| Index: third_party/sqlite/src/src/expr.c
|
| diff --git a/third_party/sqlite/src/src/expr.c b/third_party/sqlite/src/src/expr.c
|
| index 9d1193b35825ff7ea5b10d9e391ca425a1771840..65f211e3aea228d5b5576cce6649e503a42e87e6 100644
|
| --- a/third_party/sqlite/src/src/expr.c
|
| +++ b/third_party/sqlite/src/src/expr.c
|
| @@ -22,7 +22,7 @@
|
| ** affinity of that column is returned. Otherwise, 0x00 is returned,
|
| ** indicating no affinity for the expression.
|
| **
|
| -** i.e. the WHERE clause expresssions in the following statements all
|
| +** i.e. the WHERE clause expressions in the following statements all
|
| ** have an affinity:
|
| **
|
| ** CREATE TABLE t1(a);
|
| @@ -31,7 +31,10 @@
|
| ** SELECT * FROM t1 WHERE (select a from t1);
|
| */
|
| char sqlite3ExprAffinity(Expr *pExpr){
|
| - int op = pExpr->op;
|
| + int op;
|
| + pExpr = sqlite3ExprSkipCollate(pExpr);
|
| + if( pExpr->flags & EP_Generic ) return 0;
|
| + op = pExpr->op;
|
| if( op==TK_SELECT ){
|
| assert( pExpr->flags&EP_xIsSelect );
|
| return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
|
| @@ -39,7 +42,7 @@ char sqlite3ExprAffinity(Expr *pExpr){
|
| #ifndef SQLITE_OMIT_CAST
|
| if( op==TK_CAST ){
|
| assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| - return sqlite3AffinityType(pExpr->u.zToken);
|
| + return sqlite3AffinityType(pExpr->u.zToken, 0);
|
| }
|
| #endif
|
| if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
|
| @@ -56,66 +59,101 @@ char sqlite3ExprAffinity(Expr *pExpr){
|
| }
|
|
|
| /*
|
| -** Set the explicit collating sequence for an expression to the
|
| -** collating sequence supplied in the second argument.
|
| +** Set the collating sequence for expression pExpr to be the collating
|
| +** sequence named by pToken. Return a pointer to a new Expr node that
|
| +** implements the COLLATE operator.
|
| +**
|
| +** If a memory allocation error occurs, that fact is recorded in pParse->db
|
| +** and the pExpr parameter is returned unchanged.
|
| */
|
| -Expr *sqlite3ExprSetColl(Expr *pExpr, CollSeq *pColl){
|
| - if( pExpr && pColl ){
|
| - pExpr->pColl = pColl;
|
| - pExpr->flags |= EP_ExpCollate;
|
| +Expr *sqlite3ExprAddCollateToken(
|
| + Parse *pParse, /* Parsing context */
|
| + Expr *pExpr, /* Add the "COLLATE" clause to this expression */
|
| + const Token *pCollName /* Name of collating sequence */
|
| +){
|
| + if( pCollName->n>0 ){
|
| + Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1);
|
| + if( pNew ){
|
| + pNew->pLeft = pExpr;
|
| + pNew->flags |= EP_Collate|EP_Skip;
|
| + pExpr = pNew;
|
| + }
|
| }
|
| return pExpr;
|
| }
|
| +Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
|
| + Token s;
|
| + assert( zC!=0 );
|
| + s.z = zC;
|
| + s.n = sqlite3Strlen30(s.z);
|
| + return sqlite3ExprAddCollateToken(pParse, pExpr, &s);
|
| +}
|
|
|
| /*
|
| -** Set the collating sequence for expression pExpr to be the collating
|
| -** sequence named by pToken. Return a pointer to the revised expression.
|
| -** The collating sequence is marked as "explicit" using the EP_ExpCollate
|
| -** flag. An explicit collating sequence will override implicit
|
| -** collating sequences.
|
| +** Skip over any TK_COLLATE or TK_AS operators and any unlikely()
|
| +** or likelihood() function at the root of an expression.
|
| */
|
| -Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr *pExpr, Token *pCollName){
|
| - char *zColl = 0; /* Dequoted name of collation sequence */
|
| - CollSeq *pColl;
|
| - sqlite3 *db = pParse->db;
|
| - zColl = sqlite3NameFromToken(db, pCollName);
|
| - pColl = sqlite3LocateCollSeq(pParse, zColl);
|
| - sqlite3ExprSetColl(pExpr, pColl);
|
| - sqlite3DbFree(db, zColl);
|
| +Expr *sqlite3ExprSkipCollate(Expr *pExpr){
|
| + while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
|
| + if( ExprHasProperty(pExpr, EP_Unlikely) ){
|
| + assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
| + assert( pExpr->x.pList->nExpr>0 );
|
| + assert( pExpr->op==TK_FUNCTION );
|
| + pExpr = pExpr->x.pList->a[0].pExpr;
|
| + }else{
|
| + assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS );
|
| + pExpr = pExpr->pLeft;
|
| + }
|
| + }
|
| return pExpr;
|
| }
|
|
|
| /*
|
| -** Return the default collation sequence for the expression pExpr. If
|
| -** there is no default collation type, return 0.
|
| +** Return the collation sequence for the expression pExpr. If
|
| +** there is no defined collating sequence, return NULL.
|
| +**
|
| +** The collating sequence might be determined by a COLLATE operator
|
| +** or by the presence of a column with a defined collating sequence.
|
| +** COLLATE operators take first precedence. Left operands take
|
| +** precedence over right operands.
|
| */
|
| CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
|
| + sqlite3 *db = pParse->db;
|
| CollSeq *pColl = 0;
|
| Expr *p = pExpr;
|
| while( p ){
|
| - int op;
|
| - pColl = p->pColl;
|
| - if( pColl ) break;
|
| - op = p->op;
|
| - if( p->pTab!=0 && (
|
| - op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER
|
| - )){
|
| + int op = p->op;
|
| + if( p->flags & EP_Generic ) break;
|
| + if( op==TK_CAST || op==TK_UPLUS ){
|
| + p = p->pLeft;
|
| + continue;
|
| + }
|
| + if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
|
| + pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
|
| + break;
|
| + }
|
| + if( p->pTab!=0
|
| + && (op==TK_AGG_COLUMN || op==TK_COLUMN
|
| + || op==TK_REGISTER || op==TK_TRIGGER)
|
| + ){
|
| /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
|
| ** a TK_COLUMN but was previously evaluated and cached in a register */
|
| - const char *zColl;
|
| int j = p->iColumn;
|
| if( j>=0 ){
|
| - sqlite3 *db = pParse->db;
|
| - zColl = p->pTab->aCol[j].zColl;
|
| + const char *zColl = p->pTab->aCol[j].zColl;
|
| pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
|
| - pExpr->pColl = pColl;
|
| }
|
| break;
|
| }
|
| - if( op!=TK_CAST && op!=TK_UPLUS ){
|
| + if( p->flags & EP_Collate ){
|
| + if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){
|
| + p = p->pLeft;
|
| + }else{
|
| + p = p->pRight;
|
| + }
|
| + }else{
|
| break;
|
| }
|
| - p = p->pLeft;
|
| }
|
| if( sqlite3CheckCollSeq(pParse, pColl) ){
|
| pColl = 0;
|
| @@ -219,12 +257,10 @@ CollSeq *sqlite3BinaryCompareCollSeq(
|
| ){
|
| CollSeq *pColl;
|
| assert( pLeft );
|
| - if( pLeft->flags & EP_ExpCollate ){
|
| - assert( pLeft->pColl );
|
| - pColl = pLeft->pColl;
|
| - }else if( pRight && pRight->flags & EP_ExpCollate ){
|
| - assert( pRight->pColl );
|
| - pColl = pRight->pColl;
|
| + if( pLeft->flags & EP_Collate ){
|
| + pColl = sqlite3ExprCollSeq(pParse, pLeft);
|
| + }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
|
| + pColl = sqlite3ExprCollSeq(pParse, pRight);
|
| }else{
|
| pColl = sqlite3ExprCollSeq(pParse, pLeft);
|
| if( !pColl ){
|
| @@ -403,7 +439,8 @@ Expr *sqlite3ExprAlloc(
|
| }else{
|
| int c;
|
| pNew->u.zToken = (char*)&pNew[1];
|
| - memcpy(pNew->u.zToken, pToken->z, pToken->n);
|
| + assert( pToken->z!=0 || pToken->n==0 );
|
| + if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
|
| pNew->u.zToken[pToken->n] = 0;
|
| if( dequote && nExtra>=3
|
| && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
|
| @@ -453,24 +490,18 @@ void sqlite3ExprAttachSubtrees(
|
| }else{
|
| if( pRight ){
|
| pRoot->pRight = pRight;
|
| - if( pRight->flags & EP_ExpCollate ){
|
| - pRoot->flags |= EP_ExpCollate;
|
| - pRoot->pColl = pRight->pColl;
|
| - }
|
| + pRoot->flags |= EP_Collate & pRight->flags;
|
| }
|
| if( pLeft ){
|
| pRoot->pLeft = pLeft;
|
| - if( pLeft->flags & EP_ExpCollate ){
|
| - pRoot->flags |= EP_ExpCollate;
|
| - pRoot->pColl = pLeft->pColl;
|
| - }
|
| + pRoot->flags |= EP_Collate & pLeft->flags;
|
| }
|
| exprSetHeight(pRoot);
|
| }
|
| }
|
|
|
| /*
|
| -** Allocate a Expr node which joins as many as two subtrees.
|
| +** Allocate an Expr node which joins as many as two subtrees.
|
| **
|
| ** One or both of the subtrees can be NULL. Return a pointer to the new
|
| ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
|
| @@ -483,8 +514,14 @@ Expr *sqlite3PExpr(
|
| Expr *pRight, /* Right operand */
|
| const Token *pToken /* Argument token */
|
| ){
|
| - Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
|
| - sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
|
| + Expr *p;
|
| + if( op==TK_AND && pLeft && pRight ){
|
| + /* Take advantage of short-circuit false optimization for AND */
|
| + p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
|
| + }else{
|
| + p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
|
| + sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
|
| + }
|
| if( p ) {
|
| sqlite3ExprCheckHeight(pParse, p->nHeight);
|
| }
|
| @@ -492,14 +529,49 @@ Expr *sqlite3PExpr(
|
| }
|
|
|
| /*
|
| +** If the expression is always either TRUE or FALSE (respectively),
|
| +** then return 1. If one cannot determine the truth value of the
|
| +** expression at compile-time return 0.
|
| +**
|
| +** This is an optimization. If is OK to return 0 here even if
|
| +** the expression really is always false or false (a false negative).
|
| +** But it is a bug to return 1 if the expression might have different
|
| +** boolean values in different circumstances (a false positive.)
|
| +**
|
| +** Note that if the expression is part of conditional for a
|
| +** LEFT JOIN, then we cannot determine at compile-time whether or not
|
| +** is it true or false, so always return 0.
|
| +*/
|
| +static int exprAlwaysTrue(Expr *p){
|
| + int v = 0;
|
| + if( ExprHasProperty(p, EP_FromJoin) ) return 0;
|
| + if( !sqlite3ExprIsInteger(p, &v) ) return 0;
|
| + return v!=0;
|
| +}
|
| +static int exprAlwaysFalse(Expr *p){
|
| + int v = 0;
|
| + if( ExprHasProperty(p, EP_FromJoin) ) return 0;
|
| + if( !sqlite3ExprIsInteger(p, &v) ) return 0;
|
| + return v==0;
|
| +}
|
| +
|
| +/*
|
| ** Join two expressions using an AND operator. If either expression is
|
| ** NULL, then just return the other expression.
|
| +**
|
| +** If one side or the other of the AND is known to be false, then instead
|
| +** of returning an AND expression, just return a constant expression with
|
| +** a value of false.
|
| */
|
| Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
|
| if( pLeft==0 ){
|
| return pRight;
|
| }else if( pRight==0 ){
|
| return pLeft;
|
| + }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
|
| + sqlite3ExprDelete(db, pLeft);
|
| + sqlite3ExprDelete(db, pRight);
|
| + return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
|
| }else{
|
| Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
|
| sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
|
| @@ -539,7 +611,7 @@ Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
|
| **
|
| ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
|
| ** as the previous instance of the same wildcard. Or if this is the first
|
| -** instance of the wildcard, the next sequenial variable number is
|
| +** instance of the wildcard, the next sequential variable number is
|
| ** assigned.
|
| */
|
| void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
|
| @@ -547,7 +619,7 @@ void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
|
| const char *z;
|
|
|
| if( pExpr==0 ) return;
|
| - assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
|
| + assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
|
| z = pExpr->u.zToken;
|
| assert( z!=0 );
|
| assert( z[0]!=0 );
|
| @@ -555,51 +627,53 @@ void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
|
| /* Wildcard of the form "?". Assign the next variable number */
|
| assert( z[0]=='?' );
|
| pExpr->iColumn = (ynVar)(++pParse->nVar);
|
| - }else if( z[0]=='?' ){
|
| - /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
|
| - ** use it as the variable number */
|
| - i64 i;
|
| - int bOk = 0==sqlite3Atoi64(&z[1], &i, sqlite3Strlen30(&z[1]), SQLITE_UTF8);
|
| - pExpr->iColumn = (ynVar)i;
|
| - testcase( i==0 );
|
| - testcase( i==1 );
|
| - testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
|
| - testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
|
| - if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
|
| - sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
|
| - db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
|
| - }
|
| - if( i>pParse->nVar ){
|
| - pParse->nVar = (int)i;
|
| - }
|
| }else{
|
| - /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
|
| - ** number as the prior appearance of the same name, or if the name
|
| - ** has never appeared before, reuse the same variable number
|
| - */
|
| - int i;
|
| - for(i=0; i<pParse->nVarExpr; i++){
|
| - Expr *pE = pParse->apVarExpr[i];
|
| - assert( pE!=0 );
|
| - if( strcmp(pE->u.zToken, z)==0 ){
|
| - pExpr->iColumn = pE->iColumn;
|
| - break;
|
| + ynVar x = 0;
|
| + u32 n = sqlite3Strlen30(z);
|
| + if( z[0]=='?' ){
|
| + /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
|
| + ** use it as the variable number */
|
| + i64 i;
|
| + int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
|
| + pExpr->iColumn = x = (ynVar)i;
|
| + testcase( i==0 );
|
| + testcase( i==1 );
|
| + testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
|
| + testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
|
| + if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
|
| + sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
|
| + db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
|
| + x = 0;
|
| + }
|
| + if( i>pParse->nVar ){
|
| + pParse->nVar = (int)i;
|
| }
|
| + }else{
|
| + /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
|
| + ** number as the prior appearance of the same name, or if the name
|
| + ** has never appeared before, reuse the same variable number
|
| + */
|
| + ynVar i;
|
| + for(i=0; i<pParse->nzVar; i++){
|
| + if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
|
| + pExpr->iColumn = x = (ynVar)i+1;
|
| + break;
|
| + }
|
| + }
|
| + if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
|
| }
|
| - if( i>=pParse->nVarExpr ){
|
| - pExpr->iColumn = (ynVar)(++pParse->nVar);
|
| - if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
|
| - pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
|
| - pParse->apVarExpr =
|
| - sqlite3DbReallocOrFree(
|
| - db,
|
| - pParse->apVarExpr,
|
| - pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
|
| - );
|
| + if( x>0 ){
|
| + if( x>pParse->nzVar ){
|
| + char **a;
|
| + a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
|
| + if( a==0 ) return; /* Error reported through db->mallocFailed */
|
| + pParse->azVar = a;
|
| + memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
|
| + pParse->nzVar = x;
|
| }
|
| - if( !db->mallocFailed ){
|
| - assert( pParse->apVarExpr!=0 );
|
| - pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
|
| + if( z[0]!='?' || pParse->azVar[x-1]==0 ){
|
| + sqlite3DbFree(db, pParse->azVar[x-1]);
|
| + pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
|
| }
|
| }
|
| }
|
| @@ -615,12 +689,12 @@ void sqlite3ExprDelete(sqlite3 *db, Expr *p){
|
| if( p==0 ) return;
|
| /* Sanity check: Assert that the IntValue is non-negative if it exists */
|
| assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
|
| - if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
|
| + if( !ExprHasProperty(p, EP_TokenOnly) ){
|
| + /* The Expr.x union is never used at the same time as Expr.pRight */
|
| + assert( p->x.pList==0 || p->pRight==0 );
|
| sqlite3ExprDelete(db, p->pLeft);
|
| sqlite3ExprDelete(db, p->pRight);
|
| - if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){
|
| - sqlite3DbFree(db, p->u.zToken);
|
| - }
|
| + if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
|
| if( ExprHasProperty(p, EP_xIsSelect) ){
|
| sqlite3SelectDelete(db, p->x.pSelect);
|
| }else{
|
| @@ -672,7 +746,7 @@ static int exprStructSize(Expr *p){
|
| ** During expression analysis, extra information is computed and moved into
|
| ** later parts of teh Expr object and that extra information might get chopped
|
| ** off if the expression is reduced. Note also that it does not work to
|
| -** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal
|
| +** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal
|
| ** to reduce a pristine expression tree from the parser. The implementation
|
| ** of dupedExprStructSize() contain multiple assert() statements that attempt
|
| ** to enforce this constraint.
|
| @@ -680,16 +754,19 @@ static int exprStructSize(Expr *p){
|
| static int dupedExprStructSize(Expr *p, int flags){
|
| int nSize;
|
| assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
|
| + assert( EXPR_FULLSIZE<=0xfff );
|
| + assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
|
| if( 0==(flags&EXPRDUP_REDUCE) ){
|
| nSize = EXPR_FULLSIZE;
|
| }else{
|
| - assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
|
| + assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
|
| assert( !ExprHasProperty(p, EP_FromJoin) );
|
| - assert( (p->flags2 & EP2_MallocedToken)==0 );
|
| - assert( (p->flags2 & EP2_Irreducible)==0 );
|
| - if( p->pLeft || p->pRight || p->pColl || p->x.pList ){
|
| + assert( !ExprHasProperty(p, EP_MemToken) );
|
| + assert( !ExprHasProperty(p, EP_NoReduce) );
|
| + if( p->pLeft || p->x.pList ){
|
| nSize = EXPR_REDUCEDSIZE | EP_Reduced;
|
| }else{
|
| + assert( p->pRight==0 );
|
| nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
|
| }
|
| }
|
| @@ -738,7 +815,7 @@ static int dupedExprSize(Expr *p, int flags){
|
| ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
|
| ** to store the copy of expression p, the copies of p->u.zToken
|
| ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
|
| -** if any. Before returning, *pzBuffer is set to the first byte passed the
|
| +** if any. Before returning, *pzBuffer is set to the first byte past the
|
| ** portion of the buffer copied into by this function.
|
| */
|
| static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
|
| @@ -785,7 +862,7 @@ static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
|
| }
|
|
|
| /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
|
| - pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
|
| + pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
|
| pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
|
| pNew->flags |= staticFlag;
|
|
|
| @@ -805,7 +882,7 @@ static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
|
| }
|
|
|
| /* Fill in pNew->pLeft and pNew->pRight. */
|
| - if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){
|
| + if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
|
| zAlloc += dupedExprNodeSize(p, flags);
|
| if( ExprHasProperty(pNew, EP_Reduced) ){
|
| pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
|
| @@ -815,8 +892,7 @@ static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
|
| *pzBuffer = zAlloc;
|
| }
|
| }else{
|
| - pNew->flags2 = 0;
|
| - if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
|
| + if( !ExprHasProperty(p, EP_TokenOnly) ){
|
| pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
|
| pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
|
| }
|
| @@ -828,6 +904,33 @@ static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
|
| }
|
|
|
| /*
|
| +** Create and return a deep copy of the object passed as the second
|
| +** argument. If an OOM condition is encountered, NULL is returned
|
| +** and the db->mallocFailed flag set.
|
| +*/
|
| +#ifndef SQLITE_OMIT_CTE
|
| +static With *withDup(sqlite3 *db, With *p){
|
| + With *pRet = 0;
|
| + if( p ){
|
| + int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
|
| + pRet = sqlite3DbMallocZero(db, nByte);
|
| + if( pRet ){
|
| + int i;
|
| + pRet->nCte = p->nCte;
|
| + for(i=0; i<p->nCte; i++){
|
| + pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
|
| + pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
|
| + pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
|
| + }
|
| + }
|
| + }
|
| + return pRet;
|
| +}
|
| +#else
|
| +# define withDup(x,y) 0
|
| +#endif
|
| +
|
| +/*
|
| ** The following group of routines make deep copies of expressions,
|
| ** expression lists, ID lists, and select statements. The copies can
|
| ** be deleted (by being passed to their respective ...Delete() routines)
|
| @@ -854,9 +957,9 @@ ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
|
| if( p==0 ) return 0;
|
| pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
|
| if( pNew==0 ) return 0;
|
| - pNew->iECursor = 0;
|
| - pNew->nExpr = pNew->nAlloc = p->nExpr;
|
| - pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) );
|
| + pNew->nExpr = i = p->nExpr;
|
| + if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
|
| + pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) );
|
| if( pItem==0 ){
|
| sqlite3DbFree(db, pNew);
|
| return 0;
|
| @@ -869,8 +972,8 @@ ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
|
| pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
|
| pItem->sortOrder = pOldItem->sortOrder;
|
| pItem->done = 0;
|
| - pItem->iCol = pOldItem->iCol;
|
| - pItem->iAlias = pOldItem->iAlias;
|
| + pItem->bSpanIsTab = pOldItem->bSpanIsTab;
|
| + pItem->u = pOldItem->u;
|
| }
|
| return pNew;
|
| }
|
| @@ -896,12 +999,17 @@ SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
|
| struct SrcList_item *pNewItem = &pNew->a[i];
|
| struct SrcList_item *pOldItem = &p->a[i];
|
| Table *pTab;
|
| + pNewItem->pSchema = pOldItem->pSchema;
|
| pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
|
| pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
|
| pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
|
| pNewItem->jointype = pOldItem->jointype;
|
| pNewItem->iCursor = pOldItem->iCursor;
|
| - pNewItem->isPopulated = pOldItem->isPopulated;
|
| + pNewItem->addrFillSub = pOldItem->addrFillSub;
|
| + pNewItem->regReturn = pOldItem->regReturn;
|
| + pNewItem->isCorrelated = pOldItem->isCorrelated;
|
| + pNewItem->viaCoroutine = pOldItem->viaCoroutine;
|
| + pNewItem->isRecursive = pOldItem->isRecursive;
|
| pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
|
| pNewItem->notIndexed = pOldItem->notIndexed;
|
| pNewItem->pIndex = pOldItem->pIndex;
|
| @@ -922,12 +1030,15 @@ IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
|
| if( p==0 ) return 0;
|
| pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
|
| if( pNew==0 ) return 0;
|
| - pNew->nId = pNew->nAlloc = p->nId;
|
| + pNew->nId = p->nId;
|
| pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
|
| if( pNew->a==0 ){
|
| sqlite3DbFree(db, pNew);
|
| return 0;
|
| }
|
| + /* Note that because the size of the allocation for p->a[] is not
|
| + ** necessarily a power of two, sqlite3IdListAppend() may not be called
|
| + ** on the duplicate created by this function. */
|
| for(i=0; i<p->nId; i++){
|
| struct IdList_item *pNewItem = &pNew->a[i];
|
| struct IdList_item *pOldItem = &p->a[i];
|
| @@ -937,7 +1048,7 @@ IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
|
| return pNew;
|
| }
|
| Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
|
| - Select *pNew;
|
| + Select *pNew, *pPrior;
|
| if( p==0 ) return 0;
|
| pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
|
| if( pNew==0 ) return 0;
|
| @@ -948,16 +1059,19 @@ Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
|
| pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
|
| pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
|
| pNew->op = p->op;
|
| - pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags);
|
| + pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
|
| + if( pPrior ) pPrior->pNext = pNew;
|
| + pNew->pNext = 0;
|
| pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
|
| pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
|
| pNew->iLimit = 0;
|
| pNew->iOffset = 0;
|
| pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
|
| - pNew->pRightmost = 0;
|
| pNew->addrOpenEphm[0] = -1;
|
| pNew->addrOpenEphm[1] = -1;
|
| - pNew->addrOpenEphm[2] = -1;
|
| + pNew->nSelectRow = p->nSelectRow;
|
| + pNew->pWith = withDup(db, p->pWith);
|
| + sqlite3SelectSetName(pNew, p->zSelName);
|
| return pNew;
|
| }
|
| #else
|
| @@ -987,17 +1101,16 @@ ExprList *sqlite3ExprListAppend(
|
| if( pList==0 ){
|
| goto no_mem;
|
| }
|
| - assert( pList->nAlloc==0 );
|
| - }
|
| - if( pList->nAlloc<=pList->nExpr ){
|
| + pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0]));
|
| + if( pList->a==0 ) goto no_mem;
|
| + }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
|
| struct ExprList_item *a;
|
| - int n = pList->nAlloc*2 + 4;
|
| - a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
|
| + assert( pList->nExpr>0 );
|
| + a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
|
| if( a==0 ){
|
| goto no_mem;
|
| }
|
| pList->a = a;
|
| - pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]);
|
| }
|
| assert( pList->a!=0 );
|
| if( 1 ){
|
| @@ -1088,8 +1201,7 @@ void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
|
| int i;
|
| struct ExprList_item *pItem;
|
| if( pList==0 ) return;
|
| - assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
|
| - assert( pList->nExpr<=pList->nAlloc );
|
| + assert( pList->a!=0 || pList->nExpr==0 );
|
| for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
|
| sqlite3ExprDelete(db, pItem->pExpr);
|
| sqlite3DbFree(db, pItem->zName);
|
| @@ -1102,31 +1214,42 @@ void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
|
| /*
|
| ** These routines are Walker callbacks. Walker.u.pi is a pointer
|
| ** to an integer. These routines are checking an expression to see
|
| -** if it is a constant. Set *Walker.u.pi to 0 if the expression is
|
| +** if it is a constant. Set *Walker.u.i to 0 if the expression is
|
| ** not constant.
|
| **
|
| ** These callback routines are used to implement the following:
|
| **
|
| -** sqlite3ExprIsConstant()
|
| -** sqlite3ExprIsConstantNotJoin()
|
| -** sqlite3ExprIsConstantOrFunction()
|
| +** sqlite3ExprIsConstant() pWalker->u.i==1
|
| +** sqlite3ExprIsConstantNotJoin() pWalker->u.i==2
|
| +** sqlite3ExprIsConstantOrFunction() pWalker->u.i==3 or 4
|
| **
|
| +** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
|
| +** in a CREATE TABLE statement. The Walker.u.i value is 4 when parsing
|
| +** an existing schema and 3 when processing a new statement. A bound
|
| +** parameter raises an error for new statements, but is silently converted
|
| +** to NULL for existing schemas. This allows sqlite_master tables that
|
| +** contain a bound parameter because they were generated by older versions
|
| +** of SQLite to be parsed by newer versions of SQLite without raising a
|
| +** malformed schema error.
|
| */
|
| static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
|
|
|
| - /* If pWalker->u.i is 3 then any term of the expression that comes from
|
| + /* If pWalker->u.i is 2 then any term of the expression that comes from
|
| ** the ON or USING clauses of a join disqualifies the expression
|
| ** from being considered constant. */
|
| - if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
|
| + if( pWalker->u.i==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
|
| pWalker->u.i = 0;
|
| return WRC_Abort;
|
| }
|
|
|
| switch( pExpr->op ){
|
| /* Consider functions to be constant if all their arguments are constant
|
| - ** and pWalker->u.i==2 */
|
| + ** and either pWalker->u.i==3 or 4 or the function as the SQLITE_FUNC_CONST
|
| + ** flag. */
|
| case TK_FUNCTION:
|
| - if( pWalker->u.i==2 ) return 0;
|
| + if( pWalker->u.i>=3 || ExprHasProperty(pExpr,EP_Constant) ){
|
| + return WRC_Continue;
|
| + }
|
| /* Fall through */
|
| case TK_ID:
|
| case TK_COLUMN:
|
| @@ -1138,6 +1261,19 @@ static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
|
| testcase( pExpr->op==TK_AGG_COLUMN );
|
| pWalker->u.i = 0;
|
| return WRC_Abort;
|
| + case TK_VARIABLE:
|
| + if( pWalker->u.i==4 ){
|
| + /* Silently convert bound parameters that appear inside of CREATE
|
| + ** statements into a NULL when parsing the CREATE statement text out
|
| + ** of the sqlite_master table */
|
| + pExpr->op = TK_NULL;
|
| + }else if( pWalker->u.i==3 ){
|
| + /* A bound parameter in a CREATE statement that originates from
|
| + ** sqlite3_prepare() causes an error */
|
| + pWalker->u.i = 0;
|
| + return WRC_Abort;
|
| + }
|
| + /* Fall through */
|
| default:
|
| testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
|
| testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
|
| @@ -1151,6 +1287,7 @@ static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
|
| }
|
| static int exprIsConst(Expr *p, int initFlag){
|
| Walker w;
|
| + memset(&w, 0, sizeof(w));
|
| w.u.i = initFlag;
|
| w.xExprCallback = exprNodeIsConstant;
|
| w.xSelectCallback = selectNodeIsConstant;
|
| @@ -1177,7 +1314,7 @@ int sqlite3ExprIsConstant(Expr *p){
|
| ** an ON or USING clause.
|
| */
|
| int sqlite3ExprIsConstantNotJoin(Expr *p){
|
| - return exprIsConst(p, 3);
|
| + return exprIsConst(p, 2);
|
| }
|
|
|
| /*
|
| @@ -1189,8 +1326,9 @@ int sqlite3ExprIsConstantNotJoin(Expr *p){
|
| ** is considered a variable but a single-quoted string (ex: 'abc') is
|
| ** a constant.
|
| */
|
| -int sqlite3ExprIsConstantOrFunction(Expr *p){
|
| - return exprIsConst(p, 2);
|
| +int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
|
| + assert( isInit==0 || isInit==1 );
|
| + return exprIsConst(p, 3+isInit);
|
| }
|
|
|
| /*
|
| @@ -1219,6 +1357,7 @@ int sqlite3ExprIsInteger(Expr *p, int *pValue){
|
| case TK_UMINUS: {
|
| int v;
|
| if( sqlite3ExprIsInteger(p->pLeft, &v) ){
|
| + assert( v!=(-2147483647-1) );
|
| *pValue = -v;
|
| rc = 1;
|
| }
|
| @@ -1254,30 +1393,16 @@ int sqlite3ExprCanBeNull(const Expr *p){
|
| case TK_FLOAT:
|
| case TK_BLOB:
|
| return 0;
|
| + case TK_COLUMN:
|
| + assert( p->pTab!=0 );
|
| + return ExprHasProperty(p, EP_CanBeNull) ||
|
| + (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
|
| default:
|
| return 1;
|
| }
|
| }
|
|
|
| /*
|
| -** Generate an OP_IsNull instruction that tests register iReg and jumps
|
| -** to location iDest if the value in iReg is NULL. The value in iReg
|
| -** was computed by pExpr. If we can look at pExpr at compile-time and
|
| -** determine that it can never generate a NULL, then the OP_IsNull operation
|
| -** can be omitted.
|
| -*/
|
| -void sqlite3ExprCodeIsNullJump(
|
| - Vdbe *v, /* The VDBE under construction */
|
| - const Expr *pExpr, /* Only generate OP_IsNull if this expr can be NULL */
|
| - int iReg, /* Test the value in this register for NULL */
|
| - int iDest /* Jump here if the value is null */
|
| -){
|
| - if( sqlite3ExprCanBeNull(pExpr) ){
|
| - sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest);
|
| - }
|
| -}
|
| -
|
| -/*
|
| ** Return TRUE if the given expression is a constant which would be
|
| ** unchanged by OP_Affinity with the affinity given in the second
|
| ** argument.
|
| @@ -1371,67 +1496,128 @@ static int isCandidateForInOpt(Select *p){
|
| #endif /* SQLITE_OMIT_SUBQUERY */
|
|
|
| /*
|
| +** Code an OP_Once instruction and allocate space for its flag. Return the
|
| +** address of the new instruction.
|
| +*/
|
| +int sqlite3CodeOnce(Parse *pParse){
|
| + Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
|
| + return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
|
| +}
|
| +
|
| +/*
|
| +** Generate code that checks the left-most column of index table iCur to see if
|
| +** it contains any NULL entries. Cause the register at regHasNull to be set
|
| +** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull
|
| +** to be set to NULL if iCur contains one or more NULL values.
|
| +*/
|
| +static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
|
| + int j1;
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
|
| + j1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
|
| + sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
|
| + sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
|
| + VdbeComment((v, "first_entry_in(%d)", iCur));
|
| + sqlite3VdbeJumpHere(v, j1);
|
| +}
|
| +
|
| +
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| +/*
|
| +** The argument is an IN operator with a list (not a subquery) on the
|
| +** right-hand side. Return TRUE if that list is constant.
|
| +*/
|
| +static int sqlite3InRhsIsConstant(Expr *pIn){
|
| + Expr *pLHS;
|
| + int res;
|
| + assert( !ExprHasProperty(pIn, EP_xIsSelect) );
|
| + pLHS = pIn->pLeft;
|
| + pIn->pLeft = 0;
|
| + res = sqlite3ExprIsConstant(pIn);
|
| + pIn->pLeft = pLHS;
|
| + return res;
|
| +}
|
| +#endif
|
| +
|
| +/*
|
| ** This function is used by the implementation of the IN (...) operator.
|
| -** It's job is to find or create a b-tree structure that may be used
|
| -** either to test for membership of the (...) set or to iterate through
|
| -** its members, skipping duplicates.
|
| +** The pX parameter is the expression on the RHS of the IN operator, which
|
| +** might be either a list of expressions or a subquery.
|
| +**
|
| +** The job of this routine is to find or create a b-tree object that can
|
| +** be used either to test for membership in the RHS set or to iterate through
|
| +** all members of the RHS set, skipping duplicates.
|
| +**
|
| +** A cursor is opened on the b-tree object that is the RHS of the IN operator
|
| +** and pX->iTable is set to the index of that cursor.
|
| **
|
| -** The index of the cursor opened on the b-tree (database table, database index
|
| -** or ephermal table) is stored in pX->iTable before this function returns.
|
| ** The returned value of this function indicates the b-tree type, as follows:
|
| **
|
| -** IN_INDEX_ROWID - The cursor was opened on a database table.
|
| -** IN_INDEX_INDEX - The cursor was opened on a database index.
|
| -** IN_INDEX_EPH - The cursor was opened on a specially created and
|
| -** populated epheremal table.
|
| +** IN_INDEX_ROWID - The cursor was opened on a database table.
|
| +** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index.
|
| +** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
|
| +** IN_INDEX_EPH - The cursor was opened on a specially created and
|
| +** populated epheremal table.
|
| +** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be
|
| +** implemented as a sequence of comparisons.
|
| **
|
| -** An existing b-tree may only be used if the SELECT is of the simple
|
| -** form:
|
| +** An existing b-tree might be used if the RHS expression pX is a simple
|
| +** subquery such as:
|
| **
|
| ** SELECT <column> FROM <table>
|
| **
|
| -** If the prNotFound parameter is 0, then the b-tree will be used to iterate
|
| -** through the set members, skipping any duplicates. In this case an
|
| -** epheremal table must be used unless the selected <column> is guaranteed
|
| +** If the RHS of the IN operator is a list or a more complex subquery, then
|
| +** an ephemeral table might need to be generated from the RHS and then
|
| +** pX->iTable made to point to the ephemeral table instead of an
|
| +** existing table.
|
| +**
|
| +** The inFlags parameter must contain exactly one of the bits
|
| +** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains
|
| +** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
|
| +** fast membership test. When the IN_INDEX_LOOP bit is set, the
|
| +** IN index will be used to loop over all values of the RHS of the
|
| +** IN operator.
|
| +**
|
| +** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
|
| +** through the set members) then the b-tree must not contain duplicates.
|
| +** An epheremal table must be used unless the selected <column> is guaranteed
|
| ** to be unique - either because it is an INTEGER PRIMARY KEY or it
|
| ** has a UNIQUE constraint or UNIQUE index.
|
| **
|
| -** If the prNotFound parameter is not 0, then the b-tree will be used
|
| -** for fast set membership tests. In this case an epheremal table must
|
| +** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
|
| +** for fast set membership tests) then an epheremal table must
|
| ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
|
| ** be found with <column> as its left-most column.
|
| **
|
| +** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
|
| +** if the RHS of the IN operator is a list (not a subquery) then this
|
| +** routine might decide that creating an ephemeral b-tree for membership
|
| +** testing is too expensive and return IN_INDEX_NOOP. In that case, the
|
| +** calling routine should implement the IN operator using a sequence
|
| +** of Eq or Ne comparison operations.
|
| +**
|
| ** When the b-tree is being used for membership tests, the calling function
|
| -** needs to know whether or not the structure contains an SQL NULL
|
| -** value in order to correctly evaluate expressions like "X IN (Y, Z)".
|
| -** If there is any chance that the (...) might contain a NULL value at
|
| +** might need to know whether or not the RHS side of the IN operator
|
| +** contains a NULL. If prRhsHasNull is not a NULL pointer and
|
| +** if there is any chance that the (...) might contain a NULL value at
|
| ** runtime, then a register is allocated and the register number written
|
| -** to *prNotFound. If there is no chance that the (...) contains a
|
| -** NULL value, then *prNotFound is left unchanged.
|
| +** to *prRhsHasNull. If there is no chance that the (...) contains a
|
| +** NULL value, then *prRhsHasNull is left unchanged.
|
| **
|
| -** If a register is allocated and its location stored in *prNotFound, then
|
| -** its initial value is NULL. If the (...) does not remain constant
|
| -** for the duration of the query (i.e. the SELECT within the (...)
|
| -** is a correlated subquery) then the value of the allocated register is
|
| -** reset to NULL each time the subquery is rerun. This allows the
|
| -** caller to use vdbe code equivalent to the following:
|
| -**
|
| -** if( register==NULL ){
|
| -** has_null = <test if data structure contains null>
|
| -** register = 1
|
| -** }
|
| -**
|
| -** in order to avoid running the <test if data structure contains null>
|
| -** test more often than is necessary.
|
| +** If a register is allocated and its location stored in *prRhsHasNull, then
|
| +** the value in that register will be NULL if the b-tree contains one or more
|
| +** NULL values, and it will be some non-NULL value if the b-tree contains no
|
| +** NULL values.
|
| */
|
| #ifndef SQLITE_OMIT_SUBQUERY
|
| -int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
|
| +int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){
|
| Select *p; /* SELECT to the right of IN operator */
|
| int eType = 0; /* Type of RHS table. IN_INDEX_* */
|
| int iTab = pParse->nTab++; /* Cursor of the RHS table */
|
| - int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */
|
| + int mustBeUnique; /* True if RHS must be unique */
|
| + Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
|
|
|
| assert( pX->op==TK_IN );
|
| + mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
|
|
|
| /* Check to see if an existing table or index can be used to
|
| ** satisfy the query. This is preferable to generating a new
|
| @@ -1440,13 +1626,20 @@ int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
|
| p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
|
| if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
|
| sqlite3 *db = pParse->db; /* Database connection */
|
| - Expr *pExpr = p->pEList->a[0].pExpr; /* Expression <column> */
|
| - int iCol = pExpr->iColumn; /* Index of column <column> */
|
| - Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
|
| - Table *pTab = p->pSrc->a[0].pTab; /* Table <table>. */
|
| - int iDb; /* Database idx for pTab */
|
| + Table *pTab; /* Table <table>. */
|
| + Expr *pExpr; /* Expression <column> */
|
| + i16 iCol; /* Index of column <column> */
|
| + i16 iDb; /* Database idx for pTab */
|
| +
|
| + assert( p ); /* Because of isCandidateForInOpt(p) */
|
| + assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */
|
| + assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
|
| + assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */
|
| + pTab = p->pSrc->a[0].pTab;
|
| + pExpr = p->pEList->a[0].pExpr;
|
| + iCol = (i16)pExpr->iColumn;
|
|
|
| - /* Code an OP_VerifyCookie and OP_TableLock for <table>. */
|
| + /* Code an OP_Transaction and OP_TableLock for <table>. */
|
| iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
| sqlite3CodeVerifySchema(pParse, iDb);
|
| sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
|
| @@ -1457,11 +1650,8 @@ int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
|
| */
|
| assert(v);
|
| if( iCol<0 ){
|
| - int iMem = ++pParse->nMem;
|
| - int iAddr;
|
| -
|
| - iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
|
| - sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
|
| + int iAddr = sqlite3CodeOnce(pParse);
|
| + VdbeCoverage(v);
|
|
|
| sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
|
| eType = IN_INDEX_ROWID;
|
| @@ -1479,51 +1669,60 @@ int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
|
| ** comparison is the same as the affinity of the column. If
|
| ** it is not, it is not possible to use any index.
|
| */
|
| - char aff = comparisonAffinity(pX);
|
| - int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
|
| + int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
|
|
|
| for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
|
| if( (pIdx->aiColumn[0]==iCol)
|
| && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
|
| - && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
|
| + && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx)))
|
| ){
|
| - int iMem = ++pParse->nMem;
|
| - int iAddr;
|
| - char *pKey;
|
| -
|
| - pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
|
| - iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
|
| - sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
|
| -
|
| - sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
|
| - pKey,P4_KEYINFO_HANDOFF);
|
| + int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
|
| + sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
|
| + sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
|
| VdbeComment((v, "%s", pIdx->zName));
|
| - eType = IN_INDEX_INDEX;
|
| + assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
|
| + eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
|
|
|
| - sqlite3VdbeJumpHere(v, iAddr);
|
| - if( prNotFound && !pTab->aCol[iCol].notNull ){
|
| - *prNotFound = ++pParse->nMem;
|
| + if( prRhsHasNull && !pTab->aCol[iCol].notNull ){
|
| + *prRhsHasNull = ++pParse->nMem;
|
| + sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
|
| }
|
| + sqlite3VdbeJumpHere(v, iAddr);
|
| }
|
| }
|
| }
|
| }
|
|
|
| + /* If no preexisting index is available for the IN clause
|
| + ** and IN_INDEX_NOOP is an allowed reply
|
| + ** and the RHS of the IN operator is a list, not a subquery
|
| + ** and the RHS is not contant or has two or fewer terms,
|
| + ** then it is not worth creating an ephemeral table to evaluate
|
| + ** the IN operator so return IN_INDEX_NOOP.
|
| + */
|
| + if( eType==0
|
| + && (inFlags & IN_INDEX_NOOP_OK)
|
| + && !ExprHasProperty(pX, EP_xIsSelect)
|
| + && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
|
| + ){
|
| + eType = IN_INDEX_NOOP;
|
| + }
|
| +
|
| +
|
| if( eType==0 ){
|
| - /* Could not found an existing table or index to use as the RHS b-tree.
|
| + /* Could not find an existing table or index to use as the RHS b-tree.
|
| ** We will have to generate an ephemeral table to do the job.
|
| */
|
| - double savedNQueryLoop = pParse->nQueryLoop;
|
| + u32 savedNQueryLoop = pParse->nQueryLoop;
|
| int rMayHaveNull = 0;
|
| eType = IN_INDEX_EPH;
|
| - if( prNotFound ){
|
| - *prNotFound = rMayHaveNull = ++pParse->nMem;
|
| - }else{
|
| - testcase( pParse->nQueryLoop>(double)1 );
|
| - pParse->nQueryLoop = (double)1;
|
| - if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
|
| + if( inFlags & IN_INDEX_LOOP ){
|
| + pParse->nQueryLoop = 0;
|
| + if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
|
| eType = IN_INDEX_ROWID;
|
| }
|
| + }else if( prRhsHasNull ){
|
| + *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
|
| }
|
| sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
|
| pParse->nQueryLoop = savedNQueryLoop;
|
| @@ -1554,15 +1753,9 @@ int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
|
| **
|
| ** If rMayHaveNull is non-zero, that means that the operation is an IN
|
| ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
|
| -** Furthermore, the IN is in a WHERE clause and that we really want
|
| -** to iterate over the RHS of the IN operator in order to quickly locate
|
| -** all corresponding LHS elements. All this routine does is initialize
|
| -** the register given by rMayHaveNull to NULL. Calling routines will take
|
| -** care of changing this register value to non-NULL if the RHS is NULL-free.
|
| -**
|
| -** If rMayHaveNull is zero, that means that the subquery is being used
|
| -** for membership testing only. There is no need to initialize any
|
| -** registers to indicate the presense or absence of NULLs on the RHS.
|
| +** All this routine does is initialize the register given by rMayHaveNull
|
| +** to NULL. Calling routines will take care of changing this register
|
| +** value to non-NULL if the RHS is NULL-free.
|
| **
|
| ** For a SELECT or EXISTS operator, return the register that holds the
|
| ** result. For IN operators or if an error occurs, the return value is 0.
|
| @@ -1571,10 +1764,10 @@ int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
|
| int sqlite3CodeSubselect(
|
| Parse *pParse, /* Parsing context */
|
| Expr *pExpr, /* The IN, SELECT, or EXISTS operator */
|
| - int rMayHaveNull, /* Register that records whether NULLs exist in RHS */
|
| + int rHasNullFlag, /* Register that records whether NULLs exist in RHS */
|
| int isRowid /* If true, LHS of IN operator is a rowid */
|
| ){
|
| - int testAddr = 0; /* One-time test address */
|
| + int jmpIfDynamic = -1; /* One-time test address */
|
| int rReg = 0; /* Register storing resulting */
|
| Vdbe *v = sqlite3GetVdbe(pParse);
|
| if( NEVER(v==0) ) return 0;
|
| @@ -1590,17 +1783,14 @@ int sqlite3CodeSubselect(
|
| ** If all of the above are false, then we can run this code just once
|
| ** save the results, and reuse the same result on subsequent invocations.
|
| */
|
| - if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->pTriggerTab ){
|
| - int mem = ++pParse->nMem;
|
| - sqlite3VdbeAddOp1(v, OP_If, mem);
|
| - testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
|
| - assert( testAddr>0 || pParse->db->mallocFailed );
|
| + if( !ExprHasProperty(pExpr, EP_VarSelect) ){
|
| + jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v);
|
| }
|
|
|
| #ifndef SQLITE_OMIT_EXPLAIN
|
| if( pParse->explain==2 ){
|
| char *zMsg = sqlite3MPrintf(
|
| - pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr?"":"CORRELATED ",
|
| + pParse->db, "EXECUTE %s%s SUBQUERY %d", jmpIfDynamic>=0?"":"CORRELATED ",
|
| pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
|
| );
|
| sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
|
| @@ -1610,13 +1800,9 @@ int sqlite3CodeSubselect(
|
| switch( pExpr->op ){
|
| case TK_IN: {
|
| char affinity; /* Affinity of the LHS of the IN */
|
| - KeyInfo keyInfo; /* Keyinfo for the generated table */
|
| int addr; /* Address of OP_OpenEphemeral instruction */
|
| Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
|
| -
|
| - if( rMayHaveNull ){
|
| - sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
|
| - }
|
| + KeyInfo *pKeyInfo = 0; /* Key information */
|
|
|
| affinity = sqlite3ExprAffinity(pLeft);
|
|
|
| @@ -1635,9 +1821,7 @@ int sqlite3CodeSubselect(
|
| */
|
| pExpr->iTable = pParse->nTab++;
|
| addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
|
| - if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
|
| - memset(&keyInfo, 0, sizeof(keyInfo));
|
| - keyInfo.nField = 1;
|
| + pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);
|
|
|
| if( ExprHasProperty(pExpr, EP_xIsSelect) ){
|
| /* Case 1: expr IN (SELECT ...)
|
| @@ -1645,22 +1829,28 @@ int sqlite3CodeSubselect(
|
| ** Generate code to write the results of the select into the temporary
|
| ** table allocated and opened above.
|
| */
|
| + Select *pSelect = pExpr->x.pSelect;
|
| SelectDest dest;
|
| ExprList *pEList;
|
|
|
| assert( !isRowid );
|
| sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
|
| - dest.affinity = (u8)affinity;
|
| + dest.affSdst = (u8)affinity;
|
| assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
|
| - pExpr->x.pSelect->iLimit = 0;
|
| - if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
|
| + pSelect->iLimit = 0;
|
| + testcase( pSelect->selFlags & SF_Distinct );
|
| + testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
|
| + if( sqlite3Select(pParse, pSelect, &dest) ){
|
| + sqlite3KeyInfoUnref(pKeyInfo);
|
| return 0;
|
| }
|
| - pEList = pExpr->x.pSelect->pEList;
|
| - if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){
|
| - keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
|
| - pEList->a[0].pExpr);
|
| - }
|
| + pEList = pSelect->pEList;
|
| + assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
|
| + assert( pEList!=0 );
|
| + assert( pEList->nExpr>0 );
|
| + assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
|
| + pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
|
| + pEList->a[0].pExpr);
|
| }else if( ALWAYS(pExpr->x.pList!=0) ){
|
| /* Case 2: expr IN (exprlist)
|
| **
|
| @@ -1677,12 +1867,15 @@ int sqlite3CodeSubselect(
|
| if( !affinity ){
|
| affinity = SQLITE_AFF_NONE;
|
| }
|
| - keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
|
| + if( pKeyInfo ){
|
| + assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
|
| + pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
|
| + }
|
|
|
| /* Loop through each expression in <exprlist>. */
|
| r1 = sqlite3GetTempReg(pParse);
|
| r2 = sqlite3GetTempReg(pParse);
|
| - sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
|
| + if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
|
| for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
|
| Expr *pE2 = pItem->pExpr;
|
| int iValToIns;
|
| @@ -1692,9 +1885,9 @@ int sqlite3CodeSubselect(
|
| ** this code only executes once. Because for a non-constant
|
| ** expression we need to rerun this code each time.
|
| */
|
| - if( testAddr && !sqlite3ExprIsConstant(pE2) ){
|
| - sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
|
| - testAddr = 0;
|
| + if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
|
| + sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
|
| + jmpIfDynamic = -1;
|
| }
|
|
|
| /* Evaluate the expression and insert it into the temp table */
|
| @@ -1705,6 +1898,7 @@ int sqlite3CodeSubselect(
|
| if( isRowid ){
|
| sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
|
| sqlite3VdbeCurrentAddr(v)+2);
|
| + VdbeCoverage(v);
|
| sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
|
| }else{
|
| sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
|
| @@ -1716,8 +1910,8 @@ int sqlite3CodeSubselect(
|
| sqlite3ReleaseTempReg(pParse, r1);
|
| sqlite3ReleaseTempReg(pParse, r2);
|
| }
|
| - if( !isRowid ){
|
| - sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
|
| + if( pKeyInfo ){
|
| + sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
|
| }
|
| break;
|
| }
|
| @@ -1743,11 +1937,12 @@ int sqlite3CodeSubselect(
|
| sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
|
| if( pExpr->op==TK_SELECT ){
|
| dest.eDest = SRT_Mem;
|
| - sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
|
| + dest.iSdst = dest.iSDParm;
|
| + sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
|
| VdbeComment((v, "Init subquery result"));
|
| }else{
|
| dest.eDest = SRT_Exists;
|
| - sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
|
| VdbeComment((v, "Init EXISTS result"));
|
| }
|
| sqlite3ExprDelete(pParse->db, pSel->pLimit);
|
| @@ -1757,16 +1952,20 @@ int sqlite3CodeSubselect(
|
| if( sqlite3Select(pParse, pSel, &dest) ){
|
| return 0;
|
| }
|
| - rReg = dest.iParm;
|
| - ExprSetIrreducible(pExpr);
|
| + rReg = dest.iSDParm;
|
| + ExprSetVVAProperty(pExpr, EP_NoReduce);
|
| break;
|
| }
|
| }
|
|
|
| - if( testAddr ){
|
| - sqlite3VdbeJumpHere(v, testAddr-1);
|
| + if( rHasNullFlag ){
|
| + sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
|
| }
|
| - sqlite3ExprCachePop(pParse, 1);
|
| +
|
| + if( jmpIfDynamic>=0 ){
|
| + sqlite3VdbeJumpHere(v, jmpIfDynamic);
|
| + }
|
| + sqlite3ExprCachePop(pParse);
|
|
|
| return rReg;
|
| }
|
| @@ -1785,7 +1984,7 @@ int sqlite3CodeSubselect(
|
| ** if the LHS is NULL or if the LHS is not contained within the RHS and the
|
| ** RHS contains one or more NULL values.
|
| **
|
| -** This routine generates code will jump to destIfFalse if the LHS is not
|
| +** This routine generates code that jumps to destIfFalse if the LHS is not
|
| ** contained within the RHS. If due to NULLs we cannot determine if the LHS
|
| ** is contained in the RHS then jump to destIfNull. If the LHS is contained
|
| ** within the RHS then fall through.
|
| @@ -1808,7 +2007,9 @@ static void sqlite3ExprCodeIN(
|
| v = pParse->pVdbe;
|
| assert( v!=0 ); /* OOM detected prior to this routine */
|
| VdbeNoopComment((v, "begin IN expr"));
|
| - eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull);
|
| + eType = sqlite3FindInIndex(pParse, pExpr,
|
| + IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
|
| + destIfFalse==destIfNull ? 0 : &rRhsHasNull);
|
|
|
| /* Figure out the affinity to use to create a key from the results
|
| ** of the expression. affinityStr stores a static string suitable for
|
| @@ -1822,86 +2023,118 @@ static void sqlite3ExprCodeIN(
|
| r1 = sqlite3GetTempReg(pParse);
|
| sqlite3ExprCode(pParse, pExpr->pLeft, r1);
|
|
|
| - /* If the LHS is NULL, then the result is either false or NULL depending
|
| - ** on whether the RHS is empty or not, respectively.
|
| + /* If sqlite3FindInIndex() did not find or create an index that is
|
| + ** suitable for evaluating the IN operator, then evaluate using a
|
| + ** sequence of comparisons.
|
| */
|
| - if( destIfNull==destIfFalse ){
|
| - /* Shortcut for the common case where the false and NULL outcomes are
|
| - ** the same. */
|
| - sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull);
|
| - }else{
|
| - int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1);
|
| - sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
|
| - sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
|
| - sqlite3VdbeJumpHere(v, addr1);
|
| - }
|
| -
|
| - if( eType==IN_INDEX_ROWID ){
|
| - /* In this case, the RHS is the ROWID of table b-tree
|
| - */
|
| - sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse);
|
| - sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
|
| + if( eType==IN_INDEX_NOOP ){
|
| + ExprList *pList = pExpr->x.pList;
|
| + CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
|
| + int labelOk = sqlite3VdbeMakeLabel(v);
|
| + int r2, regToFree;
|
| + int regCkNull = 0;
|
| + int ii;
|
| + assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
| + if( destIfNull!=destIfFalse ){
|
| + regCkNull = sqlite3GetTempReg(pParse);
|
| + sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull);
|
| + }
|
| + for(ii=0; ii<pList->nExpr; ii++){
|
| + r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree);
|
| + if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
|
| + sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
|
| + }
|
| + if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
|
| + sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2,
|
| + (void*)pColl, P4_COLLSEQ);
|
| + VdbeCoverageIf(v, ii<pList->nExpr-1);
|
| + VdbeCoverageIf(v, ii==pList->nExpr-1);
|
| + sqlite3VdbeChangeP5(v, affinity);
|
| + }else{
|
| + assert( destIfNull==destIfFalse );
|
| + sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2,
|
| + (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
|
| + sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL);
|
| + }
|
| + sqlite3ReleaseTempReg(pParse, regToFree);
|
| + }
|
| + if( regCkNull ){
|
| + sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
|
| + }
|
| + sqlite3VdbeResolveLabel(v, labelOk);
|
| + sqlite3ReleaseTempReg(pParse, regCkNull);
|
| }else{
|
| - /* In this case, the RHS is an index b-tree.
|
| - */
|
| - sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
|
| -
|
| - /* If the set membership test fails, then the result of the
|
| - ** "x IN (...)" expression must be either 0 or NULL. If the set
|
| - ** contains no NULL values, then the result is 0. If the set
|
| - ** contains one or more NULL values, then the result of the
|
| - ** expression is also NULL.
|
| +
|
| + /* If the LHS is NULL, then the result is either false or NULL depending
|
| + ** on whether the RHS is empty or not, respectively.
|
| */
|
| - if( rRhsHasNull==0 || destIfFalse==destIfNull ){
|
| - /* This branch runs if it is known at compile time that the RHS
|
| - ** cannot contain NULL values. This happens as the result
|
| - ** of a "NOT NULL" constraint in the database schema.
|
| - **
|
| - ** Also run this branch if NULL is equivalent to FALSE
|
| - ** for this particular IN operator.
|
| + if( sqlite3ExprCanBeNull(pExpr->pLeft) ){
|
| + if( destIfNull==destIfFalse ){
|
| + /* Shortcut for the common case where the false and NULL outcomes are
|
| + ** the same. */
|
| + sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
|
| + }else{
|
| + int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);
|
| + sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
|
| + VdbeCoverage(v);
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
|
| + sqlite3VdbeJumpHere(v, addr1);
|
| + }
|
| + }
|
| +
|
| + if( eType==IN_INDEX_ROWID ){
|
| + /* In this case, the RHS is the ROWID of table b-tree
|
| */
|
| - sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
|
| -
|
| + sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v);
|
| + sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
|
| + VdbeCoverage(v);
|
| }else{
|
| - /* In this branch, the RHS of the IN might contain a NULL and
|
| - ** the presence of a NULL on the RHS makes a difference in the
|
| - ** outcome.
|
| + /* In this case, the RHS is an index b-tree.
|
| */
|
| - int j1, j2, j3;
|
| -
|
| - /* First check to see if the LHS is contained in the RHS. If so,
|
| - ** then the presence of NULLs in the RHS does not matter, so jump
|
| - ** over all of the code that follows.
|
| - */
|
| - j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
|
| -
|
| - /* Here we begin generating code that runs if the LHS is not
|
| - ** contained within the RHS. Generate additional code that
|
| - ** tests the RHS for NULLs. If the RHS contains a NULL then
|
| - ** jump to destIfNull. If there are no NULLs in the RHS then
|
| - ** jump to destIfFalse.
|
| - */
|
| - j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull);
|
| - j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1);
|
| - sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull);
|
| - sqlite3VdbeJumpHere(v, j3);
|
| - sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1);
|
| - sqlite3VdbeJumpHere(v, j2);
|
| -
|
| - /* Jump to the appropriate target depending on whether or not
|
| - ** the RHS contains a NULL
|
| - */
|
| - sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull);
|
| - sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
|
| -
|
| - /* The OP_Found at the top of this branch jumps here when true,
|
| - ** causing the overall IN expression evaluation to fall through.
|
| + sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
|
| +
|
| + /* If the set membership test fails, then the result of the
|
| + ** "x IN (...)" expression must be either 0 or NULL. If the set
|
| + ** contains no NULL values, then the result is 0. If the set
|
| + ** contains one or more NULL values, then the result of the
|
| + ** expression is also NULL.
|
| */
|
| - sqlite3VdbeJumpHere(v, j1);
|
| + assert( destIfFalse!=destIfNull || rRhsHasNull==0 );
|
| + if( rRhsHasNull==0 ){
|
| + /* This branch runs if it is known at compile time that the RHS
|
| + ** cannot contain NULL values. This happens as the result
|
| + ** of a "NOT NULL" constraint in the database schema.
|
| + **
|
| + ** Also run this branch if NULL is equivalent to FALSE
|
| + ** for this particular IN operator.
|
| + */
|
| + sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
|
| + VdbeCoverage(v);
|
| + }else{
|
| + /* In this branch, the RHS of the IN might contain a NULL and
|
| + ** the presence of a NULL on the RHS makes a difference in the
|
| + ** outcome.
|
| + */
|
| + int j1;
|
| +
|
| + /* First check to see if the LHS is contained in the RHS. If so,
|
| + ** then the answer is TRUE the presence of NULLs in the RHS does
|
| + ** not matter. If the LHS is not contained in the RHS, then the
|
| + ** answer is NULL if the RHS contains NULLs and the answer is
|
| + ** FALSE if the RHS is NULL-free.
|
| + */
|
| + j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
|
| + VdbeCoverage(v);
|
| + sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull);
|
| + VdbeCoverage(v);
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
|
| + sqlite3VdbeJumpHere(v, j1);
|
| + }
|
| }
|
| }
|
| sqlite3ReleaseTempReg(pParse, r1);
|
| - sqlite3ExprCachePop(pParse, 1);
|
| + sqlite3ExprCachePop(pParse);
|
| VdbeComment((v, "end IN expr"));
|
| }
|
| #endif /* SQLITE_OMIT_SUBQUERY */
|
| @@ -1958,7 +2191,7 @@ static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
|
| i64 value;
|
| const char *z = pExpr->u.zToken;
|
| assert( z!=0 );
|
| - c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
|
| + c = sqlite3DecOrHexToI64(z, &value);
|
| if( c==0 || (c==2 && negFlag) ){
|
| char *zV;
|
| if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
|
| @@ -1968,7 +2201,14 @@ static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
|
| #ifdef SQLITE_OMIT_FLOATING_POINT
|
| sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
|
| #else
|
| - codeReal(v, z, negFlag, iMem);
|
| +#ifndef SQLITE_OMIT_HEX_INTEGER
|
| + if( sqlite3_strnicmp(z,"0x",2)==0 ){
|
| + sqlite3ErrorMsg(pParse, "hex literal too big: %s", z);
|
| + }else
|
| +#endif
|
| + {
|
| + codeReal(v, z, negFlag, iMem);
|
| + }
|
| #endif
|
| }
|
| }
|
| @@ -2004,7 +2244,7 @@ void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
|
| ** for testing only - to verify that SQLite always gets the same answer
|
| ** with and without the column cache.
|
| */
|
| - if( pParse->db->flags & SQLITE_ColumnCache ) return;
|
| + if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
|
|
|
| /* First replace any existing entry.
|
| **
|
| @@ -2013,15 +2253,6 @@ void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
|
| */
|
| #ifndef NDEBUG
|
| for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| -#if 0 /* This code wold remove the entry from the cache if it existed */
|
| - if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){
|
| - cacheEntryClear(pParse, p);
|
| - p->iLevel = pParse->iCacheLevel;
|
| - p->iReg = iReg;
|
| - p->lru = pParse->iCacheCnt++;
|
| - return;
|
| - }
|
| -#endif
|
| assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
|
| }
|
| #endif
|
| @@ -2084,19 +2315,28 @@ void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
|
| */
|
| void sqlite3ExprCachePush(Parse *pParse){
|
| pParse->iCacheLevel++;
|
| +#ifdef SQLITE_DEBUG
|
| + if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
|
| + printf("PUSH to %d\n", pParse->iCacheLevel);
|
| + }
|
| +#endif
|
| }
|
|
|
| /*
|
| ** Remove from the column cache any entries that were added since the
|
| -** the previous N Push operations. In other words, restore the cache
|
| -** to the state it was in N Pushes ago.
|
| +** the previous sqlite3ExprCachePush operation. In other words, restore
|
| +** the cache to the state it was in prior the most recent Push.
|
| */
|
| -void sqlite3ExprCachePop(Parse *pParse, int N){
|
| +void sqlite3ExprCachePop(Parse *pParse){
|
| int i;
|
| struct yColCache *p;
|
| - assert( N>0 );
|
| - assert( pParse->iCacheLevel>=N );
|
| - pParse->iCacheLevel -= N;
|
| + assert( pParse->iCacheLevel>=1 );
|
| + pParse->iCacheLevel--;
|
| +#ifdef SQLITE_DEBUG
|
| + if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
|
| + printf("POP to %d\n", pParse->iCacheLevel);
|
| + }
|
| +#endif
|
| for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| if( p->iReg && p->iLevel>pParse->iCacheLevel ){
|
| cacheEntryClear(pParse, p);
|
| @@ -2127,15 +2367,19 @@ static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
|
| void sqlite3ExprCodeGetColumnOfTable(
|
| Vdbe *v, /* The VDBE under construction */
|
| Table *pTab, /* The table containing the value */
|
| - int iTabCur, /* The cursor for this table */
|
| + int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */
|
| int iCol, /* Index of the column to extract */
|
| - int regOut /* Extract the valud into this register */
|
| + int regOut /* Extract the value into this register */
|
| ){
|
| if( iCol<0 || iCol==pTab->iPKey ){
|
| sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
|
| }else{
|
| int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
|
| - sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut);
|
| + int x = iCol;
|
| + if( !HasRowid(pTab) ){
|
| + x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
|
| + }
|
| + sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
|
| }
|
| if( iCol>=0 ){
|
| sqlite3ColumnDefault(v, pTab, iCol, regOut);
|
| @@ -2156,7 +2400,8 @@ int sqlite3ExprCodeGetColumn(
|
| Table *pTab, /* Description of the table we are reading from */
|
| int iColumn, /* Index of the table column */
|
| int iTable, /* The cursor pointing to the table */
|
| - int iReg /* Store results here */
|
| + int iReg, /* Store results here */
|
| + u8 p5 /* P5 value for OP_Column */
|
| ){
|
| Vdbe *v = pParse->pVdbe;
|
| int i;
|
| @@ -2171,7 +2416,11 @@ int sqlite3ExprCodeGetColumn(
|
| }
|
| assert( v!=0 );
|
| sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
|
| - sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
|
| + if( p5 ){
|
| + sqlite3VdbeChangeP5(v, p5);
|
| + }else{
|
| + sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
|
| + }
|
| return iReg;
|
| }
|
|
|
| @@ -2182,6 +2431,11 @@ void sqlite3ExprCacheClear(Parse *pParse){
|
| int i;
|
| struct yColCache *p;
|
|
|
| +#if SQLITE_DEBUG
|
| + if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
|
| + printf("CLEAR\n");
|
| + }
|
| +#endif
|
| for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| if( p->iReg ){
|
| cacheEntryClear(pParse, p);
|
| @@ -2203,28 +2457,9 @@ void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
|
| ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
|
| */
|
| void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
|
| - int i;
|
| - struct yColCache *p;
|
| - if( NEVER(iFrom==iTo) ) return;
|
| + assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
|
| sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
|
| - for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| - int x = p->iReg;
|
| - if( x>=iFrom && x<iFrom+nReg ){
|
| - p->iReg += iTo-iFrom;
|
| - }
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Generate code to copy content from registers iFrom...iFrom+nReg-1
|
| -** over to iTo..iTo+nReg-1.
|
| -*/
|
| -void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
|
| - int i;
|
| - if( NEVER(iFrom==iTo) ) return;
|
| - for(i=0; i<nReg; i++){
|
| - sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
|
| - }
|
| + sqlite3ExprCacheRemove(pParse, iFrom, nReg);
|
| }
|
|
|
| #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
|
| @@ -2247,6 +2482,16 @@ static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
|
| #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
|
|
|
| /*
|
| +** Convert an expression node to a TK_REGISTER
|
| +*/
|
| +static void exprToRegister(Expr *p, int iReg){
|
| + p->op2 = p->op;
|
| + p->op = TK_REGISTER;
|
| + p->iTable = iReg;
|
| + ExprClearProperty(p, EP_Skip);
|
| +}
|
| +
|
| +/*
|
| ** Generate code into the current Vdbe to evaluate the given
|
| ** expression. Attempt to store the results in register "target".
|
| ** Return the register where results are stored.
|
| @@ -2265,6 +2510,7 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| int regFree2 = 0; /* If non-zero free this temporary register */
|
| int r1, r2, r3, r4; /* Various register numbers */
|
| sqlite3 *db = pParse->db; /* The database connection */
|
| + Expr tempX; /* Temporary expression node */
|
|
|
| assert( target>0 && target<=pParse->nMem );
|
| if( v==0 ){
|
| @@ -2286,21 +2532,27 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| inReg = pCol->iMem;
|
| break;
|
| }else if( pAggInfo->useSortingIdx ){
|
| - sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
|
| + sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
|
| pCol->iSorterColumn, target);
|
| break;
|
| }
|
| /* Otherwise, fall thru into the TK_COLUMN case */
|
| }
|
| case TK_COLUMN: {
|
| - if( pExpr->iTable<0 ){
|
| - /* This only happens when coding check constraints */
|
| - assert( pParse->ckBase>0 );
|
| - inReg = pExpr->iColumn + pParse->ckBase;
|
| - }else{
|
| - inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
|
| - pExpr->iColumn, pExpr->iTable, target);
|
| + int iTab = pExpr->iTable;
|
| + if( iTab<0 ){
|
| + if( pParse->ckBase>0 ){
|
| + /* Generating CHECK constraints or inserting into partial index */
|
| + inReg = pExpr->iColumn + pParse->ckBase;
|
| + break;
|
| + }else{
|
| + /* Deleting from a partial index */
|
| + iTab = pParse->iPartIdxTab;
|
| + }
|
| }
|
| + inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
|
| + pExpr->iColumn, iTab, target,
|
| + pExpr->op2);
|
| break;
|
| }
|
| case TK_INTEGER: {
|
| @@ -2345,7 +2597,9 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| assert( pExpr->u.zToken[0]!=0 );
|
| sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
|
| if( pExpr->u.zToken[1]!=0 ){
|
| - sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, P4_TRANSIENT);
|
| + assert( pExpr->u.zToken[0]=='?'
|
| + || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
|
| + sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
|
| }
|
| break;
|
| }
|
| @@ -2360,26 +2614,13 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| #ifndef SQLITE_OMIT_CAST
|
| case TK_CAST: {
|
| /* Expressions of the form: CAST(pLeft AS token) */
|
| - int aff, to_op;
|
| inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
|
| - assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| - aff = sqlite3AffinityType(pExpr->u.zToken);
|
| - to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
|
| - assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT );
|
| - assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE );
|
| - assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
|
| - assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER );
|
| - assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL );
|
| - testcase( to_op==OP_ToText );
|
| - testcase( to_op==OP_ToBlob );
|
| - testcase( to_op==OP_ToNumeric );
|
| - testcase( to_op==OP_ToInt );
|
| - testcase( to_op==OP_ToReal );
|
| if( inReg!=target ){
|
| sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
|
| inReg = target;
|
| }
|
| - sqlite3VdbeAddOp1(v, to_op, inReg);
|
| + sqlite3VdbeAddOp2(v, OP_Cast, target,
|
| + sqlite3AffinityType(pExpr->u.zToken, 0));
|
| testcase( usedAsColumnCache(pParse, inReg, inReg) );
|
| sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
|
| break;
|
| @@ -2391,22 +2632,16 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| case TK_GE:
|
| case TK_NE:
|
| case TK_EQ: {
|
| - assert( TK_LT==OP_Lt );
|
| - assert( TK_LE==OP_Le );
|
| - assert( TK_GT==OP_Gt );
|
| - assert( TK_GE==OP_Ge );
|
| - assert( TK_EQ==OP_Eq );
|
| - assert( TK_NE==OP_Ne );
|
| - testcase( op==TK_LT );
|
| - testcase( op==TK_LE );
|
| - testcase( op==TK_GT );
|
| - testcase( op==TK_GE );
|
| - testcase( op==TK_EQ );
|
| - testcase( op==TK_NE );
|
| r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
| codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| r1, r2, inReg, SQLITE_STOREP2);
|
| + assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
|
| + assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
|
| + assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
|
| + assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
|
| + assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
|
| + assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
|
| testcase( regFree1==0 );
|
| testcase( regFree2==0 );
|
| break;
|
| @@ -2420,6 +2655,8 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| op = (op==TK_IS) ? TK_EQ : TK_NE;
|
| codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
|
| + VdbeCoverageIf(v, op==TK_EQ);
|
| + VdbeCoverageIf(v, op==TK_NE);
|
| testcase( regFree1==0 );
|
| testcase( regFree2==0 );
|
| break;
|
| @@ -2436,28 +2673,17 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| case TK_LSHIFT:
|
| case TK_RSHIFT:
|
| case TK_CONCAT: {
|
| - assert( TK_AND==OP_And );
|
| - assert( TK_OR==OP_Or );
|
| - assert( TK_PLUS==OP_Add );
|
| - assert( TK_MINUS==OP_Subtract );
|
| - assert( TK_REM==OP_Remainder );
|
| - assert( TK_BITAND==OP_BitAnd );
|
| - assert( TK_BITOR==OP_BitOr );
|
| - assert( TK_SLASH==OP_Divide );
|
| - assert( TK_LSHIFT==OP_ShiftLeft );
|
| - assert( TK_RSHIFT==OP_ShiftRight );
|
| - assert( TK_CONCAT==OP_Concat );
|
| - testcase( op==TK_AND );
|
| - testcase( op==TK_OR );
|
| - testcase( op==TK_PLUS );
|
| - testcase( op==TK_MINUS );
|
| - testcase( op==TK_REM );
|
| - testcase( op==TK_BITAND );
|
| - testcase( op==TK_BITOR );
|
| - testcase( op==TK_SLASH );
|
| - testcase( op==TK_LSHIFT );
|
| - testcase( op==TK_RSHIFT );
|
| - testcase( op==TK_CONCAT );
|
| + assert( TK_AND==OP_And ); testcase( op==TK_AND );
|
| + assert( TK_OR==OP_Or ); testcase( op==TK_OR );
|
| + assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS );
|
| + assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS );
|
| + assert( TK_REM==OP_Remainder ); testcase( op==TK_REM );
|
| + assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND );
|
| + assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR );
|
| + assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH );
|
| + assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT );
|
| + assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT );
|
| + assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT );
|
| r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
| sqlite3VdbeAddOp3(v, op, r2, r1, target);
|
| @@ -2476,8 +2702,10 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| codeReal(v, pLeft->u.zToken, 1, target);
|
| #endif
|
| }else{
|
| - regFree1 = r1 = sqlite3GetTempReg(pParse);
|
| - sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
|
| + tempX.op = TK_INTEGER;
|
| + tempX.flags = EP_IntValue|EP_TokenOnly;
|
| + tempX.u.iValue = 0;
|
| + r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1);
|
| r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2);
|
| sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
|
| testcase( regFree2==0 );
|
| @@ -2487,10 +2715,8 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| }
|
| case TK_BITNOT:
|
| case TK_NOT: {
|
| - assert( TK_BITNOT==OP_BitNot );
|
| - assert( TK_NOT==OP_Not );
|
| - testcase( op==TK_BITNOT );
|
| - testcase( op==TK_NOT );
|
| + assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT );
|
| + assert( TK_NOT==OP_Not ); testcase( op==TK_NOT );
|
| r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| testcase( regFree1==0 );
|
| inReg = target;
|
| @@ -2500,15 +2726,15 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| case TK_ISNULL:
|
| case TK_NOTNULL: {
|
| int addr;
|
| - assert( TK_ISNULL==OP_IsNull );
|
| - assert( TK_NOTNULL==OP_NotNull );
|
| - testcase( op==TK_ISNULL );
|
| - testcase( op==TK_NOTNULL );
|
| + assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
|
| + assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
|
| sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
|
| r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| testcase( regFree1==0 );
|
| addr = sqlite3VdbeAddOp1(v, op, r1);
|
| - sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
|
| + VdbeCoverageIf(v, op==TK_ISNULL);
|
| + VdbeCoverageIf(v, op==TK_NOTNULL);
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
|
| sqlite3VdbeJumpHere(v, addr);
|
| break;
|
| }
|
| @@ -2522,22 +2748,19 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| }
|
| break;
|
| }
|
| - case TK_CONST_FUNC:
|
| case TK_FUNCTION: {
|
| ExprList *pFarg; /* List of function arguments */
|
| int nFarg; /* Number of function arguments */
|
| FuncDef *pDef; /* The function definition object */
|
| int nId; /* Length of the function name in bytes */
|
| const char *zId; /* The function name */
|
| - int constMask = 0; /* Mask of function arguments that are constant */
|
| + u32 constMask = 0; /* Mask of function arguments that are constant */
|
| int i; /* Loop counter */
|
| u8 enc = ENC(db); /* The text encoding used by this database */
|
| CollSeq *pColl = 0; /* A collating sequence */
|
|
|
| assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
| - testcase( op==TK_CONST_FUNC );
|
| - testcase( op==TK_FUNCTION );
|
| - if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
|
| + if( ExprHasProperty(pExpr, EP_TokenOnly) ){
|
| pFarg = 0;
|
| }else{
|
| pFarg = pExpr->x.pList;
|
| @@ -2547,36 +2770,80 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| zId = pExpr->u.zToken;
|
| nId = sqlite3Strlen30(zId);
|
| pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
|
| - if( pDef==0 ){
|
| + if( pDef==0 || pDef->xFunc==0 ){
|
| sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
|
| break;
|
| }
|
|
|
| /* Attempt a direct implementation of the built-in COALESCE() and
|
| - ** IFNULL() functions. This avoids unnecessary evalation of
|
| + ** IFNULL() functions. This avoids unnecessary evaluation of
|
| ** arguments past the first non-NULL argument.
|
| */
|
| - if( pDef->flags & SQLITE_FUNC_COALESCE ){
|
| + if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
|
| int endCoalesce = sqlite3VdbeMakeLabel(v);
|
| assert( nFarg>=2 );
|
| sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
|
| for(i=1; i<nFarg; i++){
|
| sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
|
| + VdbeCoverage(v);
|
| sqlite3ExprCacheRemove(pParse, target, 1);
|
| sqlite3ExprCachePush(pParse);
|
| sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
|
| - sqlite3ExprCachePop(pParse, 1);
|
| + sqlite3ExprCachePop(pParse);
|
| }
|
| sqlite3VdbeResolveLabel(v, endCoalesce);
|
| break;
|
| }
|
|
|
| + /* The UNLIKELY() function is a no-op. The result is the value
|
| + ** of the first argument.
|
| + */
|
| + if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
|
| + assert( nFarg>=1 );
|
| + sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
|
| + break;
|
| + }
|
|
|
| + for(i=0; i<nFarg; i++){
|
| + if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
|
| + testcase( i==31 );
|
| + constMask |= MASKBIT32(i);
|
| + }
|
| + if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
|
| + pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
|
| + }
|
| + }
|
| if( pFarg ){
|
| - r1 = sqlite3GetTempRange(pParse, nFarg);
|
| + if( constMask ){
|
| + r1 = pParse->nMem+1;
|
| + pParse->nMem += nFarg;
|
| + }else{
|
| + r1 = sqlite3GetTempRange(pParse, nFarg);
|
| + }
|
| +
|
| + /* For length() and typeof() functions with a column argument,
|
| + ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
|
| + ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
|
| + ** loading.
|
| + */
|
| + if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
|
| + u8 exprOp;
|
| + assert( nFarg==1 );
|
| + assert( pFarg->a[0].pExpr!=0 );
|
| + exprOp = pFarg->a[0].pExpr->op;
|
| + if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
|
| + assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
|
| + assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
|
| + testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
|
| + pFarg->a[0].pExpr->op2 =
|
| + pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
|
| + }
|
| + }
|
| +
|
| sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */
|
| - sqlite3ExprCodeExprList(pParse, pFarg, r1, 1);
|
| - sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */
|
| + sqlite3ExprCodeExprList(pParse, pFarg, r1,
|
| + SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
|
| + sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */
|
| }else{
|
| r1 = 0;
|
| }
|
| @@ -2599,22 +2866,14 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
|
| }
|
| #endif
|
| - for(i=0; i<nFarg; i++){
|
| - if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
|
| - constMask |= (1<<i);
|
| - }
|
| - if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
|
| - pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
|
| - }
|
| - }
|
| - if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
|
| + if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
|
| if( !pColl ) pColl = db->pDfltColl;
|
| sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
|
| }
|
| sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
|
| (char*)pDef, P4_FUNCDEF);
|
| sqlite3VdbeChangeP5(v, (u8)nFarg);
|
| - if( nFarg ){
|
| + if( nFarg && constMask==0 ){
|
| sqlite3ReleaseTempRange(pParse, r1, nFarg);
|
| }
|
| break;
|
| @@ -2664,18 +2923,20 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| r3 = sqlite3GetTempReg(pParse);
|
| r4 = sqlite3GetTempReg(pParse);
|
| codeCompare(pParse, pLeft, pRight, OP_Ge,
|
| - r1, r2, r3, SQLITE_STOREP2);
|
| + r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v);
|
| pLItem++;
|
| pRight = pLItem->pExpr;
|
| sqlite3ReleaseTempReg(pParse, regFree2);
|
| r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2);
|
| testcase( regFree2==0 );
|
| codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
|
| + VdbeCoverage(v);
|
| sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
|
| sqlite3ReleaseTempReg(pParse, r3);
|
| sqlite3ReleaseTempReg(pParse, r4);
|
| break;
|
| }
|
| + case TK_COLLATE:
|
| case TK_UPLUS: {
|
| inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
|
| break;
|
| @@ -2747,9 +3008,9 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| ** WHEN x=eN THEN rN ELSE y END
|
| **
|
| ** X (if it exists) is in pExpr->pLeft.
|
| - ** Y is in pExpr->pRight. The Y is also optional. If there is no
|
| - ** ELSE clause and no other term matches, then the result of the
|
| - ** exprssion is NULL.
|
| + ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
|
| + ** odd. The Y is also optional. If the number of elements in x.pList
|
| + ** is even, then Y is omitted and the "otherwise" result is NULL.
|
| ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
|
| **
|
| ** The result of the expression is the Ri for the first matching Ei,
|
| @@ -2764,27 +3025,23 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| ExprList *pEList; /* List of WHEN terms */
|
| struct ExprList_item *aListelem; /* Array of WHEN terms */
|
| Expr opCompare; /* The X==Ei expression */
|
| - Expr cacheX; /* Cached expression X */
|
| Expr *pX; /* The X expression */
|
| Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */
|
| VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
|
|
|
| assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
|
| - assert((pExpr->x.pList->nExpr % 2) == 0);
|
| assert(pExpr->x.pList->nExpr > 0);
|
| pEList = pExpr->x.pList;
|
| aListelem = pEList->a;
|
| nExpr = pEList->nExpr;
|
| endLabel = sqlite3VdbeMakeLabel(v);
|
| if( (pX = pExpr->pLeft)!=0 ){
|
| - cacheX = *pX;
|
| + tempX = *pX;
|
| testcase( pX->op==TK_COLUMN );
|
| - testcase( pX->op==TK_REGISTER );
|
| - cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1);
|
| + exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, ®Free1));
|
| testcase( regFree1==0 );
|
| - cacheX.op = TK_REGISTER;
|
| opCompare.op = TK_EQ;
|
| - opCompare.pLeft = &cacheX;
|
| + opCompare.pLeft = &tempX;
|
| pTest = &opCompare;
|
| /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
|
| ** The value in regFree1 might get SCopy-ed into the file result.
|
| @@ -2792,7 +3049,7 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| ** purposes and possibly overwritten. */
|
| regFree1 = 0;
|
| }
|
| - for(i=0; i<nExpr; i=i+2){
|
| + for(i=0; i<nExpr-1; i=i+2){
|
| sqlite3ExprCachePush(pParse);
|
| if( pX ){
|
| assert( pTest!=0 );
|
| @@ -2804,16 +3061,15 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| testcase( pTest->op==TK_COLUMN );
|
| sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
|
| testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
|
| - testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
|
| sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
|
| sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
|
| - sqlite3ExprCachePop(pParse, 1);
|
| + sqlite3ExprCachePop(pParse);
|
| sqlite3VdbeResolveLabel(v, nextCase);
|
| }
|
| - if( pExpr->pRight ){
|
| + if( (nExpr&1)!=0 ){
|
| sqlite3ExprCachePush(pParse);
|
| - sqlite3ExprCode(pParse, pExpr->pRight, target);
|
| - sqlite3ExprCachePop(pParse, 1);
|
| + sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
|
| + sqlite3ExprCachePop(pParse);
|
| }else{
|
| sqlite3VdbeAddOp2(v, OP_Null, 0, target);
|
| }
|
| @@ -2841,8 +3097,10 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| if( pExpr->affinity==OE_Ignore ){
|
| sqlite3VdbeAddOp4(
|
| v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
|
| + VdbeCoverage(v);
|
| }else{
|
| - sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0);
|
| + sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
|
| + pExpr->affinity, pExpr->u.zToken, 0, 0);
|
| }
|
|
|
| break;
|
| @@ -2855,6 +3113,28 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| }
|
|
|
| /*
|
| +** Factor out the code of the given expression to initialization time.
|
| +*/
|
| +void sqlite3ExprCodeAtInit(
|
| + Parse *pParse, /* Parsing context */
|
| + Expr *pExpr, /* The expression to code when the VDBE initializes */
|
| + int regDest, /* Store the value in this register */
|
| + u8 reusable /* True if this expression is reusable */
|
| +){
|
| + ExprList *p;
|
| + assert( ConstFactorOk(pParse) );
|
| + p = pParse->pConstExpr;
|
| + pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
|
| + p = sqlite3ExprListAppend(pParse, p, pExpr);
|
| + if( p ){
|
| + struct ExprList_item *pItem = &p->a[p->nExpr-1];
|
| + pItem->u.iConstExprReg = regDest;
|
| + pItem->reusable = reusable;
|
| + }
|
| + pParse->pConstExpr = p;
|
| +}
|
| +
|
| +/*
|
| ** Generate code to evaluate an expression and store the results
|
| ** into a register. Return the register number where the results
|
| ** are stored.
|
| @@ -2862,15 +3142,40 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| ** If the register is a temporary register that can be deallocated,
|
| ** then write its number into *pReg. If the result register is not
|
| ** a temporary, then set *pReg to zero.
|
| +**
|
| +** If pExpr is a constant, then this routine might generate this
|
| +** code to fill the register in the initialization section of the
|
| +** VDBE program, in order to factor it out of the evaluation loop.
|
| */
|
| int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
|
| - int r1 = sqlite3GetTempReg(pParse);
|
| - int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
|
| - if( r2==r1 ){
|
| - *pReg = r1;
|
| + int r2;
|
| + pExpr = sqlite3ExprSkipCollate(pExpr);
|
| + if( ConstFactorOk(pParse)
|
| + && pExpr->op!=TK_REGISTER
|
| + && sqlite3ExprIsConstantNotJoin(pExpr)
|
| + ){
|
| + ExprList *p = pParse->pConstExpr;
|
| + int i;
|
| + *pReg = 0;
|
| + if( p ){
|
| + struct ExprList_item *pItem;
|
| + for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
|
| + if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
|
| + return pItem->u.iConstExprReg;
|
| + }
|
| + }
|
| + }
|
| + r2 = ++pParse->nMem;
|
| + sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
|
| }else{
|
| - sqlite3ReleaseTempReg(pParse, r1);
|
| - *pReg = 0;
|
| + int r1 = sqlite3GetTempReg(pParse);
|
| + r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
|
| + if( r2==r1 ){
|
| + *pReg = r1;
|
| + }else{
|
| + sqlite3ReleaseTempReg(pParse, r1);
|
| + *pReg = 0;
|
| + }
|
| }
|
| return r2;
|
| }
|
| @@ -2880,7 +3185,7 @@ int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
|
| ** results in register target. The results are guaranteed to appear
|
| ** in register target.
|
| */
|
| -int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
|
| +void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
|
| int inReg;
|
|
|
| assert( target>0 && target<=pParse->nMem );
|
| @@ -2893,11 +3198,24 @@ int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
|
| sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
|
| }
|
| }
|
| - return target;
|
| }
|
|
|
| /*
|
| -** Generate code that evalutes the given expression and puts the result
|
| +** Generate code that will evaluate expression pExpr and store the
|
| +** results in register target. The results are guaranteed to appear
|
| +** in register target. If the expression is constant, then this routine
|
| +** might choose to code the expression at initialization time.
|
| +*/
|
| +void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
|
| + if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
|
| + sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
|
| + }else{
|
| + sqlite3ExprCode(pParse, pExpr, target);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Generate code that evaluates the given expression and puts the result
|
| ** in register target.
|
| **
|
| ** Also make a copy of the expression results into another "cache" register
|
| @@ -2908,183 +3226,325 @@ int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
|
| ** times. They are evaluated once and the results of the expression
|
| ** are reused.
|
| */
|
| -int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
|
| +void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
|
| Vdbe *v = pParse->pVdbe;
|
| - int inReg;
|
| - inReg = sqlite3ExprCode(pParse, pExpr, target);
|
| + int iMem;
|
| +
|
| assert( target>0 );
|
| - /* This routine is called for terms to INSERT or UPDATE. And the only
|
| - ** other place where expressions can be converted into TK_REGISTER is
|
| - ** in WHERE clause processing. So as currently implemented, there is
|
| - ** no way for a TK_REGISTER to exist here. But it seems prudent to
|
| - ** keep the ALWAYS() in case the conditions above change with future
|
| - ** modifications or enhancements. */
|
| - if( ALWAYS(pExpr->op!=TK_REGISTER) ){
|
| - int iMem;
|
| - iMem = ++pParse->nMem;
|
| - sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
|
| - pExpr->iTable = iMem;
|
| - pExpr->op2 = pExpr->op;
|
| - pExpr->op = TK_REGISTER;
|
| - }
|
| - return inReg;
|
| + assert( pExpr->op!=TK_REGISTER );
|
| + sqlite3ExprCode(pParse, pExpr, target);
|
| + iMem = ++pParse->nMem;
|
| + sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
|
| + exprToRegister(pExpr, iMem);
|
| }
|
|
|
| +#ifdef SQLITE_DEBUG
|
| /*
|
| -** Return TRUE if pExpr is an constant expression that is appropriate
|
| -** for factoring out of a loop. Appropriate expressions are:
|
| -**
|
| -** * Any expression that evaluates to two or more opcodes.
|
| -**
|
| -** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
|
| -** or OP_Variable that does not need to be placed in a
|
| -** specific register.
|
| -**
|
| -** There is no point in factoring out single-instruction constant
|
| -** expressions that need to be placed in a particular register.
|
| -** We could factor them out, but then we would end up adding an
|
| -** OP_SCopy instruction to move the value into the correct register
|
| -** later. We might as well just use the original instruction and
|
| -** avoid the OP_SCopy.
|
| +** Generate a human-readable explanation of an expression tree.
|
| */
|
| -static int isAppropriateForFactoring(Expr *p){
|
| - if( !sqlite3ExprIsConstantNotJoin(p) ){
|
| - return 0; /* Only constant expressions are appropriate for factoring */
|
| - }
|
| - if( (p->flags & EP_FixedDest)==0 ){
|
| - return 1; /* Any constant without a fixed destination is appropriate */
|
| +void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){
|
| + const char *zBinOp = 0; /* Binary operator */
|
| + const char *zUniOp = 0; /* Unary operator */
|
| + pView = sqlite3TreeViewPush(pView, moreToFollow);
|
| + if( pExpr==0 ){
|
| + sqlite3TreeViewLine(pView, "nil");
|
| + sqlite3TreeViewPop(pView);
|
| + return;
|
| }
|
| - while( p->op==TK_UPLUS ) p = p->pLeft;
|
| - switch( p->op ){
|
| -#ifndef SQLITE_OMIT_BLOB_LITERAL
|
| - case TK_BLOB:
|
| + switch( pExpr->op ){
|
| + case TK_AGG_COLUMN: {
|
| + sqlite3TreeViewLine(pView, "AGG{%d:%d}",
|
| + pExpr->iTable, pExpr->iColumn);
|
| + break;
|
| + }
|
| + case TK_COLUMN: {
|
| + if( pExpr->iTable<0 ){
|
| + /* This only happens when coding check constraints */
|
| + sqlite3TreeViewLine(pView, "COLUMN(%d)", pExpr->iColumn);
|
| + }else{
|
| + sqlite3TreeViewLine(pView, "{%d:%d}",
|
| + pExpr->iTable, pExpr->iColumn);
|
| + }
|
| + break;
|
| + }
|
| + case TK_INTEGER: {
|
| + if( pExpr->flags & EP_IntValue ){
|
| + sqlite3TreeViewLine(pView, "%d", pExpr->u.iValue);
|
| + }else{
|
| + sqlite3TreeViewLine(pView, "%s", pExpr->u.zToken);
|
| + }
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_FLOATING_POINT
|
| + case TK_FLOAT: {
|
| + sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken);
|
| + break;
|
| + }
|
| #endif
|
| - case TK_VARIABLE:
|
| - case TK_INTEGER:
|
| - case TK_FLOAT:
|
| - case TK_NULL:
|
| case TK_STRING: {
|
| - testcase( p->op==TK_BLOB );
|
| - testcase( p->op==TK_VARIABLE );
|
| - testcase( p->op==TK_INTEGER );
|
| - testcase( p->op==TK_FLOAT );
|
| - testcase( p->op==TK_NULL );
|
| - testcase( p->op==TK_STRING );
|
| - /* Single-instruction constants with a fixed destination are
|
| - ** better done in-line. If we factor them, they will just end
|
| - ** up generating an OP_SCopy to move the value to the destination
|
| - ** register. */
|
| - return 0;
|
| + sqlite3TreeViewLine(pView,"%Q", pExpr->u.zToken);
|
| + break;
|
| }
|
| - case TK_UMINUS: {
|
| - if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
|
| - return 0;
|
| - }
|
| + case TK_NULL: {
|
| + sqlite3TreeViewLine(pView,"NULL");
|
| break;
|
| }
|
| - default: {
|
| +#ifndef SQLITE_OMIT_BLOB_LITERAL
|
| + case TK_BLOB: {
|
| + sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken);
|
| + break;
|
| + }
|
| +#endif
|
| + case TK_VARIABLE: {
|
| + sqlite3TreeViewLine(pView,"VARIABLE(%s,%d)",
|
| + pExpr->u.zToken, pExpr->iColumn);
|
| break;
|
| }
|
| - }
|
| - return 1;
|
| -}
|
| -
|
| -/*
|
| -** If pExpr is a constant expression that is appropriate for
|
| -** factoring out of a loop, then evaluate the expression
|
| -** into a register and convert the expression into a TK_REGISTER
|
| -** expression.
|
| -*/
|
| -static int evalConstExpr(Walker *pWalker, Expr *pExpr){
|
| - Parse *pParse = pWalker->pParse;
|
| - switch( pExpr->op ){
|
| - case TK_IN:
|
| case TK_REGISTER: {
|
| - return WRC_Prune;
|
| + sqlite3TreeViewLine(pView,"REGISTER(%d)", pExpr->iTable);
|
| + break;
|
| }
|
| - case TK_FUNCTION:
|
| + case TK_AS: {
|
| + sqlite3TreeViewLine(pView,"AS %Q", pExpr->u.zToken);
|
| + sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
|
| + break;
|
| + }
|
| + case TK_ID: {
|
| + sqlite3TreeViewLine(pView,"ID %Q", pExpr->u.zToken);
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_CAST
|
| + case TK_CAST: {
|
| + /* Expressions of the form: CAST(pLeft AS token) */
|
| + sqlite3TreeViewLine(pView,"CAST %Q", pExpr->u.zToken);
|
| + sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
|
| + break;
|
| + }
|
| +#endif /* SQLITE_OMIT_CAST */
|
| + case TK_LT: zBinOp = "LT"; break;
|
| + case TK_LE: zBinOp = "LE"; break;
|
| + case TK_GT: zBinOp = "GT"; break;
|
| + case TK_GE: zBinOp = "GE"; break;
|
| + case TK_NE: zBinOp = "NE"; break;
|
| + case TK_EQ: zBinOp = "EQ"; break;
|
| + case TK_IS: zBinOp = "IS"; break;
|
| + case TK_ISNOT: zBinOp = "ISNOT"; break;
|
| + case TK_AND: zBinOp = "AND"; break;
|
| + case TK_OR: zBinOp = "OR"; break;
|
| + case TK_PLUS: zBinOp = "ADD"; break;
|
| + case TK_STAR: zBinOp = "MUL"; break;
|
| + case TK_MINUS: zBinOp = "SUB"; break;
|
| + case TK_REM: zBinOp = "REM"; break;
|
| + case TK_BITAND: zBinOp = "BITAND"; break;
|
| + case TK_BITOR: zBinOp = "BITOR"; break;
|
| + case TK_SLASH: zBinOp = "DIV"; break;
|
| + case TK_LSHIFT: zBinOp = "LSHIFT"; break;
|
| + case TK_RSHIFT: zBinOp = "RSHIFT"; break;
|
| + case TK_CONCAT: zBinOp = "CONCAT"; break;
|
| + case TK_DOT: zBinOp = "DOT"; break;
|
| +
|
| + case TK_UMINUS: zUniOp = "UMINUS"; break;
|
| + case TK_UPLUS: zUniOp = "UPLUS"; break;
|
| + case TK_BITNOT: zUniOp = "BITNOT"; break;
|
| + case TK_NOT: zUniOp = "NOT"; break;
|
| + case TK_ISNULL: zUniOp = "ISNULL"; break;
|
| + case TK_NOTNULL: zUniOp = "NOTNULL"; break;
|
| +
|
| + case TK_COLLATE: {
|
| + sqlite3TreeViewLine(pView, "COLLATE %Q", pExpr->u.zToken);
|
| + sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
|
| + break;
|
| + }
|
| +
|
| case TK_AGG_FUNCTION:
|
| - case TK_CONST_FUNC: {
|
| - /* The arguments to a function have a fixed destination.
|
| - ** Mark them this way to avoid generated unneeded OP_SCopy
|
| - ** instructions.
|
| + case TK_FUNCTION: {
|
| + ExprList *pFarg; /* List of function arguments */
|
| + if( ExprHasProperty(pExpr, EP_TokenOnly) ){
|
| + pFarg = 0;
|
| + }else{
|
| + pFarg = pExpr->x.pList;
|
| + }
|
| + if( pExpr->op==TK_AGG_FUNCTION ){
|
| + sqlite3TreeViewLine(pView, "AGG_FUNCTION%d %Q",
|
| + pExpr->op2, pExpr->u.zToken);
|
| + }else{
|
| + sqlite3TreeViewLine(pView, "FUNCTION %Q", pExpr->u.zToken);
|
| + }
|
| + if( pFarg ){
|
| + sqlite3TreeViewExprList(pView, pFarg, 0, 0);
|
| + }
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| + case TK_EXISTS: {
|
| + sqlite3TreeViewLine(pView, "EXISTS-expr");
|
| + sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
|
| + break;
|
| + }
|
| + case TK_SELECT: {
|
| + sqlite3TreeViewLine(pView, "SELECT-expr");
|
| + sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
|
| + break;
|
| + }
|
| + case TK_IN: {
|
| + sqlite3TreeViewLine(pView, "IN");
|
| + sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
|
| + if( ExprHasProperty(pExpr, EP_xIsSelect) ){
|
| + sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
|
| + }else{
|
| + sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0);
|
| + }
|
| + break;
|
| + }
|
| +#endif /* SQLITE_OMIT_SUBQUERY */
|
| +
|
| + /*
|
| + ** x BETWEEN y AND z
|
| + **
|
| + ** This is equivalent to
|
| + **
|
| + ** x>=y AND x<=z
|
| + **
|
| + ** X is stored in pExpr->pLeft.
|
| + ** Y is stored in pExpr->pList->a[0].pExpr.
|
| + ** Z is stored in pExpr->pList->a[1].pExpr.
|
| + */
|
| + case TK_BETWEEN: {
|
| + Expr *pX = pExpr->pLeft;
|
| + Expr *pY = pExpr->x.pList->a[0].pExpr;
|
| + Expr *pZ = pExpr->x.pList->a[1].pExpr;
|
| + sqlite3TreeViewLine(pView, "BETWEEN");
|
| + sqlite3TreeViewExpr(pView, pX, 1);
|
| + sqlite3TreeViewExpr(pView, pY, 1);
|
| + sqlite3TreeViewExpr(pView, pZ, 0);
|
| + break;
|
| + }
|
| + case TK_TRIGGER: {
|
| + /* If the opcode is TK_TRIGGER, then the expression is a reference
|
| + ** to a column in the new.* or old.* pseudo-tables available to
|
| + ** trigger programs. In this case Expr.iTable is set to 1 for the
|
| + ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
|
| + ** is set to the column of the pseudo-table to read, or to -1 to
|
| + ** read the rowid field.
|
| */
|
| - ExprList *pList = pExpr->x.pList;
|
| - assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
| - if( pList ){
|
| - int i = pList->nExpr;
|
| - struct ExprList_item *pItem = pList->a;
|
| - for(; i>0; i--, pItem++){
|
| - if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest;
|
| - }
|
| + sqlite3TreeViewLine(pView, "%s(%d)",
|
| + pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
|
| + break;
|
| + }
|
| + case TK_CASE: {
|
| + sqlite3TreeViewLine(pView, "CASE");
|
| + sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
|
| + sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0);
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_TRIGGER
|
| + case TK_RAISE: {
|
| + const char *zType = "unk";
|
| + switch( pExpr->affinity ){
|
| + case OE_Rollback: zType = "rollback"; break;
|
| + case OE_Abort: zType = "abort"; break;
|
| + case OE_Fail: zType = "fail"; break;
|
| + case OE_Ignore: zType = "ignore"; break;
|
| }
|
| + sqlite3TreeViewLine(pView, "RAISE %s(%Q)", zType, pExpr->u.zToken);
|
| + break;
|
| + }
|
| +#endif
|
| + default: {
|
| + sqlite3TreeViewLine(pView, "op=%d", pExpr->op);
|
| break;
|
| }
|
| }
|
| - if( isAppropriateForFactoring(pExpr) ){
|
| - int r1 = ++pParse->nMem;
|
| - int r2;
|
| - r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
|
| - if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1);
|
| - pExpr->op2 = pExpr->op;
|
| - pExpr->op = TK_REGISTER;
|
| - pExpr->iTable = r2;
|
| - return WRC_Prune;
|
| + if( zBinOp ){
|
| + sqlite3TreeViewLine(pView, "%s", zBinOp);
|
| + sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
|
| + sqlite3TreeViewExpr(pView, pExpr->pRight, 0);
|
| + }else if( zUniOp ){
|
| + sqlite3TreeViewLine(pView, "%s", zUniOp);
|
| + sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
|
| }
|
| - return WRC_Continue;
|
| + sqlite3TreeViewPop(pView);
|
| }
|
| +#endif /* SQLITE_DEBUG */
|
|
|
| +#ifdef SQLITE_DEBUG
|
| /*
|
| -** Preevaluate constant subexpressions within pExpr and store the
|
| -** results in registers. Modify pExpr so that the constant subexpresions
|
| -** are TK_REGISTER opcodes that refer to the precomputed values.
|
| -**
|
| -** This routine is a no-op if the jump to the cookie-check code has
|
| -** already occur. Since the cookie-check jump is generated prior to
|
| -** any other serious processing, this check ensures that there is no
|
| -** way to accidently bypass the constant initializations.
|
| -**
|
| -** This routine is also a no-op if the SQLITE_FactorOutConst optimization
|
| -** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS)
|
| -** interface. This allows test logic to verify that the same answer is
|
| -** obtained for queries regardless of whether or not constants are
|
| -** precomputed into registers or if they are inserted in-line.
|
| +** Generate a human-readable explanation of an expression list.
|
| */
|
| -void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
|
| - Walker w;
|
| - if( pParse->cookieGoto ) return;
|
| - if( (pParse->db->flags & SQLITE_FactorOutConst)!=0 ) return;
|
| - w.xExprCallback = evalConstExpr;
|
| - w.xSelectCallback = 0;
|
| - w.pParse = pParse;
|
| - sqlite3WalkExpr(&w, pExpr);
|
| +void sqlite3TreeViewExprList(
|
| + TreeView *pView,
|
| + const ExprList *pList,
|
| + u8 moreToFollow,
|
| + const char *zLabel
|
| +){
|
| + int i;
|
| + pView = sqlite3TreeViewPush(pView, moreToFollow);
|
| + if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST";
|
| + if( pList==0 ){
|
| + sqlite3TreeViewLine(pView, "%s (empty)", zLabel);
|
| + }else{
|
| + sqlite3TreeViewLine(pView, "%s", zLabel);
|
| + for(i=0; i<pList->nExpr; i++){
|
| + sqlite3TreeViewExpr(pView, pList->a[i].pExpr, i<pList->nExpr-1);
|
| +#if 0
|
| + if( pList->a[i].zName ){
|
| + sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName);
|
| + }
|
| + if( pList->a[i].bSpanIsTab ){
|
| + sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan);
|
| + }
|
| +#endif
|
| + }
|
| + }
|
| + sqlite3TreeViewPop(pView);
|
| }
|
| -
|
| +#endif /* SQLITE_DEBUG */
|
|
|
| /*
|
| ** Generate code that pushes the value of every element of the given
|
| ** expression list into a sequence of registers beginning at target.
|
| **
|
| ** Return the number of elements evaluated.
|
| +**
|
| +** The SQLITE_ECEL_DUP flag prevents the arguments from being
|
| +** filled using OP_SCopy. OP_Copy must be used instead.
|
| +**
|
| +** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
|
| +** factored out into initialization code.
|
| */
|
| int sqlite3ExprCodeExprList(
|
| Parse *pParse, /* Parsing context */
|
| ExprList *pList, /* The expression list to be coded */
|
| int target, /* Where to write results */
|
| - int doHardCopy /* Make a hard copy of every element */
|
| + u8 flags /* SQLITE_ECEL_* flags */
|
| ){
|
| struct ExprList_item *pItem;
|
| int i, n;
|
| + u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
|
| assert( pList!=0 );
|
| assert( target>0 );
|
| assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */
|
| n = pList->nExpr;
|
| + if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
|
| for(pItem=pList->a, i=0; i<n; i++, pItem++){
|
| Expr *pExpr = pItem->pExpr;
|
| - int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
|
| - if( inReg!=target+i ){
|
| - sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy,
|
| - inReg, target+i);
|
| + if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
|
| + sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
|
| + }else{
|
| + int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
|
| + if( inReg!=target+i ){
|
| + VdbeOp *pOp;
|
| + Vdbe *v = pParse->pVdbe;
|
| + if( copyOp==OP_Copy
|
| + && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
|
| + && pOp->p1+pOp->p3+1==inReg
|
| + && pOp->p2+pOp->p3+1==target+i
|
| + ){
|
| + pOp->p3++;
|
| + }else{
|
| + sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
|
| + }
|
| + }
|
| }
|
| }
|
| return n;
|
| @@ -3100,7 +3560,7 @@ int sqlite3ExprCodeExprList(
|
| ** x>=y AND x<=z
|
| **
|
| ** Code it as such, taking care to do the common subexpression
|
| -** elementation of x.
|
| +** elimination of x.
|
| */
|
| static void exprCodeBetween(
|
| Parse *pParse, /* Parsing and code generating context */
|
| @@ -3126,8 +3586,7 @@ static void exprCodeBetween(
|
| compRight.op = TK_LE;
|
| compRight.pLeft = &exprX;
|
| compRight.pRight = pExpr->x.pList->a[1].pExpr;
|
| - exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1);
|
| - exprX.op = TK_REGISTER;
|
| + exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, ®Free1));
|
| if( jumpIfTrue ){
|
| sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
|
| }else{
|
| @@ -3168,24 +3627,26 @@ void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
| int r1, r2;
|
|
|
| assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
|
| - if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
|
| + if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
|
| if( NEVER(pExpr==0) ) return; /* No way this can happen */
|
| op = pExpr->op;
|
| switch( op ){
|
| case TK_AND: {
|
| int d2 = sqlite3VdbeMakeLabel(v);
|
| testcase( jumpIfNull==0 );
|
| - sqlite3ExprCachePush(pParse);
|
| sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
|
| + sqlite3ExprCachePush(pParse);
|
| sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
|
| sqlite3VdbeResolveLabel(v, d2);
|
| - sqlite3ExprCachePop(pParse, 1);
|
| + sqlite3ExprCachePop(pParse);
|
| break;
|
| }
|
| case TK_OR: {
|
| testcase( jumpIfNull==0 );
|
| sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
|
| + sqlite3ExprCachePush(pParse);
|
| sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
|
| + sqlite3ExprCachePop(pParse);
|
| break;
|
| }
|
| case TK_NOT: {
|
| @@ -3199,23 +3660,17 @@ void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
| case TK_GE:
|
| case TK_NE:
|
| case TK_EQ: {
|
| - assert( TK_LT==OP_Lt );
|
| - assert( TK_LE==OP_Le );
|
| - assert( TK_GT==OP_Gt );
|
| - assert( TK_GE==OP_Ge );
|
| - assert( TK_EQ==OP_Eq );
|
| - assert( TK_NE==OP_Ne );
|
| - testcase( op==TK_LT );
|
| - testcase( op==TK_LE );
|
| - testcase( op==TK_GT );
|
| - testcase( op==TK_GE );
|
| - testcase( op==TK_EQ );
|
| - testcase( op==TK_NE );
|
| testcase( jumpIfNull==0 );
|
| r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
| codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| r1, r2, dest, jumpIfNull);
|
| + assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
|
| + assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
|
| + assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
|
| + assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
|
| + assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
|
| + assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
|
| testcase( regFree1==0 );
|
| testcase( regFree2==0 );
|
| break;
|
| @@ -3229,18 +3684,20 @@ void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
| op = (op==TK_IS) ? TK_EQ : TK_NE;
|
| codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| r1, r2, dest, SQLITE_NULLEQ);
|
| + VdbeCoverageIf(v, op==TK_EQ);
|
| + VdbeCoverageIf(v, op==TK_NE);
|
| testcase( regFree1==0 );
|
| testcase( regFree2==0 );
|
| break;
|
| }
|
| case TK_ISNULL:
|
| case TK_NOTNULL: {
|
| - assert( TK_ISNULL==OP_IsNull );
|
| - assert( TK_NOTNULL==OP_NotNull );
|
| - testcase( op==TK_ISNULL );
|
| - testcase( op==TK_NOTNULL );
|
| + assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
|
| + assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
|
| r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| sqlite3VdbeAddOp2(v, op, r1, dest);
|
| + VdbeCoverageIf(v, op==TK_ISNULL);
|
| + VdbeCoverageIf(v, op==TK_NOTNULL);
|
| testcase( regFree1==0 );
|
| break;
|
| }
|
| @@ -3260,10 +3717,17 @@ void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
| }
|
| #endif
|
| default: {
|
| - r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
|
| - sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
|
| - testcase( regFree1==0 );
|
| - testcase( jumpIfNull==0 );
|
| + if( exprAlwaysTrue(pExpr) ){
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
|
| + }else if( exprAlwaysFalse(pExpr) ){
|
| + /* No-op */
|
| + }else{
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
|
| + sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
|
| + VdbeCoverage(v);
|
| + testcase( regFree1==0 );
|
| + testcase( jumpIfNull==0 );
|
| + }
|
| break;
|
| }
|
| }
|
| @@ -3288,7 +3752,7 @@ void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
| int r1, r2;
|
|
|
| assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
|
| - if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
|
| + if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
|
| if( pExpr==0 ) return;
|
|
|
| /* The value of pExpr->op and op are related as follows:
|
| @@ -3326,17 +3790,19 @@ void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
| case TK_AND: {
|
| testcase( jumpIfNull==0 );
|
| sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
|
| + sqlite3ExprCachePush(pParse);
|
| sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
|
| + sqlite3ExprCachePop(pParse);
|
| break;
|
| }
|
| case TK_OR: {
|
| int d2 = sqlite3VdbeMakeLabel(v);
|
| testcase( jumpIfNull==0 );
|
| - sqlite3ExprCachePush(pParse);
|
| sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
|
| + sqlite3ExprCachePush(pParse);
|
| sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
|
| sqlite3VdbeResolveLabel(v, d2);
|
| - sqlite3ExprCachePop(pParse, 1);
|
| + sqlite3ExprCachePop(pParse);
|
| break;
|
| }
|
| case TK_NOT: {
|
| @@ -3350,17 +3816,17 @@ void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
| case TK_GE:
|
| case TK_NE:
|
| case TK_EQ: {
|
| - testcase( op==TK_LT );
|
| - testcase( op==TK_LE );
|
| - testcase( op==TK_GT );
|
| - testcase( op==TK_GE );
|
| - testcase( op==TK_EQ );
|
| - testcase( op==TK_NE );
|
| testcase( jumpIfNull==0 );
|
| r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
| codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| r1, r2, dest, jumpIfNull);
|
| + assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
|
| + assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
|
| + assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
|
| + assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
|
| + assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
|
| + assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
|
| testcase( regFree1==0 );
|
| testcase( regFree2==0 );
|
| break;
|
| @@ -3374,16 +3840,18 @@ void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
| op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
|
| codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| r1, r2, dest, SQLITE_NULLEQ);
|
| + VdbeCoverageIf(v, op==TK_EQ);
|
| + VdbeCoverageIf(v, op==TK_NE);
|
| testcase( regFree1==0 );
|
| testcase( regFree2==0 );
|
| break;
|
| }
|
| case TK_ISNULL:
|
| case TK_NOTNULL: {
|
| - testcase( op==TK_ISNULL );
|
| - testcase( op==TK_NOTNULL );
|
| r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| sqlite3VdbeAddOp2(v, op, r1, dest);
|
| + testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL);
|
| + testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL);
|
| testcase( regFree1==0 );
|
| break;
|
| }
|
| @@ -3405,10 +3873,17 @@ void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
| }
|
| #endif
|
| default: {
|
| - r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
|
| - sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
|
| - testcase( regFree1==0 );
|
| - testcase( jumpIfNull==0 );
|
| + if( exprAlwaysFalse(pExpr) ){
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
|
| + }else if( exprAlwaysTrue(pExpr) ){
|
| + /* no-op */
|
| + }else{
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
|
| + sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
|
| + VdbeCoverage(v);
|
| + testcase( regFree1==0 );
|
| + testcase( jumpIfNull==0 );
|
| + }
|
| break;
|
| }
|
| }
|
| @@ -3422,6 +3897,12 @@ void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
| ** by a COLLATE operator at the top level. Return 2 if there are differences
|
| ** other than the top-level COLLATE operator.
|
| **
|
| +** If any subelement of pB has Expr.iTable==(-1) then it is allowed
|
| +** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
|
| +**
|
| +** The pA side might be using TK_REGISTER. If that is the case and pB is
|
| +** not using TK_REGISTER but is otherwise equivalent, then still return 0.
|
| +**
|
| ** Sometimes this routine will return 2 even if the two expressions
|
| ** really are equivalent. If we cannot prove that the expressions are
|
| ** identical, we return 2 just to be safe. So if this routine
|
| @@ -3432,33 +3913,44 @@ void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
| ** just might result in some slightly slower code. But returning
|
| ** an incorrect 0 or 1 could lead to a malfunction.
|
| */
|
| -int sqlite3ExprCompare(Expr *pA, Expr *pB){
|
| - if( pA==0||pB==0 ){
|
| +int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
|
| + u32 combinedFlags;
|
| + if( pA==0 || pB==0 ){
|
| return pB==pA ? 0 : 2;
|
| }
|
| - assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) );
|
| - assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) );
|
| - if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){
|
| + combinedFlags = pA->flags | pB->flags;
|
| + if( combinedFlags & EP_IntValue ){
|
| + if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
|
| + return 0;
|
| + }
|
| + return 2;
|
| + }
|
| + if( pA->op!=pB->op ){
|
| + if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
|
| + return 1;
|
| + }
|
| + if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
|
| + return 1;
|
| + }
|
| return 2;
|
| }
|
| + if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){
|
| + if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
|
| + return pA->op==TK_COLLATE ? 1 : 2;
|
| + }
|
| + }
|
| if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
|
| - if( pA->op!=pB->op ) return 2;
|
| - if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2;
|
| - if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2;
|
| - if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2;
|
| - if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2;
|
| - if( ExprHasProperty(pA, EP_IntValue) ){
|
| - if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
|
| - return 2;
|
| - }
|
| - }else if( pA->op!=TK_COLUMN && pA->u.zToken ){
|
| - if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2;
|
| - if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ){
|
| - return 2;
|
| - }
|
| - }
|
| - if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1;
|
| - if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2;
|
| + if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
|
| + if( combinedFlags & EP_xIsSelect ) return 2;
|
| + if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
|
| + if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
|
| + if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
|
| + if( ALWAYS((combinedFlags & EP_Reduced)==0) ){
|
| + if( pA->iColumn!=pB->iColumn ) return 2;
|
| + if( pA->iTable!=pB->iTable
|
| + && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
|
| + }
|
| + }
|
| return 0;
|
| }
|
|
|
| @@ -3466,6 +3958,9 @@ int sqlite3ExprCompare(Expr *pA, Expr *pB){
|
| ** Compare two ExprList objects. Return 0 if they are identical and
|
| ** non-zero if they differ in any way.
|
| **
|
| +** If any subelement of pB has Expr.iTable==(-1) then it is allowed
|
| +** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
|
| +**
|
| ** This routine might return non-zero for equivalent ExprLists. The
|
| ** only consequence will be disabled optimizations. But this routine
|
| ** must never return 0 if the two ExprList objects are different, or
|
| @@ -3474,7 +3969,7 @@ int sqlite3ExprCompare(Expr *pA, Expr *pB){
|
| ** Two NULL pointers are considered to be the same. But a NULL pointer
|
| ** always differs from a non-NULL pointer.
|
| */
|
| -int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){
|
| +int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
|
| int i;
|
| if( pA==0 && pB==0 ) return 0;
|
| if( pA==0 || pB==0 ) return 1;
|
| @@ -3483,12 +3978,108 @@ int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){
|
| Expr *pExprA = pA->a[i].pExpr;
|
| Expr *pExprB = pB->a[i].pExpr;
|
| if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
|
| - if( sqlite3ExprCompare(pExprA, pExprB) ) return 1;
|
| + if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/*
|
| +** Return true if we can prove the pE2 will always be true if pE1 is
|
| +** true. Return false if we cannot complete the proof or if pE2 might
|
| +** be false. Examples:
|
| +**
|
| +** pE1: x==5 pE2: x==5 Result: true
|
| +** pE1: x>0 pE2: x==5 Result: false
|
| +** pE1: x=21 pE2: x=21 OR y=43 Result: true
|
| +** pE1: x!=123 pE2: x IS NOT NULL Result: true
|
| +** pE1: x!=?1 pE2: x IS NOT NULL Result: true
|
| +** pE1: x IS NULL pE2: x IS NOT NULL Result: false
|
| +** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false
|
| +**
|
| +** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
|
| +** Expr.iTable<0 then assume a table number given by iTab.
|
| +**
|
| +** When in doubt, return false. Returning true might give a performance
|
| +** improvement. Returning false might cause a performance reduction, but
|
| +** it will always give the correct answer and is hence always safe.
|
| +*/
|
| +int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
|
| + if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
|
| + return 1;
|
| + }
|
| + if( pE2->op==TK_OR
|
| + && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
|
| + || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
|
| + ){
|
| + return 1;
|
| + }
|
| + if( pE2->op==TK_NOTNULL
|
| + && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
|
| + && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
|
| + ){
|
| + return 1;
|
| }
|
| return 0;
|
| }
|
|
|
| /*
|
| +** An instance of the following structure is used by the tree walker
|
| +** to count references to table columns in the arguments of an
|
| +** aggregate function, in order to implement the
|
| +** sqlite3FunctionThisSrc() routine.
|
| +*/
|
| +struct SrcCount {
|
| + SrcList *pSrc; /* One particular FROM clause in a nested query */
|
| + int nThis; /* Number of references to columns in pSrcList */
|
| + int nOther; /* Number of references to columns in other FROM clauses */
|
| +};
|
| +
|
| +/*
|
| +** Count the number of references to columns.
|
| +*/
|
| +static int exprSrcCount(Walker *pWalker, Expr *pExpr){
|
| + /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
|
| + ** is always called before sqlite3ExprAnalyzeAggregates() and so the
|
| + ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If
|
| + ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
|
| + ** NEVER() will need to be removed. */
|
| + if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
|
| + int i;
|
| + struct SrcCount *p = pWalker->u.pSrcCount;
|
| + SrcList *pSrc = p->pSrc;
|
| + for(i=0; i<pSrc->nSrc; i++){
|
| + if( pExpr->iTable==pSrc->a[i].iCursor ) break;
|
| + }
|
| + if( i<pSrc->nSrc ){
|
| + p->nThis++;
|
| + }else{
|
| + p->nOther++;
|
| + }
|
| + }
|
| + return WRC_Continue;
|
| +}
|
| +
|
| +/*
|
| +** Determine if any of the arguments to the pExpr Function reference
|
| +** pSrcList. Return true if they do. Also return true if the function
|
| +** has no arguments or has only constant arguments. Return false if pExpr
|
| +** references columns but not columns of tables found in pSrcList.
|
| +*/
|
| +int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
|
| + Walker w;
|
| + struct SrcCount cnt;
|
| + assert( pExpr->op==TK_AGG_FUNCTION );
|
| + memset(&w, 0, sizeof(w));
|
| + w.xExprCallback = exprSrcCount;
|
| + w.u.pSrcCount = &cnt;
|
| + cnt.pSrc = pSrcList;
|
| + cnt.nThis = 0;
|
| + cnt.nOther = 0;
|
| + sqlite3WalkExprList(&w, pExpr->x.pList);
|
| + return cnt.nThis>0 || cnt.nOther==0;
|
| +}
|
| +
|
| +/*
|
| ** Add a new element to the pAggInfo->aCol[] array. Return the index of
|
| ** the new element. Return a negative number if malloc fails.
|
| */
|
| @@ -3498,9 +4089,7 @@ static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
|
| db,
|
| pInfo->aCol,
|
| sizeof(pInfo->aCol[0]),
|
| - 3,
|
| &pInfo->nColumn,
|
| - &pInfo->nColumnAlloc,
|
| &i
|
| );
|
| return i;
|
| @@ -3516,9 +4105,7 @@ static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
|
| db,
|
| pInfo->aFunc,
|
| sizeof(pInfo->aFunc[0]),
|
| - 3,
|
| &pInfo->nFunc,
|
| - &pInfo->nFuncAlloc,
|
| &i
|
| );
|
| return i;
|
| @@ -3547,7 +4134,7 @@ static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
|
| struct SrcList_item *pItem = pSrcList->a;
|
| for(i=0; i<pSrcList->nSrc; i++, pItem++){
|
| struct AggInfo_col *pCol;
|
| - assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
|
| + assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
|
| if( pExpr->iTable==pItem->iCursor ){
|
| /* If we reach this point, it means that pExpr refers to a table
|
| ** that is in the FROM clause of the aggregate query.
|
| @@ -3596,7 +4183,7 @@ static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
|
| ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
|
| ** pAggInfo->aCol[] entry.
|
| */
|
| - ExprSetIrreducible(pExpr);
|
| + ExprSetVVAProperty(pExpr, EP_NoReduce);
|
| pExpr->pAggInfo = pAggInfo;
|
| pExpr->op = TK_AGG_COLUMN;
|
| pExpr->iAgg = (i16)k;
|
| @@ -3607,15 +4194,15 @@ static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
|
| return WRC_Prune;
|
| }
|
| case TK_AGG_FUNCTION: {
|
| - /* The pNC->nDepth==0 test causes aggregate functions in subqueries
|
| - ** to be ignored */
|
| - if( pNC->nDepth==0 ){
|
| + if( (pNC->ncFlags & NC_InAggFunc)==0
|
| + && pWalker->walkerDepth==pExpr->op2
|
| + ){
|
| /* Check to see if pExpr is a duplicate of another aggregate
|
| ** function that is already in the pAggInfo structure
|
| */
|
| struct AggInfo_func *pItem = pAggInfo->aFunc;
|
| for(i=0; i<pAggInfo->nFunc; i++, pItem++){
|
| - if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){
|
| + if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
|
| break;
|
| }
|
| }
|
| @@ -3642,38 +4229,36 @@ static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
|
| }
|
| /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
|
| */
|
| - assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
|
| - ExprSetIrreducible(pExpr);
|
| + assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
|
| + ExprSetVVAProperty(pExpr, EP_NoReduce);
|
| pExpr->iAgg = (i16)i;
|
| pExpr->pAggInfo = pAggInfo;
|
| return WRC_Prune;
|
| + }else{
|
| + return WRC_Continue;
|
| }
|
| }
|
| }
|
| return WRC_Continue;
|
| }
|
| static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
|
| - NameContext *pNC = pWalker->u.pNC;
|
| - if( pNC->nDepth==0 ){
|
| - pNC->nDepth++;
|
| - sqlite3WalkSelect(pWalker, pSelect);
|
| - pNC->nDepth--;
|
| - return WRC_Prune;
|
| - }else{
|
| - return WRC_Continue;
|
| - }
|
| + UNUSED_PARAMETER(pWalker);
|
| + UNUSED_PARAMETER(pSelect);
|
| + return WRC_Continue;
|
| }
|
|
|
| /*
|
| -** Analyze the given expression looking for aggregate functions and
|
| -** for variables that need to be added to the pParse->aAgg[] array.
|
| -** Make additional entries to the pParse->aAgg[] array as necessary.
|
| +** Analyze the pExpr expression looking for aggregate functions and
|
| +** for variables that need to be added to AggInfo object that pNC->pAggInfo
|
| +** points to. Additional entries are made on the AggInfo object as
|
| +** necessary.
|
| **
|
| ** This routine should only be called after the expression has been
|
| ** analyzed by sqlite3ResolveExprNames().
|
| */
|
| void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
|
| Walker w;
|
| + memset(&w, 0, sizeof(w));
|
| w.xExprCallback = analyzeAggregate;
|
| w.xSelectCallback = analyzeAggregatesInSelect;
|
| w.u.pNC = pNC;
|
| @@ -3712,7 +4297,7 @@ int sqlite3GetTempReg(Parse *pParse){
|
| ** purpose.
|
| **
|
| ** If a register is currently being used by the column cache, then
|
| -** the dallocation is deferred until the column cache line that uses
|
| +** the deallocation is deferred until the column cache line that uses
|
| ** the register becomes stale.
|
| */
|
| void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
|
| @@ -3753,3 +4338,11 @@ void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
|
| pParse->iRangeReg = iReg;
|
| }
|
| }
|
| +
|
| +/*
|
| +** Mark all temporary registers as being unavailable for reuse.
|
| +*/
|
| +void sqlite3ClearTempRegCache(Parse *pParse){
|
| + pParse->nTempReg = 0;
|
| + pParse->nRangeReg = 0;
|
| +}
|
|
|