aiColumn[nEq]].affinity;
|
| + }
|
| + /* Determine iLower and iUpper using ($P) only. */
|
| + if( nEq==0 ){
|
| + iLower = 0;
|
| + iUpper = sqlite3LogEstToInt(p->aiRowLogEst[0]);
|
| + }else{
|
| + /* Note: this call could be optimized away - since the same values must
|
| + ** have been requested when testing key $P in whereEqualScanEst(). */
|
| + whereKeyStats(pParse, p, pRec, 0, a);
|
| + iLower = a[0];
|
| + iUpper = a[0] + a[1];
|
| + }
|
| +
|
| + assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
|
| + assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
|
| + assert( p->aSortOrder!=0 );
|
| + if( p->aSortOrder[nEq] ){
|
| + /* The roles of pLower and pUpper are swapped for a DESC index */
|
| + SWAP(WhereTerm*, pLower, pUpper);
|
| + }
|
| +
|
| + /* If possible, improve on the iLower estimate using ($P:$L). */
|
| + if( pLower ){
|
| + int bOk; /* True if value is extracted from pExpr */
|
| + Expr *pExpr = pLower->pExpr->pRight;
|
| + rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
|
| + if( rc==SQLITE_OK && bOk ){
|
| + tRowcnt iNew;
|
| + whereKeyStats(pParse, p, pRec, 0, a);
|
| + iNew = a[0] + ((pLower->eOperator & (WO_GT|WO_LE)) ? a[1] : 0);
|
| + if( iNew>iLower ) iLower = iNew;
|
| + nOut--;
|
| + pLower = 0;
|
| + }
|
| + }
|
| +
|
| + /* If possible, improve on the iUpper estimate using ($P:$U). */
|
| + if( pUpper ){
|
| + int bOk; /* True if value is extracted from pExpr */
|
| + Expr *pExpr = pUpper->pExpr->pRight;
|
| + rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
|
| + if( rc==SQLITE_OK && bOk ){
|
| + tRowcnt iNew;
|
| + whereKeyStats(pParse, p, pRec, 1, a);
|
| + iNew = a[0] + ((pUpper->eOperator & (WO_GT|WO_LE)) ? a[1] : 0);
|
| + if( iNew<iUpper ) iUpper = iNew;
|
| + nOut--;
|
| + pUpper = 0;
|
| + }
|
| + }
|
| +
|
| + pBuilder->pRec = pRec;
|
| + if( rc==SQLITE_OK ){
|
| + if( iUpper>iLower ){
|
| + nNew = sqlite3LogEst(iUpper - iLower);
|
| + }else{
|
| + nNew = 10; assert( 10==sqlite3LogEst(2) );
|
| + }
|
| + if( nNew<nOut ){
|
| + nOut = nNew;
|
| + }
|
| + WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n",
|
| + (u32)iLower, (u32)iUpper, nOut));
|
| + }
|
| + }else{
|
| + int bDone = 0;
|
| + rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
|
| + if( bDone ) return rc;
|
| + }
|
| + }
|
| +#else
|
| + UNUSED_PARAMETER(pParse);
|
| + UNUSED_PARAMETER(pBuilder);
|
| + assert( pLower || pUpper );
|
| +#endif
|
| + assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
|
| + nNew = whereRangeAdjust(pLower, nOut);
|
| + nNew = whereRangeAdjust(pUpper, nNew);
|
| +
|
| + /* TUNING: If there is both an upper and lower limit, assume the range is
|
| + ** reduced by an additional 75%. This means that, by default, an open-ended
|
| + ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
|
| + ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
|
| + ** match 1/64 of the index. */
|
| + if( pLower && pUpper ) nNew -= 20;
|
| +
|
| + nOut -= (pLower!=0) + (pUpper!=0);
|
| + if( nNew<10 ) nNew = 10;
|
| + if( nNew<nOut ) nOut = nNew;
|
| +#if defined(WHERETRACE_ENABLED)
|
| + if( pLoop->nOut>nOut ){
|
| + WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
|
| + pLoop->nOut, nOut));
|
| + }
|
| +#endif
|
| + pLoop->nOut = (LogEst)nOut;
|
| + return rc;
|
| +}
|
| +
|
| +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
|
| +/*
|
| +** Estimate the number of rows that will be returned based on
|
| +** an equality constraint x=VALUE and where that VALUE occurs in
|
| +** the histogram data. This only works when x is the left-most
|
| +** column of an index and sqlite_stat3 histogram data is available
|
| +** for that index. When pExpr==NULL that means the constraint is
|
| +** "x IS NULL" instead of "x=VALUE".
|
| +**
|
| +** Write the estimated row count into *pnRow and return SQLITE_OK.
|
| +** If unable to make an estimate, leave *pnRow unchanged and return
|
| +** non-zero.
|
| +**
|
| +** This routine can fail if it is unable to load a collating sequence
|
| +** required for string comparison, or if unable to allocate memory
|
| +** for a UTF conversion required for comparison. The error is stored
|
| +** in the pParse structure.
|
| +*/
|
| +static int whereEqualScanEst(
|
| + Parse *pParse, /* Parsing & code generating context */
|
| + WhereLoopBuilder *pBuilder,
|
| + Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */
|
| + tRowcnt *pnRow /* Write the revised row estimate here */
|
| +){
|
| + Index *p = pBuilder->pNew->u.btree.pIndex;
|
| + int nEq = pBuilder->pNew->u.btree.nEq;
|
| + UnpackedRecord *pRec = pBuilder->pRec;
|
| + u8 aff; /* Column affinity */
|
| + int rc; /* Subfunction return code */
|
| + tRowcnt a[2]; /* Statistics */
|
| + int bOk;
|
| +
|
| + assert( nEq>=1 );
|
| + assert( nEq<=p->nColumn );
|
| + assert( p->aSample!=0 );
|
| + assert( p->nSample>0 );
|
| + assert( pBuilder->nRecValid<nEq );
|
| +
|
| + /* If values are not available for all fields of the index to the left
|
| + ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
|
| + if( pBuilder->nRecValid<(nEq-1) ){
|
| + return SQLITE_NOTFOUND;
|
| + }
|
| +
|
| + /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
|
| + ** below would return the same value. */
|
| + if( nEq>=p->nColumn ){
|
| + *pnRow = 1;
|
| + return SQLITE_OK;
|
| + }
|
| +
|
| + aff = p->pTable->aCol[p->aiColumn[nEq-1]].affinity;
|
| + rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq-1, &bOk);
|
| + pBuilder->pRec = pRec;
|
| + if( rc!=SQLITE_OK ) return rc;
|
| + if( bOk==0 ) return SQLITE_NOTFOUND;
|
| + pBuilder->nRecValid = nEq;
|
| +
|
| + whereKeyStats(pParse, p, pRec, 0, a);
|
| + WHERETRACE(0x10,("equality scan regions: %d\n", (int)a[1]));
|
| + *pnRow = a[1];
|
| +
|
| + return rc;
|
| +}
|
| +#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
|
| +
|
| +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
|
| +/*
|
| +** Estimate the number of rows that will be returned based on
|
| +** an IN constraint where the right-hand side of the IN operator
|
| +** is a list of values. Example:
|
| +**
|
| +** WHERE x IN (1,2,3,4)
|
| +**
|
| +** Write the estimated row count into *pnRow and return SQLITE_OK.
|
| +** If unable to make an estimate, leave *pnRow unchanged and return
|
| +** non-zero.
|
| +**
|
| +** This routine can fail if it is unable to load a collating sequence
|
| +** required for string comparison, or if unable to allocate memory
|
| +** for a UTF conversion required for comparison. The error is stored
|
| +** in the pParse structure.
|
| +*/
|
| +static int whereInScanEst(
|
| + Parse *pParse, /* Parsing & code generating context */
|
| + WhereLoopBuilder *pBuilder,
|
| + ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
|
| + tRowcnt *pnRow /* Write the revised row estimate here */
|
| +){
|
| + Index *p = pBuilder->pNew->u.btree.pIndex;
|
| + i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
|
| + int nRecValid = pBuilder->nRecValid;
|
| + int rc = SQLITE_OK; /* Subfunction return code */
|
| + tRowcnt nEst; /* Number of rows for a single term */
|
| + tRowcnt nRowEst = 0; /* New estimate of the number of rows */
|
| + int i; /* Loop counter */
|
| +
|
| + assert( p->aSample!=0 );
|
| + for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
|
| + nEst = nRow0;
|
| + rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
|
| + nRowEst += nEst;
|
| + pBuilder->nRecValid = nRecValid;
|
| + }
|
| +
|
| + if( rc==SQLITE_OK ){
|
| + if( nRowEst > nRow0 ) nRowEst = nRow0;
|
| + *pnRow = nRowEst;
|
| + WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
|
| + }
|
| + assert( pBuilder->nRecValid==nRecValid );
|
| + return rc;
|
| +}
|
| +#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
|
| +
|
| +/*
|
| +** Disable a term in the WHERE clause. Except, do not disable the term
|
| +** if it controls a LEFT OUTER JOIN and it did not originate in the ON
|
| +** or USING clause of that join.
|
| +**
|
| +** Consider the term t2.z='ok' in the following queries:
|
| +**
|
| +** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
|
| +** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
|
| +** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
|
| +**
|
| +** The t2.z='ok' is disabled in the in (2) because it originates
|
| +** in the ON clause. The term is disabled in (3) because it is not part
|
| +** of a LEFT OUTER JOIN. In (1), the term is not disabled.
|
| +**
|
| +** Disabling a term causes that term to not be tested in the inner loop
|
| +** of the join. Disabling is an optimization. When terms are satisfied
|
| +** by indices, we disable them to prevent redundant tests in the inner
|
| +** loop. We would get the correct results if nothing were ever disabled,
|
| +** but joins might run a little slower. The trick is to disable as much
|
| +** as we can without disabling too much. If we disabled in (1), we'd get
|
| +** the wrong answer. See ticket #813.
|
| +*/
|
| +static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
|
| + if( pTerm
|
| + && (pTerm->wtFlags & TERM_CODED)==0
|
| + && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
|
| + && (pLevel->notReady & pTerm->prereqAll)==0
|
| + ){
|
| + pTerm->wtFlags |= TERM_CODED;
|
| + if( pTerm->iParent>=0 ){
|
| + WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
|
| + if( (--pOther->nChild)==0 ){
|
| + disableTerm(pLevel, pOther);
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Code an OP_Affinity opcode to apply the column affinity string zAff
|
| +** to the n registers starting at base.
|
| +**
|
| +** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the
|
| +** beginning and end of zAff are ignored. If all entries in zAff are
|
| +** SQLITE_AFF_NONE, then no code gets generated.
|
| +**
|
| +** This routine makes its own copy of zAff so that the caller is free
|
| +** to modify zAff after this routine returns.
|
| +*/
|
| +static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
|
| + Vdbe *v = pParse->pVdbe;
|
| + if( zAff==0 ){
|
| + assert( pParse->db->mallocFailed );
|
| + return;
|
| + }
|
| + assert( v!=0 );
|
| +
|
| + /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning
|
| + ** and end of the affinity string.
|
| + */
|
| + while( n>0 && zAff[0]==SQLITE_AFF_NONE ){
|
| + n--;
|
| + base++;
|
| + zAff++;
|
| + }
|
| + while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){
|
| + n--;
|
| + }
|
| +
|
| + /* Code the OP_Affinity opcode if there is anything left to do. */
|
| + if( n>0 ){
|
| + sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
|
| + sqlite3VdbeChangeP4(v, -1, zAff, n);
|
| + sqlite3ExprCacheAffinityChange(pParse, base, n);
|
| + }
|
| +}
|
| +
|
| +
|
| +/*
|
| +** Generate code for a single equality term of the WHERE clause. An equality
|
| +** term can be either X=expr or X IN (...). pTerm is the term to be
|
| +** coded.
|
| +**
|
| +** The current value for the constraint is left in register iReg.
|
| +**
|
| +** For a constraint of the form X=expr, the expression is evaluated and its
|
| +** result is left on the stack. For constraints of the form X IN (...)
|
| +** this routine sets up a loop that will iterate over all values of X.
|
| +*/
|
| +static int codeEqualityTerm(
|
| + Parse *pParse, /* The parsing context */
|
| + WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
|
| + WhereLevel *pLevel, /* The level of the FROM clause we are working on */
|
| + int iEq, /* Index of the equality term within this level */
|
| + int bRev, /* True for reverse-order IN operations */
|
| + int iTarget /* Attempt to leave results in this register */
|
| +){
|
| + Expr *pX = pTerm->pExpr;
|
| + Vdbe *v = pParse->pVdbe;
|
| + int iReg; /* Register holding results */
|
| +
|
| + assert( iTarget>0 );
|
| + if( pX->op==TK_EQ ){
|
| + iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
|
| + }else if( pX->op==TK_ISNULL ){
|
| + iReg = iTarget;
|
| + sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| + }else{
|
| + int eType;
|
| + int iTab;
|
| + struct InLoop *pIn;
|
| + WhereLoop *pLoop = pLevel->pWLoop;
|
| +
|
| + if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
|
| + && pLoop->u.btree.pIndex!=0
|
| + && pLoop->u.btree.pIndex->aSortOrder[iEq]
|
| + ){
|
| + testcase( iEq==0 );
|
| + testcase( bRev );
|
| + bRev = !bRev;
|
| + }
|
| + assert( pX->op==TK_IN );
|
| + iReg = iTarget;
|
| + eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0);
|
| + if( eType==IN_INDEX_INDEX_DESC ){
|
| + testcase( bRev );
|
| + bRev = !bRev;
|
| + }
|
| + iTab = pX->iTable;
|
| + sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
|
| + VdbeCoverageIf(v, bRev);
|
| + VdbeCoverageIf(v, !bRev);
|
| + assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
|
| + pLoop->wsFlags |= WHERE_IN_ABLE;
|
| + if( pLevel->u.in.nIn==0 ){
|
| + pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
|
| + }
|
| + pLevel->u.in.nIn++;
|
| + pLevel->u.in.aInLoop =
|
| + sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
|
| + sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
|
| + pIn = pLevel->u.in.aInLoop;
|
| + if( pIn ){
|
| + pIn += pLevel->u.in.nIn - 1;
|
| + pIn->iCur = iTab;
|
| + if( eType==IN_INDEX_ROWID ){
|
| + pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
|
| + }else{
|
| + pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
|
| + }
|
| + pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen;
|
| + sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v);
|
| + }else{
|
| + pLevel->u.in.nIn = 0;
|
| + }
|
| +#endif
|
| + }
|
| + disableTerm(pLevel, pTerm);
|
| + return iReg;
|
| +}
|
| +
|
| +/*
|
| +** Generate code that will evaluate all == and IN constraints for an
|
| +** index scan.
|
| +**
|
| +** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
|
| +** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
|
| +** The index has as many as three equality constraints, but in this
|
| +** example, the third "c" value is an inequality. So only two
|
| +** constraints are coded. This routine will generate code to evaluate
|
| +** a==5 and b IN (1,2,3). The current values for a and b will be stored
|
| +** in consecutive registers and the index of the first register is returned.
|
| +**
|
| +** In the example above nEq==2. But this subroutine works for any value
|
| +** of nEq including 0. If nEq==0, this routine is nearly a no-op.
|
| +** The only thing it does is allocate the pLevel->iMem memory cell and
|
| +** compute the affinity string.
|
| +**
|
| +** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints
|
| +** are == or IN and are covered by the nEq. nExtraReg is 1 if there is
|
| +** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
|
| +** occurs after the nEq quality constraints.
|
| +**
|
| +** This routine allocates a range of nEq+nExtraReg memory cells and returns
|
| +** the index of the first memory cell in that range. The code that
|
| +** calls this routine will use that memory range to store keys for
|
| +** start and termination conditions of the loop.
|
| +** key value of the loop. If one or more IN operators appear, then
|
| +** this routine allocates an additional nEq memory cells for internal
|
| +** use.
|
| +**
|
| +** Before returning, *pzAff is set to point to a buffer containing a
|
| +** copy of the column affinity string of the index allocated using
|
| +** sqlite3DbMalloc(). Except, entries in the copy of the string associated
|
| +** with equality constraints that use NONE affinity are set to
|
| +** SQLITE_AFF_NONE. This is to deal with SQL such as the following:
|
| +**
|
| +** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
|
| +** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
|
| +**
|
| +** In the example above, the index on t1(a) has TEXT affinity. But since
|
| +** the right hand side of the equality constraint (t2.b) has NONE affinity,
|
| +** no conversion should be attempted before using a t2.b value as part of
|
| +** a key to search the index. Hence the first byte in the returned affinity
|
| +** string in this example would be set to SQLITE_AFF_NONE.
|
| +*/
|
| +static int codeAllEqualityTerms(
|
| + Parse *pParse, /* Parsing context */
|
| + WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
|
| + int bRev, /* Reverse the order of IN operators */
|
| + int nExtraReg, /* Number of extra registers to allocate */
|
| + char **pzAff /* OUT: Set to point to affinity string */
|
| +){
|
| + u16 nEq; /* The number of == or IN constraints to code */
|
| + u16 nSkip; /* Number of left-most columns to skip */
|
| + Vdbe *v = pParse->pVdbe; /* The vm under construction */
|
| + Index *pIdx; /* The index being used for this loop */
|
| + WhereTerm *pTerm; /* A single constraint term */
|
| + WhereLoop *pLoop; /* The WhereLoop object */
|
| + int j; /* Loop counter */
|
| + int regBase; /* Base register */
|
| + int nReg; /* Number of registers to allocate */
|
| + char *zAff; /* Affinity string to return */
|
| +
|
| + /* This module is only called on query plans that use an index. */
|
| + pLoop = pLevel->pWLoop;
|
| + assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
|
| + nEq = pLoop->u.btree.nEq;
|
| + nSkip = pLoop->u.btree.nSkip;
|
| + pIdx = pLoop->u.btree.pIndex;
|
| + assert( pIdx!=0 );
|
| +
|
| + /* Figure out how many memory cells we will need then allocate them.
|
| + */
|
| + regBase = pParse->nMem + 1;
|
| + nReg = pLoop->u.btree.nEq + nExtraReg;
|
| + pParse->nMem += nReg;
|
| +
|
| + zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx));
|
| + if( !zAff ){
|
| + pParse->db->mallocFailed = 1;
|
| + }
|
| +
|
| + if( nSkip ){
|
| + int iIdxCur = pLevel->iIdxCur;
|
| + sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
|
| + VdbeCoverageIf(v, bRev==0);
|
| + VdbeCoverageIf(v, bRev!=0);
|
| + VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
|
| + j = sqlite3VdbeAddOp0(v, OP_Goto);
|
| + pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
|
| + iIdxCur, 0, regBase, nSkip);
|
| + VdbeCoverageIf(v, bRev==0);
|
| + VdbeCoverageIf(v, bRev!=0);
|
| + sqlite3VdbeJumpHere(v, j);
|
| + for(j=0; j<nSkip; j++){
|
| + sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
|
| + assert( pIdx->aiColumn[j]>=0 );
|
| + VdbeComment((v, "%s", pIdx->pTable->aCol[pIdx->aiColumn[j]].zName));
|
| + }
|
| + }
|
| +
|
| + /* Evaluate the equality constraints
|
| + */
|
| + assert( zAff==0 || (int)strlen(zAff)>=nEq );
|
| + for(j=nSkip; j<nEq; j++){
|
| + int r1;
|
| + pTerm = pLoop->aLTerm[j];
|
| + assert( pTerm!=0 );
|
| + /* The following testcase is true for indices with redundant columns.
|
| + ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
|
| + testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
|
| + testcase( pTerm->wtFlags & TERM_VIRTUAL );
|
| + r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
|
| + if( r1!=regBase+j ){
|
| + if( nReg==1 ){
|
| + sqlite3ReleaseTempReg(pParse, regBase);
|
| + regBase = r1;
|
| + }else{
|
| + sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
|
| + }
|
| + }
|
| + testcase( pTerm->eOperator & WO_ISNULL );
|
| + testcase( pTerm->eOperator & WO_IN );
|
| + if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
|
| + Expr *pRight = pTerm->pExpr->pRight;
|
| + if( sqlite3ExprCanBeNull(pRight) ){
|
| + sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
|
| + VdbeCoverage(v);
|
| + }
|
| + if( zAff ){
|
| + if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){
|
| + zAff[j] = SQLITE_AFF_NONE;
|
| + }
|
| + if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
|
| + zAff[j] = SQLITE_AFF_NONE;
|
| + }
|
| + }
|
| + }
|
| + }
|
| + *pzAff = zAff;
|
| + return regBase;
|
| +}
|
| +
|
| +#ifndef SQLITE_OMIT_EXPLAIN
|
| +/*
|
| +** This routine is a helper for explainIndexRange() below
|
| +**
|
| +** pStr holds the text of an expression that we are building up one term
|
| +** at a time. This routine adds a new term to the end of the expression.
|
| +** Terms are separated by AND so add the "AND" text for second and subsequent
|
| +** terms only.
|
| +*/
|
| +static void explainAppendTerm(
|
| + StrAccum *pStr, /* The text expression being built */
|
| + int iTerm, /* Index of this term. First is zero */
|
| + const char *zColumn, /* Name of the column */
|
| + const char *zOp /* Name of the operator */
|
| +){
|
| + if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5);
|
| + sqlite3StrAccumAppendAll(pStr, zColumn);
|
| + sqlite3StrAccumAppend(pStr, zOp, 1);
|
| + sqlite3StrAccumAppend(pStr, "?", 1);
|
| +}
|
| +
|
| +/*
|
| +** Argument pLevel describes a strategy for scanning table pTab. This
|
| +** function appends text to pStr that describes the subset of table
|
| +** rows scanned by the strategy in the form of an SQL expression.
|
| +**
|
| +** For example, if the query:
|
| +**
|
| +** SELECT * FROM t1 WHERE a=1 AND b>2;
|
| +**
|
| +** is run and there is an index on (a, b), then this function returns a
|
| +** string similar to:
|
| +**
|
| +** "a=? AND b>?"
|
| +*/
|
| +static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop, Table *pTab){
|
| + Index *pIndex = pLoop->u.btree.pIndex;
|
| + u16 nEq = pLoop->u.btree.nEq;
|
| + u16 nSkip = pLoop->u.btree.nSkip;
|
| + int i, j;
|
| + Column *aCol = pTab->aCol;
|
| + i16 *aiColumn = pIndex->aiColumn;
|
| +
|
| + if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
|
| + sqlite3StrAccumAppend(pStr, " (", 2);
|
| + for(i=0; i<nEq; i++){
|
| + char *z = aiColumn[i] < 0 ? "rowid" : aCol[aiColumn[i]].zName;
|
| + if( i>=nSkip ){
|
| + explainAppendTerm(pStr, i, z, "=");
|
| + }else{
|
| + if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5);
|
| + sqlite3XPrintf(pStr, 0, "ANY(%s)", z);
|
| + }
|
| + }
|
| +
|
| + j = i;
|
| + if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
|
| + char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName;
|
| + explainAppendTerm(pStr, i++, z, ">");
|
| + }
|
| + if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
|
| + char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName;
|
| + explainAppendTerm(pStr, i, z, "<");
|
| + }
|
| + sqlite3StrAccumAppend(pStr, ")", 1);
|
| +}
|
| +
|
| +/*
|
| +** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
|
| +** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single
|
| +** record is added to the output to describe the table scan strategy in
|
| +** pLevel.
|
| +*/
|
| +static void explainOneScan(
|
| + Parse *pParse, /* Parse context */
|
| + SrcList *pTabList, /* Table list this loop refers to */
|
| + WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */
|
| + int iLevel, /* Value for "level" column of output */
|
| + int iFrom, /* Value for "from" column of output */
|
| + u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */
|
| +){
|
| +#ifndef SQLITE_DEBUG
|
| + if( pParse->explain==2 )
|
| +#endif
|
| + {
|
| + struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
|
| + Vdbe *v = pParse->pVdbe; /* VM being constructed */
|
| + sqlite3 *db = pParse->db; /* Database handle */
|
| + int iId = pParse->iSelectId; /* Select id (left-most output column) */
|
| + int isSearch; /* True for a SEARCH. False for SCAN. */
|
| + WhereLoop *pLoop; /* The controlling WhereLoop object */
|
| + u32 flags; /* Flags that describe this loop */
|
| + char *zMsg; /* Text to add to EQP output */
|
| + StrAccum str; /* EQP output string */
|
| + char zBuf[100]; /* Initial space for EQP output string */
|
| +
|
| + pLoop = pLevel->pWLoop;
|
| + flags = pLoop->wsFlags;
|
| + if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return;
|
| +
|
| + isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
|
| + || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
|
| + || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
|
| +
|
| + sqlite3StrAccumInit(&str, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
|
| + str.db = db;
|
| + sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN");
|
| + if( pItem->pSelect ){
|
| + sqlite3XPrintf(&str, 0, " SUBQUERY %d", pItem->iSelectId);
|
| + }else{
|
| + sqlite3XPrintf(&str, 0, " TABLE %s", pItem->zName);
|
| + }
|
| +
|
| + if( pItem->zAlias ){
|
| + sqlite3XPrintf(&str, 0, " AS %s", pItem->zAlias);
|
| + }
|
| + if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
|
| + const char *zFmt = 0;
|
| + Index *pIdx;
|
| +
|
| + assert( pLoop->u.btree.pIndex!=0 );
|
| + pIdx = pLoop->u.btree.pIndex;
|
| + assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
|
| + if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
|
| + if( isSearch ){
|
| + zFmt = "PRIMARY KEY";
|
| + }
|
| + }else if( flags & WHERE_AUTO_INDEX ){
|
| + zFmt = "AUTOMATIC COVERING INDEX";
|
| + }else if( flags & WHERE_IDX_ONLY ){
|
| + zFmt = "COVERING INDEX %s";
|
| + }else{
|
| + zFmt = "INDEX %s";
|
| + }
|
| + if( zFmt ){
|
| + sqlite3StrAccumAppend(&str, " USING ", 7);
|
| + sqlite3XPrintf(&str, 0, zFmt, pIdx->zName);
|
| + explainIndexRange(&str, pLoop, pItem->pTab);
|
| + }
|
| + }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
|
| + const char *zRange;
|
| + if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
|
| + zRange = "(rowid=?)";
|
| + }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
|
| + zRange = "(rowid>? AND rowid<?)";
|
| + }else if( flags&WHERE_BTM_LIMIT ){
|
| + zRange = "(rowid>?)";
|
| + }else{
|
| + assert( flags&WHERE_TOP_LIMIT);
|
| + zRange = "(rowid<?)";
|
| + }
|
| + sqlite3StrAccumAppendAll(&str, " USING INTEGER PRIMARY KEY ");
|
| + sqlite3StrAccumAppendAll(&str, zRange);
|
| + }
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| + else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
|
| + sqlite3XPrintf(&str, 0, " VIRTUAL TABLE INDEX %d:%s",
|
| + pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
|
| + }
|
| +#endif
|
| +#ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
|
| + if( pLoop->nOut>=10 ){
|
| + sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
|
| + }else{
|
| + sqlite3StrAccumAppend(&str, " (~1 row)", 9);
|
| + }
|
| +#endif
|
| + zMsg = sqlite3StrAccumFinish(&str);
|
| + sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC);
|
| + }
|
| +}
|
| +#else
|
| +# define explainOneScan(u,v,w,x,y,z)
|
| +#endif /* SQLITE_OMIT_EXPLAIN */
|
| +
|
| +
|
| +/*
|
| +** Generate code for the start of the iLevel-th loop in the WHERE clause
|
| +** implementation described by pWInfo.
|
| +*/
|
| +static Bitmask codeOneLoopStart(
|
| + WhereInfo *pWInfo, /* Complete information about the WHERE clause */
|
| + int iLevel, /* Which level of pWInfo->a[] should be coded */
|
| + Bitmask notReady /* Which tables are currently available */
|
| +){
|
| + int j, k; /* Loop counters */
|
| + int iCur; /* The VDBE cursor for the table */
|
| + int addrNxt; /* Where to jump to continue with the next IN case */
|
| + int omitTable; /* True if we use the index only */
|
| + int bRev; /* True if we need to scan in reverse order */
|
| + WhereLevel *pLevel; /* The where level to be coded */
|
| + WhereLoop *pLoop; /* The WhereLoop object being coded */
|
| + WhereClause *pWC; /* Decomposition of the entire WHERE clause */
|
| + WhereTerm *pTerm; /* A WHERE clause term */
|
| + Parse *pParse; /* Parsing context */
|
| + sqlite3 *db; /* Database connection */
|
| + Vdbe *v; /* The prepared stmt under constructions */
|
| + struct SrcList_item *pTabItem; /* FROM clause term being coded */
|
| + int addrBrk; /* Jump here to break out of the loop */
|
| + int addrCont; /* Jump here to continue with next cycle */
|
| + int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
|
| + int iReleaseReg = 0; /* Temp register to free before returning */
|
| +
|
| + pParse = pWInfo->pParse;
|
| + v = pParse->pVdbe;
|
| + pWC = &pWInfo->sWC;
|
| + db = pParse->db;
|
| + pLevel = &pWInfo->a[iLevel];
|
| + pLoop = pLevel->pWLoop;
|
| + pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
|
| + iCur = pTabItem->iCursor;
|
| + pLevel->notReady = notReady & ~getMask(&pWInfo->sMaskSet, iCur);
|
| + bRev = (pWInfo->revMask>>iLevel)&1;
|
| + omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
|
| + && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0;
|
| + VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
|
| +
|
| + /* Create labels for the "break" and "continue" instructions
|
| + ** for the current loop. Jump to addrBrk to break out of a loop.
|
| + ** Jump to cont to go immediately to the next iteration of the
|
| + ** loop.
|
| + **
|
| + ** When there is an IN operator, we also have a "addrNxt" label that
|
| + ** means to continue with the next IN value combination. When
|
| + ** there are no IN operators in the constraints, the "addrNxt" label
|
| + ** is the same as "addrBrk".
|
| + */
|
| + addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
|
| + addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
|
| +
|
| + /* If this is the right table of a LEFT OUTER JOIN, allocate and
|
| + ** initialize a memory cell that records if this table matches any
|
| + ** row of the left table of the join.
|
| + */
|
| + if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
|
| + pLevel->iLeftJoin = ++pParse->nMem;
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
|
| + VdbeComment((v, "init LEFT JOIN no-match flag"));
|
| + }
|
| +
|
| + /* Special case of a FROM clause subquery implemented as a co-routine */
|
| + if( pTabItem->viaCoroutine ){
|
| + int regYield = pTabItem->regReturn;
|
| + sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
|
| + pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
|
| + VdbeCoverage(v);
|
| + VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
|
| + pLevel->op = OP_Goto;
|
| + }else
|
| +
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| + if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
|
| + /* Case 1: The table is a virtual-table. Use the VFilter and VNext
|
| + ** to access the data.
|
| + */
|
| + int iReg; /* P3 Value for OP_VFilter */
|
| + int addrNotFound;
|
| + int nConstraint = pLoop->nLTerm;
|
| +
|
| + sqlite3ExprCachePush(pParse);
|
| + iReg = sqlite3GetTempRange(pParse, nConstraint+2);
|
| + addrNotFound = pLevel->addrBrk;
|
| + for(j=0; j<nConstraint; j++){
|
| + int iTarget = iReg+j+2;
|
| + pTerm = pLoop->aLTerm[j];
|
| + if( pTerm==0 ) continue;
|
| + if( pTerm->eOperator & WO_IN ){
|
| + codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
|
| + addrNotFound = pLevel->addrNxt;
|
| + }else{
|
| + sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget);
|
| + }
|
| + }
|
| + sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
|
| + sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
|
| + sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
|
| + pLoop->u.vtab.idxStr,
|
| + pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC);
|
| + VdbeCoverage(v);
|
| + pLoop->u.vtab.needFree = 0;
|
| + for(j=0; j<nConstraint && j<16; j++){
|
| + if( (pLoop->u.vtab.omitMask>>j)&1 ){
|
| + disableTerm(pLevel, pLoop->aLTerm[j]);
|
| + }
|
| + }
|
| + pLevel->op = OP_VNext;
|
| + pLevel->p1 = iCur;
|
| + pLevel->p2 = sqlite3VdbeCurrentAddr(v);
|
| + sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
|
| + sqlite3ExprCachePop(pParse);
|
| + }else
|
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
| +
|
| + if( (pLoop->wsFlags & WHERE_IPK)!=0
|
| + && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
|
| + ){
|
| + /* Case 2: We can directly reference a single row using an
|
| + ** equality comparison against the ROWID field. Or
|
| + ** we reference multiple rows using a "rowid IN (...)"
|
| + ** construct.
|
| + */
|
| + assert( pLoop->u.btree.nEq==1 );
|
| + pTerm = pLoop->aLTerm[0];
|
| + assert( pTerm!=0 );
|
| + assert( pTerm->pExpr!=0 );
|
| + assert( omitTable==0 );
|
| + testcase( pTerm->wtFlags & TERM_VIRTUAL );
|
| + iReleaseReg = ++pParse->nMem;
|
| + iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
|
| + if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
|
| + addrNxt = pLevel->addrNxt;
|
| + sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v);
|
| + sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
|
| + VdbeCoverage(v);
|
| + sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
|
| + sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
|
| + VdbeComment((v, "pk"));
|
| + pLevel->op = OP_Noop;
|
| + }else if( (pLoop->wsFlags & WHERE_IPK)!=0
|
| + && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
|
| + ){
|
| + /* Case 3: We have an inequality comparison against the ROWID field.
|
| + */
|
| + int testOp = OP_Noop;
|
| + int start;
|
| + int memEndValue = 0;
|
| + WhereTerm *pStart, *pEnd;
|
| +
|
| + assert( omitTable==0 );
|
| + j = 0;
|
| + pStart = pEnd = 0;
|
| + if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
|
| + if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
|
| + assert( pStart!=0 || pEnd!=0 );
|
| + if( bRev ){
|
| + pTerm = pStart;
|
| + pStart = pEnd;
|
| + pEnd = pTerm;
|
| + }
|
| + if( pStart ){
|
| + Expr *pX; /* The expression that defines the start bound */
|
| + int r1, rTemp; /* Registers for holding the start boundary */
|
| +
|
| + /* The following constant maps TK_xx codes into corresponding
|
| + ** seek opcodes. It depends on a particular ordering of TK_xx
|
| + */
|
| + const u8 aMoveOp[] = {
|
| + /* TK_GT */ OP_SeekGT,
|
| + /* TK_LE */ OP_SeekLE,
|
| + /* TK_LT */ OP_SeekLT,
|
| + /* TK_GE */ OP_SeekGE
|
| + };
|
| + assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
|
| + assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
|
| + assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
|
| +
|
| + assert( (pStart->wtFlags & TERM_VNULL)==0 );
|
| + testcase( pStart->wtFlags & TERM_VIRTUAL );
|
| + pX = pStart->pExpr;
|
| + assert( pX!=0 );
|
| + testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
|
| + r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
|
| + sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
|
| + VdbeComment((v, "pk"));
|
| + VdbeCoverageIf(v, pX->op==TK_GT);
|
| + VdbeCoverageIf(v, pX->op==TK_LE);
|
| + VdbeCoverageIf(v, pX->op==TK_LT);
|
| + VdbeCoverageIf(v, pX->op==TK_GE);
|
| + sqlite3ExprCacheAffinityChange(pParse, r1, 1);
|
| + sqlite3ReleaseTempReg(pParse, rTemp);
|
| + disableTerm(pLevel, pStart);
|
| + }else{
|
| + sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
|
| + VdbeCoverageIf(v, bRev==0);
|
| + VdbeCoverageIf(v, bRev!=0);
|
| + }
|
| + if( pEnd ){
|
| + Expr *pX;
|
| + pX = pEnd->pExpr;
|
| + assert( pX!=0 );
|
| + assert( (pEnd->wtFlags & TERM_VNULL)==0 );
|
| + testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
|
| + testcase( pEnd->wtFlags & TERM_VIRTUAL );
|
| + memEndValue = ++pParse->nMem;
|
| + sqlite3ExprCode(pParse, pX->pRight, memEndValue);
|
| + if( pX->op==TK_LT || pX->op==TK_GT ){
|
| + testOp = bRev ? OP_Le : OP_Ge;
|
| + }else{
|
| + testOp = bRev ? OP_Lt : OP_Gt;
|
| + }
|
| + disableTerm(pLevel, pEnd);
|
| + }
|
| + start = sqlite3VdbeCurrentAddr(v);
|
| + pLevel->op = bRev ? OP_Prev : OP_Next;
|
| + pLevel->p1 = iCur;
|
| + pLevel->p2 = start;
|
| + assert( pLevel->p5==0 );
|
| + if( testOp!=OP_Noop ){
|
| + iRowidReg = ++pParse->nMem;
|
| + sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
|
| + sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
|
| + sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
|
| + VdbeCoverageIf(v, testOp==OP_Le);
|
| + VdbeCoverageIf(v, testOp==OP_Lt);
|
| + VdbeCoverageIf(v, testOp==OP_Ge);
|
| + VdbeCoverageIf(v, testOp==OP_Gt);
|
| + sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
|
| + }
|
| + }else if( pLoop->wsFlags & WHERE_INDEXED ){
|
| + /* Case 4: A scan using an index.
|
| + **
|
| + ** The WHERE clause may contain zero or more equality
|
| + ** terms ("==" or "IN" operators) that refer to the N
|
| + ** left-most columns of the index. It may also contain
|
| + ** inequality constraints (>, <, >= or <=) on the indexed
|
| + ** column that immediately follows the N equalities. Only
|
| + ** the right-most column can be an inequality - the rest must
|
| + ** use the "==" and "IN" operators. For example, if the
|
| + ** index is on (x,y,z), then the following clauses are all
|
| + ** optimized:
|
| + **
|
| + ** x=5
|
| + ** x=5 AND y=10
|
| + ** x=5 AND y<10
|
| + ** x=5 AND y>5 AND y<10
|
| + ** x=5 AND y=5 AND z<=10
|
| + **
|
| + ** The z<10 term of the following cannot be used, only
|
| + ** the x=5 term:
|
| + **
|
| + ** x=5 AND z<10
|
| + **
|
| + ** N may be zero if there are inequality constraints.
|
| + ** If there are no inequality constraints, then N is at
|
| + ** least one.
|
| + **
|
| + ** This case is also used when there are no WHERE clause
|
| + ** constraints but an index is selected anyway, in order
|
| + ** to force the output order to conform to an ORDER BY.
|
| + */
|
| + static const u8 aStartOp[] = {
|
| + 0,
|
| + 0,
|
| + OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
|
| + OP_Last, /* 3: (!start_constraints && startEq && bRev) */
|
| + OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */
|
| + OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */
|
| + OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */
|
| + OP_SeekLE /* 7: (start_constraints && startEq && bRev) */
|
| + };
|
| + static const u8 aEndOp[] = {
|
| + OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */
|
| + OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */
|
| + OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */
|
| + OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */
|
| + };
|
| + u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */
|
| + int regBase; /* Base register holding constraint values */
|
| + WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
|
| + WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
|
| + int startEq; /* True if range start uses ==, >= or <= */
|
| + int endEq; /* True if range end uses ==, >= or <= */
|
| + int start_constraints; /* Start of range is constrained */
|
| + int nConstraint; /* Number of constraint terms */
|
| + Index *pIdx; /* The index we will be using */
|
| + int iIdxCur; /* The VDBE cursor for the index */
|
| + int nExtraReg = 0; /* Number of extra registers needed */
|
| + int op; /* Instruction opcode */
|
| + char *zStartAff; /* Affinity for start of range constraint */
|
| + char cEndAff = 0; /* Affinity for end of range constraint */
|
| + u8 bSeekPastNull = 0; /* True to seek past initial nulls */
|
| + u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */
|
| +
|
| + pIdx = pLoop->u.btree.pIndex;
|
| + iIdxCur = pLevel->iIdxCur;
|
| + assert( nEq>=pLoop->u.btree.nSkip );
|
| +
|
| + /* If this loop satisfies a sort order (pOrderBy) request that
|
| + ** was passed to this function to implement a "SELECT min(x) ..."
|
| + ** query, then the caller will only allow the loop to run for
|
| + ** a single iteration. This means that the first row returned
|
| + ** should not have a NULL value stored in 'x'. If column 'x' is
|
| + ** the first one after the nEq equality constraints in the index,
|
| + ** this requires some special handling.
|
| + */
|
| + assert( pWInfo->pOrderBy==0
|
| + || pWInfo->pOrderBy->nExpr==1
|
| + || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
|
| + if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
|
| + && pWInfo->nOBSat>0
|
| + && (pIdx->nKeyCol>nEq)
|
| + ){
|
| + assert( pLoop->u.btree.nSkip==0 );
|
| + bSeekPastNull = 1;
|
| + nExtraReg = 1;
|
| + }
|
| +
|
| + /* Find any inequality constraint terms for the start and end
|
| + ** of the range.
|
| + */
|
| + j = nEq;
|
| + if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
|
| + pRangeStart = pLoop->aLTerm[j++];
|
| + nExtraReg = 1;
|
| + }
|
| + if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
|
| + pRangeEnd = pLoop->aLTerm[j++];
|
| + nExtraReg = 1;
|
| + if( pRangeStart==0
|
| + && (j = pIdx->aiColumn[nEq])>=0
|
| + && pIdx->pTable->aCol[j].notNull==0
|
| + ){
|
| + bSeekPastNull = 1;
|
| + }
|
| + }
|
| + assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
|
| +
|
| + /* Generate code to evaluate all constraint terms using == or IN
|
| + ** and store the values of those terms in an array of registers
|
| + ** starting at regBase.
|
| + */
|
| + regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
|
| + assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
|
| + if( zStartAff ) cEndAff = zStartAff[nEq];
|
| + addrNxt = pLevel->addrNxt;
|
| +
|
| + /* If we are doing a reverse order scan on an ascending index, or
|
| + ** a forward order scan on a descending index, interchange the
|
| + ** start and end terms (pRangeStart and pRangeEnd).
|
| + */
|
| + if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
|
| + || (bRev && pIdx->nKeyCol==nEq)
|
| + ){
|
| + SWAP(WhereTerm *, pRangeEnd, pRangeStart);
|
| + SWAP(u8, bSeekPastNull, bStopAtNull);
|
| + }
|
| +
|
| + testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
|
| + testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
|
| + testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
|
| + testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
|
| + startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
|
| + endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
|
| + start_constraints = pRangeStart || nEq>0;
|
| +
|
| + /* Seek the index cursor to the start of the range. */
|
| + nConstraint = nEq;
|
| + if( pRangeStart ){
|
| + Expr *pRight = pRangeStart->pExpr->pRight;
|
| + sqlite3ExprCode(pParse, pRight, regBase+nEq);
|
| + if( (pRangeStart->wtFlags & TERM_VNULL)==0
|
| + && sqlite3ExprCanBeNull(pRight)
|
| + ){
|
| + sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
|
| + VdbeCoverage(v);
|
| + }
|
| + if( zStartAff ){
|
| + if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){
|
| + /* Since the comparison is to be performed with no conversions
|
| + ** applied to the operands, set the affinity to apply to pRight to
|
| + ** SQLITE_AFF_NONE. */
|
| + zStartAff[nEq] = SQLITE_AFF_NONE;
|
| + }
|
| + if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){
|
| + zStartAff[nEq] = SQLITE_AFF_NONE;
|
| + }
|
| + }
|
| + nConstraint++;
|
| + testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
|
| + }else if( bSeekPastNull ){
|
| + sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
|
| + nConstraint++;
|
| + startEq = 0;
|
| + start_constraints = 1;
|
| + }
|
| + codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
|
| + op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
|
| + assert( op!=0 );
|
| + sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
|
| + VdbeCoverage(v);
|
| + VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
|
| + VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
|
| + VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT );
|
| + VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
|
| + VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
|
| + VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT );
|
| +
|
| + /* Load the value for the inequality constraint at the end of the
|
| + ** range (if any).
|
| + */
|
| + nConstraint = nEq;
|
| + if( pRangeEnd ){
|
| + Expr *pRight = pRangeEnd->pExpr->pRight;
|
| + sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
|
| + sqlite3ExprCode(pParse, pRight, regBase+nEq);
|
| + if( (pRangeEnd->wtFlags & TERM_VNULL)==0
|
| + && sqlite3ExprCanBeNull(pRight)
|
| + ){
|
| + sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
|
| + VdbeCoverage(v);
|
| + }
|
| + if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_NONE
|
| + && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff)
|
| + ){
|
| + codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff);
|
| + }
|
| + nConstraint++;
|
| + testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
|
| + }else if( bStopAtNull ){
|
| + sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
|
| + endEq = 0;
|
| + nConstraint++;
|
| + }
|
| + sqlite3DbFree(db, zStartAff);
|
| +
|
| + /* Top of the loop body */
|
| + pLevel->p2 = sqlite3VdbeCurrentAddr(v);
|
| +
|
| + /* Check if the index cursor is past the end of the range. */
|
| + if( nConstraint ){
|
| + op = aEndOp[bRev*2 + endEq];
|
| + sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
|
| + testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
|
| + testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
|
| + testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
|
| + testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
|
| + }
|
| +
|
| + /* Seek the table cursor, if required */
|
| + disableTerm(pLevel, pRangeStart);
|
| + disableTerm(pLevel, pRangeEnd);
|
| + if( omitTable ){
|
| + /* pIdx is a covering index. No need to access the main table. */
|
| + }else if( HasRowid(pIdx->pTable) ){
|
| + iRowidReg = ++pParse->nMem;
|
| + sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
|
| + sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
|
| + sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */
|
| + }else if( iCur!=iIdxCur ){
|
| + Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
|
| + iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
|
| + for(j=0; j<pPk->nKeyCol; j++){
|
| + k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
|
| + sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
|
| + }
|
| + sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
|
| + iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
|
| + }
|
| +
|
| + /* Record the instruction used to terminate the loop. Disable
|
| + ** WHERE clause terms made redundant by the index range scan.
|
| + */
|
| + if( pLoop->wsFlags & WHERE_ONEROW ){
|
| + pLevel->op = OP_Noop;
|
| + }else if( bRev ){
|
| + pLevel->op = OP_Prev;
|
| + }else{
|
| + pLevel->op = OP_Next;
|
| + }
|
| + pLevel->p1 = iIdxCur;
|
| + pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
|
| + if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
|
| + pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
|
| + }else{
|
| + assert( pLevel->p5==0 );
|
| + }
|
| + }else
|
| +
|
| +#ifndef SQLITE_OMIT_OR_OPTIMIZATION
|
| + if( pLoop->wsFlags & WHERE_MULTI_OR ){
|
| + /* Case 5: Two or more separately indexed terms connected by OR
|
| + **
|
| + ** Example:
|
| + **
|
| + ** CREATE TABLE t1(a,b,c,d);
|
| + ** CREATE INDEX i1 ON t1(a);
|
| + ** CREATE INDEX i2 ON t1(b);
|
| + ** CREATE INDEX i3 ON t1(c);
|
| + **
|
| + ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
|
| + **
|
| + ** In the example, there are three indexed terms connected by OR.
|
| + ** The top of the loop looks like this:
|
| + **
|
| + ** Null 1 # Zero the rowset in reg 1
|
| + **
|
| + ** Then, for each indexed term, the following. The arguments to
|
| + ** RowSetTest are such that the rowid of the current row is inserted
|
| + ** into the RowSet. If it is already present, control skips the
|
| + ** Gosub opcode and jumps straight to the code generated by WhereEnd().
|
| + **
|
| + ** sqlite3WhereBegin(<term>)
|
| + ** RowSetTest # Insert rowid into rowset
|
| + ** Gosub 2 A
|
| + ** sqlite3WhereEnd()
|
| + **
|
| + ** Following the above, code to terminate the loop. Label A, the target
|
| + ** of the Gosub above, jumps to the instruction right after the Goto.
|
| + **
|
| + ** Null 1 # Zero the rowset in reg 1
|
| + ** Goto B # The loop is finished.
|
| + **
|
| + ** A: <loop body> # Return data, whatever.
|
| + **
|
| + ** Return 2 # Jump back to the Gosub
|
| + **
|
| + ** B: <after the loop>
|
| + **
|
| + ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
|
| + ** use an ephemeral index instead of a RowSet to record the primary
|
| + ** keys of the rows we have already seen.
|
| + **
|
| + */
|
| + WhereClause *pOrWc; /* The OR-clause broken out into subterms */
|
| + SrcList *pOrTab; /* Shortened table list or OR-clause generation */
|
| + Index *pCov = 0; /* Potential covering index (or NULL) */
|
| + int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */
|
| +
|
| + int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
|
| + int regRowset = 0; /* Register for RowSet object */
|
| + int regRowid = 0; /* Register holding rowid */
|
| + int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */
|
| + int iRetInit; /* Address of regReturn init */
|
| + int untestedTerms = 0; /* Some terms not completely tested */
|
| + int ii; /* Loop counter */
|
| + u16 wctrlFlags; /* Flags for sub-WHERE clause */
|
| + Expr *pAndExpr = 0; /* An ".. AND (...)" expression */
|
| + Table *pTab = pTabItem->pTab;
|
| +
|
| + pTerm = pLoop->aLTerm[0];
|
| + assert( pTerm!=0 );
|
| + assert( pTerm->eOperator & WO_OR );
|
| + assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
|
| + pOrWc = &pTerm->u.pOrInfo->wc;
|
| + pLevel->op = OP_Return;
|
| + pLevel->p1 = regReturn;
|
| +
|
| + /* Set up a new SrcList in pOrTab containing the table being scanned
|
| + ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
|
| + ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
|
| + */
|
| + if( pWInfo->nLevel>1 ){
|
| + int nNotReady; /* The number of notReady tables */
|
| + struct SrcList_item *origSrc; /* Original list of tables */
|
| + nNotReady = pWInfo->nLevel - iLevel - 1;
|
| + pOrTab = sqlite3StackAllocRaw(db,
|
| + sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
|
| + if( pOrTab==0 ) return notReady;
|
| + pOrTab->nAlloc = (u8)(nNotReady + 1);
|
| + pOrTab->nSrc = pOrTab->nAlloc;
|
| + memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
|
| + origSrc = pWInfo->pTabList->a;
|
| + for(k=1; k<=nNotReady; k++){
|
| + memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
|
| + }
|
| + }else{
|
| + pOrTab = pWInfo->pTabList;
|
| + }
|
| +
|
| + /* Initialize the rowset register to contain NULL. An SQL NULL is
|
| + ** equivalent to an empty rowset. Or, create an ephemeral index
|
| + ** capable of holding primary keys in the case of a WITHOUT ROWID.
|
| + **
|
| + ** Also initialize regReturn to contain the address of the instruction
|
| + ** immediately following the OP_Return at the bottom of the loop. This
|
| + ** is required in a few obscure LEFT JOIN cases where control jumps
|
| + ** over the top of the loop into the body of it. In this case the
|
| + ** correct response for the end-of-loop code (the OP_Return) is to
|
| + ** fall through to the next instruction, just as an OP_Next does if
|
| + ** called on an uninitialized cursor.
|
| + */
|
| + if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
|
| + if( HasRowid(pTab) ){
|
| + regRowset = ++pParse->nMem;
|
| + sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
|
| + }else{
|
| + Index *pPk = sqlite3PrimaryKeyIndex(pTab);
|
| + regRowset = pParse->nTab++;
|
| + sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
|
| + sqlite3VdbeSetP4KeyInfo(pParse, pPk);
|
| + }
|
| + regRowid = ++pParse->nMem;
|
| + }
|
| + iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
|
| +
|
| + /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y
|
| + ** Then for every term xN, evaluate as the subexpression: xN AND z
|
| + ** That way, terms in y that are factored into the disjunction will
|
| + ** be picked up by the recursive calls to sqlite3WhereBegin() below.
|
| + **
|
| + ** Actually, each subexpression is converted to "xN AND w" where w is
|
| + ** the "interesting" terms of z - terms that did not originate in the
|
| + ** ON or USING clause of a LEFT JOIN, and terms that are usable as
|
| + ** indices.
|
| + **
|
| + ** This optimization also only applies if the (x1 OR x2 OR ...) term
|
| + ** is not contained in the ON clause of a LEFT JOIN.
|
| + ** See ticket http://www.sqlite.org/src/info/f2369304e4
|
| + */
|
| + if( pWC->nTerm>1 ){
|
| + int iTerm;
|
| + for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
|
| + Expr *pExpr = pWC->a[iTerm].pExpr;
|
| + if( &pWC->a[iTerm] == pTerm ) continue;
|
| + if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
|
| + testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
|
| + testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
|
| + if( pWC->a[iTerm].wtFlags & (TERM_ORINFO|TERM_VIRTUAL) ) continue;
|
| + if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
|
| + pExpr = sqlite3ExprDup(db, pExpr, 0);
|
| + pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
|
| + }
|
| + if( pAndExpr ){
|
| + pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0);
|
| + }
|
| + }
|
| +
|
| + /* Run a separate WHERE clause for each term of the OR clause. After
|
| + ** eliminating duplicates from other WHERE clauses, the action for each
|
| + ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
|
| + */
|
| + wctrlFlags = WHERE_OMIT_OPEN_CLOSE
|
| + | WHERE_FORCE_TABLE
|
| + | WHERE_ONETABLE_ONLY;
|
| + for(ii=0; ii<pOrWc->nTerm; ii++){
|
| + WhereTerm *pOrTerm = &pOrWc->a[ii];
|
| + if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
|
| + WhereInfo *pSubWInfo; /* Info for single OR-term scan */
|
| + Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
|
| + int j1 = 0; /* Address of jump operation */
|
| + if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
|
| + pAndExpr->pLeft = pOrExpr;
|
| + pOrExpr = pAndExpr;
|
| + }
|
| + /* Loop through table entries that match term pOrTerm. */
|
| + WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
|
| + pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
|
| + wctrlFlags, iCovCur);
|
| + assert( pSubWInfo || pParse->nErr || db->mallocFailed );
|
| + if( pSubWInfo ){
|
| + WhereLoop *pSubLoop;
|
| + explainOneScan(
|
| + pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
|
| + );
|
| + /* This is the sub-WHERE clause body. First skip over
|
| + ** duplicate rows from prior sub-WHERE clauses, and record the
|
| + ** rowid (or PRIMARY KEY) for the current row so that the same
|
| + ** row will be skipped in subsequent sub-WHERE clauses.
|
| + */
|
| + if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
|
| + int r;
|
| + int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
|
| + if( HasRowid(pTab) ){
|
| + r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0);
|
| + j1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, r,iSet);
|
| + VdbeCoverage(v);
|
| + }else{
|
| + Index *pPk = sqlite3PrimaryKeyIndex(pTab);
|
| + int nPk = pPk->nKeyCol;
|
| + int iPk;
|
| +
|
| + /* Read the PK into an array of temp registers. */
|
| + r = sqlite3GetTempRange(pParse, nPk);
|
| + for(iPk=0; iPk<nPk; iPk++){
|
| + int iCol = pPk->aiColumn[iPk];
|
| + sqlite3ExprCodeGetColumn(pParse, pTab, iCol, iCur, r+iPk, 0);
|
| + }
|
| +
|
| + /* Check if the temp table already contains this key. If so,
|
| + ** the row has already been included in the result set and
|
| + ** can be ignored (by jumping past the Gosub below). Otherwise,
|
| + ** insert the key into the temp table and proceed with processing
|
| + ** the row.
|
| + **
|
| + ** Use some of the same optimizations as OP_RowSetTest: If iSet
|
| + ** is zero, assume that the key cannot already be present in
|
| + ** the temp table. And if iSet is -1, assume that there is no
|
| + ** need to insert the key into the temp table, as it will never
|
| + ** be tested for. */
|
| + if( iSet ){
|
| + j1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
|
| + VdbeCoverage(v);
|
| + }
|
| + if( iSet>=0 ){
|
| + sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
|
| + sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0);
|
| + if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
|
| + }
|
| +
|
| + /* Release the array of temp registers */
|
| + sqlite3ReleaseTempRange(pParse, r, nPk);
|
| + }
|
| + }
|
| +
|
| + /* Invoke the main loop body as a subroutine */
|
| + sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
|
| +
|
| + /* Jump here (skipping the main loop body subroutine) if the
|
| + ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
|
| + if( j1 ) sqlite3VdbeJumpHere(v, j1);
|
| +
|
| + /* The pSubWInfo->untestedTerms flag means that this OR term
|
| + ** contained one or more AND term from a notReady table. The
|
| + ** terms from the notReady table could not be tested and will
|
| + ** need to be tested later.
|
| + */
|
| + if( pSubWInfo->untestedTerms ) untestedTerms = 1;
|
| +
|
| + /* If all of the OR-connected terms are optimized using the same
|
| + ** index, and the index is opened using the same cursor number
|
| + ** by each call to sqlite3WhereBegin() made by this loop, it may
|
| + ** be possible to use that index as a covering index.
|
| + **
|
| + ** If the call to sqlite3WhereBegin() above resulted in a scan that
|
| + ** uses an index, and this is either the first OR-connected term
|
| + ** processed or the index is the same as that used by all previous
|
| + ** terms, set pCov to the candidate covering index. Otherwise, set
|
| + ** pCov to NULL to indicate that no candidate covering index will
|
| + ** be available.
|
| + */
|
| + pSubLoop = pSubWInfo->a[0].pWLoop;
|
| + assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
|
| + if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
|
| + && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
|
| + && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
|
| + ){
|
| + assert( pSubWInfo->a[0].iIdxCur==iCovCur );
|
| + pCov = pSubLoop->u.btree.pIndex;
|
| + wctrlFlags |= WHERE_REOPEN_IDX;
|
| + }else{
|
| + pCov = 0;
|
| + }
|
| +
|
| + /* Finish the loop through table entries that match term pOrTerm. */
|
| + sqlite3WhereEnd(pSubWInfo);
|
| + }
|
| + }
|
| + }
|
| + pLevel->u.pCovidx = pCov;
|
| + if( pCov ) pLevel->iIdxCur = iCovCur;
|
| + if( pAndExpr ){
|
| + pAndExpr->pLeft = 0;
|
| + sqlite3ExprDelete(db, pAndExpr);
|
| + }
|
| + sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
|
| + sqlite3VdbeResolveLabel(v, iLoopBody);
|
| +
|
| + if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab);
|
| + if( !untestedTerms ) disableTerm(pLevel, pTerm);
|
| + }else
|
| +#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
|
| +
|
| + {
|
| + /* Case 6: There is no usable index. We must do a complete
|
| + ** scan of the entire table.
|
| + */
|
| + static const u8 aStep[] = { OP_Next, OP_Prev };
|
| + static const u8 aStart[] = { OP_Rewind, OP_Last };
|
| + assert( bRev==0 || bRev==1 );
|
| + if( pTabItem->isRecursive ){
|
| + /* Tables marked isRecursive have only a single row that is stored in
|
| + ** a pseudo-cursor. No need to Rewind or Next such cursors. */
|
| + pLevel->op = OP_Noop;
|
| + }else{
|
| + pLevel->op = aStep[bRev];
|
| + pLevel->p1 = iCur;
|
| + pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
|
| + VdbeCoverageIf(v, bRev==0);
|
| + VdbeCoverageIf(v, bRev!=0);
|
| + pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
|
| + }
|
| + }
|
| +
|
| + /* Insert code to test every subexpression that can be completely
|
| + ** computed using the current set of tables.
|
| + */
|
| + for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
|
| + Expr *pE;
|
| + testcase( pTerm->wtFlags & TERM_VIRTUAL );
|
| + testcase( pTerm->wtFlags & TERM_CODED );
|
| + if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
|
| + if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
|
| + testcase( pWInfo->untestedTerms==0
|
| + && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
|
| + pWInfo->untestedTerms = 1;
|
| + continue;
|
| + }
|
| + pE = pTerm->pExpr;
|
| + assert( pE!=0 );
|
| + if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
|
| + continue;
|
| + }
|
| + sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
|
| + pTerm->wtFlags |= TERM_CODED;
|
| + }
|
| +
|
| + /* Insert code to test for implied constraints based on transitivity
|
| + ** of the "==" operator.
|
| + **
|
| + ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
|
| + ** and we are coding the t1 loop and the t2 loop has not yet coded,
|
| + ** then we cannot use the "t1.a=t2.b" constraint, but we can code
|
| + ** the implied "t1.a=123" constraint.
|
| + */
|
| + for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
|
| + Expr *pE, *pEAlt;
|
| + WhereTerm *pAlt;
|
| + if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
|
| + if( pTerm->eOperator!=(WO_EQUIV|WO_EQ) ) continue;
|
| + if( pTerm->leftCursor!=iCur ) continue;
|
| + if( pLevel->iLeftJoin ) continue;
|
| + pE = pTerm->pExpr;
|
| + assert( !ExprHasProperty(pE, EP_FromJoin) );
|
| + assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
|
| + pAlt = findTerm(pWC, iCur, pTerm->u.leftColumn, notReady, WO_EQ|WO_IN, 0);
|
| + if( pAlt==0 ) continue;
|
| + if( pAlt->wtFlags & (TERM_CODED) ) continue;
|
| + testcase( pAlt->eOperator & WO_EQ );
|
| + testcase( pAlt->eOperator & WO_IN );
|
| + VdbeModuleComment((v, "begin transitive constraint"));
|
| + pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt));
|
| + if( pEAlt ){
|
| + *pEAlt = *pAlt->pExpr;
|
| + pEAlt->pLeft = pE->pLeft;
|
| + sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL);
|
| + sqlite3StackFree(db, pEAlt);
|
| + }
|
| + }
|
| +
|
| + /* For a LEFT OUTER JOIN, generate code that will record the fact that
|
| + ** at least one row of the right table has matched the left table.
|
| + */
|
| + if( pLevel->iLeftJoin ){
|
| + pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
|
| + VdbeComment((v, "record LEFT JOIN hit"));
|
| + sqlite3ExprCacheClear(pParse);
|
| + for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
|
| + testcase( pTerm->wtFlags & TERM_VIRTUAL );
|
| + testcase( pTerm->wtFlags & TERM_CODED );
|
| + if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
|
| + if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
|
| + assert( pWInfo->untestedTerms );
|
| + continue;
|
| + }
|
| + assert( pTerm->pExpr );
|
| + sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
|
| + pTerm->wtFlags |= TERM_CODED;
|
| + }
|
| + }
|
| +
|
| + return pLevel->notReady;
|
| +}
|
| +
|
| +#ifdef WHERETRACE_ENABLED
|
| +/*
|
| +** Print the content of a WhereTerm object
|
| +*/
|
| +static void whereTermPrint(WhereTerm *pTerm, int iTerm){
|
| + if( pTerm==0 ){
|
| + sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
|
| + }else{
|
| + char zType[4];
|
| + memcpy(zType, "...", 4);
|
| + if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
|
| + if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E';
|
| + if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
|
| + sqlite3DebugPrintf("TERM-%-3d %p %s cursor=%-3d prob=%-3d op=0x%03x\n",
|
| + iTerm, pTerm, zType, pTerm->leftCursor, pTerm->truthProb,
|
| + pTerm->eOperator);
|
| + sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
|
| + }
|
| +}
|
| +#endif
|
| +
|
| +#ifdef WHERETRACE_ENABLED
|
| +/*
|
| +** Print a WhereLoop object for debugging purposes
|
| +*/
|
| +static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){
|
| + WhereInfo *pWInfo = pWC->pWInfo;
|
| + int nb = 1+(pWInfo->pTabList->nSrc+7)/8;
|
| + struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab;
|
| + Table *pTab = pItem->pTab;
|
| + sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
|
| + p->iTab, nb, p->maskSelf, nb, p->prereq);
|
| + sqlite3DebugPrintf(" %12s",
|
| + pItem->zAlias ? pItem->zAlias : pTab->zName);
|
| + if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
|
| + const char *zName;
|
| + if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
|
| + if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
|
| + int i = sqlite3Strlen30(zName) - 1;
|
| + while( zName[i]!='_' ) i--;
|
| + zName += i;
|
| + }
|
| + sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
|
| + }else{
|
| + sqlite3DebugPrintf("%20s","");
|
| + }
|
| + }else{
|
| + char *z;
|
| + if( p->u.vtab.idxStr ){
|
| + z = sqlite3_mprintf("(%d,\"%s\",%x)",
|
| + p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
|
| + }else{
|
| + z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
|
| + }
|
| + sqlite3DebugPrintf(" %-19s", z);
|
| + sqlite3_free(z);
|
| + }
|
| + if( p->wsFlags & WHERE_SKIPSCAN ){
|
| + sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->u.btree.nSkip);
|
| + }else{
|
| + sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
|
| + }
|
| + sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
|
| + if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
|
| + int i;
|
| + for(i=0; i<p->nLTerm; i++){
|
| + whereTermPrint(p->aLTerm[i], i);
|
| + }
|
| + }
|
| +}
|
| +#endif
|
| +
|
| +/*
|
| +** Convert bulk memory into a valid WhereLoop that can be passed
|
| +** to whereLoopClear harmlessly.
|
| +*/
|
| +static void whereLoopInit(WhereLoop *p){
|
| + p->aLTerm = p->aLTermSpace;
|
| + p->nLTerm = 0;
|
| + p->nLSlot = ArraySize(p->aLTermSpace);
|
| + p->wsFlags = 0;
|
| +}
|
| +
|
| +/*
|
| +** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact.
|
| +*/
|
| +static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
|
| + if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
|
| + if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
|
| + sqlite3_free(p->u.vtab.idxStr);
|
| + p->u.vtab.needFree = 0;
|
| + p->u.vtab.idxStr = 0;
|
| + }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
|
| + sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
|
| + sqlite3KeyInfoUnref(p->u.btree.pIndex->pKeyInfo);
|
| + sqlite3DbFree(db, p->u.btree.pIndex);
|
| + p->u.btree.pIndex = 0;
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Deallocate internal memory used by a WhereLoop object
|
| +*/
|
| +static void whereLoopClear(sqlite3 *db, WhereLoop *p){
|
| + if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm);
|
| + whereLoopClearUnion(db, p);
|
| + whereLoopInit(p);
|
| +}
|
| +
|
| +/*
|
| +** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
|
| +*/
|
| +static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
|
| + WhereTerm **paNew;
|
| + if( p->nLSlot>=n ) return SQLITE_OK;
|
| + n = (n+7)&~7;
|
| + paNew = sqlite3DbMallocRaw(db, sizeof(p->aLTerm[0])*n);
|
| + if( paNew==0 ) return SQLITE_NOMEM;
|
| + memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
|
| + if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm);
|
| + p->aLTerm = paNew;
|
| + p->nLSlot = n;
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** Transfer content from the second pLoop into the first.
|
| +*/
|
| +static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
|
| + whereLoopClearUnion(db, pTo);
|
| + if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
|
| + memset(&pTo->u, 0, sizeof(pTo->u));
|
| + return SQLITE_NOMEM;
|
| + }
|
| + memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
|
| + memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
|
| + if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
|
| + pFrom->u.vtab.needFree = 0;
|
| + }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
|
| + pFrom->u.btree.pIndex = 0;
|
| + }
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** Delete a WhereLoop object
|
| +*/
|
| +static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
|
| + whereLoopClear(db, p);
|
| + sqlite3DbFree(db, p);
|
| +}
|
| +
|
| +/*
|
| +** Free a WhereInfo structure
|
| +*/
|
| +static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
|
| + if( ALWAYS(pWInfo) ){
|
| + whereClauseClear(&pWInfo->sWC);
|
| + while( pWInfo->pLoops ){
|
| + WhereLoop *p = pWInfo->pLoops;
|
| + pWInfo->pLoops = p->pNextLoop;
|
| + whereLoopDelete(db, p);
|
| + }
|
| + sqlite3DbFree(db, pWInfo);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Return TRUE if both of the following are true:
|
| +**
|
| +** (1) X has the same or lower cost that Y
|
| +** (2) X is a proper subset of Y
|
| +**
|
| +** By "proper subset" we mean that X uses fewer WHERE clause terms
|
| +** than Y and that every WHERE clause term used by X is also used
|
| +** by Y.
|
| +**
|
| +** If X is a proper subset of Y then Y is a better choice and ought
|
| +** to have a lower cost. This routine returns TRUE when that cost
|
| +** relationship is inverted and needs to be adjusted.
|
| +*/
|
| +static int whereLoopCheaperProperSubset(
|
| + const WhereLoop *pX, /* First WhereLoop to compare */
|
| + const WhereLoop *pY /* Compare against this WhereLoop */
|
| +){
|
| + int i, j;
|
| + if( pX->nLTerm >= pY->nLTerm ) return 0; /* X is not a subset of Y */
|
| + if( pX->rRun >= pY->rRun ){
|
| + if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */
|
| + if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */
|
| + }
|
| + for(i=pX->nLTerm-1; i>=0; i--){
|
| + for(j=pY->nLTerm-1; j>=0; j--){
|
| + if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
|
| + }
|
| + if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */
|
| + }
|
| + return 1; /* All conditions meet */
|
| +}
|
| +
|
| +/*
|
| +** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
|
| +** that:
|
| +**
|
| +** (1) pTemplate costs less than any other WhereLoops that are a proper
|
| +** subset of pTemplate
|
| +**
|
| +** (2) pTemplate costs more than any other WhereLoops for which pTemplate
|
| +** is a proper subset.
|
| +**
|
| +** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
|
| +** WHERE clause terms than Y and that every WHERE clause term used by X is
|
| +** also used by Y.
|
| +**
|
| +** This adjustment is omitted for SKIPSCAN loops. In a SKIPSCAN loop, the
|
| +** WhereLoop.nLTerm field is not an accurate measure of the number of WHERE
|
| +** clause terms covered, since some of the first nLTerm entries in aLTerm[]
|
| +** will be NULL (because they are skipped). That makes it more difficult
|
| +** to compare the loops. We could add extra code to do the comparison, and
|
| +** perhaps we will someday. But SKIPSCAN is sufficiently uncommon, and this
|
| +** adjustment is sufficient minor, that it is very difficult to construct
|
| +** a test case where the extra code would improve the query plan. Better
|
| +** to avoid the added complexity and just omit cost adjustments to SKIPSCAN
|
| +** loops.
|
| +*/
|
| +static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
|
| + if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
|
| + if( (pTemplate->wsFlags & WHERE_SKIPSCAN)!=0 ) return;
|
| + for(; p; p=p->pNextLoop){
|
| + if( p->iTab!=pTemplate->iTab ) continue;
|
| + if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
|
| + if( (p->wsFlags & WHERE_SKIPSCAN)!=0 ) continue;
|
| + if( whereLoopCheaperProperSubset(p, pTemplate) ){
|
| + /* Adjust pTemplate cost downward so that it is cheaper than its
|
| + ** subset p */
|
| + pTemplate->rRun = p->rRun;
|
| + pTemplate->nOut = p->nOut - 1;
|
| + }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
|
| + /* Adjust pTemplate cost upward so that it is costlier than p since
|
| + ** pTemplate is a proper subset of p */
|
| + pTemplate->rRun = p->rRun;
|
| + pTemplate->nOut = p->nOut + 1;
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Search the list of WhereLoops in *ppPrev looking for one that can be
|
| +** supplanted by pTemplate.
|
| +**
|
| +** Return NULL if the WhereLoop list contains an entry that can supplant
|
| +** pTemplate, in other words if pTemplate does not belong on the list.
|
| +**
|
| +** If pX is a WhereLoop that pTemplate can supplant, then return the
|
| +** link that points to pX.
|
| +**
|
| +** If pTemplate cannot supplant any existing element of the list but needs
|
| +** to be added to the list, then return a pointer to the tail of the list.
|
| +*/
|
| +static WhereLoop **whereLoopFindLesser(
|
| + WhereLoop **ppPrev,
|
| + const WhereLoop *pTemplate
|
| +){
|
| + WhereLoop *p;
|
| + for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
|
| + if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
|
| + /* If either the iTab or iSortIdx values for two WhereLoop are different
|
| + ** then those WhereLoops need to be considered separately. Neither is
|
| + ** a candidate to replace the other. */
|
| + continue;
|
| + }
|
| + /* In the current implementation, the rSetup value is either zero
|
| + ** or the cost of building an automatic index (NlogN) and the NlogN
|
| + ** is the same for compatible WhereLoops. */
|
| + assert( p->rSetup==0 || pTemplate->rSetup==0
|
| + || p->rSetup==pTemplate->rSetup );
|
| +
|
| + /* whereLoopAddBtree() always generates and inserts the automatic index
|
| + ** case first. Hence compatible candidate WhereLoops never have a larger
|
| + ** rSetup. Call this SETUP-INVARIANT */
|
| + assert( p->rSetup>=pTemplate->rSetup );
|
| +
|
| + /* Any loop using an appliation-defined index (or PRIMARY KEY or
|
| + ** UNIQUE constraint) with one or more == constraints is better
|
| + ** than an automatic index. */
|
| + if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
|
| + && (pTemplate->wsFlags & WHERE_INDEXED)!=0
|
| + && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
|
| + && (p->prereq & pTemplate->prereq)==pTemplate->prereq
|
| + ){
|
| + break;
|
| + }
|
| +
|
| + /* If existing WhereLoop p is better than pTemplate, pTemplate can be
|
| + ** discarded. WhereLoop p is better if:
|
| + ** (1) p has no more dependencies than pTemplate, and
|
| + ** (2) p has an equal or lower cost than pTemplate
|
| + */
|
| + if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */
|
| + && p->rSetup<=pTemplate->rSetup /* (2a) */
|
| + && p->rRun<=pTemplate->rRun /* (2b) */
|
| + && p->nOut<=pTemplate->nOut /* (2c) */
|
| + ){
|
| + return 0; /* Discard pTemplate */
|
| + }
|
| +
|
| + /* If pTemplate is always better than p, then cause p to be overwritten
|
| + ** with pTemplate. pTemplate is better than p if:
|
| + ** (1) pTemplate has no more dependences than p, and
|
| + ** (2) pTemplate has an equal or lower cost than p.
|
| + */
|
| + if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */
|
| + && p->rRun>=pTemplate->rRun /* (2a) */
|
| + && p->nOut>=pTemplate->nOut /* (2b) */
|
| + ){
|
| + assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
|
| + break; /* Cause p to be overwritten by pTemplate */
|
| + }
|
| + }
|
| + return ppPrev;
|
| +}
|
| +
|
| +/*
|
| +** Insert or replace a WhereLoop entry using the template supplied.
|
| +**
|
| +** An existing WhereLoop entry might be overwritten if the new template
|
| +** is better and has fewer dependencies. Or the template will be ignored
|
| +** and no insert will occur if an existing WhereLoop is faster and has
|
| +** fewer dependencies than the template. Otherwise a new WhereLoop is
|
| +** added based on the template.
|
| +**
|
| +** If pBuilder->pOrSet is not NULL then we care about only the
|
| +** prerequisites and rRun and nOut costs of the N best loops. That
|
| +** information is gathered in the pBuilder->pOrSet object. This special
|
| +** processing mode is used only for OR clause processing.
|
| +**
|
| +** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
|
| +** still might overwrite similar loops with the new template if the
|
| +** new template is better. Loops may be overwritten if the following
|
| +** conditions are met:
|
| +**
|
| +** (1) They have the same iTab.
|
| +** (2) They have the same iSortIdx.
|
| +** (3) The template has same or fewer dependencies than the current loop
|
| +** (4) The template has the same or lower cost than the current loop
|
| +*/
|
| +static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
|
| + WhereLoop **ppPrev, *p;
|
| + WhereInfo *pWInfo = pBuilder->pWInfo;
|
| + sqlite3 *db = pWInfo->pParse->db;
|
| +
|
| + /* If pBuilder->pOrSet is defined, then only keep track of the costs
|
| + ** and prereqs.
|
| + */
|
| + if( pBuilder->pOrSet!=0 ){
|
| +#if WHERETRACE_ENABLED
|
| + u16 n = pBuilder->pOrSet->n;
|
| + int x =
|
| +#endif
|
| + whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
|
| + pTemplate->nOut);
|
| +#if WHERETRACE_ENABLED /* 0x8 */
|
| + if( sqlite3WhereTrace & 0x8 ){
|
| + sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n);
|
| + whereLoopPrint(pTemplate, pBuilder->pWC);
|
| + }
|
| +#endif
|
| + return SQLITE_OK;
|
| + }
|
| +
|
| + /* Look for an existing WhereLoop to replace with pTemplate
|
| + */
|
| + whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
|
| + ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
|
| +
|
| + if( ppPrev==0 ){
|
| + /* There already exists a WhereLoop on the list that is better
|
| + ** than pTemplate, so just ignore pTemplate */
|
| +#if WHERETRACE_ENABLED /* 0x8 */
|
| + if( sqlite3WhereTrace & 0x8 ){
|
| + sqlite3DebugPrintf(" skip: ");
|
| + whereLoopPrint(pTemplate, pBuilder->pWC);
|
| + }
|
| +#endif
|
| + return SQLITE_OK;
|
| + }else{
|
| + p = *ppPrev;
|
| + }
|
| +
|
| + /* If we reach this point it means that either p[] should be overwritten
|
| + ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
|
| + ** WhereLoop and insert it.
|
| + */
|
| +#if WHERETRACE_ENABLED /* 0x8 */
|
| + if( sqlite3WhereTrace & 0x8 ){
|
| + if( p!=0 ){
|
| + sqlite3DebugPrintf("replace: ");
|
| + whereLoopPrint(p, pBuilder->pWC);
|
| + }
|
| + sqlite3DebugPrintf(" add: ");
|
| + whereLoopPrint(pTemplate, pBuilder->pWC);
|
| + }
|
| +#endif
|
| + if( p==0 ){
|
| + /* Allocate a new WhereLoop to add to the end of the list */
|
| + *ppPrev = p = sqlite3DbMallocRaw(db, sizeof(WhereLoop));
|
| + if( p==0 ) return SQLITE_NOMEM;
|
| + whereLoopInit(p);
|
| + p->pNextLoop = 0;
|
| + }else{
|
| + /* We will be overwriting WhereLoop p[]. But before we do, first
|
| + ** go through the rest of the list and delete any other entries besides
|
| + ** p[] that are also supplated by pTemplate */
|
| + WhereLoop **ppTail = &p->pNextLoop;
|
| + WhereLoop *pToDel;
|
| + while( *ppTail ){
|
| + ppTail = whereLoopFindLesser(ppTail, pTemplate);
|
| + if( ppTail==0 ) break;
|
| + pToDel = *ppTail;
|
| + if( pToDel==0 ) break;
|
| + *ppTail = pToDel->pNextLoop;
|
| +#if WHERETRACE_ENABLED /* 0x8 */
|
| + if( sqlite3WhereTrace & 0x8 ){
|
| + sqlite3DebugPrintf(" delete: ");
|
| + whereLoopPrint(pToDel, pBuilder->pWC);
|
| + }
|
| +#endif
|
| + whereLoopDelete(db, pToDel);
|
| + }
|
| + }
|
| + whereLoopXfer(db, p, pTemplate);
|
| + if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
|
| + Index *pIndex = p->u.btree.pIndex;
|
| + if( pIndex && pIndex->tnum==0 ){
|
| + p->u.btree.pIndex = 0;
|
| + }
|
| + }
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** Adjust the WhereLoop.nOut value downward to account for terms of the
|
| +** WHERE clause that reference the loop but which are not used by an
|
| +** index.
|
| +**
|
| +** In the current implementation, the first extra WHERE clause term reduces
|
| +** the number of output rows by a factor of 10 and each additional term
|
| +** reduces the number of output rows by sqrt(2).
|
| +*/
|
| +static void whereLoopOutputAdjust(
|
| + WhereClause *pWC, /* The WHERE clause */
|
| + WhereLoop *pLoop, /* The loop to adjust downward */
|
| + LogEst nRow /* Number of rows in the entire table */
|
| +){
|
| + WhereTerm *pTerm, *pX;
|
| + Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
|
| + int i, j;
|
| + int nEq = 0; /* Number of = constraints not within likely()/unlikely() */
|
| +
|
| + for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
|
| + if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
|
| + if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
|
| + if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
|
| + for(j=pLoop->nLTerm-1; j>=0; j--){
|
| + pX = pLoop->aLTerm[j];
|
| + if( pX==0 ) continue;
|
| + if( pX==pTerm ) break;
|
| + if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
|
| + }
|
| + if( j<0 ){
|
| + if( pTerm->truthProb<=0 ){
|
| + pLoop->nOut += pTerm->truthProb;
|
| + }else{
|
| + pLoop->nOut--;
|
| + if( pTerm->eOperator&WO_EQ ) nEq++;
|
| + }
|
| + }
|
| + }
|
| + /* TUNING: If there is at least one equality constraint in the WHERE
|
| + ** clause that does not have a likelihood() explicitly assigned to it
|
| + ** then do not let the estimated number of output rows exceed half
|
| + ** the number of rows in the table. */
|
| + if( nEq && pLoop->nOut>nRow-10 ){
|
| + pLoop->nOut = nRow - 10;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Adjust the cost C by the costMult facter T. This only occurs if
|
| +** compiled with -DSQLITE_ENABLE_COSTMULT
|
| +*/
|
| +#ifdef SQLITE_ENABLE_COSTMULT
|
| +# define ApplyCostMultiplier(C,T) C += T
|
| +#else
|
| +# define ApplyCostMultiplier(C,T)
|
| +#endif
|
| +
|
| +/*
|
| +** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
|
| +** index pIndex. Try to match one more.
|
| +**
|
| +** When this function is called, pBuilder->pNew->nOut contains the
|
| +** number of rows expected to be visited by filtering using the nEq
|
| +** terms only. If it is modified, this value is restored before this
|
| +** function returns.
|
| +**
|
| +** If pProbe->tnum==0, that means pIndex is a fake index used for the
|
| +** INTEGER PRIMARY KEY.
|
| +*/
|
| +static int whereLoopAddBtreeIndex(
|
| + WhereLoopBuilder *pBuilder, /* The WhereLoop factory */
|
| + struct SrcList_item *pSrc, /* FROM clause term being analyzed */
|
| + Index *pProbe, /* An index on pSrc */
|
| + LogEst nInMul /* log(Number of iterations due to IN) */
|
| +){
|
| + WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */
|
| + Parse *pParse = pWInfo->pParse; /* Parsing context */
|
| + sqlite3 *db = pParse->db; /* Database connection malloc context */
|
| + WhereLoop *pNew; /* Template WhereLoop under construction */
|
| + WhereTerm *pTerm; /* A WhereTerm under consideration */
|
| + int opMask; /* Valid operators for constraints */
|
| + WhereScan scan; /* Iterator for WHERE terms */
|
| + Bitmask saved_prereq; /* Original value of pNew->prereq */
|
| + u16 saved_nLTerm; /* Original value of pNew->nLTerm */
|
| + u16 saved_nEq; /* Original value of pNew->u.btree.nEq */
|
| + u16 saved_nSkip; /* Original value of pNew->u.btree.nSkip */
|
| + u32 saved_wsFlags; /* Original value of pNew->wsFlags */
|
| + LogEst saved_nOut; /* Original value of pNew->nOut */
|
| + int iCol; /* Index of the column in the table */
|
| + int rc = SQLITE_OK; /* Return code */
|
| + LogEst rSize; /* Number of rows in the table */
|
| + LogEst rLogSize; /* Logarithm of table size */
|
| + WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
|
| +
|
| + pNew = pBuilder->pNew;
|
| + if( db->mallocFailed ) return SQLITE_NOMEM;
|
| +
|
| + assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
|
| + assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
|
| + if( pNew->wsFlags & WHERE_BTM_LIMIT ){
|
| + opMask = WO_LT|WO_LE;
|
| + }else if( pProbe->tnum<=0 || (pSrc->jointype & JT_LEFT)!=0 ){
|
| + opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE;
|
| + }else{
|
| + opMask = WO_EQ|WO_IN|WO_ISNULL|WO_GT|WO_GE|WO_LT|WO_LE;
|
| + }
|
| + if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
|
| +
|
| + assert( pNew->u.btree.nEq<pProbe->nColumn );
|
| + iCol = pProbe->aiColumn[pNew->u.btree.nEq];
|
| +
|
| + pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, iCol,
|
| + opMask, pProbe);
|
| + saved_nEq = pNew->u.btree.nEq;
|
| + saved_nSkip = pNew->u.btree.nSkip;
|
| + saved_nLTerm = pNew->nLTerm;
|
| + saved_wsFlags = pNew->wsFlags;
|
| + saved_prereq = pNew->prereq;
|
| + saved_nOut = pNew->nOut;
|
| + pNew->rSetup = 0;
|
| + rSize = pProbe->aiRowLogEst[0];
|
| + rLogSize = estLog(rSize);
|
| +
|
| + /* Consider using a skip-scan if there are no WHERE clause constraints
|
| + ** available for the left-most terms of the index, and if the average
|
| + ** number of repeats in the left-most terms is at least 18.
|
| + **
|
| + ** The magic number 18 is selected on the basis that scanning 17 rows
|
| + ** is almost always quicker than an index seek (even though if the index
|
| + ** contains fewer than 2^17 rows we assume otherwise in other parts of
|
| + ** the code). And, even if it is not, it should not be too much slower.
|
| + ** On the other hand, the extra seeks could end up being significantly
|
| + ** more expensive. */
|
| + assert( 42==sqlite3LogEst(18) );
|
| + if( saved_nEq==saved_nSkip
|
| + && saved_nEq+1<pProbe->nKeyCol
|
| + && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */
|
| + && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
|
| + ){
|
| + LogEst nIter;
|
| + pNew->u.btree.nEq++;
|
| + pNew->u.btree.nSkip++;
|
| + pNew->aLTerm[pNew->nLTerm++] = 0;
|
| + pNew->wsFlags |= WHERE_SKIPSCAN;
|
| + nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
|
| + if( pTerm ){
|
| + /* TUNING: When estimating skip-scan for a term that is also indexable,
|
| + ** multiply the cost of the skip-scan by 2.0, to make it a little less
|
| + ** desirable than the regular index lookup. */
|
| + nIter += 10; assert( 10==sqlite3LogEst(2) );
|
| + }
|
| + pNew->nOut -= nIter;
|
| + /* TUNING: Because uncertainties in the estimates for skip-scan queries,
|
| + ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
|
| + nIter += 5;
|
| + whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
|
| + pNew->nOut = saved_nOut;
|
| + pNew->u.btree.nEq = saved_nEq;
|
| + pNew->u.btree.nSkip = saved_nSkip;
|
| + }
|
| + for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
|
| + u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */
|
| + LogEst rCostIdx;
|
| + LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */
|
| + int nIn = 0;
|
| +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
|
| + int nRecValid = pBuilder->nRecValid;
|
| +#endif
|
| + if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
|
| + && (iCol<0 || pSrc->pTab->aCol[iCol].notNull)
|
| + ){
|
| + continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
|
| + }
|
| + if( pTerm->prereqRight & pNew->maskSelf ) continue;
|
| +
|
| + pNew->wsFlags = saved_wsFlags;
|
| + pNew->u.btree.nEq = saved_nEq;
|
| + pNew->nLTerm = saved_nLTerm;
|
| + if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
|
| + pNew->aLTerm[pNew->nLTerm++] = pTerm;
|
| + pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
|
| +
|
| + assert( nInMul==0
|
| + || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
|
| + || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
|
| + || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
|
| + );
|
| +
|
| + if( eOp & WO_IN ){
|
| + Expr *pExpr = pTerm->pExpr;
|
| + pNew->wsFlags |= WHERE_COLUMN_IN;
|
| + if( ExprHasProperty(pExpr, EP_xIsSelect) ){
|
| + /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */
|
| + nIn = 46; assert( 46==sqlite3LogEst(25) );
|
| + }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
|
| + /* "x IN (value, value, ...)" */
|
| + nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
|
| + }
|
| + assert( nIn>0 ); /* RHS always has 2 or more terms... The parser
|
| + ** changes "x IN (?)" into "x=?". */
|
| +
|
| + }else if( eOp & (WO_EQ) ){
|
| + pNew->wsFlags |= WHERE_COLUMN_EQ;
|
| + if( iCol<0 || (nInMul==0 && pNew->u.btree.nEq==pProbe->nKeyCol-1) ){
|
| + if( iCol>=0 && !IsUniqueIndex(pProbe) ){
|
| + pNew->wsFlags |= WHERE_UNQ_WANTED;
|
| + }else{
|
| + pNew->wsFlags |= WHERE_ONEROW;
|
| + }
|
| + }
|
| + }else if( eOp & WO_ISNULL ){
|
| + pNew->wsFlags |= WHERE_COLUMN_NULL;
|
| + }else if( eOp & (WO_GT|WO_GE) ){
|
| + testcase( eOp & WO_GT );
|
| + testcase( eOp & WO_GE );
|
| + pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
|
| + pBtm = pTerm;
|
| + pTop = 0;
|
| + }else{
|
| + assert( eOp & (WO_LT|WO_LE) );
|
| + testcase( eOp & WO_LT );
|
| + testcase( eOp & WO_LE );
|
| + pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
|
| + pTop = pTerm;
|
| + pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
|
| + pNew->aLTerm[pNew->nLTerm-2] : 0;
|
| + }
|
| +
|
| + /* At this point pNew->nOut is set to the number of rows expected to
|
| + ** be visited by the index scan before considering term pTerm, or the
|
| + ** values of nIn and nInMul. In other words, assuming that all
|
| + ** "x IN(...)" terms are replaced with "x = ?". This block updates
|
| + ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */
|
| + assert( pNew->nOut==saved_nOut );
|
| + if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
|
| + /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4
|
| + ** data, using some other estimate. */
|
| + whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
|
| + }else{
|
| + int nEq = ++pNew->u.btree.nEq;
|
| + assert( eOp & (WO_ISNULL|WO_EQ|WO_IN) );
|
| +
|
| + assert( pNew->nOut==saved_nOut );
|
| + if( pTerm->truthProb<=0 && iCol>=0 ){
|
| + assert( (eOp & WO_IN) || nIn==0 );
|
| + testcase( eOp & WO_IN );
|
| + pNew->nOut += pTerm->truthProb;
|
| + pNew->nOut -= nIn;
|
| + }else{
|
| +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
|
| + tRowcnt nOut = 0;
|
| + if( nInMul==0
|
| + && pProbe->nSample
|
| + && pNew->u.btree.nEq<=pProbe->nSampleCol
|
| + && OptimizationEnabled(db, SQLITE_Stat3)
|
| + && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
|
| + ){
|
| + Expr *pExpr = pTerm->pExpr;
|
| + if( (eOp & (WO_EQ|WO_ISNULL))!=0 ){
|
| + testcase( eOp & WO_EQ );
|
| + testcase( eOp & WO_ISNULL );
|
| + rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
|
| + }else{
|
| + rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
|
| + }
|
| + if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
|
| + if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */
|
| + if( nOut ){
|
| + pNew->nOut = sqlite3LogEst(nOut);
|
| + if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
|
| + pNew->nOut -= nIn;
|
| + }
|
| + }
|
| + if( nOut==0 )
|
| +#endif
|
| + {
|
| + pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
|
| + if( eOp & WO_ISNULL ){
|
| + /* TUNING: If there is no likelihood() value, assume that a
|
| + ** "col IS NULL" expression matches twice as many rows
|
| + ** as (col=?). */
|
| + pNew->nOut += 10;
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + /* Set rCostIdx to the cost of visiting selected rows in index. Add
|
| + ** it to pNew->rRun, which is currently set to the cost of the index
|
| + ** seek only. Then, if this is a non-covering index, add the cost of
|
| + ** visiting the rows in the main table. */
|
| + rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
|
| + pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
|
| + if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
|
| + pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
|
| + }
|
| + ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
|
| +
|
| + nOutUnadjusted = pNew->nOut;
|
| + pNew->rRun += nInMul + nIn;
|
| + pNew->nOut += nInMul + nIn;
|
| + whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
|
| + rc = whereLoopInsert(pBuilder, pNew);
|
| +
|
| + if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
|
| + pNew->nOut = saved_nOut;
|
| + }else{
|
| + pNew->nOut = nOutUnadjusted;
|
| + }
|
| +
|
| + if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
|
| + && pNew->u.btree.nEq<pProbe->nColumn
|
| + ){
|
| + whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
|
| + }
|
| + pNew->nOut = saved_nOut;
|
| +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
|
| + pBuilder->nRecValid = nRecValid;
|
| +#endif
|
| + }
|
| + pNew->prereq = saved_prereq;
|
| + pNew->u.btree.nEq = saved_nEq;
|
| + pNew->u.btree.nSkip = saved_nSkip;
|
| + pNew->wsFlags = saved_wsFlags;
|
| + pNew->nOut = saved_nOut;
|
| + pNew->nLTerm = saved_nLTerm;
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** Return True if it is possible that pIndex might be useful in
|
| +** implementing the ORDER BY clause in pBuilder.
|
| +**
|
| +** Return False if pBuilder does not contain an ORDER BY clause or
|
| +** if there is no way for pIndex to be useful in implementing that
|
| +** ORDER BY clause.
|
| +*/
|
| +static int indexMightHelpWithOrderBy(
|
| + WhereLoopBuilder *pBuilder,
|
| + Index *pIndex,
|
| + int iCursor
|
| +){
|
| + ExprList *pOB;
|
| + int ii, jj;
|
| +
|
| + if( pIndex->bUnordered ) return 0;
|
| + if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
|
| + for(ii=0; ii<pOB->nExpr; ii++){
|
| + Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr);
|
| + if( pExpr->op!=TK_COLUMN ) return 0;
|
| + if( pExpr->iTable==iCursor ){
|
| + if( pExpr->iColumn<0 ) return 1;
|
| + for(jj=0; jj<pIndex->nKeyCol; jj++){
|
| + if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
|
| + }
|
| + }
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/*
|
| +** Return a bitmask where 1s indicate that the corresponding column of
|
| +** the table is used by an index. Only the first 63 columns are considered.
|
| +*/
|
| +static Bitmask columnsInIndex(Index *pIdx){
|
| + Bitmask m = 0;
|
| + int j;
|
| + for(j=pIdx->nColumn-1; j>=0; j--){
|
| + int x = pIdx->aiColumn[j];
|
| + if( x>=0 ){
|
| + testcase( x==BMS-1 );
|
| + testcase( x==BMS-2 );
|
| + if( x<BMS-1 ) m |= MASKBIT(x);
|
| + }
|
| + }
|
| + return m;
|
| +}
|
| +
|
| +/* Check to see if a partial index with pPartIndexWhere can be used
|
| +** in the current query. Return true if it can be and false if not.
|
| +*/
|
| +static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){
|
| + int i;
|
| + WhereTerm *pTerm;
|
| + for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
|
| + if( sqlite3ExprImpliesExpr(pTerm->pExpr, pWhere, iTab) ) return 1;
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/*
|
| +** Add all WhereLoop objects for a single table of the join where the table
|
| +** is idenfied by pBuilder->pNew->iTab. That table is guaranteed to be
|
| +** a b-tree table, not a virtual table.
|
| +**
|
| +** The costs (WhereLoop.rRun) of the b-tree loops added by this function
|
| +** are calculated as follows:
|
| +**
|
| +** For a full scan, assuming the table (or index) contains nRow rows:
|
| +**
|
| +** cost = nRow * 3.0 // full-table scan
|
| +** cost = nRow * K // scan of covering index
|
| +** cost = nRow * (K+3.0) // scan of non-covering index
|
| +**
|
| +** where K is a value between 1.1 and 3.0 set based on the relative
|
| +** estimated average size of the index and table records.
|
| +**
|
| +** For an index scan, where nVisit is the number of index rows visited
|
| +** by the scan, and nSeek is the number of seek operations required on
|
| +** the index b-tree:
|
| +**
|
| +** cost = nSeek * (log(nRow) + K * nVisit) // covering index
|
| +** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index
|
| +**
|
| +** Normally, nSeek is 1. nSeek values greater than 1 come about if the
|
| +** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
|
| +** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
|
| +**
|
| +** The estimated values (nRow, nVisit, nSeek) often contain a large amount
|
| +** of uncertainty. For this reason, scoring is designed to pick plans that
|
| +** "do the least harm" if the estimates are inaccurate. For example, a
|
| +** log(nRow) factor is omitted from a non-covering index scan in order to
|
| +** bias the scoring in favor of using an index, since the worst-case
|
| +** performance of using an index is far better than the worst-case performance
|
| +** of a full table scan.
|
| +*/
|
| +static int whereLoopAddBtree(
|
| + WhereLoopBuilder *pBuilder, /* WHERE clause information */
|
| + Bitmask mExtra /* Extra prerequesites for using this table */
|
| +){
|
| + WhereInfo *pWInfo; /* WHERE analysis context */
|
| + Index *pProbe; /* An index we are evaluating */
|
| + Index sPk; /* A fake index object for the primary key */
|
| + LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */
|
| + i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */
|
| + SrcList *pTabList; /* The FROM clause */
|
| + struct SrcList_item *pSrc; /* The FROM clause btree term to add */
|
| + WhereLoop *pNew; /* Template WhereLoop object */
|
| + int rc = SQLITE_OK; /* Return code */
|
| + int iSortIdx = 1; /* Index number */
|
| + int b; /* A boolean value */
|
| + LogEst rSize; /* number of rows in the table */
|
| + LogEst rLogSize; /* Logarithm of the number of rows in the table */
|
| + WhereClause *pWC; /* The parsed WHERE clause */
|
| + Table *pTab; /* Table being queried */
|
| +
|
| + pNew = pBuilder->pNew;
|
| + pWInfo = pBuilder->pWInfo;
|
| + pTabList = pWInfo->pTabList;
|
| + pSrc = pTabList->a + pNew->iTab;
|
| + pTab = pSrc->pTab;
|
| + pWC = pBuilder->pWC;
|
| + assert( !IsVirtual(pSrc->pTab) );
|
| +
|
| + if( pSrc->pIndex ){
|
| + /* An INDEXED BY clause specifies a particular index to use */
|
| + pProbe = pSrc->pIndex;
|
| + }else if( !HasRowid(pTab) ){
|
| + pProbe = pTab->pIndex;
|
| + }else{
|
| + /* There is no INDEXED BY clause. Create a fake Index object in local
|
| + ** variable sPk to represent the rowid primary key index. Make this
|
| + ** fake index the first in a chain of Index objects with all of the real
|
| + ** indices to follow */
|
| + Index *pFirst; /* First of real indices on the table */
|
| + memset(&sPk, 0, sizeof(Index));
|
| + sPk.nKeyCol = 1;
|
| + sPk.nColumn = 1;
|
| + sPk.aiColumn = &aiColumnPk;
|
| + sPk.aiRowLogEst = aiRowEstPk;
|
| + sPk.onError = OE_Replace;
|
| + sPk.pTable = pTab;
|
| + sPk.szIdxRow = pTab->szTabRow;
|
| + aiRowEstPk[0] = pTab->nRowLogEst;
|
| + aiRowEstPk[1] = 0;
|
| + pFirst = pSrc->pTab->pIndex;
|
| + if( pSrc->notIndexed==0 ){
|
| + /* The real indices of the table are only considered if the
|
| + ** NOT INDEXED qualifier is omitted from the FROM clause */
|
| + sPk.pNext = pFirst;
|
| + }
|
| + pProbe = &sPk;
|
| + }
|
| + rSize = pTab->nRowLogEst;
|
| + rLogSize = estLog(rSize);
|
| +
|
| +#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
|
| + /* Automatic indexes */
|
| + if( !pBuilder->pOrSet
|
| + && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
|
| + && pSrc->pIndex==0
|
| + && !pSrc->viaCoroutine
|
| + && !pSrc->notIndexed
|
| + && HasRowid(pTab)
|
| + && !pSrc->isCorrelated
|
| + && !pSrc->isRecursive
|
| + ){
|
| + /* Generate auto-index WhereLoops */
|
| + WhereTerm *pTerm;
|
| + WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
|
| + for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
|
| + if( pTerm->prereqRight & pNew->maskSelf ) continue;
|
| + if( termCanDriveIndex(pTerm, pSrc, 0) ){
|
| + pNew->u.btree.nEq = 1;
|
| + pNew->u.btree.nSkip = 0;
|
| + pNew->u.btree.pIndex = 0;
|
| + pNew->nLTerm = 1;
|
| + pNew->aLTerm[0] = pTerm;
|
| + /* TUNING: One-time cost for computing the automatic index is
|
| + ** estimated to be X*N*log2(N) where N is the number of rows in
|
| + ** the table being indexed and where X is 7 (LogEst=28) for normal
|
| + ** tables or 1.375 (LogEst=4) for views and subqueries. The value
|
| + ** of X is smaller for views and subqueries so that the query planner
|
| + ** will be more aggressive about generating automatic indexes for
|
| + ** those objects, since there is no opportunity to add schema
|
| + ** indexes on subqueries and views. */
|
| + pNew->rSetup = rLogSize + rSize + 4;
|
| + if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
|
| + pNew->rSetup += 24;
|
| + }
|
| + ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
|
| + /* TUNING: Each index lookup yields 20 rows in the table. This
|
| + ** is more than the usual guess of 10 rows, since we have no way
|
| + ** of knowing how selective the index will ultimately be. It would
|
| + ** not be unreasonable to make this value much larger. */
|
| + pNew->nOut = 43; assert( 43==sqlite3LogEst(20) );
|
| + pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
|
| + pNew->wsFlags = WHERE_AUTO_INDEX;
|
| + pNew->prereq = mExtra | pTerm->prereqRight;
|
| + rc = whereLoopInsert(pBuilder, pNew);
|
| + }
|
| + }
|
| + }
|
| +#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
|
| +
|
| + /* Loop over all indices
|
| + */
|
| + for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){
|
| + if( pProbe->pPartIdxWhere!=0
|
| + && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){
|
| + testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */
|
| + continue; /* Partial index inappropriate for this query */
|
| + }
|
| + rSize = pProbe->aiRowLogEst[0];
|
| + pNew->u.btree.nEq = 0;
|
| + pNew->u.btree.nSkip = 0;
|
| + pNew->nLTerm = 0;
|
| + pNew->iSortIdx = 0;
|
| + pNew->rSetup = 0;
|
| + pNew->prereq = mExtra;
|
| + pNew->nOut = rSize;
|
| + pNew->u.btree.pIndex = pProbe;
|
| + b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
|
| + /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
|
| + assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
|
| + if( pProbe->tnum<=0 ){
|
| + /* Integer primary key index */
|
| + pNew->wsFlags = WHERE_IPK;
|
| +
|
| + /* Full table scan */
|
| + pNew->iSortIdx = b ? iSortIdx : 0;
|
| + /* TUNING: Cost of full table scan is (N*3.0). */
|
| + pNew->rRun = rSize + 16;
|
| + ApplyCostMultiplier(pNew->rRun, pTab->costMult);
|
| + whereLoopOutputAdjust(pWC, pNew, rSize);
|
| + rc = whereLoopInsert(pBuilder, pNew);
|
| + pNew->nOut = rSize;
|
| + if( rc ) break;
|
| + }else{
|
| + Bitmask m;
|
| + if( pProbe->isCovering ){
|
| + pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
|
| + m = 0;
|
| + }else{
|
| + m = pSrc->colUsed & ~columnsInIndex(pProbe);
|
| + pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
|
| + }
|
| +
|
| + /* Full scan via index */
|
| + if( b
|
| + || !HasRowid(pTab)
|
| + || ( m==0
|
| + && pProbe->bUnordered==0
|
| + && (pProbe->szIdxRow<pTab->szTabRow)
|
| + && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
|
| + && sqlite3GlobalConfig.bUseCis
|
| + && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
|
| + )
|
| + ){
|
| + pNew->iSortIdx = b ? iSortIdx : 0;
|
| +
|
| + /* The cost of visiting the index rows is N*K, where K is
|
| + ** between 1.1 and 3.0, depending on the relative sizes of the
|
| + ** index and table rows. If this is a non-covering index scan,
|
| + ** also add the cost of visiting table rows (N*3.0). */
|
| + pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
|
| + if( m!=0 ){
|
| + pNew->rRun = sqlite3LogEstAdd(pNew->rRun, rSize+16);
|
| + }
|
| + ApplyCostMultiplier(pNew->rRun, pTab->costMult);
|
| + whereLoopOutputAdjust(pWC, pNew, rSize);
|
| + rc = whereLoopInsert(pBuilder, pNew);
|
| + pNew->nOut = rSize;
|
| + if( rc ) break;
|
| + }
|
| + }
|
| +
|
| + rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
|
| +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
|
| + sqlite3Stat4ProbeFree(pBuilder->pRec);
|
| + pBuilder->nRecValid = 0;
|
| + pBuilder->pRec = 0;
|
| +#endif
|
| +
|
| + /* If there was an INDEXED BY clause, then only that one index is
|
| + ** considered. */
|
| + if( pSrc->pIndex ) break;
|
| + }
|
| + return rc;
|
| +}
|
| +
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| +/*
|
| +** Add all WhereLoop objects for a table of the join identified by
|
| +** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table.
|
| +*/
|
| +static int whereLoopAddVirtual(
|
| + WhereLoopBuilder *pBuilder, /* WHERE clause information */
|
| + Bitmask mExtra
|
| +){
|
| + WhereInfo *pWInfo; /* WHERE analysis context */
|
| + Parse *pParse; /* The parsing context */
|
| + WhereClause *pWC; /* The WHERE clause */
|
| + struct SrcList_item *pSrc; /* The FROM clause term to search */
|
| + Table *pTab;
|
| + sqlite3 *db;
|
| + sqlite3_index_info *pIdxInfo;
|
| + struct sqlite3_index_constraint *pIdxCons;
|
| + struct sqlite3_index_constraint_usage *pUsage;
|
| + WhereTerm *pTerm;
|
| + int i, j;
|
| + int iTerm, mxTerm;
|
| + int nConstraint;
|
| + int seenIn = 0; /* True if an IN operator is seen */
|
| + int seenVar = 0; /* True if a non-constant constraint is seen */
|
| + int iPhase; /* 0: const w/o IN, 1: const, 2: no IN, 2: IN */
|
| + WhereLoop *pNew;
|
| + int rc = SQLITE_OK;
|
| +
|
| + pWInfo = pBuilder->pWInfo;
|
| + pParse = pWInfo->pParse;
|
| + db = pParse->db;
|
| + pWC = pBuilder->pWC;
|
| + pNew = pBuilder->pNew;
|
| + pSrc = &pWInfo->pTabList->a[pNew->iTab];
|
| + pTab = pSrc->pTab;
|
| + assert( IsVirtual(pTab) );
|
| + pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pBuilder->pOrderBy);
|
| + if( pIdxInfo==0 ) return SQLITE_NOMEM;
|
| + pNew->prereq = 0;
|
| + pNew->rSetup = 0;
|
| + pNew->wsFlags = WHERE_VIRTUALTABLE;
|
| + pNew->nLTerm = 0;
|
| + pNew->u.vtab.needFree = 0;
|
| + pUsage = pIdxInfo->aConstraintUsage;
|
| + nConstraint = pIdxInfo->nConstraint;
|
| + if( whereLoopResize(db, pNew, nConstraint) ){
|
| + sqlite3DbFree(db, pIdxInfo);
|
| + return SQLITE_NOMEM;
|
| + }
|
| +
|
| + for(iPhase=0; iPhase<=3; iPhase++){
|
| + if( !seenIn && (iPhase&1)!=0 ){
|
| + iPhase++;
|
| + if( iPhase>3 ) break;
|
| + }
|
| + if( !seenVar && iPhase>1 ) break;
|
| + pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
|
| + for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
|
| + j = pIdxCons->iTermOffset;
|
| + pTerm = &pWC->a[j];
|
| + switch( iPhase ){
|
| + case 0: /* Constants without IN operator */
|
| + pIdxCons->usable = 0;
|
| + if( (pTerm->eOperator & WO_IN)!=0 ){
|
| + seenIn = 1;
|
| + }
|
| + if( pTerm->prereqRight!=0 ){
|
| + seenVar = 1;
|
| + }else if( (pTerm->eOperator & WO_IN)==0 ){
|
| + pIdxCons->usable = 1;
|
| + }
|
| + break;
|
| + case 1: /* Constants with IN operators */
|
| + assert( seenIn );
|
| + pIdxCons->usable = (pTerm->prereqRight==0);
|
| + break;
|
| + case 2: /* Variables without IN */
|
| + assert( seenVar );
|
| + pIdxCons->usable = (pTerm->eOperator & WO_IN)==0;
|
| + break;
|
| + default: /* Variables with IN */
|
| + assert( seenVar && seenIn );
|
| + pIdxCons->usable = 1;
|
| + break;
|
| + }
|
| + }
|
| + memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
|
| + if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr);
|
| + pIdxInfo->idxStr = 0;
|
| + pIdxInfo->idxNum = 0;
|
| + pIdxInfo->needToFreeIdxStr = 0;
|
| + pIdxInfo->orderByConsumed = 0;
|
| + pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
|
| + pIdxInfo->estimatedRows = 25;
|
| + rc = vtabBestIndex(pParse, pTab, pIdxInfo);
|
| + if( rc ) goto whereLoopAddVtab_exit;
|
| + pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
|
| + pNew->prereq = mExtra;
|
| + mxTerm = -1;
|
| + assert( pNew->nLSlot>=nConstraint );
|
| + for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
|
| + pNew->u.vtab.omitMask = 0;
|
| + for(i=0; i<nConstraint; i++, pIdxCons++){
|
| + if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
|
| + j = pIdxCons->iTermOffset;
|
| + if( iTerm>=nConstraint
|
| + || j<0
|
| + || j>=pWC->nTerm
|
| + || pNew->aLTerm[iTerm]!=0
|
| + ){
|
| + rc = SQLITE_ERROR;
|
| + sqlite3ErrorMsg(pParse, "%s.xBestIndex() malfunction", pTab->zName);
|
| + goto whereLoopAddVtab_exit;
|
| + }
|
| + testcase( iTerm==nConstraint-1 );
|
| + testcase( j==0 );
|
| + testcase( j==pWC->nTerm-1 );
|
| + pTerm = &pWC->a[j];
|
| + pNew->prereq |= pTerm->prereqRight;
|
| + assert( iTerm<pNew->nLSlot );
|
| + pNew->aLTerm[iTerm] = pTerm;
|
| + if( iTerm>mxTerm ) mxTerm = iTerm;
|
| + testcase( iTerm==15 );
|
| + testcase( iTerm==16 );
|
| + if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm;
|
| + if( (pTerm->eOperator & WO_IN)!=0 ){
|
| + if( pUsage[i].omit==0 ){
|
| + /* Do not attempt to use an IN constraint if the virtual table
|
| + ** says that the equivalent EQ constraint cannot be safely omitted.
|
| + ** If we do attempt to use such a constraint, some rows might be
|
| + ** repeated in the output. */
|
| + break;
|
| + }
|
| + /* A virtual table that is constrained by an IN clause may not
|
| + ** consume the ORDER BY clause because (1) the order of IN terms
|
| + ** is not necessarily related to the order of output terms and
|
| + ** (2) Multiple outputs from a single IN value will not merge
|
| + ** together. */
|
| + pIdxInfo->orderByConsumed = 0;
|
| + }
|
| + }
|
| + }
|
| + if( i>=nConstraint ){
|
| + pNew->nLTerm = mxTerm+1;
|
| + assert( pNew->nLTerm<=pNew->nLSlot );
|
| + pNew->u.vtab.idxNum = pIdxInfo->idxNum;
|
| + pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
|
| + pIdxInfo->needToFreeIdxStr = 0;
|
| + pNew->u.vtab.idxStr = pIdxInfo->idxStr;
|
| + pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
|
| + pIdxInfo->nOrderBy : 0);
|
| + pNew->rSetup = 0;
|
| + pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
|
| + pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
|
| + whereLoopInsert(pBuilder, pNew);
|
| + if( pNew->u.vtab.needFree ){
|
| + sqlite3_free(pNew->u.vtab.idxStr);
|
| + pNew->u.vtab.needFree = 0;
|
| + }
|
| + }
|
| + }
|
| +
|
| +whereLoopAddVtab_exit:
|
| + if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr);
|
| + sqlite3DbFree(db, pIdxInfo);
|
| + return rc;
|
| +}
|
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
| +
|
| +/*
|
| +** Add WhereLoop entries to handle OR terms. This works for either
|
| +** btrees or virtual tables.
|
| +*/
|
| +static int whereLoopAddOr(WhereLoopBuilder *pBuilder, Bitmask mExtra){
|
| + WhereInfo *pWInfo = pBuilder->pWInfo;
|
| + WhereClause *pWC;
|
| + WhereLoop *pNew;
|
| + WhereTerm *pTerm, *pWCEnd;
|
| + int rc = SQLITE_OK;
|
| + int iCur;
|
| + WhereClause tempWC;
|
| + WhereLoopBuilder sSubBuild;
|
| + WhereOrSet sSum, sCur;
|
| + struct SrcList_item *pItem;
|
| +
|
| + pWC = pBuilder->pWC;
|
| + pWCEnd = pWC->a + pWC->nTerm;
|
| + pNew = pBuilder->pNew;
|
| + memset(&sSum, 0, sizeof(sSum));
|
| + pItem = pWInfo->pTabList->a + pNew->iTab;
|
| + iCur = pItem->iCursor;
|
| +
|
| + for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
|
| + if( (pTerm->eOperator & WO_OR)!=0
|
| + && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
|
| + ){
|
| + WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
|
| + WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
|
| + WhereTerm *pOrTerm;
|
| + int once = 1;
|
| + int i, j;
|
| +
|
| + sSubBuild = *pBuilder;
|
| + sSubBuild.pOrderBy = 0;
|
| + sSubBuild.pOrSet = &sCur;
|
| +
|
| + WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
|
| + for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
|
| + if( (pOrTerm->eOperator & WO_AND)!=0 ){
|
| + sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
|
| + }else if( pOrTerm->leftCursor==iCur ){
|
| + tempWC.pWInfo = pWC->pWInfo;
|
| + tempWC.pOuter = pWC;
|
| + tempWC.op = TK_AND;
|
| + tempWC.nTerm = 1;
|
| + tempWC.a = pOrTerm;
|
| + sSubBuild.pWC = &tempWC;
|
| + }else{
|
| + continue;
|
| + }
|
| + sCur.n = 0;
|
| +#ifdef WHERETRACE_ENABLED
|
| + WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
|
| + (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
|
| + if( sqlite3WhereTrace & 0x400 ){
|
| + for(i=0; i<sSubBuild.pWC->nTerm; i++){
|
| + whereTermPrint(&sSubBuild.pWC->a[i], i);
|
| + }
|
| + }
|
| +#endif
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| + if( IsVirtual(pItem->pTab) ){
|
| + rc = whereLoopAddVirtual(&sSubBuild, mExtra);
|
| + }else
|
| +#endif
|
| + {
|
| + rc = whereLoopAddBtree(&sSubBuild, mExtra);
|
| + }
|
| + if( rc==SQLITE_OK ){
|
| + rc = whereLoopAddOr(&sSubBuild, mExtra);
|
| + }
|
| + assert( rc==SQLITE_OK || sCur.n==0 );
|
| + if( sCur.n==0 ){
|
| + sSum.n = 0;
|
| + break;
|
| + }else if( once ){
|
| + whereOrMove(&sSum, &sCur);
|
| + once = 0;
|
| + }else{
|
| + WhereOrSet sPrev;
|
| + whereOrMove(&sPrev, &sSum);
|
| + sSum.n = 0;
|
| + for(i=0; i<sPrev.n; i++){
|
| + for(j=0; j<sCur.n; j++){
|
| + whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
|
| + sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
|
| + sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
|
| + }
|
| + }
|
| + }
|
| + }
|
| + pNew->nLTerm = 1;
|
| + pNew->aLTerm[0] = pTerm;
|
| + pNew->wsFlags = WHERE_MULTI_OR;
|
| + pNew->rSetup = 0;
|
| + pNew->iSortIdx = 0;
|
| + memset(&pNew->u, 0, sizeof(pNew->u));
|
| + for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
|
| + /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
|
| + ** of all sub-scans required by the OR-scan. However, due to rounding
|
| + ** errors, it may be that the cost of the OR-scan is equal to its
|
| + ** most expensive sub-scan. Add the smallest possible penalty
|
| + ** (equivalent to multiplying the cost by 1.07) to ensure that
|
| + ** this does not happen. Otherwise, for WHERE clauses such as the
|
| + ** following where there is an index on "y":
|
| + **
|
| + ** WHERE likelihood(x=?, 0.99) OR y=?
|
| + **
|
| + ** the planner may elect to "OR" together a full-table scan and an
|
| + ** index lookup. And other similarly odd results. */
|
| + pNew->rRun = sSum.a[i].rRun + 1;
|
| + pNew->nOut = sSum.a[i].nOut;
|
| + pNew->prereq = sSum.a[i].prereq;
|
| + rc = whereLoopInsert(pBuilder, pNew);
|
| + }
|
| + WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
|
| + }
|
| + }
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** Add all WhereLoop objects for all tables
|
| +*/
|
| +static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
|
| + WhereInfo *pWInfo = pBuilder->pWInfo;
|
| + Bitmask mExtra = 0;
|
| + Bitmask mPrior = 0;
|
| + int iTab;
|
| + SrcList *pTabList = pWInfo->pTabList;
|
| + struct SrcList_item *pItem;
|
| + sqlite3 *db = pWInfo->pParse->db;
|
| + int nTabList = pWInfo->nLevel;
|
| + int rc = SQLITE_OK;
|
| + u8 priorJoinType = 0;
|
| + WhereLoop *pNew;
|
| +
|
| + /* Loop over the tables in the join, from left to right */
|
| + pNew = pBuilder->pNew;
|
| + whereLoopInit(pNew);
|
| + for(iTab=0, pItem=pTabList->a; iTab<nTabList; iTab++, pItem++){
|
| + pNew->iTab = iTab;
|
| + pNew->maskSelf = getMask(&pWInfo->sMaskSet, pItem->iCursor);
|
| + if( ((pItem->jointype|priorJoinType) & (JT_LEFT|JT_CROSS))!=0 ){
|
| + mExtra = mPrior;
|
| + }
|
| + priorJoinType = pItem->jointype;
|
| + if( IsVirtual(pItem->pTab) ){
|
| + rc = whereLoopAddVirtual(pBuilder, mExtra);
|
| + }else{
|
| + rc = whereLoopAddBtree(pBuilder, mExtra);
|
| + }
|
| + if( rc==SQLITE_OK ){
|
| + rc = whereLoopAddOr(pBuilder, mExtra);
|
| + }
|
| + mPrior |= pNew->maskSelf;
|
| + if( rc || db->mallocFailed ) break;
|
| + }
|
| + whereLoopClear(db, pNew);
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** Examine a WherePath (with the addition of the extra WhereLoop of the 5th
|
| +** parameters) to see if it outputs rows in the requested ORDER BY
|
| +** (or GROUP BY) without requiring a separate sort operation. Return N:
|
| +**
|
| +** N>0: N terms of the ORDER BY clause are satisfied
|
| +** N==0: No terms of the ORDER BY clause are satisfied
|
| +** N<0: Unknown yet how many terms of ORDER BY might be satisfied.
|
| +**
|
| +** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
|
| +** strict. With GROUP BY and DISTINCT the only requirement is that
|
| +** equivalent rows appear immediately adjacent to one another. GROUP BY
|
| +** and DISTINCT do not require rows to appear in any particular order as long
|
| +** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT
|
| +** the pOrderBy terms can be matched in any order. With ORDER BY, the
|
| +** pOrderBy terms must be matched in strict left-to-right order.
|
| +*/
|
| +static i8 wherePathSatisfiesOrderBy(
|
| + WhereInfo *pWInfo, /* The WHERE clause */
|
| + ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */
|
| + WherePath *pPath, /* The WherePath to check */
|
| + u16 wctrlFlags, /* Might contain WHERE_GROUPBY or WHERE_DISTINCTBY */
|
| + u16 nLoop, /* Number of entries in pPath->aLoop[] */
|
| + WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */
|
| + Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */
|
| +){
|
| + u8 revSet; /* True if rev is known */
|
| + u8 rev; /* Composite sort order */
|
| + u8 revIdx; /* Index sort order */
|
| + u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */
|
| + u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */
|
| + u8 isMatch; /* iColumn matches a term of the ORDER BY clause */
|
| + u16 nKeyCol; /* Number of key columns in pIndex */
|
| + u16 nColumn; /* Total number of ordered columns in the index */
|
| + u16 nOrderBy; /* Number terms in the ORDER BY clause */
|
| + int iLoop; /* Index of WhereLoop in pPath being processed */
|
| + int i, j; /* Loop counters */
|
| + int iCur; /* Cursor number for current WhereLoop */
|
| + int iColumn; /* A column number within table iCur */
|
| + WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
|
| + WhereTerm *pTerm; /* A single term of the WHERE clause */
|
| + Expr *pOBExpr; /* An expression from the ORDER BY clause */
|
| + CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */
|
| + Index *pIndex; /* The index associated with pLoop */
|
| + sqlite3 *db = pWInfo->pParse->db; /* Database connection */
|
| + Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */
|
| + Bitmask obDone; /* Mask of all ORDER BY terms */
|
| + Bitmask orderDistinctMask; /* Mask of all well-ordered loops */
|
| + Bitmask ready; /* Mask of inner loops */
|
| +
|
| + /*
|
| + ** We say the WhereLoop is "one-row" if it generates no more than one
|
| + ** row of output. A WhereLoop is one-row if all of the following are true:
|
| + ** (a) All index columns match with WHERE_COLUMN_EQ.
|
| + ** (b) The index is unique
|
| + ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
|
| + ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
|
| + **
|
| + ** We say the WhereLoop is "order-distinct" if the set of columns from
|
| + ** that WhereLoop that are in the ORDER BY clause are different for every
|
| + ** row of the WhereLoop. Every one-row WhereLoop is automatically
|
| + ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause
|
| + ** is not order-distinct. To be order-distinct is not quite the same as being
|
| + ** UNIQUE since a UNIQUE column or index can have multiple rows that
|
| + ** are NULL and NULL values are equivalent for the purpose of order-distinct.
|
| + ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
|
| + **
|
| + ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
|
| + ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
|
| + ** automatically order-distinct.
|
| + */
|
| +
|
| + assert( pOrderBy!=0 );
|
| + if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
|
| +
|
| + nOrderBy = pOrderBy->nExpr;
|
| + testcase( nOrderBy==BMS-1 );
|
| + if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */
|
| + isOrderDistinct = 1;
|
| + obDone = MASKBIT(nOrderBy)-1;
|
| + orderDistinctMask = 0;
|
| + ready = 0;
|
| + for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
|
| + if( iLoop>0 ) ready |= pLoop->maskSelf;
|
| + pLoop = iLoop<nLoop ? pPath->aLoop[iLoop] : pLast;
|
| + if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
|
| + if( pLoop->u.vtab.isOrdered ) obSat = obDone;
|
| + break;
|
| + }
|
| + iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
|
| +
|
| + /* Mark off any ORDER BY term X that is a column in the table of
|
| + ** the current loop for which there is term in the WHERE
|
| + ** clause of the form X IS NULL or X=? that reference only outer
|
| + ** loops.
|
| + */
|
| + for(i=0; i<nOrderBy; i++){
|
| + if( MASKBIT(i) & obSat ) continue;
|
| + pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
|
| + if( pOBExpr->op!=TK_COLUMN ) continue;
|
| + if( pOBExpr->iTable!=iCur ) continue;
|
| + pTerm = findTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
|
| + ~ready, WO_EQ|WO_ISNULL, 0);
|
| + if( pTerm==0 ) continue;
|
| + if( (pTerm->eOperator&WO_EQ)!=0 && pOBExpr->iColumn>=0 ){
|
| + const char *z1, *z2;
|
| + pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
|
| + if( !pColl ) pColl = db->pDfltColl;
|
| + z1 = pColl->zName;
|
| + pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr);
|
| + if( !pColl ) pColl = db->pDfltColl;
|
| + z2 = pColl->zName;
|
| + if( sqlite3StrICmp(z1, z2)!=0 ) continue;
|
| + }
|
| + obSat |= MASKBIT(i);
|
| + }
|
| +
|
| + if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
|
| + if( pLoop->wsFlags & WHERE_IPK ){
|
| + pIndex = 0;
|
| + nKeyCol = 0;
|
| + nColumn = 1;
|
| + }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
|
| + return 0;
|
| + }else{
|
| + nKeyCol = pIndex->nKeyCol;
|
| + nColumn = pIndex->nColumn;
|
| + assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
|
| + assert( pIndex->aiColumn[nColumn-1]==(-1) || !HasRowid(pIndex->pTable));
|
| + isOrderDistinct = IsUniqueIndex(pIndex);
|
| + }
|
| +
|
| + /* Loop through all columns of the index and deal with the ones
|
| + ** that are not constrained by == or IN.
|
| + */
|
| + rev = revSet = 0;
|
| + distinctColumns = 0;
|
| + for(j=0; j<nColumn; j++){
|
| + u8 bOnce; /* True to run the ORDER BY search loop */
|
| +
|
| + /* Skip over == and IS NULL terms */
|
| + if( j<pLoop->u.btree.nEq
|
| + && pLoop->u.btree.nSkip==0
|
| + && ((i = pLoop->aLTerm[j]->eOperator) & (WO_EQ|WO_ISNULL))!=0
|
| + ){
|
| + if( i & WO_ISNULL ){
|
| + testcase( isOrderDistinct );
|
| + isOrderDistinct = 0;
|
| + }
|
| + continue;
|
| + }
|
| +
|
| + /* Get the column number in the table (iColumn) and sort order
|
| + ** (revIdx) for the j-th column of the index.
|
| + */
|
| + if( pIndex ){
|
| + iColumn = pIndex->aiColumn[j];
|
| + revIdx = pIndex->aSortOrder[j];
|
| + if( iColumn==pIndex->pTable->iPKey ) iColumn = -1;
|
| + }else{
|
| + iColumn = -1;
|
| + revIdx = 0;
|
| + }
|
| +
|
| + /* An unconstrained column that might be NULL means that this
|
| + ** WhereLoop is not well-ordered
|
| + */
|
| + if( isOrderDistinct
|
| + && iColumn>=0
|
| + && j>=pLoop->u.btree.nEq
|
| + && pIndex->pTable->aCol[iColumn].notNull==0
|
| + ){
|
| + isOrderDistinct = 0;
|
| + }
|
| +
|
| + /* Find the ORDER BY term that corresponds to the j-th column
|
| + ** of the index and mark that ORDER BY term off
|
| + */
|
| + bOnce = 1;
|
| + isMatch = 0;
|
| + for(i=0; bOnce && i<nOrderBy; i++){
|
| + if( MASKBIT(i) & obSat ) continue;
|
| + pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
|
| + testcase( wctrlFlags & WHERE_GROUPBY );
|
| + testcase( wctrlFlags & WHERE_DISTINCTBY );
|
| + if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
|
| + if( pOBExpr->op!=TK_COLUMN ) continue;
|
| + if( pOBExpr->iTable!=iCur ) continue;
|
| + if( pOBExpr->iColumn!=iColumn ) continue;
|
| + if( iColumn>=0 ){
|
| + pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
|
| + if( !pColl ) pColl = db->pDfltColl;
|
| + if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
|
| + }
|
| + isMatch = 1;
|
| + break;
|
| + }
|
| + if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
|
| + /* Make sure the sort order is compatible in an ORDER BY clause.
|
| + ** Sort order is irrelevant for a GROUP BY clause. */
|
| + if( revSet ){
|
| + if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0;
|
| + }else{
|
| + rev = revIdx ^ pOrderBy->a[i].sortOrder;
|
| + if( rev ) *pRevMask |= MASKBIT(iLoop);
|
| + revSet = 1;
|
| + }
|
| + }
|
| + if( isMatch ){
|
| + if( iColumn<0 ){
|
| + testcase( distinctColumns==0 );
|
| + distinctColumns = 1;
|
| + }
|
| + obSat |= MASKBIT(i);
|
| + }else{
|
| + /* No match found */
|
| + if( j==0 || j<nKeyCol ){
|
| + testcase( isOrderDistinct!=0 );
|
| + isOrderDistinct = 0;
|
| + }
|
| + break;
|
| + }
|
| + } /* end Loop over all index columns */
|
| + if( distinctColumns ){
|
| + testcase( isOrderDistinct==0 );
|
| + isOrderDistinct = 1;
|
| + }
|
| + } /* end-if not one-row */
|
| +
|
| + /* Mark off any other ORDER BY terms that reference pLoop */
|
| + if( isOrderDistinct ){
|
| + orderDistinctMask |= pLoop->maskSelf;
|
| + for(i=0; i<nOrderBy; i++){
|
| + Expr *p;
|
| + Bitmask mTerm;
|
| + if( MASKBIT(i) & obSat ) continue;
|
| + p = pOrderBy->a[i].pExpr;
|
| + mTerm = exprTableUsage(&pWInfo->sMaskSet,p);
|
| + if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
|
| + if( (mTerm&~orderDistinctMask)==0 ){
|
| + obSat |= MASKBIT(i);
|
| + }
|
| + }
|
| + }
|
| + } /* End the loop over all WhereLoops from outer-most down to inner-most */
|
| + if( obSat==obDone ) return (i8)nOrderBy;
|
| + if( !isOrderDistinct ){
|
| + for(i=nOrderBy-1; i>0; i--){
|
| + Bitmask m = MASKBIT(i) - 1;
|
| + if( (obSat&m)==m ) return i;
|
| + }
|
| + return 0;
|
| + }
|
| + return -1;
|
| +}
|
| +
|
| +
|
| +/*
|
| +** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
|
| +** the planner assumes that the specified pOrderBy list is actually a GROUP
|
| +** BY clause - and so any order that groups rows as required satisfies the
|
| +** request.
|
| +**
|
| +** Normally, in this case it is not possible for the caller to determine
|
| +** whether or not the rows are really being delivered in sorted order, or
|
| +** just in some other order that provides the required grouping. However,
|
| +** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
|
| +** this function may be called on the returned WhereInfo object. It returns
|
| +** true if the rows really will be sorted in the specified order, or false
|
| +** otherwise.
|
| +**
|
| +** For example, assuming:
|
| +**
|
| +** CREATE INDEX i1 ON t1(x, Y);
|
| +**
|
| +** then
|
| +**
|
| +** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1
|
| +** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0
|
| +*/
|
| +int sqlite3WhereIsSorted(WhereInfo *pWInfo){
|
| + assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
|
| + assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
|
| + return pWInfo->sorted;
|
| +}
|
| +
|
| +#ifdef WHERETRACE_ENABLED
|
| +/* For debugging use only: */
|
| +static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
|
| + static char zName[65];
|
| + int i;
|
| + for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
|
| + if( pLast ) zName[i++] = pLast->cId;
|
| + zName[i] = 0;
|
| + return zName;
|
| +}
|
| +#endif
|
| +
|
| +/*
|
| +** Return the cost of sorting nRow rows, assuming that the keys have
|
| +** nOrderby columns and that the first nSorted columns are already in
|
| +** order.
|
| +*/
|
| +static LogEst whereSortingCost(
|
| + WhereInfo *pWInfo,
|
| + LogEst nRow,
|
| + int nOrderBy,
|
| + int nSorted
|
| +){
|
| + /* TUNING: Estimated cost of a full external sort, where N is
|
| + ** the number of rows to sort is:
|
| + **
|
| + ** cost = (3.0 * N * log(N)).
|
| + **
|
| + ** Or, if the order-by clause has X terms but only the last Y
|
| + ** terms are out of order, then block-sorting will reduce the
|
| + ** sorting cost to:
|
| + **
|
| + ** cost = (3.0 * N * log(N)) * (Y/X)
|
| + **
|
| + ** The (Y/X) term is implemented using stack variable rScale
|
| + ** below. */
|
| + LogEst rScale, rSortCost;
|
| + assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
|
| + rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
|
| + rSortCost = nRow + estLog(nRow) + rScale + 16;
|
| +
|
| + /* TUNING: The cost of implementing DISTINCT using a B-TREE is
|
| + ** similar but with a larger constant of proportionality.
|
| + ** Multiply by an additional factor of 3.0. */
|
| + if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
|
| + rSortCost += 16;
|
| + }
|
| +
|
| + return rSortCost;
|
| +}
|
| +
|
| +/*
|
| +** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
|
| +** attempts to find the lowest cost path that visits each WhereLoop
|
| +** once. This path is then loaded into the pWInfo->a[].pWLoop fields.
|
| +**
|
| +** Assume that the total number of output rows that will need to be sorted
|
| +** will be nRowEst (in the 10*log2 representation). Or, ignore sorting
|
| +** costs if nRowEst==0.
|
| +**
|
| +** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
|
| +** error occurs.
|
| +*/
|
| +static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
|
| + int mxChoice; /* Maximum number of simultaneous paths tracked */
|
| + int nLoop; /* Number of terms in the join */
|
| + Parse *pParse; /* Parsing context */
|
| + sqlite3 *db; /* The database connection */
|
| + int iLoop; /* Loop counter over the terms of the join */
|
| + int ii, jj; /* Loop counters */
|
| + int mxI = 0; /* Index of next entry to replace */
|
| + int nOrderBy; /* Number of ORDER BY clause terms */
|
| + LogEst mxCost = 0; /* Maximum cost of a set of paths */
|
| + LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */
|
| + int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */
|
| + WherePath *aFrom; /* All nFrom paths at the previous level */
|
| + WherePath *aTo; /* The nTo best paths at the current level */
|
| + WherePath *pFrom; /* An element of aFrom[] that we are working on */
|
| + WherePath *pTo; /* An element of aTo[] that we are working on */
|
| + WhereLoop *pWLoop; /* One of the WhereLoop objects */
|
| + WhereLoop **pX; /* Used to divy up the pSpace memory */
|
| + LogEst *aSortCost = 0; /* Sorting and partial sorting costs */
|
| + char *pSpace; /* Temporary memory used by this routine */
|
| + int nSpace; /* Bytes of space allocated at pSpace */
|
| +
|
| + pParse = pWInfo->pParse;
|
| + db = pParse->db;
|
| + nLoop = pWInfo->nLevel;
|
| + /* TUNING: For simple queries, only the best path is tracked.
|
| + ** For 2-way joins, the 5 best paths are followed.
|
| + ** For joins of 3 or more tables, track the 10 best paths */
|
| + mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
|
| + assert( nLoop<=pWInfo->pTabList->nSrc );
|
| + WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst));
|
| +
|
| + /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
|
| + ** case the purpose of this call is to estimate the number of rows returned
|
| + ** by the overall query. Once this estimate has been obtained, the caller
|
| + ** will invoke this function a second time, passing the estimate as the
|
| + ** nRowEst parameter. */
|
| + if( pWInfo->pOrderBy==0 || nRowEst==0 ){
|
| + nOrderBy = 0;
|
| + }else{
|
| + nOrderBy = pWInfo->pOrderBy->nExpr;
|
| + }
|
| +
|
| + /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
|
| + nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
|
| + nSpace += sizeof(LogEst) * nOrderBy;
|
| + pSpace = sqlite3DbMallocRaw(db, nSpace);
|
| + if( pSpace==0 ) return SQLITE_NOMEM;
|
| + aTo = (WherePath*)pSpace;
|
| + aFrom = aTo+mxChoice;
|
| + memset(aFrom, 0, sizeof(aFrom[0]));
|
| + pX = (WhereLoop**)(aFrom+mxChoice);
|
| + for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
|
| + pFrom->aLoop = pX;
|
| + }
|
| + if( nOrderBy ){
|
| + /* If there is an ORDER BY clause and it is not being ignored, set up
|
| + ** space for the aSortCost[] array. Each element of the aSortCost array
|
| + ** is either zero - meaning it has not yet been initialized - or the
|
| + ** cost of sorting nRowEst rows of data where the first X terms of
|
| + ** the ORDER BY clause are already in order, where X is the array
|
| + ** index. */
|
| + aSortCost = (LogEst*)pX;
|
| + memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
|
| + }
|
| + assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
|
| + assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
|
| +
|
| + /* Seed the search with a single WherePath containing zero WhereLoops.
|
| + **
|
| + ** TUNING: Do not let the number of iterations go above 25. If the cost
|
| + ** of computing an automatic index is not paid back within the first 25
|
| + ** rows, then do not use the automatic index. */
|
| + aFrom[0].nRow = MIN(pParse->nQueryLoop, 46); assert( 46==sqlite3LogEst(25) );
|
| + nFrom = 1;
|
| + assert( aFrom[0].isOrdered==0 );
|
| + if( nOrderBy ){
|
| + /* If nLoop is zero, then there are no FROM terms in the query. Since
|
| + ** in this case the query may return a maximum of one row, the results
|
| + ** are already in the requested order. Set isOrdered to nOrderBy to
|
| + ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
|
| + ** -1, indicating that the result set may or may not be ordered,
|
| + ** depending on the loops added to the current plan. */
|
| + aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
|
| + }
|
| +
|
| + /* Compute successively longer WherePaths using the previous generation
|
| + ** of WherePaths as the basis for the next. Keep track of the mxChoice
|
| + ** best paths at each generation */
|
| + for(iLoop=0; iLoop<nLoop; iLoop++){
|
| + nTo = 0;
|
| + for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
|
| + for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
|
| + LogEst nOut; /* Rows visited by (pFrom+pWLoop) */
|
| + LogEst rCost; /* Cost of path (pFrom+pWLoop) */
|
| + LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */
|
| + i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */
|
| + Bitmask maskNew; /* Mask of src visited by (..) */
|
| + Bitmask revMask = 0; /* Mask of rev-order loops for (..) */
|
| +
|
| + if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
|
| + if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
|
| + /* At this point, pWLoop is a candidate to be the next loop.
|
| + ** Compute its cost */
|
| + rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
|
| + rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
|
| + nOut = pFrom->nRow + pWLoop->nOut;
|
| + maskNew = pFrom->maskLoop | pWLoop->maskSelf;
|
| + if( isOrdered<0 ){
|
| + isOrdered = wherePathSatisfiesOrderBy(pWInfo,
|
| + pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
|
| + iLoop, pWLoop, &revMask);
|
| + }else{
|
| + revMask = pFrom->revLoop;
|
| + }
|
| + if( isOrdered>=0 && isOrdered<nOrderBy ){
|
| + if( aSortCost[isOrdered]==0 ){
|
| + aSortCost[isOrdered] = whereSortingCost(
|
| + pWInfo, nRowEst, nOrderBy, isOrdered
|
| + );
|
| + }
|
| + rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]);
|
| +
|
| + WHERETRACE(0x002,
|
| + ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
|
| + aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
|
| + rUnsorted, rCost));
|
| + }else{
|
| + rCost = rUnsorted;
|
| + }
|
| +
|
| + /* Check to see if pWLoop should be added to the set of
|
| + ** mxChoice best-so-far paths.
|
| + **
|
| + ** First look for an existing path among best-so-far paths
|
| + ** that covers the same set of loops and has the same isOrdered
|
| + ** setting as the current path candidate.
|
| + **
|
| + ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
|
| + ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
|
| + ** of legal values for isOrdered, -1..64.
|
| + */
|
| + for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
|
| + if( pTo->maskLoop==maskNew
|
| + && ((pTo->isOrdered^isOrdered)&0x80)==0
|
| + ){
|
| + testcase( jj==nTo-1 );
|
| + break;
|
| + }
|
| + }
|
| + if( jj>=nTo ){
|
| + /* None of the existing best-so-far paths match the candidate. */
|
| + if( nTo>=mxChoice
|
| + && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
|
| + ){
|
| + /* The current candidate is no better than any of the mxChoice
|
| + ** paths currently in the best-so-far buffer. So discard
|
| + ** this candidate as not viable. */
|
| +#ifdef WHERETRACE_ENABLED /* 0x4 */
|
| + if( sqlite3WhereTrace&0x4 ){
|
| + sqlite3DebugPrintf("Skip %s cost=%-3d,%3d order=%c\n",
|
| + wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
|
| + isOrdered>=0 ? isOrdered+'0' : '?');
|
| + }
|
| +#endif
|
| + continue;
|
| + }
|
| + /* If we reach this points it means that the new candidate path
|
| + ** needs to be added to the set of best-so-far paths. */
|
| + if( nTo<mxChoice ){
|
| + /* Increase the size of the aTo set by one */
|
| + jj = nTo++;
|
| + }else{
|
| + /* New path replaces the prior worst to keep count below mxChoice */
|
| + jj = mxI;
|
| + }
|
| + pTo = &aTo[jj];
|
| +#ifdef WHERETRACE_ENABLED /* 0x4 */
|
| + if( sqlite3WhereTrace&0x4 ){
|
| + sqlite3DebugPrintf("New %s cost=%-3d,%3d order=%c\n",
|
| + wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
|
| + isOrdered>=0 ? isOrdered+'0' : '?');
|
| + }
|
| +#endif
|
| + }else{
|
| + /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
|
| + ** same set of loops and has the sam isOrdered setting as the
|
| + ** candidate path. Check to see if the candidate should replace
|
| + ** pTo or if the candidate should be skipped */
|
| + if( pTo->rCost<rCost || (pTo->rCost==rCost && pTo->nRow<=nOut) ){
|
| +#ifdef WHERETRACE_ENABLED /* 0x4 */
|
| + if( sqlite3WhereTrace&0x4 ){
|
| + sqlite3DebugPrintf(
|
| + "Skip %s cost=%-3d,%3d order=%c",
|
| + wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
|
| + isOrdered>=0 ? isOrdered+'0' : '?');
|
| + sqlite3DebugPrintf(" vs %s cost=%-3d,%d order=%c\n",
|
| + wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
|
| + pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
|
| + }
|
| +#endif
|
| + /* Discard the candidate path from further consideration */
|
| + testcase( pTo->rCost==rCost );
|
| + continue;
|
| + }
|
| + testcase( pTo->rCost==rCost+1 );
|
| + /* Control reaches here if the candidate path is better than the
|
| + ** pTo path. Replace pTo with the candidate. */
|
| +#ifdef WHERETRACE_ENABLED /* 0x4 */
|
| + if( sqlite3WhereTrace&0x4 ){
|
| + sqlite3DebugPrintf(
|
| + "Update %s cost=%-3d,%3d order=%c",
|
| + wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
|
| + isOrdered>=0 ? isOrdered+'0' : '?');
|
| + sqlite3DebugPrintf(" was %s cost=%-3d,%3d order=%c\n",
|
| + wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
|
| + pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
|
| + }
|
| +#endif
|
| + }
|
| + /* pWLoop is a winner. Add it to the set of best so far */
|
| + pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
|
| + pTo->revLoop = revMask;
|
| + pTo->nRow = nOut;
|
| + pTo->rCost = rCost;
|
| + pTo->rUnsorted = rUnsorted;
|
| + pTo->isOrdered = isOrdered;
|
| + memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
|
| + pTo->aLoop[iLoop] = pWLoop;
|
| + if( nTo>=mxChoice ){
|
| + mxI = 0;
|
| + mxCost = aTo[0].rCost;
|
| + mxUnsorted = aTo[0].nRow;
|
| + for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
|
| + if( pTo->rCost>mxCost
|
| + || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
|
| + ){
|
| + mxCost = pTo->rCost;
|
| + mxUnsorted = pTo->rUnsorted;
|
| + mxI = jj;
|
| + }
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| +#ifdef WHERETRACE_ENABLED /* >=2 */
|
| + if( sqlite3WhereTrace>=2 ){
|
| + sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
|
| + for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
|
| + sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
|
| + wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
|
| + pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
|
| + if( pTo->isOrdered>0 ){
|
| + sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
|
| + }else{
|
| + sqlite3DebugPrintf("\n");
|
| + }
|
| + }
|
| + }
|
| +#endif
|
| +
|
| + /* Swap the roles of aFrom and aTo for the next generation */
|
| + pFrom = aTo;
|
| + aTo = aFrom;
|
| + aFrom = pFrom;
|
| + nFrom = nTo;
|
| + }
|
| +
|
| + if( nFrom==0 ){
|
| + sqlite3ErrorMsg(pParse, "no query solution");
|
| + sqlite3DbFree(db, pSpace);
|
| + return SQLITE_ERROR;
|
| + }
|
| +
|
| + /* Find the lowest cost path. pFrom will be left pointing to that path */
|
| + pFrom = aFrom;
|
| + for(ii=1; ii<nFrom; ii++){
|
| + if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
|
| + }
|
| + assert( pWInfo->nLevel==nLoop );
|
| + /* Load the lowest cost path into pWInfo */
|
| + for(iLoop=0; iLoop<nLoop; iLoop++){
|
| + WhereLevel *pLevel = pWInfo->a + iLoop;
|
| + pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
|
| + pLevel->iFrom = pWLoop->iTab;
|
| + pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
|
| + }
|
| + if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
|
| + && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
|
| + && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
|
| + && nRowEst
|
| + ){
|
| + Bitmask notUsed;
|
| + int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
|
| + WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used);
|
| + if( rc==pWInfo->pResultSet->nExpr ){
|
| + pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
|
| + }
|
| + }
|
| + if( pWInfo->pOrderBy ){
|
| + if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
|
| + if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
|
| + pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
|
| + }
|
| + }else{
|
| + pWInfo->nOBSat = pFrom->isOrdered;
|
| + if( pWInfo->nOBSat<0 ) pWInfo->nOBSat = 0;
|
| + pWInfo->revMask = pFrom->revLoop;
|
| + }
|
| + if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
|
| + && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr
|
| + ){
|
| + Bitmask revMask = 0;
|
| + int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
|
| + pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
|
| + );
|
| + assert( pWInfo->sorted==0 );
|
| + if( nOrder==pWInfo->pOrderBy->nExpr ){
|
| + pWInfo->sorted = 1;
|
| + pWInfo->revMask = revMask;
|
| + }
|
| + }
|
| + }
|
| +
|
| +
|
| + pWInfo->nRowOut = pFrom->nRow;
|
| +
|
| + /* Free temporary memory and return success */
|
| + sqlite3DbFree(db, pSpace);
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** Most queries use only a single table (they are not joins) and have
|
| +** simple == constraints against indexed fields. This routine attempts
|
| +** to plan those simple cases using much less ceremony than the
|
| +** general-purpose query planner, and thereby yield faster sqlite3_prepare()
|
| +** times for the common case.
|
| +**
|
| +** Return non-zero on success, if this query can be handled by this
|
| +** no-frills query planner. Return zero if this query needs the
|
| +** general-purpose query planner.
|
| +*/
|
| +static int whereShortCut(WhereLoopBuilder *pBuilder){
|
| + WhereInfo *pWInfo;
|
| + struct SrcList_item *pItem;
|
| + WhereClause *pWC;
|
| + WhereTerm *pTerm;
|
| + WhereLoop *pLoop;
|
| + int iCur;
|
| + int j;
|
| + Table *pTab;
|
| + Index *pIdx;
|
| +
|
| + pWInfo = pBuilder->pWInfo;
|
| + if( pWInfo->wctrlFlags & WHERE_FORCE_TABLE ) return 0;
|
| + assert( pWInfo->pTabList->nSrc>=1 );
|
| + pItem = pWInfo->pTabList->a;
|
| + pTab = pItem->pTab;
|
| + if( IsVirtual(pTab) ) return 0;
|
| + if( pItem->zIndex ) return 0;
|
| + iCur = pItem->iCursor;
|
| + pWC = &pWInfo->sWC;
|
| + pLoop = pBuilder->pNew;
|
| + pLoop->wsFlags = 0;
|
| + pLoop->u.btree.nSkip = 0;
|
| + pTerm = findTerm(pWC, iCur, -1, 0, WO_EQ, 0);
|
| + if( pTerm ){
|
| + pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
|
| + pLoop->aLTerm[0] = pTerm;
|
| + pLoop->nLTerm = 1;
|
| + pLoop->u.btree.nEq = 1;
|
| + /* TUNING: Cost of a rowid lookup is 10 */
|
| + pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */
|
| + }else{
|
| + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
| + assert( pLoop->aLTermSpace==pLoop->aLTerm );
|
| + assert( ArraySize(pLoop->aLTermSpace)==4 );
|
| + if( !IsUniqueIndex(pIdx)
|
| + || pIdx->pPartIdxWhere!=0
|
| + || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
|
| + ) continue;
|
| + for(j=0; j<pIdx->nKeyCol; j++){
|
| + pTerm = findTerm(pWC, iCur, pIdx->aiColumn[j], 0, WO_EQ, pIdx);
|
| + if( pTerm==0 ) break;
|
| + pLoop->aLTerm[j] = pTerm;
|
| + }
|
| + if( j!=pIdx->nKeyCol ) continue;
|
| + pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
|
| + if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){
|
| + pLoop->wsFlags |= WHERE_IDX_ONLY;
|
| + }
|
| + pLoop->nLTerm = j;
|
| + pLoop->u.btree.nEq = j;
|
| + pLoop->u.btree.pIndex = pIdx;
|
| + /* TUNING: Cost of a unique index lookup is 15 */
|
| + pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */
|
| + break;
|
| + }
|
| + }
|
| + if( pLoop->wsFlags ){
|
| + pLoop->nOut = (LogEst)1;
|
| + pWInfo->a[0].pWLoop = pLoop;
|
| + pLoop->maskSelf = getMask(&pWInfo->sMaskSet, iCur);
|
| + pWInfo->a[0].iTabCur = iCur;
|
| + pWInfo->nRowOut = 1;
|
| + if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr;
|
| + if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
|
| + pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
|
| + }
|
| +#ifdef SQLITE_DEBUG
|
| + pLoop->cId = '0';
|
| +#endif
|
| + return 1;
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/*
|
| +** Generate the beginning of the loop used for WHERE clause processing.
|
| +** The return value is a pointer to an opaque structure that contains
|
| +** information needed to terminate the loop. Later, the calling routine
|
| +** should invoke sqlite3WhereEnd() with the return value of this function
|
| +** in order to complete the WHERE clause processing.
|
| +**
|
| +** If an error occurs, this routine returns NULL.
|
| +**
|
| +** The basic idea is to do a nested loop, one loop for each table in
|
| +** the FROM clause of a select. (INSERT and UPDATE statements are the
|
| +** same as a SELECT with only a single table in the FROM clause.) For
|
| +** example, if the SQL is this:
|
| +**
|
| +** SELECT * FROM t1, t2, t3 WHERE ...;
|
| +**
|
| +** Then the code generated is conceptually like the following:
|
| +**
|
| +** foreach row1 in t1 do \ Code generated
|
| +** foreach row2 in t2 do |-- by sqlite3WhereBegin()
|
| +** foreach row3 in t3 do /
|
| +** ...
|
| +** end \ Code generated
|
| +** end |-- by sqlite3WhereEnd()
|
| +** end /
|
| +**
|
| +** Note that the loops might not be nested in the order in which they
|
| +** appear in the FROM clause if a different order is better able to make
|
| +** use of indices. Note also that when the IN operator appears in
|
| +** the WHERE clause, it might result in additional nested loops for
|
| +** scanning through all values on the right-hand side of the IN.
|
| +**
|
| +** There are Btree cursors associated with each table. t1 uses cursor
|
| +** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
|
| +** And so forth. This routine generates code to open those VDBE cursors
|
| +** and sqlite3WhereEnd() generates the code to close them.
|
| +**
|
| +** The code that sqlite3WhereBegin() generates leaves the cursors named
|
| +** in pTabList pointing at their appropriate entries. The [...] code
|
| +** can use OP_Column and OP_Rowid opcodes on these cursors to extract
|
| +** data from the various tables of the loop.
|
| +**
|
| +** If the WHERE clause is empty, the foreach loops must each scan their
|
| +** entire tables. Thus a three-way join is an O(N^3) operation. But if
|
| +** the tables have indices and there are terms in the WHERE clause that
|
| +** refer to those indices, a complete table scan can be avoided and the
|
| +** code will run much faster. Most of the work of this routine is checking
|
| +** to see if there are indices that can be used to speed up the loop.
|
| +**
|
| +** Terms of the WHERE clause are also used to limit which rows actually
|
| +** make it to the "..." in the middle of the loop. After each "foreach",
|
| +** terms of the WHERE clause that use only terms in that loop and outer
|
| +** loops are evaluated and if false a jump is made around all subsequent
|
| +** inner loops (or around the "..." if the test occurs within the inner-
|
| +** most loop)
|
| +**
|
| +** OUTER JOINS
|
| +**
|
| +** An outer join of tables t1 and t2 is conceptally coded as follows:
|
| +**
|
| +** foreach row1 in t1 do
|
| +** flag = 0
|
| +** foreach row2 in t2 do
|
| +** start:
|
| +** ...
|
| +** flag = 1
|
| +** end
|
| +** if flag==0 then
|
| +** move the row2 cursor to a null row
|
| +** goto start
|
| +** fi
|
| +** end
|
| +**
|
| +** ORDER BY CLAUSE PROCESSING
|
| +**
|
| +** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
|
| +** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
|
| +** if there is one. If there is no ORDER BY clause or if this routine
|
| +** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
|
| +**
|
| +** The iIdxCur parameter is the cursor number of an index. If
|
| +** WHERE_ONETABLE_ONLY is set, iIdxCur is the cursor number of an index
|
| +** to use for OR clause processing. The WHERE clause should use this
|
| +** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
|
| +** the first cursor in an array of cursors for all indices. iIdxCur should
|
| +** be used to compute the appropriate cursor depending on which index is
|
| +** used.
|
| +*/
|
| +WhereInfo *sqlite3WhereBegin(
|
| + Parse *pParse, /* The parser context */
|
| + SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */
|
| + Expr *pWhere, /* The WHERE clause */
|
| + ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */
|
| + ExprList *pResultSet, /* Result set of the query */
|
| + u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */
|
| + int iIdxCur /* If WHERE_ONETABLE_ONLY is set, index cursor number */
|
| +){
|
| + int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */
|
| + int nTabList; /* Number of elements in pTabList */
|
| + WhereInfo *pWInfo; /* Will become the return value of this function */
|
| + Vdbe *v = pParse->pVdbe; /* The virtual database engine */
|
| + Bitmask notReady; /* Cursors that are not yet positioned */
|
| + WhereLoopBuilder sWLB; /* The WhereLoop builder */
|
| + WhereMaskSet *pMaskSet; /* The expression mask set */
|
| + WhereLevel *pLevel; /* A single level in pWInfo->a[] */
|
| + WhereLoop *pLoop; /* Pointer to a single WhereLoop object */
|
| + int ii; /* Loop counter */
|
| + sqlite3 *db; /* Database connection */
|
| + int rc; /* Return code */
|
| +
|
| +
|
| + /* Variable initialization */
|
| + db = pParse->db;
|
| + memset(&sWLB, 0, sizeof(sWLB));
|
| +
|
| + /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
|
| + testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
|
| + if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
|
| + sWLB.pOrderBy = pOrderBy;
|
| +
|
| + /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
|
| + ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
|
| + if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
|
| + wctrlFlags &= ~WHERE_WANT_DISTINCT;
|
| + }
|
| +
|
| + /* The number of tables in the FROM clause is limited by the number of
|
| + ** bits in a Bitmask
|
| + */
|
| + testcase( pTabList->nSrc==BMS );
|
| + if( pTabList->nSrc>BMS ){
|
| + sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
|
| + return 0;
|
| + }
|
| +
|
| + /* This function normally generates a nested loop for all tables in
|
| + ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should
|
| + ** only generate code for the first table in pTabList and assume that
|
| + ** any cursors associated with subsequent tables are uninitialized.
|
| + */
|
| + nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc;
|
| +
|
| + /* Allocate and initialize the WhereInfo structure that will become the
|
| + ** return value. A single allocation is used to store the WhereInfo
|
| + ** struct, the contents of WhereInfo.a[], the WhereClause structure
|
| + ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
|
| + ** field (type Bitmask) it must be aligned on an 8-byte boundary on
|
| + ** some architectures. Hence the ROUND8() below.
|
| + */
|
| + nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
|
| + pWInfo = sqlite3DbMallocZero(db, nByteWInfo + sizeof(WhereLoop));
|
| + if( db->mallocFailed ){
|
| + sqlite3DbFree(db, pWInfo);
|
| + pWInfo = 0;
|
| + goto whereBeginError;
|
| + }
|
| + pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
|
| + pWInfo->nLevel = nTabList;
|
| + pWInfo->pParse = pParse;
|
| + pWInfo->pTabList = pTabList;
|
| + pWInfo->pOrderBy = pOrderBy;
|
| + pWInfo->pResultSet = pResultSet;
|
| + pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v);
|
| + pWInfo->wctrlFlags = wctrlFlags;
|
| + pWInfo->savedNQueryLoop = pParse->nQueryLoop;
|
| + pMaskSet = &pWInfo->sMaskSet;
|
| + sWLB.pWInfo = pWInfo;
|
| + sWLB.pWC = &pWInfo->sWC;
|
| + sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
|
| + assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
|
| + whereLoopInit(sWLB.pNew);
|
| +#ifdef SQLITE_DEBUG
|
| + sWLB.pNew->cId = '*';
|
| +#endif
|
| +
|
| + /* Split the WHERE clause into separate subexpressions where each
|
| + ** subexpression is separated by an AND operator.
|
| + */
|
| + initMaskSet(pMaskSet);
|
| + whereClauseInit(&pWInfo->sWC, pWInfo);
|
| + whereSplit(&pWInfo->sWC, pWhere, TK_AND);
|
| +
|
| + /* Special case: a WHERE clause that is constant. Evaluate the
|
| + ** expression and either jump over all of the code or fall thru.
|
| + */
|
| + for(ii=0; ii<sWLB.pWC->nTerm; ii++){
|
| + if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){
|
| + sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak,
|
| + SQLITE_JUMPIFNULL);
|
| + sWLB.pWC->a[ii].wtFlags |= TERM_CODED;
|
| + }
|
| + }
|
| +
|
| + /* Special case: No FROM clause
|
| + */
|
| + if( nTabList==0 ){
|
| + if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
|
| + if( wctrlFlags & WHERE_WANT_DISTINCT ){
|
| + pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
|
| + }
|
| + }
|
| +
|
| + /* Assign a bit from the bitmask to every term in the FROM clause.
|
| + **
|
| + ** When assigning bitmask values to FROM clause cursors, it must be
|
| + ** the case that if X is the bitmask for the N-th FROM clause term then
|
| + ** the bitmask for all FROM clause terms to the left of the N-th term
|
| + ** is (X-1). An expression from the ON clause of a LEFT JOIN can use
|
| + ** its Expr.iRightJoinTable value to find the bitmask of the right table
|
| + ** of the join. Subtracting one from the right table bitmask gives a
|
| + ** bitmask for all tables to the left of the join. Knowing the bitmask
|
| + ** for all tables to the left of a left join is important. Ticket #3015.
|
| + **
|
| + ** Note that bitmasks are created for all pTabList->nSrc tables in
|
| + ** pTabList, not just the first nTabList tables. nTabList is normally
|
| + ** equal to pTabList->nSrc but might be shortened to 1 if the
|
| + ** WHERE_ONETABLE_ONLY flag is set.
|
| + */
|
| + for(ii=0; ii<pTabList->nSrc; ii++){
|
| + createMask(pMaskSet, pTabList->a[ii].iCursor);
|
| + }
|
| +#ifndef NDEBUG
|
| + {
|
| + Bitmask toTheLeft = 0;
|
| + for(ii=0; ii<pTabList->nSrc; ii++){
|
| + Bitmask m = getMask(pMaskSet, pTabList->a[ii].iCursor);
|
| + assert( (m-1)==toTheLeft );
|
| + toTheLeft |= m;
|
| + }
|
| + }
|
| +#endif
|
| +
|
| + /* Analyze all of the subexpressions. Note that exprAnalyze() might
|
| + ** add new virtual terms onto the end of the WHERE clause. We do not
|
| + ** want to analyze these virtual terms, so start analyzing at the end
|
| + ** and work forward so that the added virtual terms are never processed.
|
| + */
|
| + exprAnalyzeAll(pTabList, &pWInfo->sWC);
|
| + if( db->mallocFailed ){
|
| + goto whereBeginError;
|
| + }
|
| +
|
| + if( wctrlFlags & WHERE_WANT_DISTINCT ){
|
| + if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
|
| + /* The DISTINCT marking is pointless. Ignore it. */
|
| + pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
|
| + }else if( pOrderBy==0 ){
|
| + /* Try to ORDER BY the result set to make distinct processing easier */
|
| + pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
|
| + pWInfo->pOrderBy = pResultSet;
|
| + }
|
| + }
|
| +
|
| + /* Construct the WhereLoop objects */
|
| + WHERETRACE(0xffff,("*** Optimizer Start ***\n"));
|
| +#if defined(WHERETRACE_ENABLED)
|
| + /* Display all terms of the WHERE clause */
|
| + if( sqlite3WhereTrace & 0x100 ){
|
| + int i;
|
| + for(i=0; i<sWLB.pWC->nTerm; i++){
|
| + whereTermPrint(&sWLB.pWC->a[i], i);
|
| + }
|
| + }
|
| +#endif
|
| +
|
| + if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
|
| + rc = whereLoopAddAll(&sWLB);
|
| + if( rc ) goto whereBeginError;
|
| +
|
| + /* Display all of the WhereLoop objects if wheretrace is enabled */
|
| +#ifdef WHERETRACE_ENABLED /* !=0 */
|
| + if( sqlite3WhereTrace ){
|
| + WhereLoop *p;
|
| + int i;
|
| + static char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
|
| + "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
|
| + for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
|
| + p->cId = zLabel[i%sizeof(zLabel)];
|
| + whereLoopPrint(p, sWLB.pWC);
|
| + }
|
| + }
|
| +#endif
|
| +
|
| + wherePathSolver(pWInfo, 0);
|
| + if( db->mallocFailed ) goto whereBeginError;
|
| + if( pWInfo->pOrderBy ){
|
| + wherePathSolver(pWInfo, pWInfo->nRowOut+1);
|
| + if( db->mallocFailed ) goto whereBeginError;
|
| + }
|
| + }
|
| + if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
|
| + pWInfo->revMask = (Bitmask)(-1);
|
| + }
|
| + if( pParse->nErr || NEVER(db->mallocFailed) ){
|
| + goto whereBeginError;
|
| + }
|
| +#ifdef WHERETRACE_ENABLED /* !=0 */
|
| + if( sqlite3WhereTrace ){
|
| + int ii;
|
| + sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
|
| + if( pWInfo->nOBSat>0 ){
|
| + sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
|
| + }
|
| + switch( pWInfo->eDistinct ){
|
| + case WHERE_DISTINCT_UNIQUE: {
|
| + sqlite3DebugPrintf(" DISTINCT=unique");
|
| + break;
|
| + }
|
| + case WHERE_DISTINCT_ORDERED: {
|
| + sqlite3DebugPrintf(" DISTINCT=ordered");
|
| + break;
|
| + }
|
| + case WHERE_DISTINCT_UNORDERED: {
|
| + sqlite3DebugPrintf(" DISTINCT=unordered");
|
| + break;
|
| + }
|
| + }
|
| + sqlite3DebugPrintf("\n");
|
| + for(ii=0; ii<pWInfo->nLevel; ii++){
|
| + whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
|
| + }
|
| + }
|
| +#endif
|
| + /* Attempt to omit tables from the join that do not effect the result */
|
| + if( pWInfo->nLevel>=2
|
| + && pResultSet!=0
|
| + && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
|
| + ){
|
| + Bitmask tabUsed = exprListTableUsage(pMaskSet, pResultSet);
|
| + if( sWLB.pOrderBy ) tabUsed |= exprListTableUsage(pMaskSet, sWLB.pOrderBy);
|
| + while( pWInfo->nLevel>=2 ){
|
| + WhereTerm *pTerm, *pEnd;
|
| + pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop;
|
| + if( (pWInfo->pTabList->a[pLoop->iTab].jointype & JT_LEFT)==0 ) break;
|
| + if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
|
| + && (pLoop->wsFlags & WHERE_ONEROW)==0
|
| + ){
|
| + break;
|
| + }
|
| + if( (tabUsed & pLoop->maskSelf)!=0 ) break;
|
| + pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
|
| + for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
|
| + if( (pTerm->prereqAll & pLoop->maskSelf)!=0
|
| + && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
|
| + ){
|
| + break;
|
| + }
|
| + }
|
| + if( pTerm<pEnd ) break;
|
| + WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
|
| + pWInfo->nLevel--;
|
| + nTabList--;
|
| + }
|
| + }
|
| + WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
|
| + pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
|
| +
|
| + /* If the caller is an UPDATE or DELETE statement that is requesting
|
| + ** to use a one-pass algorithm, determine if this is appropriate.
|
| + ** The one-pass algorithm only works if the WHERE clause constrains
|
| + ** the statement to update a single row.
|
| + */
|
| + assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
|
| + if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
|
| + && (pWInfo->a[0].pWLoop->wsFlags & WHERE_ONEROW)!=0 ){
|
| + pWInfo->okOnePass = 1;
|
| + if( HasRowid(pTabList->a[0].pTab) ){
|
| + pWInfo->a[0].pWLoop->wsFlags &= ~WHERE_IDX_ONLY;
|
| + }
|
| + }
|
| +
|
| + /* Open all tables in the pTabList and any indices selected for
|
| + ** searching those tables.
|
| + */
|
| + notReady = ~(Bitmask)0;
|
| + for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
|
| + Table *pTab; /* Table to open */
|
| + int iDb; /* Index of database containing table/index */
|
| + struct SrcList_item *pTabItem;
|
| +
|
| + pTabItem = &pTabList->a[pLevel->iFrom];
|
| + pTab = pTabItem->pTab;
|
| + iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
| + pLoop = pLevel->pWLoop;
|
| + if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
|
| + /* Do nothing */
|
| + }else
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| + if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
|
| + const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
|
| + int iCur = pTabItem->iCursor;
|
| + sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
|
| + }else if( IsVirtual(pTab) ){
|
| + /* noop */
|
| + }else
|
| +#endif
|
| + if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
|
| + && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){
|
| + int op = OP_OpenRead;
|
| + if( pWInfo->okOnePass ){
|
| + op = OP_OpenWrite;
|
| + pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
|
| + };
|
| + sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
|
| + assert( pTabItem->iCursor==pLevel->iTabCur );
|
| + testcase( !pWInfo->okOnePass && pTab->nCol==BMS-1 );
|
| + testcase( !pWInfo->okOnePass && pTab->nCol==BMS );
|
| + if( !pWInfo->okOnePass && pTab->nCol<BMS && HasRowid(pTab) ){
|
| + Bitmask b = pTabItem->colUsed;
|
| + int n = 0;
|
| + for(; b; b=b>>1, n++){}
|
| + sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1,
|
| + SQLITE_INT_TO_PTR(n), P4_INT32);
|
| + assert( n<=pTab->nCol );
|
| + }
|
| + }else{
|
| + sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
|
| + }
|
| + if( pLoop->wsFlags & WHERE_INDEXED ){
|
| + Index *pIx = pLoop->u.btree.pIndex;
|
| + int iIndexCur;
|
| + int op = OP_OpenRead;
|
| + /* iIdxCur is always set if to a positive value if ONEPASS is possible */
|
| + assert( iIdxCur!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
|
| + if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
|
| + && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0
|
| + ){
|
| + /* This is one term of an OR-optimization using the PRIMARY KEY of a
|
| + ** WITHOUT ROWID table. No need for a separate index */
|
| + iIndexCur = pLevel->iTabCur;
|
| + op = 0;
|
| + }else if( pWInfo->okOnePass ){
|
| + Index *pJ = pTabItem->pTab->pIndex;
|
| + iIndexCur = iIdxCur;
|
| + assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
|
| + while( ALWAYS(pJ) && pJ!=pIx ){
|
| + iIndexCur++;
|
| + pJ = pJ->pNext;
|
| + }
|
| + op = OP_OpenWrite;
|
| + pWInfo->aiCurOnePass[1] = iIndexCur;
|
| + }else if( iIdxCur && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ){
|
| + iIndexCur = iIdxCur;
|
| + if( wctrlFlags & WHERE_REOPEN_IDX ) op = OP_ReopenIdx;
|
| + }else{
|
| + iIndexCur = pParse->nTab++;
|
| + }
|
| + pLevel->iIdxCur = iIndexCur;
|
| + assert( pIx->pSchema==pTab->pSchema );
|
| + assert( iIndexCur>=0 );
|
| + if( op ){
|
| + sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
|
| + sqlite3VdbeSetP4KeyInfo(pParse, pIx);
|
| + VdbeComment((v, "%s", pIx->zName));
|
| + }
|
| + }
|
| + if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
|
| + notReady &= ~getMask(&pWInfo->sMaskSet, pTabItem->iCursor);
|
| + }
|
| + pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
|
| + if( db->mallocFailed ) goto whereBeginError;
|
| +
|
| + /* Generate the code to do the search. Each iteration of the for
|
| + ** loop below generates code for a single nested loop of the VM
|
| + ** program.
|
| + */
|
| + notReady = ~(Bitmask)0;
|
| + for(ii=0; ii<nTabList; ii++){
|
| + pLevel = &pWInfo->a[ii];
|
| +#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
|
| + if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
|
| + constructAutomaticIndex(pParse, &pWInfo->sWC,
|
| + &pTabList->a[pLevel->iFrom], notReady, pLevel);
|
| + if( db->mallocFailed ) goto whereBeginError;
|
| + }
|
| +#endif
|
| + explainOneScan(pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags);
|
| + pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
|
| + notReady = codeOneLoopStart(pWInfo, ii, notReady);
|
| + pWInfo->iContinue = pLevel->addrCont;
|
| + }
|
| +
|
| + /* Done. */
|
| + VdbeModuleComment((v, "Begin WHERE-core"));
|
| + return pWInfo;
|
| +
|
| + /* Jump here if malloc fails */
|
| +whereBeginError:
|
| + if( pWInfo ){
|
| + pParse->nQueryLoop = pWInfo->savedNQueryLoop;
|
| + whereInfoFree(db, pWInfo);
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/*
|
| +** Generate the end of the WHERE loop. See comments on
|
| +** sqlite3WhereBegin() for additional information.
|
| +*/
|
| +void sqlite3WhereEnd(WhereInfo *pWInfo){
|
| + Parse *pParse = pWInfo->pParse;
|
| + Vdbe *v = pParse->pVdbe;
|
| + int i;
|
| + WhereLevel *pLevel;
|
| + WhereLoop *pLoop;
|
| + SrcList *pTabList = pWInfo->pTabList;
|
| + sqlite3 *db = pParse->db;
|
| +
|
| + /* Generate loop termination code.
|
| + */
|
| + VdbeModuleComment((v, "End WHERE-core"));
|
| + sqlite3ExprCacheClear(pParse);
|
| + for(i=pWInfo->nLevel-1; i>=0; i--){
|
| + int addr;
|
| + pLevel = &pWInfo->a[i];
|
| + pLoop = pLevel->pWLoop;
|
| + sqlite3VdbeResolveLabel(v, pLevel->addrCont);
|
| + if( pLevel->op!=OP_Noop ){
|
| + sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
|
| + sqlite3VdbeChangeP5(v, pLevel->p5);
|
| + VdbeCoverage(v);
|
| + VdbeCoverageIf(v, pLevel->op==OP_Next);
|
| + VdbeCoverageIf(v, pLevel->op==OP_Prev);
|
| + VdbeCoverageIf(v, pLevel->op==OP_VNext);
|
| + }
|
| + if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
|
| + struct InLoop *pIn;
|
| + int j;
|
| + sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
|
| + for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
|
| + sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
|
| + sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
|
| + VdbeCoverage(v);
|
| + VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen);
|
| + VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen);
|
| + sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
|
| + }
|
| + sqlite3DbFree(db, pLevel->u.in.aInLoop);
|
| + }
|
| + sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
|
| + if( pLevel->addrSkip ){
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrSkip);
|
| + VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
|
| + sqlite3VdbeJumpHere(v, pLevel->addrSkip);
|
| + sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
|
| + }
|
| + if( pLevel->iLeftJoin ){
|
| + addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
|
| + assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
|
| + || (pLoop->wsFlags & WHERE_INDEXED)!=0 );
|
| + if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){
|
| + sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
|
| + }
|
| + if( pLoop->wsFlags & WHERE_INDEXED ){
|
| + sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
|
| + }
|
| + if( pLevel->op==OP_Return ){
|
| + sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
|
| + }else{
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst);
|
| + }
|
| + sqlite3VdbeJumpHere(v, addr);
|
| + }
|
| + VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
|
| + pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
|
| + }
|
| +
|
| + /* The "break" point is here, just past the end of the outer loop.
|
| + ** Set it.
|
| + */
|
| + sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
|
| +
|
| + assert( pWInfo->nLevel<=pTabList->nSrc );
|
| + for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
|
| + int k, last;
|
| + VdbeOp *pOp;
|
| + Index *pIdx = 0;
|
| + struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
|
| + Table *pTab = pTabItem->pTab;
|
| + assert( pTab!=0 );
|
| + pLoop = pLevel->pWLoop;
|
| +
|
| + /* For a co-routine, change all OP_Column references to the table of
|
| + ** the co-routine into OP_SCopy of result contained in a register.
|
| + ** OP_Rowid becomes OP_Null.
|
| + */
|
| + if( pTabItem->viaCoroutine && !db->mallocFailed ){
|
| + last = sqlite3VdbeCurrentAddr(v);
|
| + k = pLevel->addrBody;
|
| + pOp = sqlite3VdbeGetOp(v, k);
|
| + for(; k<last; k++, pOp++){
|
| + if( pOp->p1!=pLevel->iTabCur ) continue;
|
| + if( pOp->opcode==OP_Column ){
|
| + pOp->opcode = OP_Copy;
|
| + pOp->p1 = pOp->p2 + pTabItem->regResult;
|
| + pOp->p2 = pOp->p3;
|
| + pOp->p3 = 0;
|
| + }else if( pOp->opcode==OP_Rowid ){
|
| + pOp->opcode = OP_Null;
|
| + pOp->p1 = 0;
|
| + pOp->p3 = 0;
|
| + }
|
| + }
|
| + continue;
|
| + }
|
| +
|
| + /* Close all of the cursors that were opened by sqlite3WhereBegin.
|
| + ** Except, do not close cursors that will be reused by the OR optimization
|
| + ** (WHERE_OMIT_OPEN_CLOSE). And do not close the OP_OpenWrite cursors
|
| + ** created for the ONEPASS optimization.
|
| + */
|
| + if( (pTab->tabFlags & TF_Ephemeral)==0
|
| + && pTab->pSelect==0
|
| + && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0
|
| + ){
|
| + int ws = pLoop->wsFlags;
|
| + if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){
|
| + sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
|
| + }
|
| + if( (ws & WHERE_INDEXED)!=0
|
| + && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0
|
| + && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1]
|
| + ){
|
| + sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
|
| + }
|
| + }
|
| +
|
| + /* If this scan uses an index, make VDBE code substitutions to read data
|
| + ** from the index instead of from the table where possible. In some cases
|
| + ** this optimization prevents the table from ever being read, which can
|
| + ** yield a significant performance boost.
|
| + **
|
| + ** Calls to the code generator in between sqlite3WhereBegin and
|
| + ** sqlite3WhereEnd will have created code that references the table
|
| + ** directly. This loop scans all that code looking for opcodes
|
| + ** that reference the table and converts them into opcodes that
|
| + ** reference the index.
|
| + */
|
| + if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
|
| + pIdx = pLoop->u.btree.pIndex;
|
| + }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
|
| + pIdx = pLevel->u.pCovidx;
|
| + }
|
| + if( pIdx && !db->mallocFailed ){
|
| + last = sqlite3VdbeCurrentAddr(v);
|
| + k = pLevel->addrBody;
|
| + pOp = sqlite3VdbeGetOp(v, k);
|
| + for(; k<last; k++, pOp++){
|
| + if( pOp->p1!=pLevel->iTabCur ) continue;
|
| + if( pOp->opcode==OP_Column ){
|
| + int x = pOp->p2;
|
| + assert( pIdx->pTable==pTab );
|
| + if( !HasRowid(pTab) ){
|
| + Index *pPk = sqlite3PrimaryKeyIndex(pTab);
|
| + x = pPk->aiColumn[x];
|
| + }
|
| + x = sqlite3ColumnOfIndex(pIdx, x);
|
| + if( x>=0 ){
|
| + pOp->p2 = x;
|
| + pOp->p1 = pLevel->iIdxCur;
|
| + }
|
| + assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 );
|
| + }else if( pOp->opcode==OP_Rowid ){
|
| + pOp->p1 = pLevel->iIdxCur;
|
| + pOp->opcode = OP_IdxRowid;
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + /* Final cleanup
|
| + */
|
| + pParse->nQueryLoop = pWInfo->savedNQueryLoop;
|
| + whereInfoFree(db, pWInfo);
|
| + return;
|
| +}
|
|
|