Index: third_party/sqlite/sqlite-src-3080704/src/build.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/src/build.c b/third_party/sqlite/sqlite-src-3080704/src/build.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..b897494db3c2e478402917cfbe724de567177ac7 |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3080704/src/build.c |
@@ -0,0 +1,4293 @@ |
+/* |
+** 2001 September 15 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** This file contains C code routines that are called by the SQLite parser |
+** when syntax rules are reduced. The routines in this file handle the |
+** following kinds of SQL syntax: |
+** |
+** CREATE TABLE |
+** DROP TABLE |
+** CREATE INDEX |
+** DROP INDEX |
+** creating ID lists |
+** BEGIN TRANSACTION |
+** COMMIT |
+** ROLLBACK |
+*/ |
+#include "sqliteInt.h" |
+ |
+/* |
+** This routine is called when a new SQL statement is beginning to |
+** be parsed. Initialize the pParse structure as needed. |
+*/ |
+void sqlite3BeginParse(Parse *pParse, int explainFlag){ |
+ pParse->explain = (u8)explainFlag; |
+ pParse->nVar = 0; |
+} |
+ |
+#ifndef SQLITE_OMIT_SHARED_CACHE |
+/* |
+** The TableLock structure is only used by the sqlite3TableLock() and |
+** codeTableLocks() functions. |
+*/ |
+struct TableLock { |
+ int iDb; /* The database containing the table to be locked */ |
+ int iTab; /* The root page of the table to be locked */ |
+ u8 isWriteLock; /* True for write lock. False for a read lock */ |
+ const char *zName; /* Name of the table */ |
+}; |
+ |
+/* |
+** Record the fact that we want to lock a table at run-time. |
+** |
+** The table to be locked has root page iTab and is found in database iDb. |
+** A read or a write lock can be taken depending on isWritelock. |
+** |
+** This routine just records the fact that the lock is desired. The |
+** code to make the lock occur is generated by a later call to |
+** codeTableLocks() which occurs during sqlite3FinishCoding(). |
+*/ |
+void sqlite3TableLock( |
+ Parse *pParse, /* Parsing context */ |
+ int iDb, /* Index of the database containing the table to lock */ |
+ int iTab, /* Root page number of the table to be locked */ |
+ u8 isWriteLock, /* True for a write lock */ |
+ const char *zName /* Name of the table to be locked */ |
+){ |
+ Parse *pToplevel = sqlite3ParseToplevel(pParse); |
+ int i; |
+ int nBytes; |
+ TableLock *p; |
+ assert( iDb>=0 ); |
+ |
+ for(i=0; i<pToplevel->nTableLock; i++){ |
+ p = &pToplevel->aTableLock[i]; |
+ if( p->iDb==iDb && p->iTab==iTab ){ |
+ p->isWriteLock = (p->isWriteLock || isWriteLock); |
+ return; |
+ } |
+ } |
+ |
+ nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); |
+ pToplevel->aTableLock = |
+ sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); |
+ if( pToplevel->aTableLock ){ |
+ p = &pToplevel->aTableLock[pToplevel->nTableLock++]; |
+ p->iDb = iDb; |
+ p->iTab = iTab; |
+ p->isWriteLock = isWriteLock; |
+ p->zName = zName; |
+ }else{ |
+ pToplevel->nTableLock = 0; |
+ pToplevel->db->mallocFailed = 1; |
+ } |
+} |
+ |
+/* |
+** Code an OP_TableLock instruction for each table locked by the |
+** statement (configured by calls to sqlite3TableLock()). |
+*/ |
+static void codeTableLocks(Parse *pParse){ |
+ int i; |
+ Vdbe *pVdbe; |
+ |
+ pVdbe = sqlite3GetVdbe(pParse); |
+ assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ |
+ |
+ for(i=0; i<pParse->nTableLock; i++){ |
+ TableLock *p = &pParse->aTableLock[i]; |
+ int p1 = p->iDb; |
+ sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, |
+ p->zName, P4_STATIC); |
+ } |
+} |
+#else |
+ #define codeTableLocks(x) |
+#endif |
+ |
+/* |
+** Return TRUE if the given yDbMask object is empty - if it contains no |
+** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() |
+** macros when SQLITE_MAX_ATTACHED is greater than 30. |
+*/ |
+#if SQLITE_MAX_ATTACHED>30 |
+int sqlite3DbMaskAllZero(yDbMask m){ |
+ int i; |
+ for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; |
+ return 1; |
+} |
+#endif |
+ |
+/* |
+** This routine is called after a single SQL statement has been |
+** parsed and a VDBE program to execute that statement has been |
+** prepared. This routine puts the finishing touches on the |
+** VDBE program and resets the pParse structure for the next |
+** parse. |
+** |
+** Note that if an error occurred, it might be the case that |
+** no VDBE code was generated. |
+*/ |
+void sqlite3FinishCoding(Parse *pParse){ |
+ sqlite3 *db; |
+ Vdbe *v; |
+ |
+ assert( pParse->pToplevel==0 ); |
+ db = pParse->db; |
+ if( db->mallocFailed ) return; |
+ if( pParse->nested ) return; |
+ if( pParse->nErr ) return; |
+ |
+ /* Begin by generating some termination code at the end of the |
+ ** vdbe program |
+ */ |
+ v = sqlite3GetVdbe(pParse); |
+ assert( !pParse->isMultiWrite |
+ || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); |
+ if( v ){ |
+ while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){} |
+ sqlite3VdbeAddOp0(v, OP_Halt); |
+ |
+#if SQLITE_USER_AUTHENTICATION |
+ if( pParse->nTableLock>0 && db->init.busy==0 ){ |
+ sqlite3UserAuthInit(db); |
+ if( db->auth.authLevel<UAUTH_User ){ |
+ pParse->rc = SQLITE_AUTH_USER; |
+ sqlite3ErrorMsg(pParse, "user not authenticated"); |
+ return; |
+ } |
+ } |
+#endif |
+ |
+ /* The cookie mask contains one bit for each database file open. |
+ ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are |
+ ** set for each database that is used. Generate code to start a |
+ ** transaction on each used database and to verify the schema cookie |
+ ** on each used database. |
+ */ |
+ if( db->mallocFailed==0 |
+ && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) |
+ ){ |
+ int iDb, i; |
+ assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); |
+ sqlite3VdbeJumpHere(v, 0); |
+ for(iDb=0; iDb<db->nDb; iDb++){ |
+ if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; |
+ sqlite3VdbeUsesBtree(v, iDb); |
+ sqlite3VdbeAddOp4Int(v, |
+ OP_Transaction, /* Opcode */ |
+ iDb, /* P1 */ |
+ DbMaskTest(pParse->writeMask,iDb), /* P2 */ |
+ pParse->cookieValue[iDb], /* P3 */ |
+ db->aDb[iDb].pSchema->iGeneration /* P4 */ |
+ ); |
+ if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); |
+ } |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ for(i=0; i<pParse->nVtabLock; i++){ |
+ char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); |
+ sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); |
+ } |
+ pParse->nVtabLock = 0; |
+#endif |
+ |
+ /* Once all the cookies have been verified and transactions opened, |
+ ** obtain the required table-locks. This is a no-op unless the |
+ ** shared-cache feature is enabled. |
+ */ |
+ codeTableLocks(pParse); |
+ |
+ /* Initialize any AUTOINCREMENT data structures required. |
+ */ |
+ sqlite3AutoincrementBegin(pParse); |
+ |
+ /* Code constant expressions that where factored out of inner loops */ |
+ if( pParse->pConstExpr ){ |
+ ExprList *pEL = pParse->pConstExpr; |
+ pParse->okConstFactor = 0; |
+ for(i=0; i<pEL->nExpr; i++){ |
+ sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); |
+ } |
+ } |
+ |
+ /* Finally, jump back to the beginning of the executable code. */ |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, 1); |
+ } |
+ } |
+ |
+ |
+ /* Get the VDBE program ready for execution |
+ */ |
+ if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){ |
+ assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ |
+ /* A minimum of one cursor is required if autoincrement is used |
+ * See ticket [a696379c1f08866] */ |
+ if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; |
+ sqlite3VdbeMakeReady(v, pParse); |
+ pParse->rc = SQLITE_DONE; |
+ pParse->colNamesSet = 0; |
+ }else{ |
+ pParse->rc = SQLITE_ERROR; |
+ } |
+ pParse->nTab = 0; |
+ pParse->nMem = 0; |
+ pParse->nSet = 0; |
+ pParse->nVar = 0; |
+ DbMaskZero(pParse->cookieMask); |
+} |
+ |
+/* |
+** Run the parser and code generator recursively in order to generate |
+** code for the SQL statement given onto the end of the pParse context |
+** currently under construction. When the parser is run recursively |
+** this way, the final OP_Halt is not appended and other initialization |
+** and finalization steps are omitted because those are handling by the |
+** outermost parser. |
+** |
+** Not everything is nestable. This facility is designed to permit |
+** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use |
+** care if you decide to try to use this routine for some other purposes. |
+*/ |
+void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ |
+ va_list ap; |
+ char *zSql; |
+ char *zErrMsg = 0; |
+ sqlite3 *db = pParse->db; |
+# define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) |
+ char saveBuf[SAVE_SZ]; |
+ |
+ if( pParse->nErr ) return; |
+ assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ |
+ va_start(ap, zFormat); |
+ zSql = sqlite3VMPrintf(db, zFormat, ap); |
+ va_end(ap); |
+ if( zSql==0 ){ |
+ return; /* A malloc must have failed */ |
+ } |
+ pParse->nested++; |
+ memcpy(saveBuf, &pParse->nVar, SAVE_SZ); |
+ memset(&pParse->nVar, 0, SAVE_SZ); |
+ sqlite3RunParser(pParse, zSql, &zErrMsg); |
+ sqlite3DbFree(db, zErrMsg); |
+ sqlite3DbFree(db, zSql); |
+ memcpy(&pParse->nVar, saveBuf, SAVE_SZ); |
+ pParse->nested--; |
+} |
+ |
+#if SQLITE_USER_AUTHENTICATION |
+/* |
+** Return TRUE if zTable is the name of the system table that stores the |
+** list of users and their access credentials. |
+*/ |
+int sqlite3UserAuthTable(const char *zTable){ |
+ return sqlite3_stricmp(zTable, "sqlite_user")==0; |
+} |
+#endif |
+ |
+/* |
+** Locate the in-memory structure that describes a particular database |
+** table given the name of that table and (optionally) the name of the |
+** database containing the table. Return NULL if not found. |
+** |
+** If zDatabase is 0, all databases are searched for the table and the |
+** first matching table is returned. (No checking for duplicate table |
+** names is done.) The search order is TEMP first, then MAIN, then any |
+** auxiliary databases added using the ATTACH command. |
+** |
+** See also sqlite3LocateTable(). |
+*/ |
+Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ |
+ Table *p = 0; |
+ int i; |
+ assert( zName!=0 ); |
+ /* All mutexes are required for schema access. Make sure we hold them. */ |
+ assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); |
+#if SQLITE_USER_AUTHENTICATION |
+ /* Only the admin user is allowed to know that the sqlite_user table |
+ ** exists */ |
+ if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ |
+ return 0; |
+ } |
+#endif |
+ for(i=OMIT_TEMPDB; i<db->nDb; i++){ |
+ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ |
+ if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; |
+ assert( sqlite3SchemaMutexHeld(db, j, 0) ); |
+ p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); |
+ if( p ) break; |
+ } |
+ return p; |
+} |
+ |
+/* |
+** Locate the in-memory structure that describes a particular database |
+** table given the name of that table and (optionally) the name of the |
+** database containing the table. Return NULL if not found. Also leave an |
+** error message in pParse->zErrMsg. |
+** |
+** The difference between this routine and sqlite3FindTable() is that this |
+** routine leaves an error message in pParse->zErrMsg where |
+** sqlite3FindTable() does not. |
+*/ |
+Table *sqlite3LocateTable( |
+ Parse *pParse, /* context in which to report errors */ |
+ int isView, /* True if looking for a VIEW rather than a TABLE */ |
+ const char *zName, /* Name of the table we are looking for */ |
+ const char *zDbase /* Name of the database. Might be NULL */ |
+){ |
+ Table *p; |
+ |
+ /* Read the database schema. If an error occurs, leave an error message |
+ ** and code in pParse and return NULL. */ |
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
+ return 0; |
+ } |
+ |
+ p = sqlite3FindTable(pParse->db, zName, zDbase); |
+ if( p==0 ){ |
+ const char *zMsg = isView ? "no such view" : "no such table"; |
+ if( zDbase ){ |
+ sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); |
+ }else{ |
+ sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); |
+ } |
+ pParse->checkSchema = 1; |
+ } |
+#if SQLITE_USER_AUTHENICATION |
+ else if( pParse->db->auth.authLevel<UAUTH_User ){ |
+ sqlite3ErrorMsg(pParse, "user not authenticated"); |
+ p = 0; |
+ } |
+#endif |
+ return p; |
+} |
+ |
+/* |
+** Locate the table identified by *p. |
+** |
+** This is a wrapper around sqlite3LocateTable(). The difference between |
+** sqlite3LocateTable() and this function is that this function restricts |
+** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be |
+** non-NULL if it is part of a view or trigger program definition. See |
+** sqlite3FixSrcList() for details. |
+*/ |
+Table *sqlite3LocateTableItem( |
+ Parse *pParse, |
+ int isView, |
+ struct SrcList_item *p |
+){ |
+ const char *zDb; |
+ assert( p->pSchema==0 || p->zDatabase==0 ); |
+ if( p->pSchema ){ |
+ int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); |
+ zDb = pParse->db->aDb[iDb].zName; |
+ }else{ |
+ zDb = p->zDatabase; |
+ } |
+ return sqlite3LocateTable(pParse, isView, p->zName, zDb); |
+} |
+ |
+/* |
+** Locate the in-memory structure that describes |
+** a particular index given the name of that index |
+** and the name of the database that contains the index. |
+** Return NULL if not found. |
+** |
+** If zDatabase is 0, all databases are searched for the |
+** table and the first matching index is returned. (No checking |
+** for duplicate index names is done.) The search order is |
+** TEMP first, then MAIN, then any auxiliary databases added |
+** using the ATTACH command. |
+*/ |
+Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ |
+ Index *p = 0; |
+ int i; |
+ /* All mutexes are required for schema access. Make sure we hold them. */ |
+ assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); |
+ for(i=OMIT_TEMPDB; i<db->nDb; i++){ |
+ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ |
+ Schema *pSchema = db->aDb[j].pSchema; |
+ assert( pSchema ); |
+ if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; |
+ assert( sqlite3SchemaMutexHeld(db, j, 0) ); |
+ p = sqlite3HashFind(&pSchema->idxHash, zName); |
+ if( p ) break; |
+ } |
+ return p; |
+} |
+ |
+/* |
+** Reclaim the memory used by an index |
+*/ |
+static void freeIndex(sqlite3 *db, Index *p){ |
+#ifndef SQLITE_OMIT_ANALYZE |
+ sqlite3DeleteIndexSamples(db, p); |
+#endif |
+ if( db==0 || db->pnBytesFreed==0 ) sqlite3KeyInfoUnref(p->pKeyInfo); |
+ sqlite3ExprDelete(db, p->pPartIdxWhere); |
+ sqlite3DbFree(db, p->zColAff); |
+ if( p->isResized ) sqlite3DbFree(db, p->azColl); |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ sqlite3_free(p->aiRowEst); |
+#endif |
+ sqlite3DbFree(db, p); |
+} |
+ |
+/* |
+** For the index called zIdxName which is found in the database iDb, |
+** unlike that index from its Table then remove the index from |
+** the index hash table and free all memory structures associated |
+** with the index. |
+*/ |
+void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ |
+ Index *pIndex; |
+ Hash *pHash; |
+ |
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
+ pHash = &db->aDb[iDb].pSchema->idxHash; |
+ pIndex = sqlite3HashInsert(pHash, zIdxName, 0); |
+ if( ALWAYS(pIndex) ){ |
+ if( pIndex->pTable->pIndex==pIndex ){ |
+ pIndex->pTable->pIndex = pIndex->pNext; |
+ }else{ |
+ Index *p; |
+ /* Justification of ALWAYS(); The index must be on the list of |
+ ** indices. */ |
+ p = pIndex->pTable->pIndex; |
+ while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } |
+ if( ALWAYS(p && p->pNext==pIndex) ){ |
+ p->pNext = pIndex->pNext; |
+ } |
+ } |
+ freeIndex(db, pIndex); |
+ } |
+ db->flags |= SQLITE_InternChanges; |
+} |
+ |
+/* |
+** Look through the list of open database files in db->aDb[] and if |
+** any have been closed, remove them from the list. Reallocate the |
+** db->aDb[] structure to a smaller size, if possible. |
+** |
+** Entry 0 (the "main" database) and entry 1 (the "temp" database) |
+** are never candidates for being collapsed. |
+*/ |
+void sqlite3CollapseDatabaseArray(sqlite3 *db){ |
+ int i, j; |
+ for(i=j=2; i<db->nDb; i++){ |
+ struct Db *pDb = &db->aDb[i]; |
+ if( pDb->pBt==0 ){ |
+ sqlite3DbFree(db, pDb->zName); |
+ pDb->zName = 0; |
+ continue; |
+ } |
+ if( j<i ){ |
+ db->aDb[j] = db->aDb[i]; |
+ } |
+ j++; |
+ } |
+ memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); |
+ db->nDb = j; |
+ if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ |
+ memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); |
+ sqlite3DbFree(db, db->aDb); |
+ db->aDb = db->aDbStatic; |
+ } |
+} |
+ |
+/* |
+** Reset the schema for the database at index iDb. Also reset the |
+** TEMP schema. |
+*/ |
+void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ |
+ Db *pDb; |
+ assert( iDb<db->nDb ); |
+ |
+ /* Case 1: Reset the single schema identified by iDb */ |
+ pDb = &db->aDb[iDb]; |
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
+ assert( pDb->pSchema!=0 ); |
+ sqlite3SchemaClear(pDb->pSchema); |
+ |
+ /* If any database other than TEMP is reset, then also reset TEMP |
+ ** since TEMP might be holding triggers that reference tables in the |
+ ** other database. |
+ */ |
+ if( iDb!=1 ){ |
+ pDb = &db->aDb[1]; |
+ assert( pDb->pSchema!=0 ); |
+ sqlite3SchemaClear(pDb->pSchema); |
+ } |
+ return; |
+} |
+ |
+/* |
+** Erase all schema information from all attached databases (including |
+** "main" and "temp") for a single database connection. |
+*/ |
+void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ |
+ int i; |
+ sqlite3BtreeEnterAll(db); |
+ for(i=0; i<db->nDb; i++){ |
+ Db *pDb = &db->aDb[i]; |
+ if( pDb->pSchema ){ |
+ sqlite3SchemaClear(pDb->pSchema); |
+ } |
+ } |
+ db->flags &= ~SQLITE_InternChanges; |
+ sqlite3VtabUnlockList(db); |
+ sqlite3BtreeLeaveAll(db); |
+ sqlite3CollapseDatabaseArray(db); |
+} |
+ |
+/* |
+** This routine is called when a commit occurs. |
+*/ |
+void sqlite3CommitInternalChanges(sqlite3 *db){ |
+ db->flags &= ~SQLITE_InternChanges; |
+} |
+ |
+/* |
+** Delete memory allocated for the column names of a table or view (the |
+** Table.aCol[] array). |
+*/ |
+static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){ |
+ int i; |
+ Column *pCol; |
+ assert( pTable!=0 ); |
+ if( (pCol = pTable->aCol)!=0 ){ |
+ for(i=0; i<pTable->nCol; i++, pCol++){ |
+ sqlite3DbFree(db, pCol->zName); |
+ sqlite3ExprDelete(db, pCol->pDflt); |
+ sqlite3DbFree(db, pCol->zDflt); |
+ sqlite3DbFree(db, pCol->zType); |
+ sqlite3DbFree(db, pCol->zColl); |
+ } |
+ sqlite3DbFree(db, pTable->aCol); |
+ } |
+} |
+ |
+/* |
+** Remove the memory data structures associated with the given |
+** Table. No changes are made to disk by this routine. |
+** |
+** This routine just deletes the data structure. It does not unlink |
+** the table data structure from the hash table. But it does destroy |
+** memory structures of the indices and foreign keys associated with |
+** the table. |
+** |
+** The db parameter is optional. It is needed if the Table object |
+** contains lookaside memory. (Table objects in the schema do not use |
+** lookaside memory, but some ephemeral Table objects do.) Or the |
+** db parameter can be used with db->pnBytesFreed to measure the memory |
+** used by the Table object. |
+*/ |
+void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ |
+ Index *pIndex, *pNext; |
+ TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ |
+ |
+ assert( !pTable || pTable->nRef>0 ); |
+ |
+ /* Do not delete the table until the reference count reaches zero. */ |
+ if( !pTable ) return; |
+ if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; |
+ |
+ /* Record the number of outstanding lookaside allocations in schema Tables |
+ ** prior to doing any free() operations. Since schema Tables do not use |
+ ** lookaside, this number should not change. */ |
+ TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? |
+ db->lookaside.nOut : 0 ); |
+ |
+ /* Delete all indices associated with this table. */ |
+ for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ |
+ pNext = pIndex->pNext; |
+ assert( pIndex->pSchema==pTable->pSchema ); |
+ if( !db || db->pnBytesFreed==0 ){ |
+ char *zName = pIndex->zName; |
+ TESTONLY ( Index *pOld = ) sqlite3HashInsert( |
+ &pIndex->pSchema->idxHash, zName, 0 |
+ ); |
+ assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); |
+ assert( pOld==pIndex || pOld==0 ); |
+ } |
+ freeIndex(db, pIndex); |
+ } |
+ |
+ /* Delete any foreign keys attached to this table. */ |
+ sqlite3FkDelete(db, pTable); |
+ |
+ /* Delete the Table structure itself. |
+ */ |
+ sqliteDeleteColumnNames(db, pTable); |
+ sqlite3DbFree(db, pTable->zName); |
+ sqlite3DbFree(db, pTable->zColAff); |
+ sqlite3SelectDelete(db, pTable->pSelect); |
+#ifndef SQLITE_OMIT_CHECK |
+ sqlite3ExprListDelete(db, pTable->pCheck); |
+#endif |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ sqlite3VtabClear(db, pTable); |
+#endif |
+ sqlite3DbFree(db, pTable); |
+ |
+ /* Verify that no lookaside memory was used by schema tables */ |
+ assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); |
+} |
+ |
+/* |
+** Unlink the given table from the hash tables and the delete the |
+** table structure with all its indices and foreign keys. |
+*/ |
+void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ |
+ Table *p; |
+ Db *pDb; |
+ |
+ assert( db!=0 ); |
+ assert( iDb>=0 && iDb<db->nDb ); |
+ assert( zTabName ); |
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
+ testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ |
+ pDb = &db->aDb[iDb]; |
+ p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); |
+ sqlite3DeleteTable(db, p); |
+ db->flags |= SQLITE_InternChanges; |
+} |
+ |
+/* |
+** Given a token, return a string that consists of the text of that |
+** token. Space to hold the returned string |
+** is obtained from sqliteMalloc() and must be freed by the calling |
+** function. |
+** |
+** Any quotation marks (ex: "name", 'name', [name], or `name`) that |
+** surround the body of the token are removed. |
+** |
+** Tokens are often just pointers into the original SQL text and so |
+** are not \000 terminated and are not persistent. The returned string |
+** is \000 terminated and is persistent. |
+*/ |
+char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ |
+ char *zName; |
+ if( pName ){ |
+ zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); |
+ sqlite3Dequote(zName); |
+ }else{ |
+ zName = 0; |
+ } |
+ return zName; |
+} |
+ |
+/* |
+** Open the sqlite_master table stored in database number iDb for |
+** writing. The table is opened using cursor 0. |
+*/ |
+void sqlite3OpenMasterTable(Parse *p, int iDb){ |
+ Vdbe *v = sqlite3GetVdbe(p); |
+ sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); |
+ sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); |
+ if( p->nTab==0 ){ |
+ p->nTab = 1; |
+ } |
+} |
+ |
+/* |
+** Parameter zName points to a nul-terminated buffer containing the name |
+** of a database ("main", "temp" or the name of an attached db). This |
+** function returns the index of the named database in db->aDb[], or |
+** -1 if the named db cannot be found. |
+*/ |
+int sqlite3FindDbName(sqlite3 *db, const char *zName){ |
+ int i = -1; /* Database number */ |
+ if( zName ){ |
+ Db *pDb; |
+ int n = sqlite3Strlen30(zName); |
+ for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ |
+ if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) && |
+ 0==sqlite3StrICmp(pDb->zName, zName) ){ |
+ break; |
+ } |
+ } |
+ } |
+ return i; |
+} |
+ |
+/* |
+** The token *pName contains the name of a database (either "main" or |
+** "temp" or the name of an attached db). This routine returns the |
+** index of the named database in db->aDb[], or -1 if the named db |
+** does not exist. |
+*/ |
+int sqlite3FindDb(sqlite3 *db, Token *pName){ |
+ int i; /* Database number */ |
+ char *zName; /* Name we are searching for */ |
+ zName = sqlite3NameFromToken(db, pName); |
+ i = sqlite3FindDbName(db, zName); |
+ sqlite3DbFree(db, zName); |
+ return i; |
+} |
+ |
+/* The table or view or trigger name is passed to this routine via tokens |
+** pName1 and pName2. If the table name was fully qualified, for example: |
+** |
+** CREATE TABLE xxx.yyy (...); |
+** |
+** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if |
+** the table name is not fully qualified, i.e.: |
+** |
+** CREATE TABLE yyy(...); |
+** |
+** Then pName1 is set to "yyy" and pName2 is "". |
+** |
+** This routine sets the *ppUnqual pointer to point at the token (pName1 or |
+** pName2) that stores the unqualified table name. The index of the |
+** database "xxx" is returned. |
+*/ |
+int sqlite3TwoPartName( |
+ Parse *pParse, /* Parsing and code generating context */ |
+ Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ |
+ Token *pName2, /* The "yyy" in the name "xxx.yyy" */ |
+ Token **pUnqual /* Write the unqualified object name here */ |
+){ |
+ int iDb; /* Database holding the object */ |
+ sqlite3 *db = pParse->db; |
+ |
+ if( ALWAYS(pName2!=0) && pName2->n>0 ){ |
+ if( db->init.busy ) { |
+ sqlite3ErrorMsg(pParse, "corrupt database"); |
+ pParse->nErr++; |
+ return -1; |
+ } |
+ *pUnqual = pName2; |
+ iDb = sqlite3FindDb(db, pName1); |
+ if( iDb<0 ){ |
+ sqlite3ErrorMsg(pParse, "unknown database %T", pName1); |
+ pParse->nErr++; |
+ return -1; |
+ } |
+ }else{ |
+ assert( db->init.iDb==0 || db->init.busy ); |
+ iDb = db->init.iDb; |
+ *pUnqual = pName1; |
+ } |
+ return iDb; |
+} |
+ |
+/* |
+** This routine is used to check if the UTF-8 string zName is a legal |
+** unqualified name for a new schema object (table, index, view or |
+** trigger). All names are legal except those that begin with the string |
+** "sqlite_" (in upper, lower or mixed case). This portion of the namespace |
+** is reserved for internal use. |
+*/ |
+int sqlite3CheckObjectName(Parse *pParse, const char *zName){ |
+ if( !pParse->db->init.busy && pParse->nested==0 |
+ && (pParse->db->flags & SQLITE_WriteSchema)==0 |
+ && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ |
+ sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); |
+ return SQLITE_ERROR; |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Return the PRIMARY KEY index of a table |
+*/ |
+Index *sqlite3PrimaryKeyIndex(Table *pTab){ |
+ Index *p; |
+ for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} |
+ return p; |
+} |
+ |
+/* |
+** Return the column of index pIdx that corresponds to table |
+** column iCol. Return -1 if not found. |
+*/ |
+i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ |
+ int i; |
+ for(i=0; i<pIdx->nColumn; i++){ |
+ if( iCol==pIdx->aiColumn[i] ) return i; |
+ } |
+ return -1; |
+} |
+ |
+/* |
+** Begin constructing a new table representation in memory. This is |
+** the first of several action routines that get called in response |
+** to a CREATE TABLE statement. In particular, this routine is called |
+** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp |
+** flag is true if the table should be stored in the auxiliary database |
+** file instead of in the main database file. This is normally the case |
+** when the "TEMP" or "TEMPORARY" keyword occurs in between |
+** CREATE and TABLE. |
+** |
+** The new table record is initialized and put in pParse->pNewTable. |
+** As more of the CREATE TABLE statement is parsed, additional action |
+** routines will be called to add more information to this record. |
+** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine |
+** is called to complete the construction of the new table record. |
+*/ |
+void sqlite3StartTable( |
+ Parse *pParse, /* Parser context */ |
+ Token *pName1, /* First part of the name of the table or view */ |
+ Token *pName2, /* Second part of the name of the table or view */ |
+ int isTemp, /* True if this is a TEMP table */ |
+ int isView, /* True if this is a VIEW */ |
+ int isVirtual, /* True if this is a VIRTUAL table */ |
+ int noErr /* Do nothing if table already exists */ |
+){ |
+ Table *pTable; |
+ char *zName = 0; /* The name of the new table */ |
+ sqlite3 *db = pParse->db; |
+ Vdbe *v; |
+ int iDb; /* Database number to create the table in */ |
+ Token *pName; /* Unqualified name of the table to create */ |
+ |
+ /* The table or view name to create is passed to this routine via tokens |
+ ** pName1 and pName2. If the table name was fully qualified, for example: |
+ ** |
+ ** CREATE TABLE xxx.yyy (...); |
+ ** |
+ ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if |
+ ** the table name is not fully qualified, i.e.: |
+ ** |
+ ** CREATE TABLE yyy(...); |
+ ** |
+ ** Then pName1 is set to "yyy" and pName2 is "". |
+ ** |
+ ** The call below sets the pName pointer to point at the token (pName1 or |
+ ** pName2) that stores the unqualified table name. The variable iDb is |
+ ** set to the index of the database that the table or view is to be |
+ ** created in. |
+ */ |
+ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); |
+ if( iDb<0 ) return; |
+ if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ |
+ /* If creating a temp table, the name may not be qualified. Unless |
+ ** the database name is "temp" anyway. */ |
+ sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); |
+ return; |
+ } |
+ if( !OMIT_TEMPDB && isTemp ) iDb = 1; |
+ |
+ pParse->sNameToken = *pName; |
+ zName = sqlite3NameFromToken(db, pName); |
+ if( zName==0 ) return; |
+ if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ |
+ goto begin_table_error; |
+ } |
+ if( db->init.iDb==1 ) isTemp = 1; |
+#ifndef SQLITE_OMIT_AUTHORIZATION |
+ assert( (isTemp & 1)==isTemp ); |
+ { |
+ int code; |
+ char *zDb = db->aDb[iDb].zName; |
+ if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ |
+ goto begin_table_error; |
+ } |
+ if( isView ){ |
+ if( !OMIT_TEMPDB && isTemp ){ |
+ code = SQLITE_CREATE_TEMP_VIEW; |
+ }else{ |
+ code = SQLITE_CREATE_VIEW; |
+ } |
+ }else{ |
+ if( !OMIT_TEMPDB && isTemp ){ |
+ code = SQLITE_CREATE_TEMP_TABLE; |
+ }else{ |
+ code = SQLITE_CREATE_TABLE; |
+ } |
+ } |
+ if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ |
+ goto begin_table_error; |
+ } |
+ } |
+#endif |
+ |
+ /* Make sure the new table name does not collide with an existing |
+ ** index or table name in the same database. Issue an error message if |
+ ** it does. The exception is if the statement being parsed was passed |
+ ** to an sqlite3_declare_vtab() call. In that case only the column names |
+ ** and types will be used, so there is no need to test for namespace |
+ ** collisions. |
+ */ |
+ if( !IN_DECLARE_VTAB ){ |
+ char *zDb = db->aDb[iDb].zName; |
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
+ goto begin_table_error; |
+ } |
+ pTable = sqlite3FindTable(db, zName, zDb); |
+ if( pTable ){ |
+ if( !noErr ){ |
+ sqlite3ErrorMsg(pParse, "table %T already exists", pName); |
+ }else{ |
+ assert( !db->init.busy ); |
+ sqlite3CodeVerifySchema(pParse, iDb); |
+ } |
+ goto begin_table_error; |
+ } |
+ if( sqlite3FindIndex(db, zName, zDb)!=0 ){ |
+ sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); |
+ goto begin_table_error; |
+ } |
+ } |
+ |
+ pTable = sqlite3DbMallocZero(db, sizeof(Table)); |
+ if( pTable==0 ){ |
+ db->mallocFailed = 1; |
+ pParse->rc = SQLITE_NOMEM; |
+ pParse->nErr++; |
+ goto begin_table_error; |
+ } |
+ pTable->zName = zName; |
+ pTable->iPKey = -1; |
+ pTable->pSchema = db->aDb[iDb].pSchema; |
+ pTable->nRef = 1; |
+ pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); |
+ assert( pParse->pNewTable==0 ); |
+ pParse->pNewTable = pTable; |
+ |
+ /* If this is the magic sqlite_sequence table used by autoincrement, |
+ ** then record a pointer to this table in the main database structure |
+ ** so that INSERT can find the table easily. |
+ */ |
+#ifndef SQLITE_OMIT_AUTOINCREMENT |
+ if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ |
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
+ pTable->pSchema->pSeqTab = pTable; |
+ } |
+#endif |
+ |
+ /* Begin generating the code that will insert the table record into |
+ ** the SQLITE_MASTER table. Note in particular that we must go ahead |
+ ** and allocate the record number for the table entry now. Before any |
+ ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause |
+ ** indices to be created and the table record must come before the |
+ ** indices. Hence, the record number for the table must be allocated |
+ ** now. |
+ */ |
+ if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ |
+ int j1; |
+ int fileFormat; |
+ int reg1, reg2, reg3; |
+ sqlite3BeginWriteOperation(pParse, 0, iDb); |
+ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ if( isVirtual ){ |
+ sqlite3VdbeAddOp0(v, OP_VBegin); |
+ } |
+#endif |
+ |
+ /* If the file format and encoding in the database have not been set, |
+ ** set them now. |
+ */ |
+ reg1 = pParse->regRowid = ++pParse->nMem; |
+ reg2 = pParse->regRoot = ++pParse->nMem; |
+ reg3 = ++pParse->nMem; |
+ sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); |
+ sqlite3VdbeUsesBtree(v, iDb); |
+ j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); |
+ fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? |
+ 1 : SQLITE_MAX_FILE_FORMAT; |
+ sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); |
+ sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); |
+ sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); |
+ sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3); |
+ sqlite3VdbeJumpHere(v, j1); |
+ |
+ /* This just creates a place-holder record in the sqlite_master table. |
+ ** The record created does not contain anything yet. It will be replaced |
+ ** by the real entry in code generated at sqlite3EndTable(). |
+ ** |
+ ** The rowid for the new entry is left in register pParse->regRowid. |
+ ** The root page number of the new table is left in reg pParse->regRoot. |
+ ** The rowid and root page number values are needed by the code that |
+ ** sqlite3EndTable will generate. |
+ */ |
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) |
+ if( isView || isVirtual ){ |
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); |
+ }else |
+#endif |
+ { |
+ pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); |
+ } |
+ sqlite3OpenMasterTable(pParse, iDb); |
+ sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); |
+ sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); |
+ sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); |
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
+ sqlite3VdbeAddOp0(v, OP_Close); |
+ } |
+ |
+ /* Normal (non-error) return. */ |
+ return; |
+ |
+ /* If an error occurs, we jump here */ |
+begin_table_error: |
+ sqlite3DbFree(db, zName); |
+ return; |
+} |
+ |
+/* |
+** This macro is used to compare two strings in a case-insensitive manner. |
+** It is slightly faster than calling sqlite3StrICmp() directly, but |
+** produces larger code. |
+** |
+** WARNING: This macro is not compatible with the strcmp() family. It |
+** returns true if the two strings are equal, otherwise false. |
+*/ |
+#define STRICMP(x, y) (\ |
+sqlite3UpperToLower[*(unsigned char *)(x)]== \ |
+sqlite3UpperToLower[*(unsigned char *)(y)] \ |
+&& sqlite3StrICmp((x)+1,(y)+1)==0 ) |
+ |
+/* |
+** Add a new column to the table currently being constructed. |
+** |
+** The parser calls this routine once for each column declaration |
+** in a CREATE TABLE statement. sqlite3StartTable() gets called |
+** first to get things going. Then this routine is called for each |
+** column. |
+*/ |
+void sqlite3AddColumn(Parse *pParse, Token *pName){ |
+ Table *p; |
+ int i; |
+ char *z; |
+ Column *pCol; |
+ sqlite3 *db = pParse->db; |
+ if( (p = pParse->pNewTable)==0 ) return; |
+#if SQLITE_MAX_COLUMN |
+ if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ |
+ sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); |
+ return; |
+ } |
+#endif |
+ z = sqlite3NameFromToken(db, pName); |
+ if( z==0 ) return; |
+ for(i=0; i<p->nCol; i++){ |
+ if( STRICMP(z, p->aCol[i].zName) ){ |
+ sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); |
+ sqlite3DbFree(db, z); |
+ return; |
+ } |
+ } |
+ if( (p->nCol & 0x7)==0 ){ |
+ Column *aNew; |
+ aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); |
+ if( aNew==0 ){ |
+ sqlite3DbFree(db, z); |
+ return; |
+ } |
+ p->aCol = aNew; |
+ } |
+ pCol = &p->aCol[p->nCol]; |
+ memset(pCol, 0, sizeof(p->aCol[0])); |
+ pCol->zName = z; |
+ |
+ /* If there is no type specified, columns have the default affinity |
+ ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will |
+ ** be called next to set pCol->affinity correctly. |
+ */ |
+ pCol->affinity = SQLITE_AFF_NONE; |
+ pCol->szEst = 1; |
+ p->nCol++; |
+} |
+ |
+/* |
+** This routine is called by the parser while in the middle of |
+** parsing a CREATE TABLE statement. A "NOT NULL" constraint has |
+** been seen on a column. This routine sets the notNull flag on |
+** the column currently under construction. |
+*/ |
+void sqlite3AddNotNull(Parse *pParse, int onError){ |
+ Table *p; |
+ p = pParse->pNewTable; |
+ if( p==0 || NEVER(p->nCol<1) ) return; |
+ p->aCol[p->nCol-1].notNull = (u8)onError; |
+} |
+ |
+/* |
+** Scan the column type name zType (length nType) and return the |
+** associated affinity type. |
+** |
+** This routine does a case-independent search of zType for the |
+** substrings in the following table. If one of the substrings is |
+** found, the corresponding affinity is returned. If zType contains |
+** more than one of the substrings, entries toward the top of |
+** the table take priority. For example, if zType is 'BLOBINT', |
+** SQLITE_AFF_INTEGER is returned. |
+** |
+** Substring | Affinity |
+** -------------------------------- |
+** 'INT' | SQLITE_AFF_INTEGER |
+** 'CHAR' | SQLITE_AFF_TEXT |
+** 'CLOB' | SQLITE_AFF_TEXT |
+** 'TEXT' | SQLITE_AFF_TEXT |
+** 'BLOB' | SQLITE_AFF_NONE |
+** 'REAL' | SQLITE_AFF_REAL |
+** 'FLOA' | SQLITE_AFF_REAL |
+** 'DOUB' | SQLITE_AFF_REAL |
+** |
+** If none of the substrings in the above table are found, |
+** SQLITE_AFF_NUMERIC is returned. |
+*/ |
+char sqlite3AffinityType(const char *zIn, u8 *pszEst){ |
+ u32 h = 0; |
+ char aff = SQLITE_AFF_NUMERIC; |
+ const char *zChar = 0; |
+ |
+ if( zIn==0 ) return aff; |
+ while( zIn[0] ){ |
+ h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; |
+ zIn++; |
+ if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ |
+ aff = SQLITE_AFF_TEXT; |
+ zChar = zIn; |
+ }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ |
+ aff = SQLITE_AFF_TEXT; |
+ }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ |
+ aff = SQLITE_AFF_TEXT; |
+ }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ |
+ && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ |
+ aff = SQLITE_AFF_NONE; |
+ if( zIn[0]=='(' ) zChar = zIn; |
+#ifndef SQLITE_OMIT_FLOATING_POINT |
+ }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ |
+ && aff==SQLITE_AFF_NUMERIC ){ |
+ aff = SQLITE_AFF_REAL; |
+ }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ |
+ && aff==SQLITE_AFF_NUMERIC ){ |
+ aff = SQLITE_AFF_REAL; |
+ }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ |
+ && aff==SQLITE_AFF_NUMERIC ){ |
+ aff = SQLITE_AFF_REAL; |
+#endif |
+ }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ |
+ aff = SQLITE_AFF_INTEGER; |
+ break; |
+ } |
+ } |
+ |
+ /* If pszEst is not NULL, store an estimate of the field size. The |
+ ** estimate is scaled so that the size of an integer is 1. */ |
+ if( pszEst ){ |
+ *pszEst = 1; /* default size is approx 4 bytes */ |
+ if( aff<SQLITE_AFF_NUMERIC ){ |
+ if( zChar ){ |
+ while( zChar[0] ){ |
+ if( sqlite3Isdigit(zChar[0]) ){ |
+ int v = 0; |
+ sqlite3GetInt32(zChar, &v); |
+ v = v/4 + 1; |
+ if( v>255 ) v = 255; |
+ *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ |
+ break; |
+ } |
+ zChar++; |
+ } |
+ }else{ |
+ *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ |
+ } |
+ } |
+ } |
+ return aff; |
+} |
+ |
+/* |
+** This routine is called by the parser while in the middle of |
+** parsing a CREATE TABLE statement. The pFirst token is the first |
+** token in the sequence of tokens that describe the type of the |
+** column currently under construction. pLast is the last token |
+** in the sequence. Use this information to construct a string |
+** that contains the typename of the column and store that string |
+** in zType. |
+*/ |
+void sqlite3AddColumnType(Parse *pParse, Token *pType){ |
+ Table *p; |
+ Column *pCol; |
+ |
+ p = pParse->pNewTable; |
+ if( p==0 || NEVER(p->nCol<1) ) return; |
+ pCol = &p->aCol[p->nCol-1]; |
+ assert( pCol->zType==0 ); |
+ pCol->zType = sqlite3NameFromToken(pParse->db, pType); |
+ pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst); |
+} |
+ |
+/* |
+** The expression is the default value for the most recently added column |
+** of the table currently under construction. |
+** |
+** Default value expressions must be constant. Raise an exception if this |
+** is not the case. |
+** |
+** This routine is called by the parser while in the middle of |
+** parsing a CREATE TABLE statement. |
+*/ |
+void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ |
+ Table *p; |
+ Column *pCol; |
+ sqlite3 *db = pParse->db; |
+ p = pParse->pNewTable; |
+ if( p!=0 ){ |
+ pCol = &(p->aCol[p->nCol-1]); |
+ if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){ |
+ sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", |
+ pCol->zName); |
+ }else{ |
+ /* A copy of pExpr is used instead of the original, as pExpr contains |
+ ** tokens that point to volatile memory. The 'span' of the expression |
+ ** is required by pragma table_info. |
+ */ |
+ sqlite3ExprDelete(db, pCol->pDflt); |
+ pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); |
+ sqlite3DbFree(db, pCol->zDflt); |
+ pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart, |
+ (int)(pSpan->zEnd - pSpan->zStart)); |
+ } |
+ } |
+ sqlite3ExprDelete(db, pSpan->pExpr); |
+} |
+ |
+/* |
+** Designate the PRIMARY KEY for the table. pList is a list of names |
+** of columns that form the primary key. If pList is NULL, then the |
+** most recently added column of the table is the primary key. |
+** |
+** A table can have at most one primary key. If the table already has |
+** a primary key (and this is the second primary key) then create an |
+** error. |
+** |
+** If the PRIMARY KEY is on a single column whose datatype is INTEGER, |
+** then we will try to use that column as the rowid. Set the Table.iPKey |
+** field of the table under construction to be the index of the |
+** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is |
+** no INTEGER PRIMARY KEY. |
+** |
+** If the key is not an INTEGER PRIMARY KEY, then create a unique |
+** index for the key. No index is created for INTEGER PRIMARY KEYs. |
+*/ |
+void sqlite3AddPrimaryKey( |
+ Parse *pParse, /* Parsing context */ |
+ ExprList *pList, /* List of field names to be indexed */ |
+ int onError, /* What to do with a uniqueness conflict */ |
+ int autoInc, /* True if the AUTOINCREMENT keyword is present */ |
+ int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ |
+){ |
+ Table *pTab = pParse->pNewTable; |
+ char *zType = 0; |
+ int iCol = -1, i; |
+ int nTerm; |
+ if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; |
+ if( pTab->tabFlags & TF_HasPrimaryKey ){ |
+ sqlite3ErrorMsg(pParse, |
+ "table \"%s\" has more than one primary key", pTab->zName); |
+ goto primary_key_exit; |
+ } |
+ pTab->tabFlags |= TF_HasPrimaryKey; |
+ if( pList==0 ){ |
+ iCol = pTab->nCol - 1; |
+ pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; |
+ zType = pTab->aCol[iCol].zType; |
+ nTerm = 1; |
+ }else{ |
+ nTerm = pList->nExpr; |
+ for(i=0; i<nTerm; i++){ |
+ for(iCol=0; iCol<pTab->nCol; iCol++){ |
+ if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ |
+ pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; |
+ zType = pTab->aCol[iCol].zType; |
+ break; |
+ } |
+ } |
+ } |
+ } |
+ if( nTerm==1 |
+ && zType && sqlite3StrICmp(zType, "INTEGER")==0 |
+ && sortOrder==SQLITE_SO_ASC |
+ ){ |
+ pTab->iPKey = iCol; |
+ pTab->keyConf = (u8)onError; |
+ assert( autoInc==0 || autoInc==1 ); |
+ pTab->tabFlags |= autoInc*TF_Autoincrement; |
+ if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; |
+ }else if( autoInc ){ |
+#ifndef SQLITE_OMIT_AUTOINCREMENT |
+ sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " |
+ "INTEGER PRIMARY KEY"); |
+#endif |
+ }else{ |
+ Vdbe *v = pParse->pVdbe; |
+ Index *p; |
+ if( v ) pParse->addrSkipPK = sqlite3VdbeAddOp0(v, OP_Noop); |
+ p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, |
+ 0, sortOrder, 0); |
+ if( p ){ |
+ p->idxType = SQLITE_IDXTYPE_PRIMARYKEY; |
+ if( v ) sqlite3VdbeJumpHere(v, pParse->addrSkipPK); |
+ } |
+ pList = 0; |
+ } |
+ |
+primary_key_exit: |
+ sqlite3ExprListDelete(pParse->db, pList); |
+ return; |
+} |
+ |
+/* |
+** Add a new CHECK constraint to the table currently under construction. |
+*/ |
+void sqlite3AddCheckConstraint( |
+ Parse *pParse, /* Parsing context */ |
+ Expr *pCheckExpr /* The check expression */ |
+){ |
+#ifndef SQLITE_OMIT_CHECK |
+ Table *pTab = pParse->pNewTable; |
+ sqlite3 *db = pParse->db; |
+ if( pTab && !IN_DECLARE_VTAB |
+ && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) |
+ ){ |
+ pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); |
+ if( pParse->constraintName.n ){ |
+ sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); |
+ } |
+ }else |
+#endif |
+ { |
+ sqlite3ExprDelete(pParse->db, pCheckExpr); |
+ } |
+} |
+ |
+/* |
+** Set the collation function of the most recently parsed table column |
+** to the CollSeq given. |
+*/ |
+void sqlite3AddCollateType(Parse *pParse, Token *pToken){ |
+ Table *p; |
+ int i; |
+ char *zColl; /* Dequoted name of collation sequence */ |
+ sqlite3 *db; |
+ |
+ if( (p = pParse->pNewTable)==0 ) return; |
+ i = p->nCol-1; |
+ db = pParse->db; |
+ zColl = sqlite3NameFromToken(db, pToken); |
+ if( !zColl ) return; |
+ |
+ if( sqlite3LocateCollSeq(pParse, zColl) ){ |
+ Index *pIdx; |
+ sqlite3DbFree(db, p->aCol[i].zColl); |
+ p->aCol[i].zColl = zColl; |
+ |
+ /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", |
+ ** then an index may have been created on this column before the |
+ ** collation type was added. Correct this if it is the case. |
+ */ |
+ for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ |
+ assert( pIdx->nKeyCol==1 ); |
+ if( pIdx->aiColumn[0]==i ){ |
+ pIdx->azColl[0] = p->aCol[i].zColl; |
+ } |
+ } |
+ }else{ |
+ sqlite3DbFree(db, zColl); |
+ } |
+} |
+ |
+/* |
+** This function returns the collation sequence for database native text |
+** encoding identified by the string zName, length nName. |
+** |
+** If the requested collation sequence is not available, or not available |
+** in the database native encoding, the collation factory is invoked to |
+** request it. If the collation factory does not supply such a sequence, |
+** and the sequence is available in another text encoding, then that is |
+** returned instead. |
+** |
+** If no versions of the requested collations sequence are available, or |
+** another error occurs, NULL is returned and an error message written into |
+** pParse. |
+** |
+** This routine is a wrapper around sqlite3FindCollSeq(). This routine |
+** invokes the collation factory if the named collation cannot be found |
+** and generates an error message. |
+** |
+** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() |
+*/ |
+CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ |
+ sqlite3 *db = pParse->db; |
+ u8 enc = ENC(db); |
+ u8 initbusy = db->init.busy; |
+ CollSeq *pColl; |
+ |
+ pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); |
+ if( !initbusy && (!pColl || !pColl->xCmp) ){ |
+ pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); |
+ } |
+ |
+ return pColl; |
+} |
+ |
+ |
+/* |
+** Generate code that will increment the schema cookie. |
+** |
+** The schema cookie is used to determine when the schema for the |
+** database changes. After each schema change, the cookie value |
+** changes. When a process first reads the schema it records the |
+** cookie. Thereafter, whenever it goes to access the database, |
+** it checks the cookie to make sure the schema has not changed |
+** since it was last read. |
+** |
+** This plan is not completely bullet-proof. It is possible for |
+** the schema to change multiple times and for the cookie to be |
+** set back to prior value. But schema changes are infrequent |
+** and the probability of hitting the same cookie value is only |
+** 1 chance in 2^32. So we're safe enough. |
+*/ |
+void sqlite3ChangeCookie(Parse *pParse, int iDb){ |
+ int r1 = sqlite3GetTempReg(pParse); |
+ sqlite3 *db = pParse->db; |
+ Vdbe *v = pParse->pVdbe; |
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
+ sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); |
+ sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1); |
+ sqlite3ReleaseTempReg(pParse, r1); |
+} |
+ |
+/* |
+** Measure the number of characters needed to output the given |
+** identifier. The number returned includes any quotes used |
+** but does not include the null terminator. |
+** |
+** The estimate is conservative. It might be larger that what is |
+** really needed. |
+*/ |
+static int identLength(const char *z){ |
+ int n; |
+ for(n=0; *z; n++, z++){ |
+ if( *z=='"' ){ n++; } |
+ } |
+ return n + 2; |
+} |
+ |
+/* |
+** The first parameter is a pointer to an output buffer. The second |
+** parameter is a pointer to an integer that contains the offset at |
+** which to write into the output buffer. This function copies the |
+** nul-terminated string pointed to by the third parameter, zSignedIdent, |
+** to the specified offset in the buffer and updates *pIdx to refer |
+** to the first byte after the last byte written before returning. |
+** |
+** If the string zSignedIdent consists entirely of alpha-numeric |
+** characters, does not begin with a digit and is not an SQL keyword, |
+** then it is copied to the output buffer exactly as it is. Otherwise, |
+** it is quoted using double-quotes. |
+*/ |
+static void identPut(char *z, int *pIdx, char *zSignedIdent){ |
+ unsigned char *zIdent = (unsigned char*)zSignedIdent; |
+ int i, j, needQuote; |
+ i = *pIdx; |
+ |
+ for(j=0; zIdent[j]; j++){ |
+ if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; |
+ } |
+ needQuote = sqlite3Isdigit(zIdent[0]) |
+ || sqlite3KeywordCode(zIdent, j)!=TK_ID |
+ || zIdent[j]!=0 |
+ || j==0; |
+ |
+ if( needQuote ) z[i++] = '"'; |
+ for(j=0; zIdent[j]; j++){ |
+ z[i++] = zIdent[j]; |
+ if( zIdent[j]=='"' ) z[i++] = '"'; |
+ } |
+ if( needQuote ) z[i++] = '"'; |
+ z[i] = 0; |
+ *pIdx = i; |
+} |
+ |
+/* |
+** Generate a CREATE TABLE statement appropriate for the given |
+** table. Memory to hold the text of the statement is obtained |
+** from sqliteMalloc() and must be freed by the calling function. |
+*/ |
+static char *createTableStmt(sqlite3 *db, Table *p){ |
+ int i, k, n; |
+ char *zStmt; |
+ char *zSep, *zSep2, *zEnd; |
+ Column *pCol; |
+ n = 0; |
+ for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ |
+ n += identLength(pCol->zName) + 5; |
+ } |
+ n += identLength(p->zName); |
+ if( n<50 ){ |
+ zSep = ""; |
+ zSep2 = ","; |
+ zEnd = ")"; |
+ }else{ |
+ zSep = "\n "; |
+ zSep2 = ",\n "; |
+ zEnd = "\n)"; |
+ } |
+ n += 35 + 6*p->nCol; |
+ zStmt = sqlite3DbMallocRaw(0, n); |
+ if( zStmt==0 ){ |
+ db->mallocFailed = 1; |
+ return 0; |
+ } |
+ sqlite3_snprintf(n, zStmt, "CREATE TABLE "); |
+ k = sqlite3Strlen30(zStmt); |
+ identPut(zStmt, &k, p->zName); |
+ zStmt[k++] = '('; |
+ for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ |
+ static const char * const azType[] = { |
+ /* SQLITE_AFF_NONE */ "", |
+ /* SQLITE_AFF_TEXT */ " TEXT", |
+ /* SQLITE_AFF_NUMERIC */ " NUM", |
+ /* SQLITE_AFF_INTEGER */ " INT", |
+ /* SQLITE_AFF_REAL */ " REAL" |
+ }; |
+ int len; |
+ const char *zType; |
+ |
+ sqlite3_snprintf(n-k, &zStmt[k], zSep); |
+ k += sqlite3Strlen30(&zStmt[k]); |
+ zSep = zSep2; |
+ identPut(zStmt, &k, pCol->zName); |
+ assert( pCol->affinity-SQLITE_AFF_NONE >= 0 ); |
+ assert( pCol->affinity-SQLITE_AFF_NONE < ArraySize(azType) ); |
+ testcase( pCol->affinity==SQLITE_AFF_NONE ); |
+ testcase( pCol->affinity==SQLITE_AFF_TEXT ); |
+ testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); |
+ testcase( pCol->affinity==SQLITE_AFF_INTEGER ); |
+ testcase( pCol->affinity==SQLITE_AFF_REAL ); |
+ |
+ zType = azType[pCol->affinity - SQLITE_AFF_NONE]; |
+ len = sqlite3Strlen30(zType); |
+ assert( pCol->affinity==SQLITE_AFF_NONE |
+ || pCol->affinity==sqlite3AffinityType(zType, 0) ); |
+ memcpy(&zStmt[k], zType, len); |
+ k += len; |
+ assert( k<=n ); |
+ } |
+ sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); |
+ return zStmt; |
+} |
+ |
+/* |
+** Resize an Index object to hold N columns total. Return SQLITE_OK |
+** on success and SQLITE_NOMEM on an OOM error. |
+*/ |
+static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ |
+ char *zExtra; |
+ int nByte; |
+ if( pIdx->nColumn>=N ) return SQLITE_OK; |
+ assert( pIdx->isResized==0 ); |
+ nByte = (sizeof(char*) + sizeof(i16) + 1)*N; |
+ zExtra = sqlite3DbMallocZero(db, nByte); |
+ if( zExtra==0 ) return SQLITE_NOMEM; |
+ memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); |
+ pIdx->azColl = (char**)zExtra; |
+ zExtra += sizeof(char*)*N; |
+ memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); |
+ pIdx->aiColumn = (i16*)zExtra; |
+ zExtra += sizeof(i16)*N; |
+ memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); |
+ pIdx->aSortOrder = (u8*)zExtra; |
+ pIdx->nColumn = N; |
+ pIdx->isResized = 1; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Estimate the total row width for a table. |
+*/ |
+static void estimateTableWidth(Table *pTab){ |
+ unsigned wTable = 0; |
+ const Column *pTabCol; |
+ int i; |
+ for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ |
+ wTable += pTabCol->szEst; |
+ } |
+ if( pTab->iPKey<0 ) wTable++; |
+ pTab->szTabRow = sqlite3LogEst(wTable*4); |
+} |
+ |
+/* |
+** Estimate the average size of a row for an index. |
+*/ |
+static void estimateIndexWidth(Index *pIdx){ |
+ unsigned wIndex = 0; |
+ int i; |
+ const Column *aCol = pIdx->pTable->aCol; |
+ for(i=0; i<pIdx->nColumn; i++){ |
+ i16 x = pIdx->aiColumn[i]; |
+ assert( x<pIdx->pTable->nCol ); |
+ wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; |
+ } |
+ pIdx->szIdxRow = sqlite3LogEst(wIndex*4); |
+} |
+ |
+/* Return true if value x is found any of the first nCol entries of aiCol[] |
+*/ |
+static int hasColumn(const i16 *aiCol, int nCol, int x){ |
+ while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; |
+ return 0; |
+} |
+ |
+/* |
+** This routine runs at the end of parsing a CREATE TABLE statement that |
+** has a WITHOUT ROWID clause. The job of this routine is to convert both |
+** internal schema data structures and the generated VDBE code so that they |
+** are appropriate for a WITHOUT ROWID table instead of a rowid table. |
+** Changes include: |
+** |
+** (1) Convert the OP_CreateTable into an OP_CreateIndex. There is |
+** no rowid btree for a WITHOUT ROWID. Instead, the canonical |
+** data storage is a covering index btree. |
+** (2) Bypass the creation of the sqlite_master table entry |
+** for the PRIMARY KEY as the primary key index is now |
+** identified by the sqlite_master table entry of the table itself. |
+** (3) Set the Index.tnum of the PRIMARY KEY Index object in the |
+** schema to the rootpage from the main table. |
+** (4) Set all columns of the PRIMARY KEY schema object to be NOT NULL. |
+** (5) Add all table columns to the PRIMARY KEY Index object |
+** so that the PRIMARY KEY is a covering index. The surplus |
+** columns are part of KeyInfo.nXField and are not used for |
+** sorting or lookup or uniqueness checks. |
+** (6) Replace the rowid tail on all automatically generated UNIQUE |
+** indices with the PRIMARY KEY columns. |
+*/ |
+static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ |
+ Index *pIdx; |
+ Index *pPk; |
+ int nPk; |
+ int i, j; |
+ sqlite3 *db = pParse->db; |
+ Vdbe *v = pParse->pVdbe; |
+ |
+ /* Convert the OP_CreateTable opcode that would normally create the |
+ ** root-page for the table into an OP_CreateIndex opcode. The index |
+ ** created will become the PRIMARY KEY index. |
+ */ |
+ if( pParse->addrCrTab ){ |
+ assert( v ); |
+ sqlite3VdbeGetOp(v, pParse->addrCrTab)->opcode = OP_CreateIndex; |
+ } |
+ |
+ /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master |
+ ** table entry. |
+ */ |
+ if( pParse->addrSkipPK ){ |
+ assert( v ); |
+ sqlite3VdbeGetOp(v, pParse->addrSkipPK)->opcode = OP_Goto; |
+ } |
+ |
+ /* Locate the PRIMARY KEY index. Or, if this table was originally |
+ ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. |
+ */ |
+ if( pTab->iPKey>=0 ){ |
+ ExprList *pList; |
+ pList = sqlite3ExprListAppend(pParse, 0, 0); |
+ if( pList==0 ) return; |
+ pList->a[0].zName = sqlite3DbStrDup(pParse->db, |
+ pTab->aCol[pTab->iPKey].zName); |
+ pList->a[0].sortOrder = pParse->iPkSortOrder; |
+ assert( pParse->pNewTable==pTab ); |
+ pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0); |
+ if( pPk==0 ) return; |
+ pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY; |
+ pTab->iPKey = -1; |
+ }else{ |
+ pPk = sqlite3PrimaryKeyIndex(pTab); |
+ } |
+ pPk->isCovering = 1; |
+ assert( pPk!=0 ); |
+ nPk = pPk->nKeyCol; |
+ |
+ /* Make sure every column of the PRIMARY KEY is NOT NULL */ |
+ for(i=0; i<nPk; i++){ |
+ pTab->aCol[pPk->aiColumn[i]].notNull = 1; |
+ } |
+ pPk->uniqNotNull = 1; |
+ |
+ /* The root page of the PRIMARY KEY is the table root page */ |
+ pPk->tnum = pTab->tnum; |
+ |
+ /* Update the in-memory representation of all UNIQUE indices by converting |
+ ** the final rowid column into one or more columns of the PRIMARY KEY. |
+ */ |
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
+ int n; |
+ if( IsPrimaryKeyIndex(pIdx) ) continue; |
+ for(i=n=0; i<nPk; i++){ |
+ if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; |
+ } |
+ if( n==0 ){ |
+ /* This index is a superset of the primary key */ |
+ pIdx->nColumn = pIdx->nKeyCol; |
+ continue; |
+ } |
+ if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; |
+ for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ |
+ if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ |
+ pIdx->aiColumn[j] = pPk->aiColumn[i]; |
+ pIdx->azColl[j] = pPk->azColl[i]; |
+ j++; |
+ } |
+ } |
+ assert( pIdx->nColumn>=pIdx->nKeyCol+n ); |
+ assert( pIdx->nColumn>=j ); |
+ } |
+ |
+ /* Add all table columns to the PRIMARY KEY index |
+ */ |
+ if( nPk<pTab->nCol ){ |
+ if( resizeIndexObject(db, pPk, pTab->nCol) ) return; |
+ for(i=0, j=nPk; i<pTab->nCol; i++){ |
+ if( !hasColumn(pPk->aiColumn, j, i) ){ |
+ assert( j<pPk->nColumn ); |
+ pPk->aiColumn[j] = i; |
+ pPk->azColl[j] = "BINARY"; |
+ j++; |
+ } |
+ } |
+ assert( pPk->nColumn==j ); |
+ assert( pTab->nCol==j ); |
+ }else{ |
+ pPk->nColumn = pTab->nCol; |
+ } |
+} |
+ |
+/* |
+** This routine is called to report the final ")" that terminates |
+** a CREATE TABLE statement. |
+** |
+** The table structure that other action routines have been building |
+** is added to the internal hash tables, assuming no errors have |
+** occurred. |
+** |
+** An entry for the table is made in the master table on disk, unless |
+** this is a temporary table or db->init.busy==1. When db->init.busy==1 |
+** it means we are reading the sqlite_master table because we just |
+** connected to the database or because the sqlite_master table has |
+** recently changed, so the entry for this table already exists in |
+** the sqlite_master table. We do not want to create it again. |
+** |
+** If the pSelect argument is not NULL, it means that this routine |
+** was called to create a table generated from a |
+** "CREATE TABLE ... AS SELECT ..." statement. The column names of |
+** the new table will match the result set of the SELECT. |
+*/ |
+void sqlite3EndTable( |
+ Parse *pParse, /* Parse context */ |
+ Token *pCons, /* The ',' token after the last column defn. */ |
+ Token *pEnd, /* The ')' before options in the CREATE TABLE */ |
+ u8 tabOpts, /* Extra table options. Usually 0. */ |
+ Select *pSelect /* Select from a "CREATE ... AS SELECT" */ |
+){ |
+ Table *p; /* The new table */ |
+ sqlite3 *db = pParse->db; /* The database connection */ |
+ int iDb; /* Database in which the table lives */ |
+ Index *pIdx; /* An implied index of the table */ |
+ |
+ if( (pEnd==0 && pSelect==0) || db->mallocFailed ){ |
+ return; |
+ } |
+ p = pParse->pNewTable; |
+ if( p==0 ) return; |
+ |
+ assert( !db->init.busy || !pSelect ); |
+ |
+ /* If the db->init.busy is 1 it means we are reading the SQL off the |
+ ** "sqlite_master" or "sqlite_temp_master" table on the disk. |
+ ** So do not write to the disk again. Extract the root page number |
+ ** for the table from the db->init.newTnum field. (The page number |
+ ** should have been put there by the sqliteOpenCb routine.) |
+ */ |
+ if( db->init.busy ){ |
+ p->tnum = db->init.newTnum; |
+ } |
+ |
+ /* Special processing for WITHOUT ROWID Tables */ |
+ if( tabOpts & TF_WithoutRowid ){ |
+ if( (p->tabFlags & TF_Autoincrement) ){ |
+ sqlite3ErrorMsg(pParse, |
+ "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); |
+ return; |
+ } |
+ if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ |
+ sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); |
+ }else{ |
+ p->tabFlags |= TF_WithoutRowid; |
+ convertToWithoutRowidTable(pParse, p); |
+ } |
+ } |
+ |
+ iDb = sqlite3SchemaToIndex(db, p->pSchema); |
+ |
+#ifndef SQLITE_OMIT_CHECK |
+ /* Resolve names in all CHECK constraint expressions. |
+ */ |
+ if( p->pCheck ){ |
+ sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); |
+ } |
+#endif /* !defined(SQLITE_OMIT_CHECK) */ |
+ |
+ /* Estimate the average row size for the table and for all implied indices */ |
+ estimateTableWidth(p); |
+ for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ |
+ estimateIndexWidth(pIdx); |
+ } |
+ |
+ /* If not initializing, then create a record for the new table |
+ ** in the SQLITE_MASTER table of the database. |
+ ** |
+ ** If this is a TEMPORARY table, write the entry into the auxiliary |
+ ** file instead of into the main database file. |
+ */ |
+ if( !db->init.busy ){ |
+ int n; |
+ Vdbe *v; |
+ char *zType; /* "view" or "table" */ |
+ char *zType2; /* "VIEW" or "TABLE" */ |
+ char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ |
+ |
+ v = sqlite3GetVdbe(pParse); |
+ if( NEVER(v==0) ) return; |
+ |
+ sqlite3VdbeAddOp1(v, OP_Close, 0); |
+ |
+ /* |
+ ** Initialize zType for the new view or table. |
+ */ |
+ if( p->pSelect==0 ){ |
+ /* A regular table */ |
+ zType = "table"; |
+ zType2 = "TABLE"; |
+#ifndef SQLITE_OMIT_VIEW |
+ }else{ |
+ /* A view */ |
+ zType = "view"; |
+ zType2 = "VIEW"; |
+#endif |
+ } |
+ |
+ /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT |
+ ** statement to populate the new table. The root-page number for the |
+ ** new table is in register pParse->regRoot. |
+ ** |
+ ** Once the SELECT has been coded by sqlite3Select(), it is in a |
+ ** suitable state to query for the column names and types to be used |
+ ** by the new table. |
+ ** |
+ ** A shared-cache write-lock is not required to write to the new table, |
+ ** as a schema-lock must have already been obtained to create it. Since |
+ ** a schema-lock excludes all other database users, the write-lock would |
+ ** be redundant. |
+ */ |
+ if( pSelect ){ |
+ SelectDest dest; |
+ Table *pSelTab; |
+ |
+ assert(pParse->nTab==1); |
+ sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); |
+ sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); |
+ pParse->nTab = 2; |
+ sqlite3SelectDestInit(&dest, SRT_Table, 1); |
+ sqlite3Select(pParse, pSelect, &dest); |
+ sqlite3VdbeAddOp1(v, OP_Close, 1); |
+ if( pParse->nErr==0 ){ |
+ pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); |
+ if( pSelTab==0 ) return; |
+ assert( p->aCol==0 ); |
+ p->nCol = pSelTab->nCol; |
+ p->aCol = pSelTab->aCol; |
+ pSelTab->nCol = 0; |
+ pSelTab->aCol = 0; |
+ sqlite3DeleteTable(db, pSelTab); |
+ } |
+ } |
+ |
+ /* Compute the complete text of the CREATE statement */ |
+ if( pSelect ){ |
+ zStmt = createTableStmt(db, p); |
+ }else{ |
+ Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; |
+ n = (int)(pEnd2->z - pParse->sNameToken.z); |
+ if( pEnd2->z[0]!=';' ) n += pEnd2->n; |
+ zStmt = sqlite3MPrintf(db, |
+ "CREATE %s %.*s", zType2, n, pParse->sNameToken.z |
+ ); |
+ } |
+ |
+ /* A slot for the record has already been allocated in the |
+ ** SQLITE_MASTER table. We just need to update that slot with all |
+ ** the information we've collected. |
+ */ |
+ sqlite3NestedParse(pParse, |
+ "UPDATE %Q.%s " |
+ "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " |
+ "WHERE rowid=#%d", |
+ db->aDb[iDb].zName, SCHEMA_TABLE(iDb), |
+ zType, |
+ p->zName, |
+ p->zName, |
+ pParse->regRoot, |
+ zStmt, |
+ pParse->regRowid |
+ ); |
+ sqlite3DbFree(db, zStmt); |
+ sqlite3ChangeCookie(pParse, iDb); |
+ |
+#ifndef SQLITE_OMIT_AUTOINCREMENT |
+ /* Check to see if we need to create an sqlite_sequence table for |
+ ** keeping track of autoincrement keys. |
+ */ |
+ if( p->tabFlags & TF_Autoincrement ){ |
+ Db *pDb = &db->aDb[iDb]; |
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
+ if( pDb->pSchema->pSeqTab==0 ){ |
+ sqlite3NestedParse(pParse, |
+ "CREATE TABLE %Q.sqlite_sequence(name,seq)", |
+ pDb->zName |
+ ); |
+ } |
+ } |
+#endif |
+ |
+ /* Reparse everything to update our internal data structures */ |
+ sqlite3VdbeAddParseSchemaOp(v, iDb, |
+ sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); |
+ } |
+ |
+ |
+ /* Add the table to the in-memory representation of the database. |
+ */ |
+ if( db->init.busy ){ |
+ Table *pOld; |
+ Schema *pSchema = p->pSchema; |
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
+ pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); |
+ if( pOld ){ |
+ assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ |
+ db->mallocFailed = 1; |
+ return; |
+ } |
+ pParse->pNewTable = 0; |
+ db->flags |= SQLITE_InternChanges; |
+ |
+#ifndef SQLITE_OMIT_ALTERTABLE |
+ if( !p->pSelect ){ |
+ const char *zName = (const char *)pParse->sNameToken.z; |
+ int nName; |
+ assert( !pSelect && pCons && pEnd ); |
+ if( pCons->z==0 ){ |
+ pCons = pEnd; |
+ } |
+ nName = (int)((const char *)pCons->z - zName); |
+ p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); |
+ } |
+#endif |
+ } |
+} |
+ |
+#ifndef SQLITE_OMIT_VIEW |
+/* |
+** The parser calls this routine in order to create a new VIEW |
+*/ |
+void sqlite3CreateView( |
+ Parse *pParse, /* The parsing context */ |
+ Token *pBegin, /* The CREATE token that begins the statement */ |
+ Token *pName1, /* The token that holds the name of the view */ |
+ Token *pName2, /* The token that holds the name of the view */ |
+ Select *pSelect, /* A SELECT statement that will become the new view */ |
+ int isTemp, /* TRUE for a TEMPORARY view */ |
+ int noErr /* Suppress error messages if VIEW already exists */ |
+){ |
+ Table *p; |
+ int n; |
+ const char *z; |
+ Token sEnd; |
+ DbFixer sFix; |
+ Token *pName = 0; |
+ int iDb; |
+ sqlite3 *db = pParse->db; |
+ |
+ if( pParse->nVar>0 ){ |
+ sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); |
+ sqlite3SelectDelete(db, pSelect); |
+ return; |
+ } |
+ sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); |
+ p = pParse->pNewTable; |
+ if( p==0 || pParse->nErr ){ |
+ sqlite3SelectDelete(db, pSelect); |
+ return; |
+ } |
+ sqlite3TwoPartName(pParse, pName1, pName2, &pName); |
+ iDb = sqlite3SchemaToIndex(db, p->pSchema); |
+ sqlite3FixInit(&sFix, pParse, iDb, "view", pName); |
+ if( sqlite3FixSelect(&sFix, pSelect) ){ |
+ sqlite3SelectDelete(db, pSelect); |
+ return; |
+ } |
+ |
+ /* Make a copy of the entire SELECT statement that defines the view. |
+ ** This will force all the Expr.token.z values to be dynamically |
+ ** allocated rather than point to the input string - which means that |
+ ** they will persist after the current sqlite3_exec() call returns. |
+ */ |
+ p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); |
+ sqlite3SelectDelete(db, pSelect); |
+ if( db->mallocFailed ){ |
+ return; |
+ } |
+ if( !db->init.busy ){ |
+ sqlite3ViewGetColumnNames(pParse, p); |
+ } |
+ |
+ /* Locate the end of the CREATE VIEW statement. Make sEnd point to |
+ ** the end. |
+ */ |
+ sEnd = pParse->sLastToken; |
+ if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){ |
+ sEnd.z += sEnd.n; |
+ } |
+ sEnd.n = 0; |
+ n = (int)(sEnd.z - pBegin->z); |
+ z = pBegin->z; |
+ while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; } |
+ sEnd.z = &z[n-1]; |
+ sEnd.n = 1; |
+ |
+ /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ |
+ sqlite3EndTable(pParse, 0, &sEnd, 0, 0); |
+ return; |
+} |
+#endif /* SQLITE_OMIT_VIEW */ |
+ |
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) |
+/* |
+** The Table structure pTable is really a VIEW. Fill in the names of |
+** the columns of the view in the pTable structure. Return the number |
+** of errors. If an error is seen leave an error message in pParse->zErrMsg. |
+*/ |
+int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ |
+ Table *pSelTab; /* A fake table from which we get the result set */ |
+ Select *pSel; /* Copy of the SELECT that implements the view */ |
+ int nErr = 0; /* Number of errors encountered */ |
+ int n; /* Temporarily holds the number of cursors assigned */ |
+ sqlite3 *db = pParse->db; /* Database connection for malloc errors */ |
+ sqlite3_xauth xAuth; /* Saved xAuth pointer */ |
+ |
+ assert( pTable ); |
+ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ if( sqlite3VtabCallConnect(pParse, pTable) ){ |
+ return SQLITE_ERROR; |
+ } |
+ if( IsVirtual(pTable) ) return 0; |
+#endif |
+ |
+#ifndef SQLITE_OMIT_VIEW |
+ /* A positive nCol means the columns names for this view are |
+ ** already known. |
+ */ |
+ if( pTable->nCol>0 ) return 0; |
+ |
+ /* A negative nCol is a special marker meaning that we are currently |
+ ** trying to compute the column names. If we enter this routine with |
+ ** a negative nCol, it means two or more views form a loop, like this: |
+ ** |
+ ** CREATE VIEW one AS SELECT * FROM two; |
+ ** CREATE VIEW two AS SELECT * FROM one; |
+ ** |
+ ** Actually, the error above is now caught prior to reaching this point. |
+ ** But the following test is still important as it does come up |
+ ** in the following: |
+ ** |
+ ** CREATE TABLE main.ex1(a); |
+ ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; |
+ ** SELECT * FROM temp.ex1; |
+ */ |
+ if( pTable->nCol<0 ){ |
+ sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); |
+ return 1; |
+ } |
+ assert( pTable->nCol>=0 ); |
+ |
+ /* If we get this far, it means we need to compute the table names. |
+ ** Note that the call to sqlite3ResultSetOfSelect() will expand any |
+ ** "*" elements in the results set of the view and will assign cursors |
+ ** to the elements of the FROM clause. But we do not want these changes |
+ ** to be permanent. So the computation is done on a copy of the SELECT |
+ ** statement that defines the view. |
+ */ |
+ assert( pTable->pSelect ); |
+ pSel = sqlite3SelectDup(db, pTable->pSelect, 0); |
+ if( pSel ){ |
+ u8 enableLookaside = db->lookaside.bEnabled; |
+ n = pParse->nTab; |
+ sqlite3SrcListAssignCursors(pParse, pSel->pSrc); |
+ pTable->nCol = -1; |
+ db->lookaside.bEnabled = 0; |
+#ifndef SQLITE_OMIT_AUTHORIZATION |
+ xAuth = db->xAuth; |
+ db->xAuth = 0; |
+ pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); |
+ db->xAuth = xAuth; |
+#else |
+ pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); |
+#endif |
+ db->lookaside.bEnabled = enableLookaside; |
+ pParse->nTab = n; |
+ if( pSelTab ){ |
+ assert( pTable->aCol==0 ); |
+ pTable->nCol = pSelTab->nCol; |
+ pTable->aCol = pSelTab->aCol; |
+ pSelTab->nCol = 0; |
+ pSelTab->aCol = 0; |
+ sqlite3DeleteTable(db, pSelTab); |
+ assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); |
+ pTable->pSchema->schemaFlags |= DB_UnresetViews; |
+ }else{ |
+ pTable->nCol = 0; |
+ nErr++; |
+ } |
+ sqlite3SelectDelete(db, pSel); |
+ } else { |
+ nErr++; |
+ } |
+#endif /* SQLITE_OMIT_VIEW */ |
+ return nErr; |
+} |
+#endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ |
+ |
+#ifndef SQLITE_OMIT_VIEW |
+/* |
+** Clear the column names from every VIEW in database idx. |
+*/ |
+static void sqliteViewResetAll(sqlite3 *db, int idx){ |
+ HashElem *i; |
+ assert( sqlite3SchemaMutexHeld(db, idx, 0) ); |
+ if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; |
+ for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ |
+ Table *pTab = sqliteHashData(i); |
+ if( pTab->pSelect ){ |
+ sqliteDeleteColumnNames(db, pTab); |
+ pTab->aCol = 0; |
+ pTab->nCol = 0; |
+ } |
+ } |
+ DbClearProperty(db, idx, DB_UnresetViews); |
+} |
+#else |
+# define sqliteViewResetAll(A,B) |
+#endif /* SQLITE_OMIT_VIEW */ |
+ |
+/* |
+** This function is called by the VDBE to adjust the internal schema |
+** used by SQLite when the btree layer moves a table root page. The |
+** root-page of a table or index in database iDb has changed from iFrom |
+** to iTo. |
+** |
+** Ticket #1728: The symbol table might still contain information |
+** on tables and/or indices that are the process of being deleted. |
+** If you are unlucky, one of those deleted indices or tables might |
+** have the same rootpage number as the real table or index that is |
+** being moved. So we cannot stop searching after the first match |
+** because the first match might be for one of the deleted indices |
+** or tables and not the table/index that is actually being moved. |
+** We must continue looping until all tables and indices with |
+** rootpage==iFrom have been converted to have a rootpage of iTo |
+** in order to be certain that we got the right one. |
+*/ |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ |
+ HashElem *pElem; |
+ Hash *pHash; |
+ Db *pDb; |
+ |
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
+ pDb = &db->aDb[iDb]; |
+ pHash = &pDb->pSchema->tblHash; |
+ for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ |
+ Table *pTab = sqliteHashData(pElem); |
+ if( pTab->tnum==iFrom ){ |
+ pTab->tnum = iTo; |
+ } |
+ } |
+ pHash = &pDb->pSchema->idxHash; |
+ for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ |
+ Index *pIdx = sqliteHashData(pElem); |
+ if( pIdx->tnum==iFrom ){ |
+ pIdx->tnum = iTo; |
+ } |
+ } |
+} |
+#endif |
+ |
+/* |
+** Write code to erase the table with root-page iTable from database iDb. |
+** Also write code to modify the sqlite_master table and internal schema |
+** if a root-page of another table is moved by the btree-layer whilst |
+** erasing iTable (this can happen with an auto-vacuum database). |
+*/ |
+static void destroyRootPage(Parse *pParse, int iTable, int iDb){ |
+ Vdbe *v = sqlite3GetVdbe(pParse); |
+ int r1 = sqlite3GetTempReg(pParse); |
+ sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); |
+ sqlite3MayAbort(pParse); |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+ /* OP_Destroy stores an in integer r1. If this integer |
+ ** is non-zero, then it is the root page number of a table moved to |
+ ** location iTable. The following code modifies the sqlite_master table to |
+ ** reflect this. |
+ ** |
+ ** The "#NNN" in the SQL is a special constant that means whatever value |
+ ** is in register NNN. See grammar rules associated with the TK_REGISTER |
+ ** token for additional information. |
+ */ |
+ sqlite3NestedParse(pParse, |
+ "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", |
+ pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); |
+#endif |
+ sqlite3ReleaseTempReg(pParse, r1); |
+} |
+ |
+/* |
+** Write VDBE code to erase table pTab and all associated indices on disk. |
+** Code to update the sqlite_master tables and internal schema definitions |
+** in case a root-page belonging to another table is moved by the btree layer |
+** is also added (this can happen with an auto-vacuum database). |
+*/ |
+static void destroyTable(Parse *pParse, Table *pTab){ |
+#ifdef SQLITE_OMIT_AUTOVACUUM |
+ Index *pIdx; |
+ int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
+ destroyRootPage(pParse, pTab->tnum, iDb); |
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
+ destroyRootPage(pParse, pIdx->tnum, iDb); |
+ } |
+#else |
+ /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM |
+ ** is not defined), then it is important to call OP_Destroy on the |
+ ** table and index root-pages in order, starting with the numerically |
+ ** largest root-page number. This guarantees that none of the root-pages |
+ ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the |
+ ** following were coded: |
+ ** |
+ ** OP_Destroy 4 0 |
+ ** ... |
+ ** OP_Destroy 5 0 |
+ ** |
+ ** and root page 5 happened to be the largest root-page number in the |
+ ** database, then root page 5 would be moved to page 4 by the |
+ ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit |
+ ** a free-list page. |
+ */ |
+ int iTab = pTab->tnum; |
+ int iDestroyed = 0; |
+ |
+ while( 1 ){ |
+ Index *pIdx; |
+ int iLargest = 0; |
+ |
+ if( iDestroyed==0 || iTab<iDestroyed ){ |
+ iLargest = iTab; |
+ } |
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
+ int iIdx = pIdx->tnum; |
+ assert( pIdx->pSchema==pTab->pSchema ); |
+ if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ |
+ iLargest = iIdx; |
+ } |
+ } |
+ if( iLargest==0 ){ |
+ return; |
+ }else{ |
+ int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
+ assert( iDb>=0 && iDb<pParse->db->nDb ); |
+ destroyRootPage(pParse, iLargest, iDb); |
+ iDestroyed = iLargest; |
+ } |
+ } |
+#endif |
+} |
+ |
+/* |
+** Remove entries from the sqlite_statN tables (for N in (1,2,3)) |
+** after a DROP INDEX or DROP TABLE command. |
+*/ |
+static void sqlite3ClearStatTables( |
+ Parse *pParse, /* The parsing context */ |
+ int iDb, /* The database number */ |
+ const char *zType, /* "idx" or "tbl" */ |
+ const char *zName /* Name of index or table */ |
+){ |
+ int i; |
+ const char *zDbName = pParse->db->aDb[iDb].zName; |
+ for(i=1; i<=4; i++){ |
+ char zTab[24]; |
+ sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); |
+ if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ |
+ sqlite3NestedParse(pParse, |
+ "DELETE FROM %Q.%s WHERE %s=%Q", |
+ zDbName, zTab, zType, zName |
+ ); |
+ } |
+ } |
+} |
+ |
+/* |
+** Generate code to drop a table. |
+*/ |
+void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ |
+ Vdbe *v; |
+ sqlite3 *db = pParse->db; |
+ Trigger *pTrigger; |
+ Db *pDb = &db->aDb[iDb]; |
+ |
+ v = sqlite3GetVdbe(pParse); |
+ assert( v!=0 ); |
+ sqlite3BeginWriteOperation(pParse, 1, iDb); |
+ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ if( IsVirtual(pTab) ){ |
+ sqlite3VdbeAddOp0(v, OP_VBegin); |
+ } |
+#endif |
+ |
+ /* Drop all triggers associated with the table being dropped. Code |
+ ** is generated to remove entries from sqlite_master and/or |
+ ** sqlite_temp_master if required. |
+ */ |
+ pTrigger = sqlite3TriggerList(pParse, pTab); |
+ while( pTrigger ){ |
+ assert( pTrigger->pSchema==pTab->pSchema || |
+ pTrigger->pSchema==db->aDb[1].pSchema ); |
+ sqlite3DropTriggerPtr(pParse, pTrigger); |
+ pTrigger = pTrigger->pNext; |
+ } |
+ |
+#ifndef SQLITE_OMIT_AUTOINCREMENT |
+ /* Remove any entries of the sqlite_sequence table associated with |
+ ** the table being dropped. This is done before the table is dropped |
+ ** at the btree level, in case the sqlite_sequence table needs to |
+ ** move as a result of the drop (can happen in auto-vacuum mode). |
+ */ |
+ if( pTab->tabFlags & TF_Autoincrement ){ |
+ sqlite3NestedParse(pParse, |
+ "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", |
+ pDb->zName, pTab->zName |
+ ); |
+ } |
+#endif |
+ |
+ /* Drop all SQLITE_MASTER table and index entries that refer to the |
+ ** table. The program name loops through the master table and deletes |
+ ** every row that refers to a table of the same name as the one being |
+ ** dropped. Triggers are handled separately because a trigger can be |
+ ** created in the temp database that refers to a table in another |
+ ** database. |
+ */ |
+ sqlite3NestedParse(pParse, |
+ "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", |
+ pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); |
+ if( !isView && !IsVirtual(pTab) ){ |
+ destroyTable(pParse, pTab); |
+ } |
+ |
+ /* Remove the table entry from SQLite's internal schema and modify |
+ ** the schema cookie. |
+ */ |
+ if( IsVirtual(pTab) ){ |
+ sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); |
+ } |
+ sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); |
+ sqlite3ChangeCookie(pParse, iDb); |
+ sqliteViewResetAll(db, iDb); |
+} |
+ |
+/* |
+** This routine is called to do the work of a DROP TABLE statement. |
+** pName is the name of the table to be dropped. |
+*/ |
+void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ |
+ Table *pTab; |
+ Vdbe *v; |
+ sqlite3 *db = pParse->db; |
+ int iDb; |
+ |
+ if( db->mallocFailed ){ |
+ goto exit_drop_table; |
+ } |
+ assert( pParse->nErr==0 ); |
+ assert( pName->nSrc==1 ); |
+ if( noErr ) db->suppressErr++; |
+ pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); |
+ if( noErr ) db->suppressErr--; |
+ |
+ if( pTab==0 ){ |
+ if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); |
+ goto exit_drop_table; |
+ } |
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
+ assert( iDb>=0 && iDb<db->nDb ); |
+ |
+ /* If pTab is a virtual table, call ViewGetColumnNames() to ensure |
+ ** it is initialized. |
+ */ |
+ if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ |
+ goto exit_drop_table; |
+ } |
+#ifndef SQLITE_OMIT_AUTHORIZATION |
+ { |
+ int code; |
+ const char *zTab = SCHEMA_TABLE(iDb); |
+ const char *zDb = db->aDb[iDb].zName; |
+ const char *zArg2 = 0; |
+ if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ |
+ goto exit_drop_table; |
+ } |
+ if( isView ){ |
+ if( !OMIT_TEMPDB && iDb==1 ){ |
+ code = SQLITE_DROP_TEMP_VIEW; |
+ }else{ |
+ code = SQLITE_DROP_VIEW; |
+ } |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ }else if( IsVirtual(pTab) ){ |
+ code = SQLITE_DROP_VTABLE; |
+ zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; |
+#endif |
+ }else{ |
+ if( !OMIT_TEMPDB && iDb==1 ){ |
+ code = SQLITE_DROP_TEMP_TABLE; |
+ }else{ |
+ code = SQLITE_DROP_TABLE; |
+ } |
+ } |
+ if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ |
+ goto exit_drop_table; |
+ } |
+ if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ |
+ goto exit_drop_table; |
+ } |
+ } |
+#endif |
+ if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 |
+ && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ |
+ sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); |
+ goto exit_drop_table; |
+ } |
+ |
+#ifndef SQLITE_OMIT_VIEW |
+ /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used |
+ ** on a table. |
+ */ |
+ if( isView && pTab->pSelect==0 ){ |
+ sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); |
+ goto exit_drop_table; |
+ } |
+ if( !isView && pTab->pSelect ){ |
+ sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); |
+ goto exit_drop_table; |
+ } |
+#endif |
+ |
+ /* Generate code to remove the table from the master table |
+ ** on disk. |
+ */ |
+ v = sqlite3GetVdbe(pParse); |
+ if( v ){ |
+ sqlite3BeginWriteOperation(pParse, 1, iDb); |
+ sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); |
+ sqlite3FkDropTable(pParse, pName, pTab); |
+ sqlite3CodeDropTable(pParse, pTab, iDb, isView); |
+ } |
+ |
+exit_drop_table: |
+ sqlite3SrcListDelete(db, pName); |
+} |
+ |
+/* |
+** This routine is called to create a new foreign key on the table |
+** currently under construction. pFromCol determines which columns |
+** in the current table point to the foreign key. If pFromCol==0 then |
+** connect the key to the last column inserted. pTo is the name of |
+** the table referred to (a.k.a the "parent" table). pToCol is a list |
+** of tables in the parent pTo table. flags contains all |
+** information about the conflict resolution algorithms specified |
+** in the ON DELETE, ON UPDATE and ON INSERT clauses. |
+** |
+** An FKey structure is created and added to the table currently |
+** under construction in the pParse->pNewTable field. |
+** |
+** The foreign key is set for IMMEDIATE processing. A subsequent call |
+** to sqlite3DeferForeignKey() might change this to DEFERRED. |
+*/ |
+void sqlite3CreateForeignKey( |
+ Parse *pParse, /* Parsing context */ |
+ ExprList *pFromCol, /* Columns in this table that point to other table */ |
+ Token *pTo, /* Name of the other table */ |
+ ExprList *pToCol, /* Columns in the other table */ |
+ int flags /* Conflict resolution algorithms. */ |
+){ |
+ sqlite3 *db = pParse->db; |
+#ifndef SQLITE_OMIT_FOREIGN_KEY |
+ FKey *pFKey = 0; |
+ FKey *pNextTo; |
+ Table *p = pParse->pNewTable; |
+ int nByte; |
+ int i; |
+ int nCol; |
+ char *z; |
+ |
+ assert( pTo!=0 ); |
+ if( p==0 || IN_DECLARE_VTAB ) goto fk_end; |
+ if( pFromCol==0 ){ |
+ int iCol = p->nCol-1; |
+ if( NEVER(iCol<0) ) goto fk_end; |
+ if( pToCol && pToCol->nExpr!=1 ){ |
+ sqlite3ErrorMsg(pParse, "foreign key on %s" |
+ " should reference only one column of table %T", |
+ p->aCol[iCol].zName, pTo); |
+ goto fk_end; |
+ } |
+ nCol = 1; |
+ }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ |
+ sqlite3ErrorMsg(pParse, |
+ "number of columns in foreign key does not match the number of " |
+ "columns in the referenced table"); |
+ goto fk_end; |
+ }else{ |
+ nCol = pFromCol->nExpr; |
+ } |
+ nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; |
+ if( pToCol ){ |
+ for(i=0; i<pToCol->nExpr; i++){ |
+ nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; |
+ } |
+ } |
+ pFKey = sqlite3DbMallocZero(db, nByte ); |
+ if( pFKey==0 ){ |
+ goto fk_end; |
+ } |
+ pFKey->pFrom = p; |
+ pFKey->pNextFrom = p->pFKey; |
+ z = (char*)&pFKey->aCol[nCol]; |
+ pFKey->zTo = z; |
+ memcpy(z, pTo->z, pTo->n); |
+ z[pTo->n] = 0; |
+ sqlite3Dequote(z); |
+ z += pTo->n+1; |
+ pFKey->nCol = nCol; |
+ if( pFromCol==0 ){ |
+ pFKey->aCol[0].iFrom = p->nCol-1; |
+ }else{ |
+ for(i=0; i<nCol; i++){ |
+ int j; |
+ for(j=0; j<p->nCol; j++){ |
+ if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ |
+ pFKey->aCol[i].iFrom = j; |
+ break; |
+ } |
+ } |
+ if( j>=p->nCol ){ |
+ sqlite3ErrorMsg(pParse, |
+ "unknown column \"%s\" in foreign key definition", |
+ pFromCol->a[i].zName); |
+ goto fk_end; |
+ } |
+ } |
+ } |
+ if( pToCol ){ |
+ for(i=0; i<nCol; i++){ |
+ int n = sqlite3Strlen30(pToCol->a[i].zName); |
+ pFKey->aCol[i].zCol = z; |
+ memcpy(z, pToCol->a[i].zName, n); |
+ z[n] = 0; |
+ z += n+1; |
+ } |
+ } |
+ pFKey->isDeferred = 0; |
+ pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ |
+ pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ |
+ |
+ assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); |
+ pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, |
+ pFKey->zTo, (void *)pFKey |
+ ); |
+ if( pNextTo==pFKey ){ |
+ db->mallocFailed = 1; |
+ goto fk_end; |
+ } |
+ if( pNextTo ){ |
+ assert( pNextTo->pPrevTo==0 ); |
+ pFKey->pNextTo = pNextTo; |
+ pNextTo->pPrevTo = pFKey; |
+ } |
+ |
+ /* Link the foreign key to the table as the last step. |
+ */ |
+ p->pFKey = pFKey; |
+ pFKey = 0; |
+ |
+fk_end: |
+ sqlite3DbFree(db, pFKey); |
+#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ |
+ sqlite3ExprListDelete(db, pFromCol); |
+ sqlite3ExprListDelete(db, pToCol); |
+} |
+ |
+/* |
+** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED |
+** clause is seen as part of a foreign key definition. The isDeferred |
+** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. |
+** The behavior of the most recently created foreign key is adjusted |
+** accordingly. |
+*/ |
+void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ |
+#ifndef SQLITE_OMIT_FOREIGN_KEY |
+ Table *pTab; |
+ FKey *pFKey; |
+ if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; |
+ assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ |
+ pFKey->isDeferred = (u8)isDeferred; |
+#endif |
+} |
+ |
+/* |
+** Generate code that will erase and refill index *pIdx. This is |
+** used to initialize a newly created index or to recompute the |
+** content of an index in response to a REINDEX command. |
+** |
+** if memRootPage is not negative, it means that the index is newly |
+** created. The register specified by memRootPage contains the |
+** root page number of the index. If memRootPage is negative, then |
+** the index already exists and must be cleared before being refilled and |
+** the root page number of the index is taken from pIndex->tnum. |
+*/ |
+static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ |
+ Table *pTab = pIndex->pTable; /* The table that is indexed */ |
+ int iTab = pParse->nTab++; /* Btree cursor used for pTab */ |
+ int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ |
+ int iSorter; /* Cursor opened by OpenSorter (if in use) */ |
+ int addr1; /* Address of top of loop */ |
+ int addr2; /* Address to jump to for next iteration */ |
+ int tnum; /* Root page of index */ |
+ int iPartIdxLabel; /* Jump to this label to skip a row */ |
+ Vdbe *v; /* Generate code into this virtual machine */ |
+ KeyInfo *pKey; /* KeyInfo for index */ |
+ int regRecord; /* Register holding assembled index record */ |
+ sqlite3 *db = pParse->db; /* The database connection */ |
+ int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); |
+ |
+#ifndef SQLITE_OMIT_AUTHORIZATION |
+ if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, |
+ db->aDb[iDb].zName ) ){ |
+ return; |
+ } |
+#endif |
+ |
+ /* Require a write-lock on the table to perform this operation */ |
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); |
+ |
+ v = sqlite3GetVdbe(pParse); |
+ if( v==0 ) return; |
+ if( memRootPage>=0 ){ |
+ tnum = memRootPage; |
+ }else{ |
+ tnum = pIndex->tnum; |
+ } |
+ pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); |
+ |
+ /* Open the sorter cursor if we are to use one. */ |
+ iSorter = pParse->nTab++; |
+ sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) |
+ sqlite3KeyInfoRef(pKey), P4_KEYINFO); |
+ |
+ /* Open the table. Loop through all rows of the table, inserting index |
+ ** records into the sorter. */ |
+ sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); |
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); |
+ regRecord = sqlite3GetTempReg(pParse); |
+ |
+ sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); |
+ sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); |
+ sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); |
+ sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); |
+ sqlite3VdbeJumpHere(v, addr1); |
+ if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); |
+ sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, |
+ (char *)pKey, P4_KEYINFO); |
+ sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); |
+ |
+ addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); |
+ assert( pKey!=0 || db->mallocFailed || pParse->nErr ); |
+ if( IsUniqueIndex(pIndex) && pKey!=0 ){ |
+ int j2 = sqlite3VdbeCurrentAddr(v) + 3; |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, j2); |
+ addr2 = sqlite3VdbeCurrentAddr(v); |
+ sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, |
+ pIndex->nKeyCol); VdbeCoverage(v); |
+ sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); |
+ }else{ |
+ addr2 = sqlite3VdbeCurrentAddr(v); |
+ } |
+ sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); |
+ sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1); |
+ sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); |
+ sqlite3ReleaseTempReg(pParse, regRecord); |
+ sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); |
+ sqlite3VdbeJumpHere(v, addr1); |
+ |
+ sqlite3VdbeAddOp1(v, OP_Close, iTab); |
+ sqlite3VdbeAddOp1(v, OP_Close, iIdx); |
+ sqlite3VdbeAddOp1(v, OP_Close, iSorter); |
+} |
+ |
+/* |
+** Allocate heap space to hold an Index object with nCol columns. |
+** |
+** Increase the allocation size to provide an extra nExtra bytes |
+** of 8-byte aligned space after the Index object and return a |
+** pointer to this extra space in *ppExtra. |
+*/ |
+Index *sqlite3AllocateIndexObject( |
+ sqlite3 *db, /* Database connection */ |
+ i16 nCol, /* Total number of columns in the index */ |
+ int nExtra, /* Number of bytes of extra space to alloc */ |
+ char **ppExtra /* Pointer to the "extra" space */ |
+){ |
+ Index *p; /* Allocated index object */ |
+ int nByte; /* Bytes of space for Index object + arrays */ |
+ |
+ nByte = ROUND8(sizeof(Index)) + /* Index structure */ |
+ ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ |
+ ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ |
+ sizeof(i16)*nCol + /* Index.aiColumn */ |
+ sizeof(u8)*nCol); /* Index.aSortOrder */ |
+ p = sqlite3DbMallocZero(db, nByte + nExtra); |
+ if( p ){ |
+ char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); |
+ p->azColl = (char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); |
+ p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); |
+ p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; |
+ p->aSortOrder = (u8*)pExtra; |
+ p->nColumn = nCol; |
+ p->nKeyCol = nCol - 1; |
+ *ppExtra = ((char*)p) + nByte; |
+ } |
+ return p; |
+} |
+ |
+/* |
+** Create a new index for an SQL table. pName1.pName2 is the name of the index |
+** and pTblList is the name of the table that is to be indexed. Both will |
+** be NULL for a primary key or an index that is created to satisfy a |
+** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable |
+** as the table to be indexed. pParse->pNewTable is a table that is |
+** currently being constructed by a CREATE TABLE statement. |
+** |
+** pList is a list of columns to be indexed. pList will be NULL if this |
+** is a primary key or unique-constraint on the most recent column added |
+** to the table currently under construction. |
+** |
+** If the index is created successfully, return a pointer to the new Index |
+** structure. This is used by sqlite3AddPrimaryKey() to mark the index |
+** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY) |
+*/ |
+Index *sqlite3CreateIndex( |
+ Parse *pParse, /* All information about this parse */ |
+ Token *pName1, /* First part of index name. May be NULL */ |
+ Token *pName2, /* Second part of index name. May be NULL */ |
+ SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ |
+ ExprList *pList, /* A list of columns to be indexed */ |
+ int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ |
+ Token *pStart, /* The CREATE token that begins this statement */ |
+ Expr *pPIWhere, /* WHERE clause for partial indices */ |
+ int sortOrder, /* Sort order of primary key when pList==NULL */ |
+ int ifNotExist /* Omit error if index already exists */ |
+){ |
+ Index *pRet = 0; /* Pointer to return */ |
+ Table *pTab = 0; /* Table to be indexed */ |
+ Index *pIndex = 0; /* The index to be created */ |
+ char *zName = 0; /* Name of the index */ |
+ int nName; /* Number of characters in zName */ |
+ int i, j; |
+ DbFixer sFix; /* For assigning database names to pTable */ |
+ int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ |
+ sqlite3 *db = pParse->db; |
+ Db *pDb; /* The specific table containing the indexed database */ |
+ int iDb; /* Index of the database that is being written */ |
+ Token *pName = 0; /* Unqualified name of the index to create */ |
+ struct ExprList_item *pListItem; /* For looping over pList */ |
+ const Column *pTabCol; /* A column in the table */ |
+ int nExtra = 0; /* Space allocated for zExtra[] */ |
+ int nExtraCol; /* Number of extra columns needed */ |
+ char *zExtra = 0; /* Extra space after the Index object */ |
+ Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ |
+ |
+ assert( pParse->nErr==0 ); /* Never called with prior errors */ |
+ if( db->mallocFailed || IN_DECLARE_VTAB ){ |
+ goto exit_create_index; |
+ } |
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
+ goto exit_create_index; |
+ } |
+ |
+ /* |
+ ** Find the table that is to be indexed. Return early if not found. |
+ */ |
+ if( pTblName!=0 ){ |
+ |
+ /* Use the two-part index name to determine the database |
+ ** to search for the table. 'Fix' the table name to this db |
+ ** before looking up the table. |
+ */ |
+ assert( pName1 && pName2 ); |
+ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); |
+ if( iDb<0 ) goto exit_create_index; |
+ assert( pName && pName->z ); |
+ |
+#ifndef SQLITE_OMIT_TEMPDB |
+ /* If the index name was unqualified, check if the table |
+ ** is a temp table. If so, set the database to 1. Do not do this |
+ ** if initialising a database schema. |
+ */ |
+ if( !db->init.busy ){ |
+ pTab = sqlite3SrcListLookup(pParse, pTblName); |
+ if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ |
+ iDb = 1; |
+ } |
+ } |
+#endif |
+ |
+ sqlite3FixInit(&sFix, pParse, iDb, "index", pName); |
+ if( sqlite3FixSrcList(&sFix, pTblName) ){ |
+ /* Because the parser constructs pTblName from a single identifier, |
+ ** sqlite3FixSrcList can never fail. */ |
+ assert(0); |
+ } |
+ pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); |
+ assert( db->mallocFailed==0 || pTab==0 ); |
+ if( pTab==0 ) goto exit_create_index; |
+ if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ |
+ sqlite3ErrorMsg(pParse, |
+ "cannot create a TEMP index on non-TEMP table \"%s\"", |
+ pTab->zName); |
+ goto exit_create_index; |
+ } |
+ if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); |
+ }else{ |
+ assert( pName==0 ); |
+ assert( pStart==0 ); |
+ pTab = pParse->pNewTable; |
+ if( !pTab ) goto exit_create_index; |
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
+ } |
+ pDb = &db->aDb[iDb]; |
+ |
+ assert( pTab!=0 ); |
+ assert( pParse->nErr==0 ); |
+ if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 |
+ && db->init.busy==0 |
+#if SQLITE_USER_AUTHENTICATION |
+ && sqlite3UserAuthTable(pTab->zName)==0 |
+#endif |
+ && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ |
+ sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); |
+ goto exit_create_index; |
+ } |
+#ifndef SQLITE_OMIT_VIEW |
+ if( pTab->pSelect ){ |
+ sqlite3ErrorMsg(pParse, "views may not be indexed"); |
+ goto exit_create_index; |
+ } |
+#endif |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ if( IsVirtual(pTab) ){ |
+ sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); |
+ goto exit_create_index; |
+ } |
+#endif |
+ |
+ /* |
+ ** Find the name of the index. Make sure there is not already another |
+ ** index or table with the same name. |
+ ** |
+ ** Exception: If we are reading the names of permanent indices from the |
+ ** sqlite_master table (because some other process changed the schema) and |
+ ** one of the index names collides with the name of a temporary table or |
+ ** index, then we will continue to process this index. |
+ ** |
+ ** If pName==0 it means that we are |
+ ** dealing with a primary key or UNIQUE constraint. We have to invent our |
+ ** own name. |
+ */ |
+ if( pName ){ |
+ zName = sqlite3NameFromToken(db, pName); |
+ if( zName==0 ) goto exit_create_index; |
+ assert( pName->z!=0 ); |
+ if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ |
+ goto exit_create_index; |
+ } |
+ if( !db->init.busy ){ |
+ if( sqlite3FindTable(db, zName, 0)!=0 ){ |
+ sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); |
+ goto exit_create_index; |
+ } |
+ } |
+ if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ |
+ if( !ifNotExist ){ |
+ sqlite3ErrorMsg(pParse, "index %s already exists", zName); |
+ }else{ |
+ assert( !db->init.busy ); |
+ sqlite3CodeVerifySchema(pParse, iDb); |
+ } |
+ goto exit_create_index; |
+ } |
+ }else{ |
+ int n; |
+ Index *pLoop; |
+ for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} |
+ zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); |
+ if( zName==0 ){ |
+ goto exit_create_index; |
+ } |
+ } |
+ |
+ /* Check for authorization to create an index. |
+ */ |
+#ifndef SQLITE_OMIT_AUTHORIZATION |
+ { |
+ const char *zDb = pDb->zName; |
+ if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ |
+ goto exit_create_index; |
+ } |
+ i = SQLITE_CREATE_INDEX; |
+ if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; |
+ if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ |
+ goto exit_create_index; |
+ } |
+ } |
+#endif |
+ |
+ /* If pList==0, it means this routine was called to make a primary |
+ ** key out of the last column added to the table under construction. |
+ ** So create a fake list to simulate this. |
+ */ |
+ if( pList==0 ){ |
+ pList = sqlite3ExprListAppend(pParse, 0, 0); |
+ if( pList==0 ) goto exit_create_index; |
+ pList->a[0].zName = sqlite3DbStrDup(pParse->db, |
+ pTab->aCol[pTab->nCol-1].zName); |
+ pList->a[0].sortOrder = (u8)sortOrder; |
+ } |
+ |
+ /* Figure out how many bytes of space are required to store explicitly |
+ ** specified collation sequence names. |
+ */ |
+ for(i=0; i<pList->nExpr; i++){ |
+ Expr *pExpr = pList->a[i].pExpr; |
+ if( pExpr ){ |
+ assert( pExpr->op==TK_COLLATE ); |
+ nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); |
+ } |
+ } |
+ |
+ /* |
+ ** Allocate the index structure. |
+ */ |
+ nName = sqlite3Strlen30(zName); |
+ nExtraCol = pPk ? pPk->nKeyCol : 1; |
+ pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, |
+ nName + nExtra + 1, &zExtra); |
+ if( db->mallocFailed ){ |
+ goto exit_create_index; |
+ } |
+ assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); |
+ assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); |
+ pIndex->zName = zExtra; |
+ zExtra += nName + 1; |
+ memcpy(pIndex->zName, zName, nName+1); |
+ pIndex->pTable = pTab; |
+ pIndex->onError = (u8)onError; |
+ pIndex->uniqNotNull = onError!=OE_None; |
+ pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE; |
+ pIndex->pSchema = db->aDb[iDb].pSchema; |
+ pIndex->nKeyCol = pList->nExpr; |
+ if( pPIWhere ){ |
+ sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); |
+ pIndex->pPartIdxWhere = pPIWhere; |
+ pPIWhere = 0; |
+ } |
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
+ |
+ /* Check to see if we should honor DESC requests on index columns |
+ */ |
+ if( pDb->pSchema->file_format>=4 ){ |
+ sortOrderMask = -1; /* Honor DESC */ |
+ }else{ |
+ sortOrderMask = 0; /* Ignore DESC */ |
+ } |
+ |
+ /* Scan the names of the columns of the table to be indexed and |
+ ** load the column indices into the Index structure. Report an error |
+ ** if any column is not found. |
+ ** |
+ ** TODO: Add a test to make sure that the same column is not named |
+ ** more than once within the same index. Only the first instance of |
+ ** the column will ever be used by the optimizer. Note that using the |
+ ** same column more than once cannot be an error because that would |
+ ** break backwards compatibility - it needs to be a warning. |
+ */ |
+ for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ |
+ const char *zColName = pListItem->zName; |
+ int requestedSortOrder; |
+ char *zColl; /* Collation sequence name */ |
+ |
+ for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ |
+ if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; |
+ } |
+ if( j>=pTab->nCol ){ |
+ sqlite3ErrorMsg(pParse, "table %s has no column named %s", |
+ pTab->zName, zColName); |
+ pParse->checkSchema = 1; |
+ goto exit_create_index; |
+ } |
+ assert( j<=0x7fff ); |
+ pIndex->aiColumn[i] = (i16)j; |
+ if( pListItem->pExpr ){ |
+ int nColl; |
+ assert( pListItem->pExpr->op==TK_COLLATE ); |
+ zColl = pListItem->pExpr->u.zToken; |
+ nColl = sqlite3Strlen30(zColl) + 1; |
+ assert( nExtra>=nColl ); |
+ memcpy(zExtra, zColl, nColl); |
+ zColl = zExtra; |
+ zExtra += nColl; |
+ nExtra -= nColl; |
+ }else{ |
+ zColl = pTab->aCol[j].zColl; |
+ if( !zColl ) zColl = "BINARY"; |
+ } |
+ if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ |
+ goto exit_create_index; |
+ } |
+ pIndex->azColl[i] = zColl; |
+ requestedSortOrder = pListItem->sortOrder & sortOrderMask; |
+ pIndex->aSortOrder[i] = (u8)requestedSortOrder; |
+ if( pTab->aCol[j].notNull==0 ) pIndex->uniqNotNull = 0; |
+ } |
+ if( pPk ){ |
+ for(j=0; j<pPk->nKeyCol; j++){ |
+ int x = pPk->aiColumn[j]; |
+ if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ |
+ pIndex->nColumn--; |
+ }else{ |
+ pIndex->aiColumn[i] = x; |
+ pIndex->azColl[i] = pPk->azColl[j]; |
+ pIndex->aSortOrder[i] = pPk->aSortOrder[j]; |
+ i++; |
+ } |
+ } |
+ assert( i==pIndex->nColumn ); |
+ }else{ |
+ pIndex->aiColumn[i] = -1; |
+ pIndex->azColl[i] = "BINARY"; |
+ } |
+ sqlite3DefaultRowEst(pIndex); |
+ if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); |
+ |
+ if( pTab==pParse->pNewTable ){ |
+ /* This routine has been called to create an automatic index as a |
+ ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or |
+ ** a PRIMARY KEY or UNIQUE clause following the column definitions. |
+ ** i.e. one of: |
+ ** |
+ ** CREATE TABLE t(x PRIMARY KEY, y); |
+ ** CREATE TABLE t(x, y, UNIQUE(x, y)); |
+ ** |
+ ** Either way, check to see if the table already has such an index. If |
+ ** so, don't bother creating this one. This only applies to |
+ ** automatically created indices. Users can do as they wish with |
+ ** explicit indices. |
+ ** |
+ ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent |
+ ** (and thus suppressing the second one) even if they have different |
+ ** sort orders. |
+ ** |
+ ** If there are different collating sequences or if the columns of |
+ ** the constraint occur in different orders, then the constraints are |
+ ** considered distinct and both result in separate indices. |
+ */ |
+ Index *pIdx; |
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
+ int k; |
+ assert( IsUniqueIndex(pIdx) ); |
+ assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); |
+ assert( IsUniqueIndex(pIndex) ); |
+ |
+ if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; |
+ for(k=0; k<pIdx->nKeyCol; k++){ |
+ const char *z1; |
+ const char *z2; |
+ if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; |
+ z1 = pIdx->azColl[k]; |
+ z2 = pIndex->azColl[k]; |
+ if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; |
+ } |
+ if( k==pIdx->nKeyCol ){ |
+ if( pIdx->onError!=pIndex->onError ){ |
+ /* This constraint creates the same index as a previous |
+ ** constraint specified somewhere in the CREATE TABLE statement. |
+ ** However the ON CONFLICT clauses are different. If both this |
+ ** constraint and the previous equivalent constraint have explicit |
+ ** ON CONFLICT clauses this is an error. Otherwise, use the |
+ ** explicitly specified behavior for the index. |
+ */ |
+ if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ |
+ sqlite3ErrorMsg(pParse, |
+ "conflicting ON CONFLICT clauses specified", 0); |
+ } |
+ if( pIdx->onError==OE_Default ){ |
+ pIdx->onError = pIndex->onError; |
+ } |
+ } |
+ goto exit_create_index; |
+ } |
+ } |
+ } |
+ |
+ /* Link the new Index structure to its table and to the other |
+ ** in-memory database structures. |
+ */ |
+ if( db->init.busy ){ |
+ Index *p; |
+ assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); |
+ p = sqlite3HashInsert(&pIndex->pSchema->idxHash, |
+ pIndex->zName, pIndex); |
+ if( p ){ |
+ assert( p==pIndex ); /* Malloc must have failed */ |
+ db->mallocFailed = 1; |
+ goto exit_create_index; |
+ } |
+ db->flags |= SQLITE_InternChanges; |
+ if( pTblName!=0 ){ |
+ pIndex->tnum = db->init.newTnum; |
+ } |
+ } |
+ |
+ /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the |
+ ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then |
+ ** emit code to allocate the index rootpage on disk and make an entry for |
+ ** the index in the sqlite_master table and populate the index with |
+ ** content. But, do not do this if we are simply reading the sqlite_master |
+ ** table to parse the schema, or if this index is the PRIMARY KEY index |
+ ** of a WITHOUT ROWID table. |
+ ** |
+ ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY |
+ ** or UNIQUE index in a CREATE TABLE statement. Since the table |
+ ** has just been created, it contains no data and the index initialization |
+ ** step can be skipped. |
+ */ |
+ else if( pParse->nErr==0 && (HasRowid(pTab) || pTblName!=0) ){ |
+ Vdbe *v; |
+ char *zStmt; |
+ int iMem = ++pParse->nMem; |
+ |
+ v = sqlite3GetVdbe(pParse); |
+ if( v==0 ) goto exit_create_index; |
+ |
+ |
+ /* Create the rootpage for the index |
+ */ |
+ sqlite3BeginWriteOperation(pParse, 1, iDb); |
+ sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); |
+ |
+ /* Gather the complete text of the CREATE INDEX statement into |
+ ** the zStmt variable |
+ */ |
+ if( pStart ){ |
+ int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; |
+ if( pName->z[n-1]==';' ) n--; |
+ /* A named index with an explicit CREATE INDEX statement */ |
+ zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", |
+ onError==OE_None ? "" : " UNIQUE", n, pName->z); |
+ }else{ |
+ /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ |
+ /* zStmt = sqlite3MPrintf(""); */ |
+ zStmt = 0; |
+ } |
+ |
+ /* Add an entry in sqlite_master for this index |
+ */ |
+ sqlite3NestedParse(pParse, |
+ "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", |
+ db->aDb[iDb].zName, SCHEMA_TABLE(iDb), |
+ pIndex->zName, |
+ pTab->zName, |
+ iMem, |
+ zStmt |
+ ); |
+ sqlite3DbFree(db, zStmt); |
+ |
+ /* Fill the index with data and reparse the schema. Code an OP_Expire |
+ ** to invalidate all pre-compiled statements. |
+ */ |
+ if( pTblName ){ |
+ sqlite3RefillIndex(pParse, pIndex, iMem); |
+ sqlite3ChangeCookie(pParse, iDb); |
+ sqlite3VdbeAddParseSchemaOp(v, iDb, |
+ sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); |
+ sqlite3VdbeAddOp1(v, OP_Expire, 0); |
+ } |
+ } |
+ |
+ /* When adding an index to the list of indices for a table, make |
+ ** sure all indices labeled OE_Replace come after all those labeled |
+ ** OE_Ignore. This is necessary for the correct constraint check |
+ ** processing (in sqlite3GenerateConstraintChecks()) as part of |
+ ** UPDATE and INSERT statements. |
+ */ |
+ if( db->init.busy || pTblName==0 ){ |
+ if( onError!=OE_Replace || pTab->pIndex==0 |
+ || pTab->pIndex->onError==OE_Replace){ |
+ pIndex->pNext = pTab->pIndex; |
+ pTab->pIndex = pIndex; |
+ }else{ |
+ Index *pOther = pTab->pIndex; |
+ while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ |
+ pOther = pOther->pNext; |
+ } |
+ pIndex->pNext = pOther->pNext; |
+ pOther->pNext = pIndex; |
+ } |
+ pRet = pIndex; |
+ pIndex = 0; |
+ } |
+ |
+ /* Clean up before exiting */ |
+exit_create_index: |
+ if( pIndex ) freeIndex(db, pIndex); |
+ sqlite3ExprDelete(db, pPIWhere); |
+ sqlite3ExprListDelete(db, pList); |
+ sqlite3SrcListDelete(db, pTblName); |
+ sqlite3DbFree(db, zName); |
+ return pRet; |
+} |
+ |
+/* |
+** Fill the Index.aiRowEst[] array with default information - information |
+** to be used when we have not run the ANALYZE command. |
+** |
+** aiRowEst[0] is supposed to contain the number of elements in the index. |
+** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the |
+** number of rows in the table that match any particular value of the |
+** first column of the index. aiRowEst[2] is an estimate of the number |
+** of rows that match any particular combination of the first 2 columns |
+** of the index. And so forth. It must always be the case that |
+* |
+** aiRowEst[N]<=aiRowEst[N-1] |
+** aiRowEst[N]>=1 |
+** |
+** Apart from that, we have little to go on besides intuition as to |
+** how aiRowEst[] should be initialized. The numbers generated here |
+** are based on typical values found in actual indices. |
+*/ |
+void sqlite3DefaultRowEst(Index *pIdx){ |
+ /* 10, 9, 8, 7, 6 */ |
+ LogEst aVal[] = { 33, 32, 30, 28, 26 }; |
+ LogEst *a = pIdx->aiRowLogEst; |
+ int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); |
+ int i; |
+ |
+ /* Set the first entry (number of rows in the index) to the estimated |
+ ** number of rows in the table. Or 10, if the estimated number of rows |
+ ** in the table is less than that. */ |
+ a[0] = pIdx->pTable->nRowLogEst; |
+ if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); |
+ |
+ /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is |
+ ** 6 and each subsequent value (if any) is 5. */ |
+ memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); |
+ for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ |
+ a[i] = 23; assert( 23==sqlite3LogEst(5) ); |
+ } |
+ |
+ assert( 0==sqlite3LogEst(1) ); |
+ if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; |
+} |
+ |
+/* |
+** This routine will drop an existing named index. This routine |
+** implements the DROP INDEX statement. |
+*/ |
+void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ |
+ Index *pIndex; |
+ Vdbe *v; |
+ sqlite3 *db = pParse->db; |
+ int iDb; |
+ |
+ assert( pParse->nErr==0 ); /* Never called with prior errors */ |
+ if( db->mallocFailed ){ |
+ goto exit_drop_index; |
+ } |
+ assert( pName->nSrc==1 ); |
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
+ goto exit_drop_index; |
+ } |
+ pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); |
+ if( pIndex==0 ){ |
+ if( !ifExists ){ |
+ sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); |
+ }else{ |
+ sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); |
+ } |
+ pParse->checkSchema = 1; |
+ goto exit_drop_index; |
+ } |
+ if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ |
+ sqlite3ErrorMsg(pParse, "index associated with UNIQUE " |
+ "or PRIMARY KEY constraint cannot be dropped", 0); |
+ goto exit_drop_index; |
+ } |
+ iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); |
+#ifndef SQLITE_OMIT_AUTHORIZATION |
+ { |
+ int code = SQLITE_DROP_INDEX; |
+ Table *pTab = pIndex->pTable; |
+ const char *zDb = db->aDb[iDb].zName; |
+ const char *zTab = SCHEMA_TABLE(iDb); |
+ if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ |
+ goto exit_drop_index; |
+ } |
+ if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; |
+ if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ |
+ goto exit_drop_index; |
+ } |
+ } |
+#endif |
+ |
+ /* Generate code to remove the index and from the master table */ |
+ v = sqlite3GetVdbe(pParse); |
+ if( v ){ |
+ sqlite3BeginWriteOperation(pParse, 1, iDb); |
+ sqlite3NestedParse(pParse, |
+ "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", |
+ db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName |
+ ); |
+ sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); |
+ sqlite3ChangeCookie(pParse, iDb); |
+ destroyRootPage(pParse, pIndex->tnum, iDb); |
+ sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); |
+ } |
+ |
+exit_drop_index: |
+ sqlite3SrcListDelete(db, pName); |
+} |
+ |
+/* |
+** pArray is a pointer to an array of objects. Each object in the |
+** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() |
+** to extend the array so that there is space for a new object at the end. |
+** |
+** When this function is called, *pnEntry contains the current size of |
+** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes |
+** in total). |
+** |
+** If the realloc() is successful (i.e. if no OOM condition occurs), the |
+** space allocated for the new object is zeroed, *pnEntry updated to |
+** reflect the new size of the array and a pointer to the new allocation |
+** returned. *pIdx is set to the index of the new array entry in this case. |
+** |
+** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains |
+** unchanged and a copy of pArray returned. |
+*/ |
+void *sqlite3ArrayAllocate( |
+ sqlite3 *db, /* Connection to notify of malloc failures */ |
+ void *pArray, /* Array of objects. Might be reallocated */ |
+ int szEntry, /* Size of each object in the array */ |
+ int *pnEntry, /* Number of objects currently in use */ |
+ int *pIdx /* Write the index of a new slot here */ |
+){ |
+ char *z; |
+ int n = *pnEntry; |
+ if( (n & (n-1))==0 ){ |
+ int sz = (n==0) ? 1 : 2*n; |
+ void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); |
+ if( pNew==0 ){ |
+ *pIdx = -1; |
+ return pArray; |
+ } |
+ pArray = pNew; |
+ } |
+ z = (char*)pArray; |
+ memset(&z[n * szEntry], 0, szEntry); |
+ *pIdx = n; |
+ ++*pnEntry; |
+ return pArray; |
+} |
+ |
+/* |
+** Append a new element to the given IdList. Create a new IdList if |
+** need be. |
+** |
+** A new IdList is returned, or NULL if malloc() fails. |
+*/ |
+IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ |
+ int i; |
+ if( pList==0 ){ |
+ pList = sqlite3DbMallocZero(db, sizeof(IdList) ); |
+ if( pList==0 ) return 0; |
+ } |
+ pList->a = sqlite3ArrayAllocate( |
+ db, |
+ pList->a, |
+ sizeof(pList->a[0]), |
+ &pList->nId, |
+ &i |
+ ); |
+ if( i<0 ){ |
+ sqlite3IdListDelete(db, pList); |
+ return 0; |
+ } |
+ pList->a[i].zName = sqlite3NameFromToken(db, pToken); |
+ return pList; |
+} |
+ |
+/* |
+** Delete an IdList. |
+*/ |
+void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ |
+ int i; |
+ if( pList==0 ) return; |
+ for(i=0; i<pList->nId; i++){ |
+ sqlite3DbFree(db, pList->a[i].zName); |
+ } |
+ sqlite3DbFree(db, pList->a); |
+ sqlite3DbFree(db, pList); |
+} |
+ |
+/* |
+** Return the index in pList of the identifier named zId. Return -1 |
+** if not found. |
+*/ |
+int sqlite3IdListIndex(IdList *pList, const char *zName){ |
+ int i; |
+ if( pList==0 ) return -1; |
+ for(i=0; i<pList->nId; i++){ |
+ if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; |
+ } |
+ return -1; |
+} |
+ |
+/* |
+** Expand the space allocated for the given SrcList object by |
+** creating nExtra new slots beginning at iStart. iStart is zero based. |
+** New slots are zeroed. |
+** |
+** For example, suppose a SrcList initially contains two entries: A,B. |
+** To append 3 new entries onto the end, do this: |
+** |
+** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); |
+** |
+** After the call above it would contain: A, B, nil, nil, nil. |
+** If the iStart argument had been 1 instead of 2, then the result |
+** would have been: A, nil, nil, nil, B. To prepend the new slots, |
+** the iStart value would be 0. The result then would |
+** be: nil, nil, nil, A, B. |
+** |
+** If a memory allocation fails the SrcList is unchanged. The |
+** db->mallocFailed flag will be set to true. |
+*/ |
+SrcList *sqlite3SrcListEnlarge( |
+ sqlite3 *db, /* Database connection to notify of OOM errors */ |
+ SrcList *pSrc, /* The SrcList to be enlarged */ |
+ int nExtra, /* Number of new slots to add to pSrc->a[] */ |
+ int iStart /* Index in pSrc->a[] of first new slot */ |
+){ |
+ int i; |
+ |
+ /* Sanity checking on calling parameters */ |
+ assert( iStart>=0 ); |
+ assert( nExtra>=1 ); |
+ assert( pSrc!=0 ); |
+ assert( iStart<=pSrc->nSrc ); |
+ |
+ /* Allocate additional space if needed */ |
+ if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ |
+ SrcList *pNew; |
+ int nAlloc = pSrc->nSrc+nExtra; |
+ int nGot; |
+ pNew = sqlite3DbRealloc(db, pSrc, |
+ sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); |
+ if( pNew==0 ){ |
+ assert( db->mallocFailed ); |
+ return pSrc; |
+ } |
+ pSrc = pNew; |
+ nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; |
+ pSrc->nAlloc = nGot; |
+ } |
+ |
+ /* Move existing slots that come after the newly inserted slots |
+ ** out of the way */ |
+ for(i=pSrc->nSrc-1; i>=iStart; i--){ |
+ pSrc->a[i+nExtra] = pSrc->a[i]; |
+ } |
+ pSrc->nSrc += nExtra; |
+ |
+ /* Zero the newly allocated slots */ |
+ memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); |
+ for(i=iStart; i<iStart+nExtra; i++){ |
+ pSrc->a[i].iCursor = -1; |
+ } |
+ |
+ /* Return a pointer to the enlarged SrcList */ |
+ return pSrc; |
+} |
+ |
+ |
+/* |
+** Append a new table name to the given SrcList. Create a new SrcList if |
+** need be. A new entry is created in the SrcList even if pTable is NULL. |
+** |
+** A SrcList is returned, or NULL if there is an OOM error. The returned |
+** SrcList might be the same as the SrcList that was input or it might be |
+** a new one. If an OOM error does occurs, then the prior value of pList |
+** that is input to this routine is automatically freed. |
+** |
+** If pDatabase is not null, it means that the table has an optional |
+** database name prefix. Like this: "database.table". The pDatabase |
+** points to the table name and the pTable points to the database name. |
+** The SrcList.a[].zName field is filled with the table name which might |
+** come from pTable (if pDatabase is NULL) or from pDatabase. |
+** SrcList.a[].zDatabase is filled with the database name from pTable, |
+** or with NULL if no database is specified. |
+** |
+** In other words, if call like this: |
+** |
+** sqlite3SrcListAppend(D,A,B,0); |
+** |
+** Then B is a table name and the database name is unspecified. If called |
+** like this: |
+** |
+** sqlite3SrcListAppend(D,A,B,C); |
+** |
+** Then C is the table name and B is the database name. If C is defined |
+** then so is B. In other words, we never have a case where: |
+** |
+** sqlite3SrcListAppend(D,A,0,C); |
+** |
+** Both pTable and pDatabase are assumed to be quoted. They are dequoted |
+** before being added to the SrcList. |
+*/ |
+SrcList *sqlite3SrcListAppend( |
+ sqlite3 *db, /* Connection to notify of malloc failures */ |
+ SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ |
+ Token *pTable, /* Table to append */ |
+ Token *pDatabase /* Database of the table */ |
+){ |
+ struct SrcList_item *pItem; |
+ assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ |
+ if( pList==0 ){ |
+ pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); |
+ if( pList==0 ) return 0; |
+ pList->nAlloc = 1; |
+ } |
+ pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); |
+ if( db->mallocFailed ){ |
+ sqlite3SrcListDelete(db, pList); |
+ return 0; |
+ } |
+ pItem = &pList->a[pList->nSrc-1]; |
+ if( pDatabase && pDatabase->z==0 ){ |
+ pDatabase = 0; |
+ } |
+ if( pDatabase ){ |
+ Token *pTemp = pDatabase; |
+ pDatabase = pTable; |
+ pTable = pTemp; |
+ } |
+ pItem->zName = sqlite3NameFromToken(db, pTable); |
+ pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); |
+ return pList; |
+} |
+ |
+/* |
+** Assign VdbeCursor index numbers to all tables in a SrcList |
+*/ |
+void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ |
+ int i; |
+ struct SrcList_item *pItem; |
+ assert(pList || pParse->db->mallocFailed ); |
+ if( pList ){ |
+ for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ |
+ if( pItem->iCursor>=0 ) break; |
+ pItem->iCursor = pParse->nTab++; |
+ if( pItem->pSelect ){ |
+ sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); |
+ } |
+ } |
+ } |
+} |
+ |
+/* |
+** Delete an entire SrcList including all its substructure. |
+*/ |
+void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ |
+ int i; |
+ struct SrcList_item *pItem; |
+ if( pList==0 ) return; |
+ for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ |
+ sqlite3DbFree(db, pItem->zDatabase); |
+ sqlite3DbFree(db, pItem->zName); |
+ sqlite3DbFree(db, pItem->zAlias); |
+ sqlite3DbFree(db, pItem->zIndex); |
+ sqlite3DeleteTable(db, pItem->pTab); |
+ sqlite3SelectDelete(db, pItem->pSelect); |
+ sqlite3ExprDelete(db, pItem->pOn); |
+ sqlite3IdListDelete(db, pItem->pUsing); |
+ } |
+ sqlite3DbFree(db, pList); |
+} |
+ |
+/* |
+** This routine is called by the parser to add a new term to the |
+** end of a growing FROM clause. The "p" parameter is the part of |
+** the FROM clause that has already been constructed. "p" is NULL |
+** if this is the first term of the FROM clause. pTable and pDatabase |
+** are the name of the table and database named in the FROM clause term. |
+** pDatabase is NULL if the database name qualifier is missing - the |
+** usual case. If the term has an alias, then pAlias points to the |
+** alias token. If the term is a subquery, then pSubquery is the |
+** SELECT statement that the subquery encodes. The pTable and |
+** pDatabase parameters are NULL for subqueries. The pOn and pUsing |
+** parameters are the content of the ON and USING clauses. |
+** |
+** Return a new SrcList which encodes is the FROM with the new |
+** term added. |
+*/ |
+SrcList *sqlite3SrcListAppendFromTerm( |
+ Parse *pParse, /* Parsing context */ |
+ SrcList *p, /* The left part of the FROM clause already seen */ |
+ Token *pTable, /* Name of the table to add to the FROM clause */ |
+ Token *pDatabase, /* Name of the database containing pTable */ |
+ Token *pAlias, /* The right-hand side of the AS subexpression */ |
+ Select *pSubquery, /* A subquery used in place of a table name */ |
+ Expr *pOn, /* The ON clause of a join */ |
+ IdList *pUsing /* The USING clause of a join */ |
+){ |
+ struct SrcList_item *pItem; |
+ sqlite3 *db = pParse->db; |
+ if( !p && (pOn || pUsing) ){ |
+ sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", |
+ (pOn ? "ON" : "USING") |
+ ); |
+ goto append_from_error; |
+ } |
+ p = sqlite3SrcListAppend(db, p, pTable, pDatabase); |
+ if( p==0 || NEVER(p->nSrc==0) ){ |
+ goto append_from_error; |
+ } |
+ pItem = &p->a[p->nSrc-1]; |
+ assert( pAlias!=0 ); |
+ if( pAlias->n ){ |
+ pItem->zAlias = sqlite3NameFromToken(db, pAlias); |
+ } |
+ pItem->pSelect = pSubquery; |
+ pItem->pOn = pOn; |
+ pItem->pUsing = pUsing; |
+ return p; |
+ |
+ append_from_error: |
+ assert( p==0 ); |
+ sqlite3ExprDelete(db, pOn); |
+ sqlite3IdListDelete(db, pUsing); |
+ sqlite3SelectDelete(db, pSubquery); |
+ return 0; |
+} |
+ |
+/* |
+** Add an INDEXED BY or NOT INDEXED clause to the most recently added |
+** element of the source-list passed as the second argument. |
+*/ |
+void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ |
+ assert( pIndexedBy!=0 ); |
+ if( p && ALWAYS(p->nSrc>0) ){ |
+ struct SrcList_item *pItem = &p->a[p->nSrc-1]; |
+ assert( pItem->notIndexed==0 && pItem->zIndex==0 ); |
+ if( pIndexedBy->n==1 && !pIndexedBy->z ){ |
+ /* A "NOT INDEXED" clause was supplied. See parse.y |
+ ** construct "indexed_opt" for details. */ |
+ pItem->notIndexed = 1; |
+ }else{ |
+ pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy); |
+ } |
+ } |
+} |
+ |
+/* |
+** When building up a FROM clause in the parser, the join operator |
+** is initially attached to the left operand. But the code generator |
+** expects the join operator to be on the right operand. This routine |
+** Shifts all join operators from left to right for an entire FROM |
+** clause. |
+** |
+** Example: Suppose the join is like this: |
+** |
+** A natural cross join B |
+** |
+** The operator is "natural cross join". The A and B operands are stored |
+** in p->a[0] and p->a[1], respectively. The parser initially stores the |
+** operator with A. This routine shifts that operator over to B. |
+*/ |
+void sqlite3SrcListShiftJoinType(SrcList *p){ |
+ if( p ){ |
+ int i; |
+ assert( p->a || p->nSrc==0 ); |
+ for(i=p->nSrc-1; i>0; i--){ |
+ p->a[i].jointype = p->a[i-1].jointype; |
+ } |
+ p->a[0].jointype = 0; |
+ } |
+} |
+ |
+/* |
+** Begin a transaction |
+*/ |
+void sqlite3BeginTransaction(Parse *pParse, int type){ |
+ sqlite3 *db; |
+ Vdbe *v; |
+ int i; |
+ |
+ assert( pParse!=0 ); |
+ db = pParse->db; |
+ assert( db!=0 ); |
+/* if( db->aDb[0].pBt==0 ) return; */ |
+ if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ |
+ return; |
+ } |
+ v = sqlite3GetVdbe(pParse); |
+ if( !v ) return; |
+ if( type!=TK_DEFERRED ){ |
+ for(i=0; i<db->nDb; i++){ |
+ sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); |
+ sqlite3VdbeUsesBtree(v, i); |
+ } |
+ } |
+ sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); |
+} |
+ |
+/* |
+** Commit a transaction |
+*/ |
+void sqlite3CommitTransaction(Parse *pParse){ |
+ Vdbe *v; |
+ |
+ assert( pParse!=0 ); |
+ assert( pParse->db!=0 ); |
+ if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ |
+ return; |
+ } |
+ v = sqlite3GetVdbe(pParse); |
+ if( v ){ |
+ sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); |
+ } |
+} |
+ |
+/* |
+** Rollback a transaction |
+*/ |
+void sqlite3RollbackTransaction(Parse *pParse){ |
+ Vdbe *v; |
+ |
+ assert( pParse!=0 ); |
+ assert( pParse->db!=0 ); |
+ if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ |
+ return; |
+ } |
+ v = sqlite3GetVdbe(pParse); |
+ if( v ){ |
+ sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); |
+ } |
+} |
+ |
+/* |
+** This function is called by the parser when it parses a command to create, |
+** release or rollback an SQL savepoint. |
+*/ |
+void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ |
+ char *zName = sqlite3NameFromToken(pParse->db, pName); |
+ if( zName ){ |
+ Vdbe *v = sqlite3GetVdbe(pParse); |
+#ifndef SQLITE_OMIT_AUTHORIZATION |
+ static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; |
+ assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); |
+#endif |
+ if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ |
+ sqlite3DbFree(pParse->db, zName); |
+ return; |
+ } |
+ sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); |
+ } |
+} |
+ |
+/* |
+** Make sure the TEMP database is open and available for use. Return |
+** the number of errors. Leave any error messages in the pParse structure. |
+*/ |
+int sqlite3OpenTempDatabase(Parse *pParse){ |
+ sqlite3 *db = pParse->db; |
+ if( db->aDb[1].pBt==0 && !pParse->explain ){ |
+ int rc; |
+ Btree *pBt; |
+ static const int flags = |
+ SQLITE_OPEN_READWRITE | |
+ SQLITE_OPEN_CREATE | |
+ SQLITE_OPEN_EXCLUSIVE | |
+ SQLITE_OPEN_DELETEONCLOSE | |
+ SQLITE_OPEN_TEMP_DB; |
+ |
+ rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3ErrorMsg(pParse, "unable to open a temporary database " |
+ "file for storing temporary tables"); |
+ pParse->rc = rc; |
+ return 1; |
+ } |
+ db->aDb[1].pBt = pBt; |
+ assert( db->aDb[1].pSchema ); |
+ if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ |
+ db->mallocFailed = 1; |
+ return 1; |
+ } |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** Record the fact that the schema cookie will need to be verified |
+** for database iDb. The code to actually verify the schema cookie |
+** will occur at the end of the top-level VDBE and will be generated |
+** later, by sqlite3FinishCoding(). |
+*/ |
+void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ |
+ Parse *pToplevel = sqlite3ParseToplevel(pParse); |
+ sqlite3 *db = pToplevel->db; |
+ |
+ assert( iDb>=0 && iDb<db->nDb ); |
+ assert( db->aDb[iDb].pBt!=0 || iDb==1 ); |
+ assert( iDb<SQLITE_MAX_ATTACHED+2 ); |
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
+ if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ |
+ DbMaskSet(pToplevel->cookieMask, iDb); |
+ pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; |
+ if( !OMIT_TEMPDB && iDb==1 ){ |
+ sqlite3OpenTempDatabase(pToplevel); |
+ } |
+ } |
+} |
+ |
+/* |
+** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each |
+** attached database. Otherwise, invoke it for the database named zDb only. |
+*/ |
+void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ |
+ sqlite3 *db = pParse->db; |
+ int i; |
+ for(i=0; i<db->nDb; i++){ |
+ Db *pDb = &db->aDb[i]; |
+ if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ |
+ sqlite3CodeVerifySchema(pParse, i); |
+ } |
+ } |
+} |
+ |
+/* |
+** Generate VDBE code that prepares for doing an operation that |
+** might change the database. |
+** |
+** This routine starts a new transaction if we are not already within |
+** a transaction. If we are already within a transaction, then a checkpoint |
+** is set if the setStatement parameter is true. A checkpoint should |
+** be set for operations that might fail (due to a constraint) part of |
+** the way through and which will need to undo some writes without having to |
+** rollback the whole transaction. For operations where all constraints |
+** can be checked before any changes are made to the database, it is never |
+** necessary to undo a write and the checkpoint should not be set. |
+*/ |
+void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ |
+ Parse *pToplevel = sqlite3ParseToplevel(pParse); |
+ sqlite3CodeVerifySchema(pParse, iDb); |
+ DbMaskSet(pToplevel->writeMask, iDb); |
+ pToplevel->isMultiWrite |= setStatement; |
+} |
+ |
+/* |
+** Indicate that the statement currently under construction might write |
+** more than one entry (example: deleting one row then inserting another, |
+** inserting multiple rows in a table, or inserting a row and index entries.) |
+** If an abort occurs after some of these writes have completed, then it will |
+** be necessary to undo the completed writes. |
+*/ |
+void sqlite3MultiWrite(Parse *pParse){ |
+ Parse *pToplevel = sqlite3ParseToplevel(pParse); |
+ pToplevel->isMultiWrite = 1; |
+} |
+ |
+/* |
+** The code generator calls this routine if is discovers that it is |
+** possible to abort a statement prior to completion. In order to |
+** perform this abort without corrupting the database, we need to make |
+** sure that the statement is protected by a statement transaction. |
+** |
+** Technically, we only need to set the mayAbort flag if the |
+** isMultiWrite flag was previously set. There is a time dependency |
+** such that the abort must occur after the multiwrite. This makes |
+** some statements involving the REPLACE conflict resolution algorithm |
+** go a little faster. But taking advantage of this time dependency |
+** makes it more difficult to prove that the code is correct (in |
+** particular, it prevents us from writing an effective |
+** implementation of sqlite3AssertMayAbort()) and so we have chosen |
+** to take the safe route and skip the optimization. |
+*/ |
+void sqlite3MayAbort(Parse *pParse){ |
+ Parse *pToplevel = sqlite3ParseToplevel(pParse); |
+ pToplevel->mayAbort = 1; |
+} |
+ |
+/* |
+** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT |
+** error. The onError parameter determines which (if any) of the statement |
+** and/or current transaction is rolled back. |
+*/ |
+void sqlite3HaltConstraint( |
+ Parse *pParse, /* Parsing context */ |
+ int errCode, /* extended error code */ |
+ int onError, /* Constraint type */ |
+ char *p4, /* Error message */ |
+ i8 p4type, /* P4_STATIC or P4_TRANSIENT */ |
+ u8 p5Errmsg /* P5_ErrMsg type */ |
+){ |
+ Vdbe *v = sqlite3GetVdbe(pParse); |
+ assert( (errCode&0xff)==SQLITE_CONSTRAINT ); |
+ if( onError==OE_Abort ){ |
+ sqlite3MayAbort(pParse); |
+ } |
+ sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); |
+ if( p5Errmsg ) sqlite3VdbeChangeP5(v, p5Errmsg); |
+} |
+ |
+/* |
+** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. |
+*/ |
+void sqlite3UniqueConstraint( |
+ Parse *pParse, /* Parsing context */ |
+ int onError, /* Constraint type */ |
+ Index *pIdx /* The index that triggers the constraint */ |
+){ |
+ char *zErr; |
+ int j; |
+ StrAccum errMsg; |
+ Table *pTab = pIdx->pTable; |
+ |
+ sqlite3StrAccumInit(&errMsg, 0, 0, 200); |
+ errMsg.db = pParse->db; |
+ for(j=0; j<pIdx->nKeyCol; j++){ |
+ char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; |
+ if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); |
+ sqlite3StrAccumAppendAll(&errMsg, pTab->zName); |
+ sqlite3StrAccumAppend(&errMsg, ".", 1); |
+ sqlite3StrAccumAppendAll(&errMsg, zCol); |
+ } |
+ zErr = sqlite3StrAccumFinish(&errMsg); |
+ sqlite3HaltConstraint(pParse, |
+ IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY |
+ : SQLITE_CONSTRAINT_UNIQUE, |
+ onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); |
+} |
+ |
+ |
+/* |
+** Code an OP_Halt due to non-unique rowid. |
+*/ |
+void sqlite3RowidConstraint( |
+ Parse *pParse, /* Parsing context */ |
+ int onError, /* Conflict resolution algorithm */ |
+ Table *pTab /* The table with the non-unique rowid */ |
+){ |
+ char *zMsg; |
+ int rc; |
+ if( pTab->iPKey>=0 ){ |
+ zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, |
+ pTab->aCol[pTab->iPKey].zName); |
+ rc = SQLITE_CONSTRAINT_PRIMARYKEY; |
+ }else{ |
+ zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); |
+ rc = SQLITE_CONSTRAINT_ROWID; |
+ } |
+ sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, |
+ P5_ConstraintUnique); |
+} |
+ |
+/* |
+** Check to see if pIndex uses the collating sequence pColl. Return |
+** true if it does and false if it does not. |
+*/ |
+#ifndef SQLITE_OMIT_REINDEX |
+static int collationMatch(const char *zColl, Index *pIndex){ |
+ int i; |
+ assert( zColl!=0 ); |
+ for(i=0; i<pIndex->nColumn; i++){ |
+ const char *z = pIndex->azColl[i]; |
+ assert( z!=0 || pIndex->aiColumn[i]<0 ); |
+ if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ |
+ return 1; |
+ } |
+ } |
+ return 0; |
+} |
+#endif |
+ |
+/* |
+** Recompute all indices of pTab that use the collating sequence pColl. |
+** If pColl==0 then recompute all indices of pTab. |
+*/ |
+#ifndef SQLITE_OMIT_REINDEX |
+static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ |
+ Index *pIndex; /* An index associated with pTab */ |
+ |
+ for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ |
+ if( zColl==0 || collationMatch(zColl, pIndex) ){ |
+ int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
+ sqlite3BeginWriteOperation(pParse, 0, iDb); |
+ sqlite3RefillIndex(pParse, pIndex, -1); |
+ } |
+ } |
+} |
+#endif |
+ |
+/* |
+** Recompute all indices of all tables in all databases where the |
+** indices use the collating sequence pColl. If pColl==0 then recompute |
+** all indices everywhere. |
+*/ |
+#ifndef SQLITE_OMIT_REINDEX |
+static void reindexDatabases(Parse *pParse, char const *zColl){ |
+ Db *pDb; /* A single database */ |
+ int iDb; /* The database index number */ |
+ sqlite3 *db = pParse->db; /* The database connection */ |
+ HashElem *k; /* For looping over tables in pDb */ |
+ Table *pTab; /* A table in the database */ |
+ |
+ assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ |
+ for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ |
+ assert( pDb!=0 ); |
+ for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ |
+ pTab = (Table*)sqliteHashData(k); |
+ reindexTable(pParse, pTab, zColl); |
+ } |
+ } |
+} |
+#endif |
+ |
+/* |
+** Generate code for the REINDEX command. |
+** |
+** REINDEX -- 1 |
+** REINDEX <collation> -- 2 |
+** REINDEX ?<database>.?<tablename> -- 3 |
+** REINDEX ?<database>.?<indexname> -- 4 |
+** |
+** Form 1 causes all indices in all attached databases to be rebuilt. |
+** Form 2 rebuilds all indices in all databases that use the named |
+** collating function. Forms 3 and 4 rebuild the named index or all |
+** indices associated with the named table. |
+*/ |
+#ifndef SQLITE_OMIT_REINDEX |
+void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ |
+ CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ |
+ char *z; /* Name of a table or index */ |
+ const char *zDb; /* Name of the database */ |
+ Table *pTab; /* A table in the database */ |
+ Index *pIndex; /* An index associated with pTab */ |
+ int iDb; /* The database index number */ |
+ sqlite3 *db = pParse->db; /* The database connection */ |
+ Token *pObjName; /* Name of the table or index to be reindexed */ |
+ |
+ /* Read the database schema. If an error occurs, leave an error message |
+ ** and code in pParse and return NULL. */ |
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
+ return; |
+ } |
+ |
+ if( pName1==0 ){ |
+ reindexDatabases(pParse, 0); |
+ return; |
+ }else if( NEVER(pName2==0) || pName2->z==0 ){ |
+ char *zColl; |
+ assert( pName1->z ); |
+ zColl = sqlite3NameFromToken(pParse->db, pName1); |
+ if( !zColl ) return; |
+ pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); |
+ if( pColl ){ |
+ reindexDatabases(pParse, zColl); |
+ sqlite3DbFree(db, zColl); |
+ return; |
+ } |
+ sqlite3DbFree(db, zColl); |
+ } |
+ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); |
+ if( iDb<0 ) return; |
+ z = sqlite3NameFromToken(db, pObjName); |
+ if( z==0 ) return; |
+ zDb = db->aDb[iDb].zName; |
+ pTab = sqlite3FindTable(db, z, zDb); |
+ if( pTab ){ |
+ reindexTable(pParse, pTab, 0); |
+ sqlite3DbFree(db, z); |
+ return; |
+ } |
+ pIndex = sqlite3FindIndex(db, z, zDb); |
+ sqlite3DbFree(db, z); |
+ if( pIndex ){ |
+ sqlite3BeginWriteOperation(pParse, 0, iDb); |
+ sqlite3RefillIndex(pParse, pIndex, -1); |
+ return; |
+ } |
+ sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); |
+} |
+#endif |
+ |
+/* |
+** Return a KeyInfo structure that is appropriate for the given Index. |
+** |
+** The KeyInfo structure for an index is cached in the Index object. |
+** So there might be multiple references to the returned pointer. The |
+** caller should not try to modify the KeyInfo object. |
+** |
+** The caller should invoke sqlite3KeyInfoUnref() on the returned object |
+** when it has finished using it. |
+*/ |
+KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ |
+ if( pParse->nErr ) return 0; |
+#ifndef SQLITE_OMIT_SHARED_CACHE |
+ if( pIdx->pKeyInfo && pIdx->pKeyInfo->db!=pParse->db ){ |
+ sqlite3KeyInfoUnref(pIdx->pKeyInfo); |
+ pIdx->pKeyInfo = 0; |
+ } |
+#endif |
+ if( pIdx->pKeyInfo==0 ){ |
+ int i; |
+ int nCol = pIdx->nColumn; |
+ int nKey = pIdx->nKeyCol; |
+ KeyInfo *pKey; |
+ if( pIdx->uniqNotNull ){ |
+ pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); |
+ }else{ |
+ pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); |
+ } |
+ if( pKey ){ |
+ assert( sqlite3KeyInfoIsWriteable(pKey) ); |
+ for(i=0; i<nCol; i++){ |
+ char *zColl = pIdx->azColl[i]; |
+ assert( zColl!=0 ); |
+ pKey->aColl[i] = strcmp(zColl,"BINARY")==0 ? 0 : |
+ sqlite3LocateCollSeq(pParse, zColl); |
+ pKey->aSortOrder[i] = pIdx->aSortOrder[i]; |
+ } |
+ if( pParse->nErr ){ |
+ sqlite3KeyInfoUnref(pKey); |
+ }else{ |
+ pIdx->pKeyInfo = pKey; |
+ } |
+ } |
+ } |
+ return sqlite3KeyInfoRef(pIdx->pKeyInfo); |
+} |
+ |
+#ifndef SQLITE_OMIT_CTE |
+/* |
+** This routine is invoked once per CTE by the parser while parsing a |
+** WITH clause. |
+*/ |
+With *sqlite3WithAdd( |
+ Parse *pParse, /* Parsing context */ |
+ With *pWith, /* Existing WITH clause, or NULL */ |
+ Token *pName, /* Name of the common-table */ |
+ ExprList *pArglist, /* Optional column name list for the table */ |
+ Select *pQuery /* Query used to initialize the table */ |
+){ |
+ sqlite3 *db = pParse->db; |
+ With *pNew; |
+ char *zName; |
+ |
+ /* Check that the CTE name is unique within this WITH clause. If |
+ ** not, store an error in the Parse structure. */ |
+ zName = sqlite3NameFromToken(pParse->db, pName); |
+ if( zName && pWith ){ |
+ int i; |
+ for(i=0; i<pWith->nCte; i++){ |
+ if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ |
+ sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); |
+ } |
+ } |
+ } |
+ |
+ if( pWith ){ |
+ int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); |
+ pNew = sqlite3DbRealloc(db, pWith, nByte); |
+ }else{ |
+ pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); |
+ } |
+ assert( zName!=0 || pNew==0 ); |
+ assert( db->mallocFailed==0 || pNew==0 ); |
+ |
+ if( pNew==0 ){ |
+ sqlite3ExprListDelete(db, pArglist); |
+ sqlite3SelectDelete(db, pQuery); |
+ sqlite3DbFree(db, zName); |
+ pNew = pWith; |
+ }else{ |
+ pNew->a[pNew->nCte].pSelect = pQuery; |
+ pNew->a[pNew->nCte].pCols = pArglist; |
+ pNew->a[pNew->nCte].zName = zName; |
+ pNew->a[pNew->nCte].zErr = 0; |
+ pNew->nCte++; |
+ } |
+ |
+ return pNew; |
+} |
+ |
+/* |
+** Free the contents of the With object passed as the second argument. |
+*/ |
+void sqlite3WithDelete(sqlite3 *db, With *pWith){ |
+ if( pWith ){ |
+ int i; |
+ for(i=0; i<pWith->nCte; i++){ |
+ struct Cte *pCte = &pWith->a[i]; |
+ sqlite3ExprListDelete(db, pCte->pCols); |
+ sqlite3SelectDelete(db, pCte->pSelect); |
+ sqlite3DbFree(db, pCte->zName); |
+ } |
+ sqlite3DbFree(db, pWith); |
+ } |
+} |
+#endif /* !defined(SQLITE_OMIT_CTE) */ |