Index: third_party/sqlite/sqlite-src-3080704/src/analyze.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/src/analyze.c b/third_party/sqlite/sqlite-src-3080704/src/analyze.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..e655aaa50c7136cfb712f3799bcd3c65f3d050f6 |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3080704/src/analyze.c |
@@ -0,0 +1,1883 @@ |
+/* |
+** 2005-07-08 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** This file contains code associated with the ANALYZE command. |
+** |
+** The ANALYZE command gather statistics about the content of tables |
+** and indices. These statistics are made available to the query planner |
+** to help it make better decisions about how to perform queries. |
+** |
+** The following system tables are or have been supported: |
+** |
+** CREATE TABLE sqlite_stat1(tbl, idx, stat); |
+** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample); |
+** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample); |
+** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample); |
+** |
+** Additional tables might be added in future releases of SQLite. |
+** The sqlite_stat2 table is not created or used unless the SQLite version |
+** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled |
+** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated. |
+** The sqlite_stat2 table is superseded by sqlite_stat3, which is only |
+** created and used by SQLite versions 3.7.9 and later and with |
+** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3 |
+** is a superset of sqlite_stat2. The sqlite_stat4 is an enhanced |
+** version of sqlite_stat3 and is only available when compiled with |
+** SQLITE_ENABLE_STAT4 and in SQLite versions 3.8.1 and later. It is |
+** not possible to enable both STAT3 and STAT4 at the same time. If they |
+** are both enabled, then STAT4 takes precedence. |
+** |
+** For most applications, sqlite_stat1 provides all the statistics required |
+** for the query planner to make good choices. |
+** |
+** Format of sqlite_stat1: |
+** |
+** There is normally one row per index, with the index identified by the |
+** name in the idx column. The tbl column is the name of the table to |
+** which the index belongs. In each such row, the stat column will be |
+** a string consisting of a list of integers. The first integer in this |
+** list is the number of rows in the index. (This is the same as the |
+** number of rows in the table, except for partial indices.) The second |
+** integer is the average number of rows in the index that have the same |
+** value in the first column of the index. The third integer is the average |
+** number of rows in the index that have the same value for the first two |
+** columns. The N-th integer (for N>1) is the average number of rows in |
+** the index which have the same value for the first N-1 columns. For |
+** a K-column index, there will be K+1 integers in the stat column. If |
+** the index is unique, then the last integer will be 1. |
+** |
+** The list of integers in the stat column can optionally be followed |
+** by the keyword "unordered". The "unordered" keyword, if it is present, |
+** must be separated from the last integer by a single space. If the |
+** "unordered" keyword is present, then the query planner assumes that |
+** the index is unordered and will not use the index for a range query. |
+** |
+** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat |
+** column contains a single integer which is the (estimated) number of |
+** rows in the table identified by sqlite_stat1.tbl. |
+** |
+** Format of sqlite_stat2: |
+** |
+** The sqlite_stat2 is only created and is only used if SQLite is compiled |
+** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between |
+** 3.6.18 and 3.7.8. The "stat2" table contains additional information |
+** about the distribution of keys within an index. The index is identified by |
+** the "idx" column and the "tbl" column is the name of the table to which |
+** the index belongs. There are usually 10 rows in the sqlite_stat2 |
+** table for each index. |
+** |
+** The sqlite_stat2 entries for an index that have sampleno between 0 and 9 |
+** inclusive are samples of the left-most key value in the index taken at |
+** evenly spaced points along the index. Let the number of samples be S |
+** (10 in the standard build) and let C be the number of rows in the index. |
+** Then the sampled rows are given by: |
+** |
+** rownumber = (i*C*2 + C)/(S*2) |
+** |
+** For i between 0 and S-1. Conceptually, the index space is divided into |
+** S uniform buckets and the samples are the middle row from each bucket. |
+** |
+** The format for sqlite_stat2 is recorded here for legacy reference. This |
+** version of SQLite does not support sqlite_stat2. It neither reads nor |
+** writes the sqlite_stat2 table. This version of SQLite only supports |
+** sqlite_stat3. |
+** |
+** Format for sqlite_stat3: |
+** |
+** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the |
+** sqlite_stat4 format will be described first. Further information |
+** about sqlite_stat3 follows the sqlite_stat4 description. |
+** |
+** Format for sqlite_stat4: |
+** |
+** As with sqlite_stat2, the sqlite_stat4 table contains histogram data |
+** to aid the query planner in choosing good indices based on the values |
+** that indexed columns are compared against in the WHERE clauses of |
+** queries. |
+** |
+** The sqlite_stat4 table contains multiple entries for each index. |
+** The idx column names the index and the tbl column is the table of the |
+** index. If the idx and tbl columns are the same, then the sample is |
+** of the INTEGER PRIMARY KEY. The sample column is a blob which is the |
+** binary encoding of a key from the index. The nEq column is a |
+** list of integers. The first integer is the approximate number |
+** of entries in the index whose left-most column exactly matches |
+** the left-most column of the sample. The second integer in nEq |
+** is the approximate number of entries in the index where the |
+** first two columns match the first two columns of the sample. |
+** And so forth. nLt is another list of integers that show the approximate |
+** number of entries that are strictly less than the sample. The first |
+** integer in nLt contains the number of entries in the index where the |
+** left-most column is less than the left-most column of the sample. |
+** The K-th integer in the nLt entry is the number of index entries |
+** where the first K columns are less than the first K columns of the |
+** sample. The nDLt column is like nLt except that it contains the |
+** number of distinct entries in the index that are less than the |
+** sample. |
+** |
+** There can be an arbitrary number of sqlite_stat4 entries per index. |
+** The ANALYZE command will typically generate sqlite_stat4 tables |
+** that contain between 10 and 40 samples which are distributed across |
+** the key space, though not uniformly, and which include samples with |
+** large nEq values. |
+** |
+** Format for sqlite_stat3 redux: |
+** |
+** The sqlite_stat3 table is like sqlite_stat4 except that it only |
+** looks at the left-most column of the index. The sqlite_stat3.sample |
+** column contains the actual value of the left-most column instead |
+** of a blob encoding of the complete index key as is found in |
+** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3 |
+** all contain just a single integer which is the same as the first |
+** integer in the equivalent columns in sqlite_stat4. |
+*/ |
+#ifndef SQLITE_OMIT_ANALYZE |
+#include "sqliteInt.h" |
+ |
+#if defined(SQLITE_ENABLE_STAT4) |
+# define IsStat4 1 |
+# define IsStat3 0 |
+#elif defined(SQLITE_ENABLE_STAT3) |
+# define IsStat4 0 |
+# define IsStat3 1 |
+#else |
+# define IsStat4 0 |
+# define IsStat3 0 |
+# undef SQLITE_STAT4_SAMPLES |
+# define SQLITE_STAT4_SAMPLES 1 |
+#endif |
+#define IsStat34 (IsStat3+IsStat4) /* 1 for STAT3 or STAT4. 0 otherwise */ |
+ |
+/* |
+** This routine generates code that opens the sqlite_statN tables. |
+** The sqlite_stat1 table is always relevant. sqlite_stat2 is now |
+** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when |
+** appropriate compile-time options are provided. |
+** |
+** If the sqlite_statN tables do not previously exist, it is created. |
+** |
+** Argument zWhere may be a pointer to a buffer containing a table name, |
+** or it may be a NULL pointer. If it is not NULL, then all entries in |
+** the sqlite_statN tables associated with the named table are deleted. |
+** If zWhere==0, then code is generated to delete all stat table entries. |
+*/ |
+static void openStatTable( |
+ Parse *pParse, /* Parsing context */ |
+ int iDb, /* The database we are looking in */ |
+ int iStatCur, /* Open the sqlite_stat1 table on this cursor */ |
+ const char *zWhere, /* Delete entries for this table or index */ |
+ const char *zWhereType /* Either "tbl" or "idx" */ |
+){ |
+ static const struct { |
+ const char *zName; |
+ const char *zCols; |
+ } aTable[] = { |
+ { "sqlite_stat1", "tbl,idx,stat" }, |
+#if defined(SQLITE_ENABLE_STAT4) |
+ { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" }, |
+ { "sqlite_stat3", 0 }, |
+#elif defined(SQLITE_ENABLE_STAT3) |
+ { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" }, |
+ { "sqlite_stat4", 0 }, |
+#else |
+ { "sqlite_stat3", 0 }, |
+ { "sqlite_stat4", 0 }, |
+#endif |
+ }; |
+ int i; |
+ sqlite3 *db = pParse->db; |
+ Db *pDb; |
+ Vdbe *v = sqlite3GetVdbe(pParse); |
+ int aRoot[ArraySize(aTable)]; |
+ u8 aCreateTbl[ArraySize(aTable)]; |
+ |
+ if( v==0 ) return; |
+ assert( sqlite3BtreeHoldsAllMutexes(db) ); |
+ assert( sqlite3VdbeDb(v)==db ); |
+ pDb = &db->aDb[iDb]; |
+ |
+ /* Create new statistic tables if they do not exist, or clear them |
+ ** if they do already exist. |
+ */ |
+ for(i=0; i<ArraySize(aTable); i++){ |
+ const char *zTab = aTable[i].zName; |
+ Table *pStat; |
+ if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){ |
+ if( aTable[i].zCols ){ |
+ /* The sqlite_statN table does not exist. Create it. Note that a |
+ ** side-effect of the CREATE TABLE statement is to leave the rootpage |
+ ** of the new table in register pParse->regRoot. This is important |
+ ** because the OpenWrite opcode below will be needing it. */ |
+ sqlite3NestedParse(pParse, |
+ "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols |
+ ); |
+ aRoot[i] = pParse->regRoot; |
+ aCreateTbl[i] = OPFLAG_P2ISREG; |
+ } |
+ }else{ |
+ /* The table already exists. If zWhere is not NULL, delete all entries |
+ ** associated with the table zWhere. If zWhere is NULL, delete the |
+ ** entire contents of the table. */ |
+ aRoot[i] = pStat->tnum; |
+ aCreateTbl[i] = 0; |
+ sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab); |
+ if( zWhere ){ |
+ sqlite3NestedParse(pParse, |
+ "DELETE FROM %Q.%s WHERE %s=%Q", |
+ pDb->zName, zTab, zWhereType, zWhere |
+ ); |
+ }else{ |
+ /* The sqlite_stat[134] table already exists. Delete all rows. */ |
+ sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb); |
+ } |
+ } |
+ } |
+ |
+ /* Open the sqlite_stat[134] tables for writing. */ |
+ for(i=0; aTable[i].zCols; i++){ |
+ assert( i<ArraySize(aTable) ); |
+ sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb, 3); |
+ sqlite3VdbeChangeP5(v, aCreateTbl[i]); |
+ VdbeComment((v, aTable[i].zName)); |
+ } |
+} |
+ |
+/* |
+** Recommended number of samples for sqlite_stat4 |
+*/ |
+#ifndef SQLITE_STAT4_SAMPLES |
+# define SQLITE_STAT4_SAMPLES 24 |
+#endif |
+ |
+/* |
+** Three SQL functions - stat_init(), stat_push(), and stat_get() - |
+** share an instance of the following structure to hold their state |
+** information. |
+*/ |
+typedef struct Stat4Accum Stat4Accum; |
+typedef struct Stat4Sample Stat4Sample; |
+struct Stat4Sample { |
+ tRowcnt *anEq; /* sqlite_stat4.nEq */ |
+ tRowcnt *anDLt; /* sqlite_stat4.nDLt */ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ tRowcnt *anLt; /* sqlite_stat4.nLt */ |
+ union { |
+ i64 iRowid; /* Rowid in main table of the key */ |
+ u8 *aRowid; /* Key for WITHOUT ROWID tables */ |
+ } u; |
+ u32 nRowid; /* Sizeof aRowid[] */ |
+ u8 isPSample; /* True if a periodic sample */ |
+ int iCol; /* If !isPSample, the reason for inclusion */ |
+ u32 iHash; /* Tiebreaker hash */ |
+#endif |
+}; |
+struct Stat4Accum { |
+ tRowcnt nRow; /* Number of rows in the entire table */ |
+ tRowcnt nPSample; /* How often to do a periodic sample */ |
+ int nCol; /* Number of columns in index + pk/rowid */ |
+ int nKeyCol; /* Number of index columns w/o the pk/rowid */ |
+ int mxSample; /* Maximum number of samples to accumulate */ |
+ Stat4Sample current; /* Current row as a Stat4Sample */ |
+ u32 iPrn; /* Pseudo-random number used for sampling */ |
+ Stat4Sample *aBest; /* Array of nCol best samples */ |
+ int iMin; /* Index in a[] of entry with minimum score */ |
+ int nSample; /* Current number of samples */ |
+ int iGet; /* Index of current sample accessed by stat_get() */ |
+ Stat4Sample *a; /* Array of mxSample Stat4Sample objects */ |
+ sqlite3 *db; /* Database connection, for malloc() */ |
+}; |
+ |
+/* Reclaim memory used by a Stat4Sample |
+*/ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+static void sampleClear(sqlite3 *db, Stat4Sample *p){ |
+ assert( db!=0 ); |
+ if( p->nRowid ){ |
+ sqlite3DbFree(db, p->u.aRowid); |
+ p->nRowid = 0; |
+ } |
+} |
+#endif |
+ |
+/* Initialize the BLOB value of a ROWID |
+*/ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+static void sampleSetRowid(sqlite3 *db, Stat4Sample *p, int n, const u8 *pData){ |
+ assert( db!=0 ); |
+ if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); |
+ p->u.aRowid = sqlite3DbMallocRaw(db, n); |
+ if( p->u.aRowid ){ |
+ p->nRowid = n; |
+ memcpy(p->u.aRowid, pData, n); |
+ }else{ |
+ p->nRowid = 0; |
+ } |
+} |
+#endif |
+ |
+/* Initialize the INTEGER value of a ROWID. |
+*/ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+static void sampleSetRowidInt64(sqlite3 *db, Stat4Sample *p, i64 iRowid){ |
+ assert( db!=0 ); |
+ if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); |
+ p->nRowid = 0; |
+ p->u.iRowid = iRowid; |
+} |
+#endif |
+ |
+ |
+/* |
+** Copy the contents of object (*pFrom) into (*pTo). |
+*/ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+static void sampleCopy(Stat4Accum *p, Stat4Sample *pTo, Stat4Sample *pFrom){ |
+ pTo->isPSample = pFrom->isPSample; |
+ pTo->iCol = pFrom->iCol; |
+ pTo->iHash = pFrom->iHash; |
+ memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol); |
+ memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol); |
+ memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol); |
+ if( pFrom->nRowid ){ |
+ sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid); |
+ }else{ |
+ sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid); |
+ } |
+} |
+#endif |
+ |
+/* |
+** Reclaim all memory of a Stat4Accum structure. |
+*/ |
+static void stat4Destructor(void *pOld){ |
+ Stat4Accum *p = (Stat4Accum*)pOld; |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ int i; |
+ for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i); |
+ for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i); |
+ sampleClear(p->db, &p->current); |
+#endif |
+ sqlite3DbFree(p->db, p); |
+} |
+ |
+/* |
+** Implementation of the stat_init(N,K,C) SQL function. The three parameters |
+** are: |
+** N: The number of columns in the index including the rowid/pk (note 1) |
+** K: The number of columns in the index excluding the rowid/pk. |
+** C: The number of rows in the index (note 2) |
+** |
+** Note 1: In the special case of the covering index that implements a |
+** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the |
+** total number of columns in the table. |
+** |
+** Note 2: C is only used for STAT3 and STAT4. |
+** |
+** For indexes on ordinary rowid tables, N==K+1. But for indexes on |
+** WITHOUT ROWID tables, N=K+P where P is the number of columns in the |
+** PRIMARY KEY of the table. The covering index that implements the |
+** original WITHOUT ROWID table as N==K as a special case. |
+** |
+** This routine allocates the Stat4Accum object in heap memory. The return |
+** value is a pointer to the Stat4Accum object. The datatype of the |
+** return value is BLOB, but it is really just a pointer to the Stat4Accum |
+** object. |
+*/ |
+static void statInit( |
+ sqlite3_context *context, |
+ int argc, |
+ sqlite3_value **argv |
+){ |
+ Stat4Accum *p; |
+ int nCol; /* Number of columns in index being sampled */ |
+ int nKeyCol; /* Number of key columns */ |
+ int nColUp; /* nCol rounded up for alignment */ |
+ int n; /* Bytes of space to allocate */ |
+ sqlite3 *db; /* Database connection */ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ int mxSample = SQLITE_STAT4_SAMPLES; |
+#endif |
+ |
+ /* Decode the three function arguments */ |
+ UNUSED_PARAMETER(argc); |
+ nCol = sqlite3_value_int(argv[0]); |
+ assert( nCol>0 ); |
+ nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol; |
+ nKeyCol = sqlite3_value_int(argv[1]); |
+ assert( nKeyCol<=nCol ); |
+ assert( nKeyCol>0 ); |
+ |
+ /* Allocate the space required for the Stat4Accum object */ |
+ n = sizeof(*p) |
+ + sizeof(tRowcnt)*nColUp /* Stat4Accum.anEq */ |
+ + sizeof(tRowcnt)*nColUp /* Stat4Accum.anDLt */ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ + sizeof(tRowcnt)*nColUp /* Stat4Accum.anLt */ |
+ + sizeof(Stat4Sample)*(nCol+mxSample) /* Stat4Accum.aBest[], a[] */ |
+ + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample) |
+#endif |
+ ; |
+ db = sqlite3_context_db_handle(context); |
+ p = sqlite3DbMallocZero(db, n); |
+ if( p==0 ){ |
+ sqlite3_result_error_nomem(context); |
+ return; |
+ } |
+ |
+ p->db = db; |
+ p->nRow = 0; |
+ p->nCol = nCol; |
+ p->nKeyCol = nKeyCol; |
+ p->current.anDLt = (tRowcnt*)&p[1]; |
+ p->current.anEq = &p->current.anDLt[nColUp]; |
+ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ { |
+ u8 *pSpace; /* Allocated space not yet assigned */ |
+ int i; /* Used to iterate through p->aSample[] */ |
+ |
+ p->iGet = -1; |
+ p->mxSample = mxSample; |
+ p->nPSample = (tRowcnt)(sqlite3_value_int64(argv[2])/(mxSample/3+1) + 1); |
+ p->current.anLt = &p->current.anEq[nColUp]; |
+ p->iPrn = nCol*0x689e962d ^ sqlite3_value_int(argv[2])*0xd0944565; |
+ |
+ /* Set up the Stat4Accum.a[] and aBest[] arrays */ |
+ p->a = (struct Stat4Sample*)&p->current.anLt[nColUp]; |
+ p->aBest = &p->a[mxSample]; |
+ pSpace = (u8*)(&p->a[mxSample+nCol]); |
+ for(i=0; i<(mxSample+nCol); i++){ |
+ p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); |
+ p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); |
+ p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); |
+ } |
+ assert( (pSpace - (u8*)p)==n ); |
+ |
+ for(i=0; i<nCol; i++){ |
+ p->aBest[i].iCol = i; |
+ } |
+ } |
+#endif |
+ |
+ /* Return a pointer to the allocated object to the caller. Note that |
+ ** only the pointer (the 2nd parameter) matters. The size of the object |
+ ** (given by the 3rd parameter) is never used and can be any positive |
+ ** value. */ |
+ sqlite3_result_blob(context, p, sizeof(*p), stat4Destructor); |
+} |
+static const FuncDef statInitFuncdef = { |
+ 2+IsStat34, /* nArg */ |
+ SQLITE_UTF8, /* funcFlags */ |
+ 0, /* pUserData */ |
+ 0, /* pNext */ |
+ statInit, /* xFunc */ |
+ 0, /* xStep */ |
+ 0, /* xFinalize */ |
+ "stat_init", /* zName */ |
+ 0, /* pHash */ |
+ 0 /* pDestructor */ |
+}; |
+ |
+#ifdef SQLITE_ENABLE_STAT4 |
+/* |
+** pNew and pOld are both candidate non-periodic samples selected for |
+** the same column (pNew->iCol==pOld->iCol). Ignoring this column and |
+** considering only any trailing columns and the sample hash value, this |
+** function returns true if sample pNew is to be preferred over pOld. |
+** In other words, if we assume that the cardinalities of the selected |
+** column for pNew and pOld are equal, is pNew to be preferred over pOld. |
+** |
+** This function assumes that for each argument sample, the contents of |
+** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid. |
+*/ |
+static int sampleIsBetterPost( |
+ Stat4Accum *pAccum, |
+ Stat4Sample *pNew, |
+ Stat4Sample *pOld |
+){ |
+ int nCol = pAccum->nCol; |
+ int i; |
+ assert( pNew->iCol==pOld->iCol ); |
+ for(i=pNew->iCol+1; i<nCol; i++){ |
+ if( pNew->anEq[i]>pOld->anEq[i] ) return 1; |
+ if( pNew->anEq[i]<pOld->anEq[i] ) return 0; |
+ } |
+ if( pNew->iHash>pOld->iHash ) return 1; |
+ return 0; |
+} |
+#endif |
+ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+/* |
+** Return true if pNew is to be preferred over pOld. |
+** |
+** This function assumes that for each argument sample, the contents of |
+** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid. |
+*/ |
+static int sampleIsBetter( |
+ Stat4Accum *pAccum, |
+ Stat4Sample *pNew, |
+ Stat4Sample *pOld |
+){ |
+ tRowcnt nEqNew = pNew->anEq[pNew->iCol]; |
+ tRowcnt nEqOld = pOld->anEq[pOld->iCol]; |
+ |
+ assert( pOld->isPSample==0 && pNew->isPSample==0 ); |
+ assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) ); |
+ |
+ if( (nEqNew>nEqOld) ) return 1; |
+#ifdef SQLITE_ENABLE_STAT4 |
+ if( nEqNew==nEqOld ){ |
+ if( pNew->iCol<pOld->iCol ) return 1; |
+ return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld)); |
+ } |
+ return 0; |
+#else |
+ return (nEqNew==nEqOld && pNew->iHash>pOld->iHash); |
+#endif |
+} |
+ |
+/* |
+** Copy the contents of sample *pNew into the p->a[] array. If necessary, |
+** remove the least desirable sample from p->a[] to make room. |
+*/ |
+static void sampleInsert(Stat4Accum *p, Stat4Sample *pNew, int nEqZero){ |
+ Stat4Sample *pSample = 0; |
+ int i; |
+ |
+ assert( IsStat4 || nEqZero==0 ); |
+ |
+#ifdef SQLITE_ENABLE_STAT4 |
+ if( pNew->isPSample==0 ){ |
+ Stat4Sample *pUpgrade = 0; |
+ assert( pNew->anEq[pNew->iCol]>0 ); |
+ |
+ /* This sample is being added because the prefix that ends in column |
+ ** iCol occurs many times in the table. However, if we have already |
+ ** added a sample that shares this prefix, there is no need to add |
+ ** this one. Instead, upgrade the priority of the highest priority |
+ ** existing sample that shares this prefix. */ |
+ for(i=p->nSample-1; i>=0; i--){ |
+ Stat4Sample *pOld = &p->a[i]; |
+ if( pOld->anEq[pNew->iCol]==0 ){ |
+ if( pOld->isPSample ) return; |
+ assert( pOld->iCol>pNew->iCol ); |
+ assert( sampleIsBetter(p, pNew, pOld) ); |
+ if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){ |
+ pUpgrade = pOld; |
+ } |
+ } |
+ } |
+ if( pUpgrade ){ |
+ pUpgrade->iCol = pNew->iCol; |
+ pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol]; |
+ goto find_new_min; |
+ } |
+ } |
+#endif |
+ |
+ /* If necessary, remove sample iMin to make room for the new sample. */ |
+ if( p->nSample>=p->mxSample ){ |
+ Stat4Sample *pMin = &p->a[p->iMin]; |
+ tRowcnt *anEq = pMin->anEq; |
+ tRowcnt *anLt = pMin->anLt; |
+ tRowcnt *anDLt = pMin->anDLt; |
+ sampleClear(p->db, pMin); |
+ memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1)); |
+ pSample = &p->a[p->nSample-1]; |
+ pSample->nRowid = 0; |
+ pSample->anEq = anEq; |
+ pSample->anDLt = anDLt; |
+ pSample->anLt = anLt; |
+ p->nSample = p->mxSample-1; |
+ } |
+ |
+ /* The "rows less-than" for the rowid column must be greater than that |
+ ** for the last sample in the p->a[] array. Otherwise, the samples would |
+ ** be out of order. */ |
+#ifdef SQLITE_ENABLE_STAT4 |
+ assert( p->nSample==0 |
+ || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] ); |
+#endif |
+ |
+ /* Insert the new sample */ |
+ pSample = &p->a[p->nSample]; |
+ sampleCopy(p, pSample, pNew); |
+ p->nSample++; |
+ |
+ /* Zero the first nEqZero entries in the anEq[] array. */ |
+ memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero); |
+ |
+#ifdef SQLITE_ENABLE_STAT4 |
+ find_new_min: |
+#endif |
+ if( p->nSample>=p->mxSample ){ |
+ int iMin = -1; |
+ for(i=0; i<p->mxSample; i++){ |
+ if( p->a[i].isPSample ) continue; |
+ if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){ |
+ iMin = i; |
+ } |
+ } |
+ assert( iMin>=0 ); |
+ p->iMin = iMin; |
+ } |
+} |
+#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
+ |
+/* |
+** Field iChng of the index being scanned has changed. So at this point |
+** p->current contains a sample that reflects the previous row of the |
+** index. The value of anEq[iChng] and subsequent anEq[] elements are |
+** correct at this point. |
+*/ |
+static void samplePushPrevious(Stat4Accum *p, int iChng){ |
+#ifdef SQLITE_ENABLE_STAT4 |
+ int i; |
+ |
+ /* Check if any samples from the aBest[] array should be pushed |
+ ** into IndexSample.a[] at this point. */ |
+ for(i=(p->nCol-2); i>=iChng; i--){ |
+ Stat4Sample *pBest = &p->aBest[i]; |
+ pBest->anEq[i] = p->current.anEq[i]; |
+ if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){ |
+ sampleInsert(p, pBest, i); |
+ } |
+ } |
+ |
+ /* Update the anEq[] fields of any samples already collected. */ |
+ for(i=p->nSample-1; i>=0; i--){ |
+ int j; |
+ for(j=iChng; j<p->nCol; j++){ |
+ if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j]; |
+ } |
+ } |
+#endif |
+ |
+#if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4) |
+ if( iChng==0 ){ |
+ tRowcnt nLt = p->current.anLt[0]; |
+ tRowcnt nEq = p->current.anEq[0]; |
+ |
+ /* Check if this is to be a periodic sample. If so, add it. */ |
+ if( (nLt/p->nPSample)!=(nLt+nEq)/p->nPSample ){ |
+ p->current.isPSample = 1; |
+ sampleInsert(p, &p->current, 0); |
+ p->current.isPSample = 0; |
+ }else |
+ |
+ /* Or if it is a non-periodic sample. Add it in this case too. */ |
+ if( p->nSample<p->mxSample |
+ || sampleIsBetter(p, &p->current, &p->a[p->iMin]) |
+ ){ |
+ sampleInsert(p, &p->current, 0); |
+ } |
+ } |
+#endif |
+ |
+#ifndef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ UNUSED_PARAMETER( p ); |
+ UNUSED_PARAMETER( iChng ); |
+#endif |
+} |
+ |
+/* |
+** Implementation of the stat_push SQL function: stat_push(P,C,R) |
+** Arguments: |
+** |
+** P Pointer to the Stat4Accum object created by stat_init() |
+** C Index of left-most column to differ from previous row |
+** R Rowid for the current row. Might be a key record for |
+** WITHOUT ROWID tables. |
+** |
+** This SQL function always returns NULL. It's purpose it to accumulate |
+** statistical data and/or samples in the Stat4Accum object about the |
+** index being analyzed. The stat_get() SQL function will later be used to |
+** extract relevant information for constructing the sqlite_statN tables. |
+** |
+** The R parameter is only used for STAT3 and STAT4 |
+*/ |
+static void statPush( |
+ sqlite3_context *context, |
+ int argc, |
+ sqlite3_value **argv |
+){ |
+ int i; |
+ |
+ /* The three function arguments */ |
+ Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]); |
+ int iChng = sqlite3_value_int(argv[1]); |
+ |
+ UNUSED_PARAMETER( argc ); |
+ UNUSED_PARAMETER( context ); |
+ assert( p->nCol>0 ); |
+ assert( iChng<p->nCol ); |
+ |
+ if( p->nRow==0 ){ |
+ /* This is the first call to this function. Do initialization. */ |
+ for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1; |
+ }else{ |
+ /* Second and subsequent calls get processed here */ |
+ samplePushPrevious(p, iChng); |
+ |
+ /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply |
+ ** to the current row of the index. */ |
+ for(i=0; i<iChng; i++){ |
+ p->current.anEq[i]++; |
+ } |
+ for(i=iChng; i<p->nCol; i++){ |
+ p->current.anDLt[i]++; |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ p->current.anLt[i] += p->current.anEq[i]; |
+#endif |
+ p->current.anEq[i] = 1; |
+ } |
+ } |
+ p->nRow++; |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){ |
+ sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2])); |
+ }else{ |
+ sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]), |
+ sqlite3_value_blob(argv[2])); |
+ } |
+ p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345; |
+#endif |
+ |
+#ifdef SQLITE_ENABLE_STAT4 |
+ { |
+ tRowcnt nLt = p->current.anLt[p->nCol-1]; |
+ |
+ /* Check if this is to be a periodic sample. If so, add it. */ |
+ if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){ |
+ p->current.isPSample = 1; |
+ p->current.iCol = 0; |
+ sampleInsert(p, &p->current, p->nCol-1); |
+ p->current.isPSample = 0; |
+ } |
+ |
+ /* Update the aBest[] array. */ |
+ for(i=0; i<(p->nCol-1); i++){ |
+ p->current.iCol = i; |
+ if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){ |
+ sampleCopy(p, &p->aBest[i], &p->current); |
+ } |
+ } |
+ } |
+#endif |
+} |
+static const FuncDef statPushFuncdef = { |
+ 2+IsStat34, /* nArg */ |
+ SQLITE_UTF8, /* funcFlags */ |
+ 0, /* pUserData */ |
+ 0, /* pNext */ |
+ statPush, /* xFunc */ |
+ 0, /* xStep */ |
+ 0, /* xFinalize */ |
+ "stat_push", /* zName */ |
+ 0, /* pHash */ |
+ 0 /* pDestructor */ |
+}; |
+ |
+#define STAT_GET_STAT1 0 /* "stat" column of stat1 table */ |
+#define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */ |
+#define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */ |
+#define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */ |
+#define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */ |
+ |
+/* |
+** Implementation of the stat_get(P,J) SQL function. This routine is |
+** used to query statistical information that has been gathered into |
+** the Stat4Accum object by prior calls to stat_push(). The P parameter |
+** has type BLOB but it is really just a pointer to the Stat4Accum object. |
+** The content to returned is determined by the parameter J |
+** which is one of the STAT_GET_xxxx values defined above. |
+** |
+** If neither STAT3 nor STAT4 are enabled, then J is always |
+** STAT_GET_STAT1 and is hence omitted and this routine becomes |
+** a one-parameter function, stat_get(P), that always returns the |
+** stat1 table entry information. |
+*/ |
+static void statGet( |
+ sqlite3_context *context, |
+ int argc, |
+ sqlite3_value **argv |
+){ |
+ Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]); |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ /* STAT3 and STAT4 have a parameter on this routine. */ |
+ int eCall = sqlite3_value_int(argv[1]); |
+ assert( argc==2 ); |
+ assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ |
+ || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT |
+ || eCall==STAT_GET_NDLT |
+ ); |
+ if( eCall==STAT_GET_STAT1 ) |
+#else |
+ assert( argc==1 ); |
+#endif |
+ { |
+ /* Return the value to store in the "stat" column of the sqlite_stat1 |
+ ** table for this index. |
+ ** |
+ ** The value is a string composed of a list of integers describing |
+ ** the index. The first integer in the list is the total number of |
+ ** entries in the index. There is one additional integer in the list |
+ ** for each indexed column. This additional integer is an estimate of |
+ ** the number of rows matched by a stabbing query on the index using |
+ ** a key with the corresponding number of fields. In other words, |
+ ** if the index is on columns (a,b) and the sqlite_stat1 value is |
+ ** "100 10 2", then SQLite estimates that: |
+ ** |
+ ** * the index contains 100 rows, |
+ ** * "WHERE a=?" matches 10 rows, and |
+ ** * "WHERE a=? AND b=?" matches 2 rows. |
+ ** |
+ ** If D is the count of distinct values and K is the total number of |
+ ** rows, then each estimate is computed as: |
+ ** |
+ ** I = (K+D-1)/D |
+ */ |
+ char *z; |
+ int i; |
+ |
+ char *zRet = sqlite3MallocZero( (p->nKeyCol+1)*25 ); |
+ if( zRet==0 ){ |
+ sqlite3_result_error_nomem(context); |
+ return; |
+ } |
+ |
+ sqlite3_snprintf(24, zRet, "%llu", (u64)p->nRow); |
+ z = zRet + sqlite3Strlen30(zRet); |
+ for(i=0; i<p->nKeyCol; i++){ |
+ u64 nDistinct = p->current.anDLt[i] + 1; |
+ u64 iVal = (p->nRow + nDistinct - 1) / nDistinct; |
+ sqlite3_snprintf(24, z, " %llu", iVal); |
+ z += sqlite3Strlen30(z); |
+ assert( p->current.anEq[i] ); |
+ } |
+ assert( z[0]=='\0' && z>zRet ); |
+ |
+ sqlite3_result_text(context, zRet, -1, sqlite3_free); |
+ } |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ else if( eCall==STAT_GET_ROWID ){ |
+ if( p->iGet<0 ){ |
+ samplePushPrevious(p, 0); |
+ p->iGet = 0; |
+ } |
+ if( p->iGet<p->nSample ){ |
+ Stat4Sample *pS = p->a + p->iGet; |
+ if( pS->nRowid==0 ){ |
+ sqlite3_result_int64(context, pS->u.iRowid); |
+ }else{ |
+ sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid, |
+ SQLITE_TRANSIENT); |
+ } |
+ } |
+ }else{ |
+ tRowcnt *aCnt = 0; |
+ |
+ assert( p->iGet<p->nSample ); |
+ switch( eCall ){ |
+ case STAT_GET_NEQ: aCnt = p->a[p->iGet].anEq; break; |
+ case STAT_GET_NLT: aCnt = p->a[p->iGet].anLt; break; |
+ default: { |
+ aCnt = p->a[p->iGet].anDLt; |
+ p->iGet++; |
+ break; |
+ } |
+ } |
+ |
+ if( IsStat3 ){ |
+ sqlite3_result_int64(context, (i64)aCnt[0]); |
+ }else{ |
+ char *zRet = sqlite3MallocZero(p->nCol * 25); |
+ if( zRet==0 ){ |
+ sqlite3_result_error_nomem(context); |
+ }else{ |
+ int i; |
+ char *z = zRet; |
+ for(i=0; i<p->nCol; i++){ |
+ sqlite3_snprintf(24, z, "%llu ", (u64)aCnt[i]); |
+ z += sqlite3Strlen30(z); |
+ } |
+ assert( z[0]=='\0' && z>zRet ); |
+ z[-1] = '\0'; |
+ sqlite3_result_text(context, zRet, -1, sqlite3_free); |
+ } |
+ } |
+ } |
+#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
+#ifndef SQLITE_DEBUG |
+ UNUSED_PARAMETER( argc ); |
+#endif |
+} |
+static const FuncDef statGetFuncdef = { |
+ 1+IsStat34, /* nArg */ |
+ SQLITE_UTF8, /* funcFlags */ |
+ 0, /* pUserData */ |
+ 0, /* pNext */ |
+ statGet, /* xFunc */ |
+ 0, /* xStep */ |
+ 0, /* xFinalize */ |
+ "stat_get", /* zName */ |
+ 0, /* pHash */ |
+ 0 /* pDestructor */ |
+}; |
+ |
+static void callStatGet(Vdbe *v, int regStat4, int iParam, int regOut){ |
+ assert( regOut!=regStat4 && regOut!=regStat4+1 ); |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1); |
+#elif SQLITE_DEBUG |
+ assert( iParam==STAT_GET_STAT1 ); |
+#else |
+ UNUSED_PARAMETER( iParam ); |
+#endif |
+ sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4, regOut); |
+ sqlite3VdbeChangeP4(v, -1, (char*)&statGetFuncdef, P4_FUNCDEF); |
+ sqlite3VdbeChangeP5(v, 1 + IsStat34); |
+} |
+ |
+/* |
+** Generate code to do an analysis of all indices associated with |
+** a single table. |
+*/ |
+static void analyzeOneTable( |
+ Parse *pParse, /* Parser context */ |
+ Table *pTab, /* Table whose indices are to be analyzed */ |
+ Index *pOnlyIdx, /* If not NULL, only analyze this one index */ |
+ int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */ |
+ int iMem, /* Available memory locations begin here */ |
+ int iTab /* Next available cursor */ |
+){ |
+ sqlite3 *db = pParse->db; /* Database handle */ |
+ Index *pIdx; /* An index to being analyzed */ |
+ int iIdxCur; /* Cursor open on index being analyzed */ |
+ int iTabCur; /* Table cursor */ |
+ Vdbe *v; /* The virtual machine being built up */ |
+ int i; /* Loop counter */ |
+ int jZeroRows = -1; /* Jump from here if number of rows is zero */ |
+ int iDb; /* Index of database containing pTab */ |
+ u8 needTableCnt = 1; /* True to count the table */ |
+ int regNewRowid = iMem++; /* Rowid for the inserted record */ |
+ int regStat4 = iMem++; /* Register to hold Stat4Accum object */ |
+ int regChng = iMem++; /* Index of changed index field */ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ int regRowid = iMem++; /* Rowid argument passed to stat_push() */ |
+#endif |
+ int regTemp = iMem++; /* Temporary use register */ |
+ int regTabname = iMem++; /* Register containing table name */ |
+ int regIdxname = iMem++; /* Register containing index name */ |
+ int regStat1 = iMem++; /* Value for the stat column of sqlite_stat1 */ |
+ int regPrev = iMem; /* MUST BE LAST (see below) */ |
+ |
+ pParse->nMem = MAX(pParse->nMem, iMem); |
+ v = sqlite3GetVdbe(pParse); |
+ if( v==0 || NEVER(pTab==0) ){ |
+ return; |
+ } |
+ if( pTab->tnum==0 ){ |
+ /* Do not gather statistics on views or virtual tables */ |
+ return; |
+ } |
+ if( sqlite3_strnicmp(pTab->zName, "sqlite_", 7)==0 ){ |
+ /* Do not gather statistics on system tables */ |
+ return; |
+ } |
+ assert( sqlite3BtreeHoldsAllMutexes(db) ); |
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
+ assert( iDb>=0 ); |
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
+#ifndef SQLITE_OMIT_AUTHORIZATION |
+ if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, |
+ db->aDb[iDb].zName ) ){ |
+ return; |
+ } |
+#endif |
+ |
+ /* Establish a read-lock on the table at the shared-cache level. |
+ ** Open a read-only cursor on the table. Also allocate a cursor number |
+ ** to use for scanning indexes (iIdxCur). No index cursor is opened at |
+ ** this time though. */ |
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
+ iTabCur = iTab++; |
+ iIdxCur = iTab++; |
+ pParse->nTab = MAX(pParse->nTab, iTab); |
+ sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); |
+ sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0); |
+ |
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
+ int nCol; /* Number of columns in pIdx. "N" */ |
+ int addrRewind; /* Address of "OP_Rewind iIdxCur" */ |
+ int addrNextRow; /* Address of "next_row:" */ |
+ const char *zIdxName; /* Name of the index */ |
+ int nColTest; /* Number of columns to test for changes */ |
+ |
+ if( pOnlyIdx && pOnlyIdx!=pIdx ) continue; |
+ if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0; |
+ if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){ |
+ nCol = pIdx->nKeyCol; |
+ zIdxName = pTab->zName; |
+ nColTest = nCol - 1; |
+ }else{ |
+ nCol = pIdx->nColumn; |
+ zIdxName = pIdx->zName; |
+ nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1; |
+ } |
+ |
+ /* Populate the register containing the index name. */ |
+ sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, zIdxName, 0); |
+ VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName)); |
+ |
+ /* |
+ ** Pseudo-code for loop that calls stat_push(): |
+ ** |
+ ** Rewind csr |
+ ** if eof(csr) goto end_of_scan; |
+ ** regChng = 0 |
+ ** goto chng_addr_0; |
+ ** |
+ ** next_row: |
+ ** regChng = 0 |
+ ** if( idx(0) != regPrev(0) ) goto chng_addr_0 |
+ ** regChng = 1 |
+ ** if( idx(1) != regPrev(1) ) goto chng_addr_1 |
+ ** ... |
+ ** regChng = N |
+ ** goto chng_addr_N |
+ ** |
+ ** chng_addr_0: |
+ ** regPrev(0) = idx(0) |
+ ** chng_addr_1: |
+ ** regPrev(1) = idx(1) |
+ ** ... |
+ ** |
+ ** endDistinctTest: |
+ ** regRowid = idx(rowid) |
+ ** stat_push(P, regChng, regRowid) |
+ ** Next csr |
+ ** if !eof(csr) goto next_row; |
+ ** |
+ ** end_of_scan: |
+ */ |
+ |
+ /* Make sure there are enough memory cells allocated to accommodate |
+ ** the regPrev array and a trailing rowid (the rowid slot is required |
+ ** when building a record to insert into the sample column of |
+ ** the sqlite_stat4 table. */ |
+ pParse->nMem = MAX(pParse->nMem, regPrev+nColTest); |
+ |
+ /* Open a read-only cursor on the index being analyzed. */ |
+ assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) ); |
+ sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb); |
+ sqlite3VdbeSetP4KeyInfo(pParse, pIdx); |
+ VdbeComment((v, "%s", pIdx->zName)); |
+ |
+ /* Invoke the stat_init() function. The arguments are: |
+ ** |
+ ** (1) the number of columns in the index including the rowid |
+ ** (or for a WITHOUT ROWID table, the number of PK columns), |
+ ** (2) the number of columns in the key without the rowid/pk |
+ ** (3) the number of rows in the index, |
+ ** |
+ ** |
+ ** The third argument is only used for STAT3 and STAT4 |
+ */ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3); |
+#endif |
+ sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1); |
+ sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2); |
+ sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4+1, regStat4); |
+ sqlite3VdbeChangeP4(v, -1, (char*)&statInitFuncdef, P4_FUNCDEF); |
+ sqlite3VdbeChangeP5(v, 2+IsStat34); |
+ |
+ /* Implementation of the following: |
+ ** |
+ ** Rewind csr |
+ ** if eof(csr) goto end_of_scan; |
+ ** regChng = 0 |
+ ** goto next_push_0; |
+ ** |
+ */ |
+ addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); |
+ VdbeCoverage(v); |
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng); |
+ addrNextRow = sqlite3VdbeCurrentAddr(v); |
+ |
+ if( nColTest>0 ){ |
+ int endDistinctTest = sqlite3VdbeMakeLabel(v); |
+ int *aGotoChng; /* Array of jump instruction addresses */ |
+ aGotoChng = sqlite3DbMallocRaw(db, sizeof(int)*nColTest); |
+ if( aGotoChng==0 ) continue; |
+ |
+ /* |
+ ** next_row: |
+ ** regChng = 0 |
+ ** if( idx(0) != regPrev(0) ) goto chng_addr_0 |
+ ** regChng = 1 |
+ ** if( idx(1) != regPrev(1) ) goto chng_addr_1 |
+ ** ... |
+ ** regChng = N |
+ ** goto endDistinctTest |
+ */ |
+ sqlite3VdbeAddOp0(v, OP_Goto); |
+ addrNextRow = sqlite3VdbeCurrentAddr(v); |
+ if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){ |
+ /* For a single-column UNIQUE index, once we have found a non-NULL |
+ ** row, we know that all the rest will be distinct, so skip |
+ ** subsequent distinctness tests. */ |
+ sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest); |
+ VdbeCoverage(v); |
+ } |
+ for(i=0; i<nColTest; i++){ |
+ char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]); |
+ sqlite3VdbeAddOp2(v, OP_Integer, i, regChng); |
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp); |
+ aGotoChng[i] = |
+ sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ); |
+ sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); |
+ VdbeCoverage(v); |
+ } |
+ sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng); |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, endDistinctTest); |
+ |
+ |
+ /* |
+ ** chng_addr_0: |
+ ** regPrev(0) = idx(0) |
+ ** chng_addr_1: |
+ ** regPrev(1) = idx(1) |
+ ** ... |
+ */ |
+ sqlite3VdbeJumpHere(v, addrNextRow-1); |
+ for(i=0; i<nColTest; i++){ |
+ sqlite3VdbeJumpHere(v, aGotoChng[i]); |
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i); |
+ } |
+ sqlite3VdbeResolveLabel(v, endDistinctTest); |
+ sqlite3DbFree(db, aGotoChng); |
+ } |
+ |
+ /* |
+ ** chng_addr_N: |
+ ** regRowid = idx(rowid) // STAT34 only |
+ ** stat_push(P, regChng, regRowid) // 3rd parameter STAT34 only |
+ ** Next csr |
+ ** if !eof(csr) goto next_row; |
+ */ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ assert( regRowid==(regStat4+2) ); |
+ if( HasRowid(pTab) ){ |
+ sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid); |
+ }else{ |
+ Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); |
+ int j, k, regKey; |
+ regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol); |
+ for(j=0; j<pPk->nKeyCol; j++){ |
+ k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); |
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j); |
+ VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName)); |
+ } |
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid); |
+ sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); |
+ } |
+#endif |
+ assert( regChng==(regStat4+1) ); |
+ sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp); |
+ sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF); |
+ sqlite3VdbeChangeP5(v, 2+IsStat34); |
+ sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v); |
+ |
+ /* Add the entry to the stat1 table. */ |
+ callStatGet(v, regStat4, STAT_GET_STAT1, regStat1); |
+ assert( "BBB"[0]==SQLITE_AFF_TEXT ); |
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); |
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); |
+ sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); |
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
+ |
+ /* Add the entries to the stat3 or stat4 table. */ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ { |
+ int regEq = regStat1; |
+ int regLt = regStat1+1; |
+ int regDLt = regStat1+2; |
+ int regSample = regStat1+3; |
+ int regCol = regStat1+4; |
+ int regSampleRowid = regCol + nCol; |
+ int addrNext; |
+ int addrIsNull; |
+ u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound; |
+ |
+ pParse->nMem = MAX(pParse->nMem, regCol+nCol); |
+ |
+ addrNext = sqlite3VdbeCurrentAddr(v); |
+ callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid); |
+ addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid); |
+ VdbeCoverage(v); |
+ callStatGet(v, regStat4, STAT_GET_NEQ, regEq); |
+ callStatGet(v, regStat4, STAT_GET_NLT, regLt); |
+ callStatGet(v, regStat4, STAT_GET_NDLT, regDLt); |
+ sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0); |
+ /* We know that the regSampleRowid row exists because it was read by |
+ ** the previous loop. Thus the not-found jump of seekOp will never |
+ ** be taken */ |
+ VdbeCoverageNeverTaken(v); |
+#ifdef SQLITE_ENABLE_STAT3 |
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, |
+ pIdx->aiColumn[0], regSample); |
+#else |
+ for(i=0; i<nCol; i++){ |
+ i16 iCol = pIdx->aiColumn[i]; |
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, iCol, regCol+i); |
+ } |
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample); |
+#endif |
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp); |
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid); |
+ sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid); |
+ sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */ |
+ sqlite3VdbeJumpHere(v, addrIsNull); |
+ } |
+#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
+ |
+ /* End of analysis */ |
+ sqlite3VdbeJumpHere(v, addrRewind); |
+ } |
+ |
+ |
+ /* Create a single sqlite_stat1 entry containing NULL as the index |
+ ** name and the row count as the content. |
+ */ |
+ if( pOnlyIdx==0 && needTableCnt ){ |
+ VdbeComment((v, "%s", pTab->zName)); |
+ sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1); |
+ jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v); |
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname); |
+ assert( "BBB"[0]==SQLITE_AFF_TEXT ); |
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); |
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); |
+ sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); |
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
+ sqlite3VdbeJumpHere(v, jZeroRows); |
+ } |
+} |
+ |
+ |
+/* |
+** Generate code that will cause the most recent index analysis to |
+** be loaded into internal hash tables where is can be used. |
+*/ |
+static void loadAnalysis(Parse *pParse, int iDb){ |
+ Vdbe *v = sqlite3GetVdbe(pParse); |
+ if( v ){ |
+ sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb); |
+ } |
+} |
+ |
+/* |
+** Generate code that will do an analysis of an entire database |
+*/ |
+static void analyzeDatabase(Parse *pParse, int iDb){ |
+ sqlite3 *db = pParse->db; |
+ Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ |
+ HashElem *k; |
+ int iStatCur; |
+ int iMem; |
+ int iTab; |
+ |
+ sqlite3BeginWriteOperation(pParse, 0, iDb); |
+ iStatCur = pParse->nTab; |
+ pParse->nTab += 3; |
+ openStatTable(pParse, iDb, iStatCur, 0, 0); |
+ iMem = pParse->nMem+1; |
+ iTab = pParse->nTab; |
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
+ for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ |
+ Table *pTab = (Table*)sqliteHashData(k); |
+ analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab); |
+ } |
+ loadAnalysis(pParse, iDb); |
+} |
+ |
+/* |
+** Generate code that will do an analysis of a single table in |
+** a database. If pOnlyIdx is not NULL then it is a single index |
+** in pTab that should be analyzed. |
+*/ |
+static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){ |
+ int iDb; |
+ int iStatCur; |
+ |
+ assert( pTab!=0 ); |
+ assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); |
+ iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
+ sqlite3BeginWriteOperation(pParse, 0, iDb); |
+ iStatCur = pParse->nTab; |
+ pParse->nTab += 3; |
+ if( pOnlyIdx ){ |
+ openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx"); |
+ }else{ |
+ openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl"); |
+ } |
+ analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab); |
+ loadAnalysis(pParse, iDb); |
+} |
+ |
+/* |
+** Generate code for the ANALYZE command. The parser calls this routine |
+** when it recognizes an ANALYZE command. |
+** |
+** ANALYZE -- 1 |
+** ANALYZE <database> -- 2 |
+** ANALYZE ?<database>.?<tablename> -- 3 |
+** |
+** Form 1 causes all indices in all attached databases to be analyzed. |
+** Form 2 analyzes all indices the single database named. |
+** Form 3 analyzes all indices associated with the named table. |
+*/ |
+void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){ |
+ sqlite3 *db = pParse->db; |
+ int iDb; |
+ int i; |
+ char *z, *zDb; |
+ Table *pTab; |
+ Index *pIdx; |
+ Token *pTableName; |
+ Vdbe *v; |
+ |
+ /* Read the database schema. If an error occurs, leave an error message |
+ ** and code in pParse and return NULL. */ |
+ assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); |
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
+ return; |
+ } |
+ |
+ assert( pName2!=0 || pName1==0 ); |
+ if( pName1==0 ){ |
+ /* Form 1: Analyze everything */ |
+ for(i=0; i<db->nDb; i++){ |
+ if( i==1 ) continue; /* Do not analyze the TEMP database */ |
+ analyzeDatabase(pParse, i); |
+ } |
+ }else if( pName2->n==0 ){ |
+ /* Form 2: Analyze the database or table named */ |
+ iDb = sqlite3FindDb(db, pName1); |
+ if( iDb>=0 ){ |
+ analyzeDatabase(pParse, iDb); |
+ }else{ |
+ z = sqlite3NameFromToken(db, pName1); |
+ if( z ){ |
+ if( (pIdx = sqlite3FindIndex(db, z, 0))!=0 ){ |
+ analyzeTable(pParse, pIdx->pTable, pIdx); |
+ }else if( (pTab = sqlite3LocateTable(pParse, 0, z, 0))!=0 ){ |
+ analyzeTable(pParse, pTab, 0); |
+ } |
+ sqlite3DbFree(db, z); |
+ } |
+ } |
+ }else{ |
+ /* Form 3: Analyze the fully qualified table name */ |
+ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName); |
+ if( iDb>=0 ){ |
+ zDb = db->aDb[iDb].zName; |
+ z = sqlite3NameFromToken(db, pTableName); |
+ if( z ){ |
+ if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){ |
+ analyzeTable(pParse, pIdx->pTable, pIdx); |
+ }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){ |
+ analyzeTable(pParse, pTab, 0); |
+ } |
+ sqlite3DbFree(db, z); |
+ } |
+ } |
+ } |
+ v = sqlite3GetVdbe(pParse); |
+ if( v ) sqlite3VdbeAddOp0(v, OP_Expire); |
+} |
+ |
+/* |
+** Used to pass information from the analyzer reader through to the |
+** callback routine. |
+*/ |
+typedef struct analysisInfo analysisInfo; |
+struct analysisInfo { |
+ sqlite3 *db; |
+ const char *zDatabase; |
+}; |
+ |
+/* |
+** The first argument points to a nul-terminated string containing a |
+** list of space separated integers. Read the first nOut of these into |
+** the array aOut[]. |
+*/ |
+static void decodeIntArray( |
+ char *zIntArray, /* String containing int array to decode */ |
+ int nOut, /* Number of slots in aOut[] */ |
+ tRowcnt *aOut, /* Store integers here */ |
+ LogEst *aLog, /* Or, if aOut==0, here */ |
+ Index *pIndex /* Handle extra flags for this index, if not NULL */ |
+){ |
+ char *z = zIntArray; |
+ int c; |
+ int i; |
+ tRowcnt v; |
+ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ if( z==0 ) z = ""; |
+#else |
+ assert( z!=0 ); |
+#endif |
+ for(i=0; *z && i<nOut; i++){ |
+ v = 0; |
+ while( (c=z[0])>='0' && c<='9' ){ |
+ v = v*10 + c - '0'; |
+ z++; |
+ } |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ if( aOut ) aOut[i] = v; |
+ if( aLog ) aLog[i] = sqlite3LogEst(v); |
+#else |
+ assert( aOut==0 ); |
+ UNUSED_PARAMETER(aOut); |
+ assert( aLog!=0 ); |
+ aLog[i] = sqlite3LogEst(v); |
+#endif |
+ if( *z==' ' ) z++; |
+ } |
+#ifndef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ assert( pIndex!=0 ); |
+#else |
+ if( pIndex ) |
+#endif |
+ while( z[0] ){ |
+ if( sqlite3_strglob("unordered*", z)==0 ){ |
+ pIndex->bUnordered = 1; |
+ }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){ |
+ pIndex->szIdxRow = sqlite3LogEst(sqlite3Atoi(z+3)); |
+ } |
+#ifdef SQLITE_ENABLE_COSTMULT |
+ else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){ |
+ pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9)); |
+ } |
+#endif |
+ while( z[0]!=0 && z[0]!=' ' ) z++; |
+ while( z[0]==' ' ) z++; |
+ } |
+} |
+ |
+/* |
+** This callback is invoked once for each index when reading the |
+** sqlite_stat1 table. |
+** |
+** argv[0] = name of the table |
+** argv[1] = name of the index (might be NULL) |
+** argv[2] = results of analysis - on integer for each column |
+** |
+** Entries for which argv[1]==NULL simply record the number of rows in |
+** the table. |
+*/ |
+static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){ |
+ analysisInfo *pInfo = (analysisInfo*)pData; |
+ Index *pIndex; |
+ Table *pTable; |
+ const char *z; |
+ |
+ assert( argc==3 ); |
+ UNUSED_PARAMETER2(NotUsed, argc); |
+ |
+ if( argv==0 || argv[0]==0 || argv[2]==0 ){ |
+ return 0; |
+ } |
+ pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase); |
+ if( pTable==0 ){ |
+ return 0; |
+ } |
+ if( argv[1]==0 ){ |
+ pIndex = 0; |
+ }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){ |
+ pIndex = sqlite3PrimaryKeyIndex(pTable); |
+ }else{ |
+ pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase); |
+ } |
+ z = argv[2]; |
+ |
+ if( pIndex ){ |
+ int nCol = pIndex->nKeyCol+1; |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ tRowcnt * const aiRowEst = pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero( |
+ sizeof(tRowcnt) * nCol |
+ ); |
+ if( aiRowEst==0 ) pInfo->db->mallocFailed = 1; |
+#else |
+ tRowcnt * const aiRowEst = 0; |
+#endif |
+ pIndex->bUnordered = 0; |
+ decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex); |
+ if( pIndex->pPartIdxWhere==0 ) pTable->nRowLogEst = pIndex->aiRowLogEst[0]; |
+ }else{ |
+ Index fakeIdx; |
+ fakeIdx.szIdxRow = pTable->szTabRow; |
+#ifdef SQLITE_ENABLE_COSTMULT |
+ fakeIdx.pTable = pTable; |
+#endif |
+ decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx); |
+ pTable->szTabRow = fakeIdx.szIdxRow; |
+ } |
+ |
+ return 0; |
+} |
+ |
+/* |
+** If the Index.aSample variable is not NULL, delete the aSample[] array |
+** and its contents. |
+*/ |
+void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ if( pIdx->aSample ){ |
+ int j; |
+ for(j=0; j<pIdx->nSample; j++){ |
+ IndexSample *p = &pIdx->aSample[j]; |
+ sqlite3DbFree(db, p->p); |
+ } |
+ sqlite3DbFree(db, pIdx->aSample); |
+ } |
+ if( db && db->pnBytesFreed==0 ){ |
+ pIdx->nSample = 0; |
+ pIdx->aSample = 0; |
+ } |
+#else |
+ UNUSED_PARAMETER(db); |
+ UNUSED_PARAMETER(pIdx); |
+#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
+} |
+ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+/* |
+** Populate the pIdx->aAvgEq[] array based on the samples currently |
+** stored in pIdx->aSample[]. |
+*/ |
+static void initAvgEq(Index *pIdx){ |
+ if( pIdx ){ |
+ IndexSample *aSample = pIdx->aSample; |
+ IndexSample *pFinal = &aSample[pIdx->nSample-1]; |
+ int iCol; |
+ int nCol = 1; |
+ if( pIdx->nSampleCol>1 ){ |
+ /* If this is stat4 data, then calculate aAvgEq[] values for all |
+ ** sample columns except the last. The last is always set to 1, as |
+ ** once the trailing PK fields are considered all index keys are |
+ ** unique. */ |
+ nCol = pIdx->nSampleCol-1; |
+ pIdx->aAvgEq[nCol] = 1; |
+ } |
+ for(iCol=0; iCol<nCol; iCol++){ |
+ int nSample = pIdx->nSample; |
+ int i; /* Used to iterate through samples */ |
+ tRowcnt sumEq = 0; /* Sum of the nEq values */ |
+ tRowcnt avgEq = 0; |
+ tRowcnt nRow; /* Number of rows in index */ |
+ i64 nSum100 = 0; /* Number of terms contributing to sumEq */ |
+ i64 nDist100; /* Number of distinct values in index */ |
+ |
+ if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){ |
+ nRow = pFinal->anLt[iCol]; |
+ nDist100 = (i64)100 * pFinal->anDLt[iCol]; |
+ nSample--; |
+ }else{ |
+ nRow = pIdx->aiRowEst[0]; |
+ nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1]; |
+ } |
+ |
+ /* Set nSum to the number of distinct (iCol+1) field prefixes that |
+ ** occur in the stat4 table for this index. Set sumEq to the sum of |
+ ** the nEq values for column iCol for the same set (adding the value |
+ ** only once where there exist duplicate prefixes). */ |
+ for(i=0; i<nSample; i++){ |
+ if( i==(pIdx->nSample-1) |
+ || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] |
+ ){ |
+ sumEq += aSample[i].anEq[iCol]; |
+ nSum100 += 100; |
+ } |
+ } |
+ |
+ if( nDist100>nSum100 ){ |
+ avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100); |
+ } |
+ if( avgEq==0 ) avgEq = 1; |
+ pIdx->aAvgEq[iCol] = avgEq; |
+ } |
+ } |
+} |
+ |
+/* |
+** Look up an index by name. Or, if the name of a WITHOUT ROWID table |
+** is supplied instead, find the PRIMARY KEY index for that table. |
+*/ |
+static Index *findIndexOrPrimaryKey( |
+ sqlite3 *db, |
+ const char *zName, |
+ const char *zDb |
+){ |
+ Index *pIdx = sqlite3FindIndex(db, zName, zDb); |
+ if( pIdx==0 ){ |
+ Table *pTab = sqlite3FindTable(db, zName, zDb); |
+ if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab); |
+ } |
+ return pIdx; |
+} |
+ |
+/* |
+** Load the content from either the sqlite_stat4 or sqlite_stat3 table |
+** into the relevant Index.aSample[] arrays. |
+** |
+** Arguments zSql1 and zSql2 must point to SQL statements that return |
+** data equivalent to the following (statements are different for stat3, |
+** see the caller of this function for details): |
+** |
+** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx |
+** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4 |
+** |
+** where %Q is replaced with the database name before the SQL is executed. |
+*/ |
+static int loadStatTbl( |
+ sqlite3 *db, /* Database handle */ |
+ int bStat3, /* Assume single column records only */ |
+ const char *zSql1, /* SQL statement 1 (see above) */ |
+ const char *zSql2, /* SQL statement 2 (see above) */ |
+ const char *zDb /* Database name (e.g. "main") */ |
+){ |
+ int rc; /* Result codes from subroutines */ |
+ sqlite3_stmt *pStmt = 0; /* An SQL statement being run */ |
+ char *zSql; /* Text of the SQL statement */ |
+ Index *pPrevIdx = 0; /* Previous index in the loop */ |
+ IndexSample *pSample; /* A slot in pIdx->aSample[] */ |
+ |
+ assert( db->lookaside.bEnabled==0 ); |
+ zSql = sqlite3MPrintf(db, zSql1, zDb); |
+ if( !zSql ){ |
+ return SQLITE_NOMEM; |
+ } |
+ rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); |
+ sqlite3DbFree(db, zSql); |
+ if( rc ) return rc; |
+ |
+ while( sqlite3_step(pStmt)==SQLITE_ROW ){ |
+ int nIdxCol = 1; /* Number of columns in stat4 records */ |
+ |
+ char *zIndex; /* Index name */ |
+ Index *pIdx; /* Pointer to the index object */ |
+ int nSample; /* Number of samples */ |
+ int nByte; /* Bytes of space required */ |
+ int i; /* Bytes of space required */ |
+ tRowcnt *pSpace; |
+ |
+ zIndex = (char *)sqlite3_column_text(pStmt, 0); |
+ if( zIndex==0 ) continue; |
+ nSample = sqlite3_column_int(pStmt, 1); |
+ pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); |
+ assert( pIdx==0 || bStat3 || pIdx->nSample==0 ); |
+ /* Index.nSample is non-zero at this point if data has already been |
+ ** loaded from the stat4 table. In this case ignore stat3 data. */ |
+ if( pIdx==0 || pIdx->nSample ) continue; |
+ if( bStat3==0 ){ |
+ assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 ); |
+ if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){ |
+ nIdxCol = pIdx->nKeyCol; |
+ }else{ |
+ nIdxCol = pIdx->nColumn; |
+ } |
+ } |
+ pIdx->nSampleCol = nIdxCol; |
+ nByte = sizeof(IndexSample) * nSample; |
+ nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample; |
+ nByte += nIdxCol * sizeof(tRowcnt); /* Space for Index.aAvgEq[] */ |
+ |
+ pIdx->aSample = sqlite3DbMallocZero(db, nByte); |
+ if( pIdx->aSample==0 ){ |
+ sqlite3_finalize(pStmt); |
+ return SQLITE_NOMEM; |
+ } |
+ pSpace = (tRowcnt*)&pIdx->aSample[nSample]; |
+ pIdx->aAvgEq = pSpace; pSpace += nIdxCol; |
+ for(i=0; i<nSample; i++){ |
+ pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol; |
+ pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol; |
+ pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol; |
+ } |
+ assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) ); |
+ } |
+ rc = sqlite3_finalize(pStmt); |
+ if( rc ) return rc; |
+ |
+ zSql = sqlite3MPrintf(db, zSql2, zDb); |
+ if( !zSql ){ |
+ return SQLITE_NOMEM; |
+ } |
+ rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); |
+ sqlite3DbFree(db, zSql); |
+ if( rc ) return rc; |
+ |
+ while( sqlite3_step(pStmt)==SQLITE_ROW ){ |
+ char *zIndex; /* Index name */ |
+ Index *pIdx; /* Pointer to the index object */ |
+ int nCol = 1; /* Number of columns in index */ |
+ |
+ zIndex = (char *)sqlite3_column_text(pStmt, 0); |
+ if( zIndex==0 ) continue; |
+ pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); |
+ if( pIdx==0 ) continue; |
+ /* This next condition is true if data has already been loaded from |
+ ** the sqlite_stat4 table. In this case ignore stat3 data. */ |
+ nCol = pIdx->nSampleCol; |
+ if( bStat3 && nCol>1 ) continue; |
+ if( pIdx!=pPrevIdx ){ |
+ initAvgEq(pPrevIdx); |
+ pPrevIdx = pIdx; |
+ } |
+ pSample = &pIdx->aSample[pIdx->nSample]; |
+ decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0); |
+ decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0); |
+ decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0); |
+ |
+ /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer. |
+ ** This is in case the sample record is corrupted. In that case, the |
+ ** sqlite3VdbeRecordCompare() may read up to two varints past the |
+ ** end of the allocated buffer before it realizes it is dealing with |
+ ** a corrupt record. Adding the two 0x00 bytes prevents this from causing |
+ ** a buffer overread. */ |
+ pSample->n = sqlite3_column_bytes(pStmt, 4); |
+ pSample->p = sqlite3DbMallocZero(db, pSample->n + 2); |
+ if( pSample->p==0 ){ |
+ sqlite3_finalize(pStmt); |
+ return SQLITE_NOMEM; |
+ } |
+ memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n); |
+ pIdx->nSample++; |
+ } |
+ rc = sqlite3_finalize(pStmt); |
+ if( rc==SQLITE_OK ) initAvgEq(pPrevIdx); |
+ return rc; |
+} |
+ |
+/* |
+** Load content from the sqlite_stat4 and sqlite_stat3 tables into |
+** the Index.aSample[] arrays of all indices. |
+*/ |
+static int loadStat4(sqlite3 *db, const char *zDb){ |
+ int rc = SQLITE_OK; /* Result codes from subroutines */ |
+ |
+ assert( db->lookaside.bEnabled==0 ); |
+ if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){ |
+ rc = loadStatTbl(db, 0, |
+ "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx", |
+ "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4", |
+ zDb |
+ ); |
+ } |
+ |
+ if( rc==SQLITE_OK && sqlite3FindTable(db, "sqlite_stat3", zDb) ){ |
+ rc = loadStatTbl(db, 1, |
+ "SELECT idx,count(*) FROM %Q.sqlite_stat3 GROUP BY idx", |
+ "SELECT idx,neq,nlt,ndlt,sqlite_record(sample) FROM %Q.sqlite_stat3", |
+ zDb |
+ ); |
+ } |
+ |
+ return rc; |
+} |
+#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
+ |
+/* |
+** Load the content of the sqlite_stat1 and sqlite_stat3/4 tables. The |
+** contents of sqlite_stat1 are used to populate the Index.aiRowEst[] |
+** arrays. The contents of sqlite_stat3/4 are used to populate the |
+** Index.aSample[] arrays. |
+** |
+** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR |
+** is returned. In this case, even if SQLITE_ENABLE_STAT3/4 was defined |
+** during compilation and the sqlite_stat3/4 table is present, no data is |
+** read from it. |
+** |
+** If SQLITE_ENABLE_STAT3/4 was defined during compilation and the |
+** sqlite_stat4 table is not present in the database, SQLITE_ERROR is |
+** returned. However, in this case, data is read from the sqlite_stat1 |
+** table (if it is present) before returning. |
+** |
+** If an OOM error occurs, this function always sets db->mallocFailed. |
+** This means if the caller does not care about other errors, the return |
+** code may be ignored. |
+*/ |
+int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ |
+ analysisInfo sInfo; |
+ HashElem *i; |
+ char *zSql; |
+ int rc; |
+ |
+ assert( iDb>=0 && iDb<db->nDb ); |
+ assert( db->aDb[iDb].pBt!=0 ); |
+ |
+ /* Clear any prior statistics */ |
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
+ for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ |
+ Index *pIdx = sqliteHashData(i); |
+ sqlite3DefaultRowEst(pIdx); |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ sqlite3DeleteIndexSamples(db, pIdx); |
+ pIdx->aSample = 0; |
+#endif |
+ } |
+ |
+ /* Check to make sure the sqlite_stat1 table exists */ |
+ sInfo.db = db; |
+ sInfo.zDatabase = db->aDb[iDb].zName; |
+ if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){ |
+ return SQLITE_ERROR; |
+ } |
+ |
+ /* Load new statistics out of the sqlite_stat1 table */ |
+ zSql = sqlite3MPrintf(db, |
+ "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase); |
+ if( zSql==0 ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); |
+ sqlite3DbFree(db, zSql); |
+ } |
+ |
+ |
+ /* Load the statistics from the sqlite_stat4 table. */ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ if( rc==SQLITE_OK ){ |
+ int lookasideEnabled = db->lookaside.bEnabled; |
+ db->lookaside.bEnabled = 0; |
+ rc = loadStat4(db, sInfo.zDatabase); |
+ db->lookaside.bEnabled = lookasideEnabled; |
+ } |
+ for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ |
+ Index *pIdx = sqliteHashData(i); |
+ sqlite3_free(pIdx->aiRowEst); |
+ pIdx->aiRowEst = 0; |
+ } |
+#endif |
+ |
+ if( rc==SQLITE_NOMEM ){ |
+ db->mallocFailed = 1; |
+ } |
+ return rc; |
+} |
+ |
+ |
+#endif /* SQLITE_OMIT_ANALYZE */ |